
Active Learning on Neural Networks through
Interactive Generation of Digit Patterns and Visual

Representation
Dong H. Jeong

Department of Computer Science and Information Technology
University of the District of Columbia

Washington D.C., USA
djeong@udc.edu

Jin-Hee Cho
Department of Computer Science

Virginia Tech.
Falls Church, USA

jicho@vt.edu

Feng Chen
Department of Computer Science

University of Texas at Dallas
Richardson, USA

feng.chen@utdallas.edu

Audun Jøsang
Department of Informatics

University of Oslo
Oslo, Norway

audun.josang@mn.uio.no

Soo-Yeon Ji
Department of Computer Science

Bowie State University
Bowie, USA

sji@bowiestate.edu

Abstract—Artificial neural networks (ANNs) have been broadly
utilized to analyze various data and solve different domain
problems. However, neural networks (NNs) have been consid-
ered a black box operation for years because their underlying
computation and meaning are hidden. Due to this nature, users
often face difficulties in interpreting the underlying mechanism of
the NNs and the benefits of using them. In this paper, to improve
users’ learning and understanding of NNs, an interactive learning
system is designed to create digit patterns and recognize them in
real time. To help users clearly understand the visual differences
of digit patterns (i.e., 0 ∼ 9) and their results with an NN,
integrating visualization is considered to present all digit patterns
in a two-dimensional display space with supporting multiple user
interactions. An evaluation with multiple datasets is conducted to
determine its usability for active learning. In addition, informal
user testing is managed during a summer workshop by asking
the workshop participants to use the system.

Index Terms—Active Learning, Neural Networks, Visualiza-
tion, Digit Patterns

I. INTRODUCTION

Artificial Intelligence (AI) has significant impacts in many
disciplines, such as medicine [1], education [2], and earth-
quake [3], and so forth. AI enables machines to learn data to
perform various tasks to function like humans [4]. Examples of
AI-enabled technologies include abnormal behavior detection
in banking transactions, home protection using camera-based
monitoring and object recognition, customized learning mech-
anisms providing tailored lessons to students, and driving as-
sistance with upgraded and autonomous driving technologies.
AI also has received much attention as a tool in education to
improve students’ learning and knowledge acquisition [5].

Despite the powerful capability of AI and its numerous
applications in our daily lives, AI has been known as a black

This material is based upon work supported by the National Science
Foundation under Grant No. (2107449, 2107450, and 2107451).

box tool because it is not easy to understand the logic behind
its internal computations [6]. This motivated researchers to
design trustworthy and interpretable AI systems [7], [8].
However, it is still difficult to understand AI systems due to the
well-known issue of transparency [9] because machine or deep
learning algorithms used in AI models are highly complex.
For instance, neural networks (NNs) or deep NNs (DNNs)
often include thousands of artificial neurons to learn from
and process large amounts of data. Because of the numerous
neurons and their complex interconnections, it is difficult to
determine how decisions are made [10]. Understanding how
the AI models work and generate resulting predictions is a
critical step in interpreting the meaning of AI’s outcomes. But,
it remains challenging to understand data using a predictive
model that finds patterns from training the data and analyzes
the difference between predictions and the patterns.

This paper aims to integrate AI technologies into learn-
ing through hands-on practices. Specifically, designing an
interactive learning system is considered to assist users in
understanding NNs clearly through multiple learning activities.
To support an interactive learning environment on NNs, we
have designed the system with a pattern generator, where
a user can generate digit patterns. In addition, providing a
visual representation of the patterns is considered to help the
user understand the differences among the generated patterns.
Whenever the user creates patterns, the user can experience
NN training and recognition in real time. To represent the
patterns in a 2D display space, Principal Component Analysis
(PCA) was used to reduce the dimensions of the patterns
and present them in a lower-dimensional space [11], [12].
By interactively navigating the display space, the user can
identify the similarities and differences between the patterns.
To evaluate the system’s effectiveness for active learning,



2400-digit patterns are generated and used to test the system.
A broadly known handwritten digits dataset (called MNIST)
is also used to determine the capability of supporting a real-
time interactive digits analysis. To understand the usefulness
of the system, informal user testing was organized during
a summer workshop by asking the workshop participants to
use the system. We found that they understood NNs well by
initiating active learning with the system.

The rest of this paper is structured in six sections. Section II
provides previous studies on designing educational systems
for understanding AI. In Section III, the designed system is
explained. Section III includes a detailed explanation about the
applied neural networks and visual representation. Section V
shows the conducted evaluation of interactive learning on
recognizing digits in real time. After discussing interesting
insights in Section VI, we conclude this paper by providing
possible future work in Section VII.

II. RELATED WORK

Due to high interest in AI, most education institutes, in-
cluding colleges or high schools, have introduced new AI
degree programs [13]. AI has become a powerful paradigm in
scientific research communities due to its diverse applications
in broad and various domains [14]. Due to this popularity,
many students have shown a strong interest in understanding
AI. In particular, they have exposed their high interest in deep
learning (DL) because it has been commonly used to detect
complex patterns in high-dimensional data with little or no
human interventions. However, understanding the underlying
ideas of the output prediction in DL is not trivial due to the
black-box nature of the AI models [15]–[17]. Li and et al.
[18] explored various visualization techniques to understand
the structure of neural loss functions and their effectiveness.
Chatzimparmpas and et al. [19] emphasized how important
information visualization is in understanding machine learning
(ML) models and enhancing trust in ML. Although they high-
lighted the importance of utilizing visualization in ML, their
primary considerations fell into addressing specific domain
problems instead of helping students understand the internal
computation of ML.

Computer science education researchers have developed
various tools to improve students’ knowledge of AI tech-
nologies. Mariescu-Istodor and Jormanainen [20] developed
a web-based tool for high school students to enhance their
knowledge in recognizing objects using ML. They designed
the tool to identify objects using a camera and determine their
object classes in real time based on training samples. In this
tool, when a student gives a wrong answer, the student sees
a question mark rather than a message saying the answer is
wrong. If an object has been misclassified (i.e., the student says
a wrong answer), the tool could fix such a mistake by correctly
training and classifying its class name with additional samples.
The authors aimed to design the tool to motivate students by
improving their class engagement. You and Yin [15] devel-
oped a device (called Omega) to enhance college students’
understanding on NNs by addressing the black box nature

and representing their interactions during NN training steps.
In particular, the device visually presented the weight changes
in hidden layers during the NN training. Lamy and Tsopra
[16] introduced a visual translation of simple NNs to prove
the visual interpretation using rainbow boxes with adding
interactive functionality. Kim and Shim [21] emphasized the
need of providing AI education for non-engineering major
students by creating a visual solution. Although numerous
studies have been conducted to design practical approaches
to improve students’ learning, most studies mainly aimed to
teach users NN training steps.

Unlike the existing approaches explained above, our study
differs in that the proposed interactive learning system enables
users to create input data patterns and train NNs interactively.
This will significantly increase the user’s learning and knowl-
edge gained on NNs because it supports real-time computation
and recognition of the user-generated digit patterns.

III. SYSTEM DESIGN

We hypothesized that supporting real-time interactive data
generation, training, and recognition through NNs could in-
crease users’ understanding of the underlying idea of NNs.
Based on this hypothesis, we have designed an active learn-
ing system (named Neural Network Trainer) to support the
user in generating digit patterns and recognizing them with
NNs. We also designed an additional system (called Neural
Network Tester) to evaluate multiple user-generated patterns
simultaneously. For supporting active learning in the system,
integrating a graphical user interface (GUI) was considered
to address the advancement of users’ understanding of NNs
through direct interactions with the system.

The Neural Network Trainer system consists of two layouts
– Digit Pattern Generator (Figure 1a-left) and Visual Analyzer
(Figure 1a-right). Digit Pattern Generator includes a pattern
grid (Figure 1a-(i)) with multiple control panels (Figure 1a-
(ii) ∼ 1a-(v)). The pattern grid allows the user to create digit
patterns (i.e., 0 ∼ 9) by clicking each cell in the pattern grid.
It has 12 × 8 grid cells representing a digit pattern. Each cell
holds binary information as 1 or 0. It shows the size of NNs,
including nodes in input, hidden, and output layers (Figure
1a-(ii)). Two list boxes have been added to keep all created
digit patterns and the total number of patterns representing
each digit in Figure 1a-(iii) and 1a-(iv), respectively. Real-
time training and testing of NNs are handled with the control
buttons (Figure 1a-(v)). The result of the recognized digit pat-
tern with NN appears with probability distributions (Figure 1a-
(vi)). Visual Analyzer represents user-generated digit patterns
in a 2D display space by applying PCA computation.

The Neural Network Tester system supports evaluating
multiple user-generated NNs with various testing datasets.
The primary purpose of having the system was to help the
workshop participants understand the performances of their
generated NNs in recognizing digits competitively with others.
Figure 1b demonstrates the evaluation of three NNs created by
three groups of users. Similar to the digit pattern generator,
it has a pattern grid (Figure 1b-(i)) with multiple control



(a) (b)

Fig. 1: Two systems are designed as (A) neural network trainer and (B) neural networks tester. The neural network trainer
system consists of two layouts – digit pattern generator (left) and visual analyzer(right). The digit pattern generator supports
the user in generating digit patterns and training neural networks. The visual analyzer represents user-generated digit patterns
on a PCA projection space. The neural networks tester system evaluates multiple user-generated patterns with testing datasets.

panels (Figure 1b-(ii) ∼ 1b-(iv)). A list box (Figure 1b-(iii))
shows the loaded user-generated NNs. With a testing dataset, it
evaluates the NNs showing overall accuracies (Figure 1b-(iii))
and probability estimation (Figure 1b-(iv)). The probability
estimation indicates how each pattern is recognized with each
NN. If a digit is recognized correctly, a reddish bar graph is
represented. If not, a bluish bar graph is displayed to denote
incorrect recognition.

IV. DESIGN OF NEURAL NETWORKS

To support real-time digit pattern generation and recogni-
tion, a three-layered NN based on the backpropagation method
[22] was used. It feeds error rates back to NNs to optimize
weights with optimal values. The input layer has 96 nodes to
be matched to the cells of each digit pattern. The output layer
has 10 nodes to represent digits 0 through 9. Although one
or more hidden layers are often utilized in designing NNs,
we have used one hidden layer consisting of 48 nodes in the
system for speedy computation. For performance optimization,
a gradient descent method was used because it could allow
a parameter update of the weights. The sum of the squared
error (SSE) was applied as the gradient of loss function L to
determine the difference between the predicted (ŷi) and actual
inputs (yi) by:

L = − 1

N

N∑
o=0

C∑
j=0

(yo,j − ŷo,j)
2 (1)

where N is the length of digit samples, C is the number of
classes, and yo,j is an observation yo with a class j.

To run NNs, momentum (γ) and learning rate (η) are
defined to accelerate the training speed and accuracy of NNs.
Momentum is a method that expedites the gradient descent by
increasing the step size toward global minima. It is critical to
find an optimal momentum value because a too-large value
may skip global minima, or a too-small value may face

local minimum issues. The learning rate controls how quickly
a model adapts to the problem of training digit patterns.
However, similar to tuning the momentum value, using an
optimal learning rate is critical because it impacts the speed
of the convergence to a solution and whether we can reach
global optima. ∆Wij and ∆W t−1

ij represents weight changes
in current and previous training iterations. They are given by:

∆Wij = γ∆W t−1
ij − η

σL

σWij
, (2)

where σL
σWij

denotes the partial derivative of the loss function
L to decent update weights with learning rate η with a
multiplication of -1 to move towards global minima. The
values of γ and η are determined based on empirical analysis
for performance optimization in training data [23].

To activate nodes in the NNs, various activation functions
are available, such as Sigmoid, ReLU (Rectified Linear Unit),
Tanh, or hyperbolic tangent Activation Function. ReLU is
a broadly used activation function in convolutional neural
networks (CNNs) or deep learning because it supports faster
training [24]. However, it often causes a dying ReLU Prob-
lem [25] that decreases the ability of training data due to
negative values becoming zero. Thus, the Sigmoid function,
σ = 1

1+exp−x , is used in our system. It transforms the weighted
sum of nodes to represent the probability of a value x that
belongs to a certain class. Although the Sigmoid activation
function requires more computation than ReLU, it supports
well for training a NN model in our designed system because it
consists of a single hidden layer NN. To train NNs, termination
condition ϵ is defined as ϵ < 0.05, which reduces the cost
function L to become below the threshold. OpenMP API [26]
is used to speed up the computation of NNs using multi-
processors (i.e., multi-core processors).



Fig. 2: Examples of user-generated digit patterns from the
2400-digit pattern dataset. Each pattern is created using the
clickable pattern grid in the Neural Network Trainer system.

A. Pattern Generation

To generate digit patterns, the user can enable or disable
each cell using a computer mouse or a touch monitor screen
(if available). As mentioned earlier, the initial cell region
has 12 × 8 size that supports creating up to 212×8 possible
digit patterns. However, the overall number of patterns will
be less because preprocessing generates duplicates by making
each pattern fit into the cell region boundary. The applied
preprocessing consists of three steps: (1) Determining the
boundary of each pattern to find an object-bounding box; (2)
Moving the pattern to the top-left corner; and (3) Applying
scaling to make it fit the cell region. For scaling, a Nearest
Neighbor Interpolation algorithm [27] is used because it
requires very litter calculations. Since each digit pattern has a
binary color attribute (i.e., 0 or 1), each cell is marked if the
interpolation satisfies the condition I(x) > 0.5. To help the
user understand the internal preprocessing steps, intermediate
outcomes become available only if a tracking option is enabled
in the system.

The system supports saving user-generated digit patterns to
a file and loading previously generated ones. To validate the
effectiveness of the system, 2400-digit patterns are generated.
Figure 2 shows samples of the 2400-digit patterns. When
loading the previously generated digit patterns from a file, the
system detects duplicated patterns and removes them if they
exist.

Fig. 3: Conversion of the MNIST handwritten digits from the
original images (28 × 28 gray color) to two-tone colored
images (12 × 8 binary color). The converted dataset is named
TT-MNIST.

A handwritten digits dataset, MNIST [28], is also used to
evaluate the system. It includes 70,000 grayscale images of
handwritten digits with 60,000 training images and 10,000
testing images. Each digit sample is centered at a fixed-size
image of 28 × 28 pixels. To make the images usable in our
system, color conversion is applied to make them follow a
binary color scheme using two-tone colors, black and white.
Then, image size conversion is utilized to scale the image size
down to 12 × 8 to make them fit into the clickable pattern
grid in the designed system. Figure 3 shows examples before
and after applying the image conversion. Both gray color
attribute conversion and image scaling are applied by using
nearest neighbor interpolation with referencing neighbor color
attributes. If the interpolated value meets the condition, i.e.,
I(x) < δ, 0 ≤ δ ≤ 255, the corresponding color attributes are
changed to 0 when I(x) < δ and 1 when I(x) ≥ δ.We em-
pirically determined an optimal value (δ = 85) for converting
MNIST digits to gray-colored images. For convenience, we
call the user-generated 2400-digit samples and the converted
two-tone colored MNIST images DS-2400 and TT-MNIST,
respectively, in the rest of this paper. The two datasets are used
to conduct a performance evaluation of the designed system.
A detailed explanation about the conducted evaluation study
is included in the evaluation section.

B. Visual Representation

As mentioned above, a visualization representation is added
to show all digit patterns to help users understand the differ-
ence between digits (see Figure 1a-right). Since each digit
pattern consists of 96 cells, a dimension reduction technique,
PCA is applied to project it in a PCA projection space (i.e.,
2D display space). By default, the first and second principal
components are used to display each digit pattern along the
x- and y-axis.

The system supports basic navigational user interactions
(i.e., zooming and panning) to help the user can navigate freely



Fig. 4: Zooming and panning user interaction techniques are
supported to navigate the PCA projection space. The user
performed the zooming user interaction to see the region with
the digit “7” patterns (located at the bottom of the space).

within the 2D display space to see the relationship among
the digit patterns (see Figure 4). It helps users understand the
similarities between the digit patterns and the logic of recog-
nizing them through NNs. Digit patterns maintaining similar
cell outlines might appear nearby within the PCA projection
space. As shown at the bottom of the visual representation,
a digit 7’s all patterns appear in a region. However, some
digit 1’s patterns appear near digit 7’s patterns because they
maintain similar markers, including vertical down-strokes with
distinctive up-strokes on the top. Since digit 1’s patterns do not
always include the distinctive up-strokes, they appear in mul-
tiple regions. Similarly, different digit’s patterns often appear
in the same regions. The hidden layer outputs from trained
NNs are used as additional features in PCA computation to
create separable projections of digit patterns. Figure 5 shows
examples with the DS-2400 and TT-MNIST datasets. To help
understand the usefulness of using the hidden layer outputs,
randomly selected 940 digit patterns from the DS-2400 dataset
are used to generate the projection with and without using the
hidden layer outputs as additional features (see Figures 5a and
5b). It shows the benefit of using the hidden layout outputs
by forming separated clusters among different digit patterns.
With the TT-MNIST dataset, we observed a clear difference
in Figures 5c and 5d. For instance, digit “6” patterns were
observed in several locations in the PCA space (see Figure
5c). But, with the integration of the hidden layout outputs,
the digit patterns were positioned in the same region (see the
arrow in Figure 5d).

V. EVALUATION OF THE INTERACTIVE LEARNING SYSTEM

A. Interactive Learning

As discussed earlier, understanding how NNs work is not
easy because of the complex nature of computing and updating

its underlying structures continuously. The designed system
may help users understand how it trains NNs and recognizes
digit patterns. The system does not fully unveil its underlying
structure of how the NN model changes its weights over time.
However, we can conjecture that it supports interactive learn-
ing on NNs. More specifically, interactive learning manages
three steps of the learning process: generating digit samples,
training a NN model with the samples, and recognizing user-
entered digits with the model. Generating digit patterns is es-
sential to understand the effectiveness of NNs because it helps
the user to identify how the NNs are trained to recognize digits.
However, since it is not easy to create data, most studies have
utilized existing datasets (e.g., MNIST, MS-COCO, ImageNet,
Fashion-MNIST) to design new NN algorithms and evaluate
their performances.

To support the user in creating digit patterns interactively,
we used cell-based digit pattern generation to design simplified
data digit samples using a computer mouse. The system allows
training NNs whenever the user generates digit pattern(s).
Unlike conventional approaches using numerous data samples,
our system can train NNs with a small number of digit samples
(e.g., < 10). For instance, if a digit sample (denoting digit
“one”) is applied to train NNs, the same result (resulting digit
“one”) will be determined. Instead, if two distinctive digit
samples (e.g., “one” and “two”) are used to train NNs, the
system correctly recognizes their differences. For example, if
the user tries to recognize a new input pattern (similar to “one”
or “two” digit patterns), the system correctly recognizes it as
either one or two. Figure 6 shows an example of recognizing
a new digit pattern with four digit samples. Even though only
four-digit patterns are used to train NNs, it correctly recognizes
the new pattern with a high probability (0.93). The user can
continuously add new digit patterns to improve the perfor-
mance of recognizing digits interactively. This interactive digit
pattern generation and recognition initiate active learning to
help the user understand the logic behind NNs. For showing
the probability, the probability distribution over all predicted
classes is measured using a softmax function. It converts a
vector of K values in the output layer to probability values.
To show a normalized probability [0, 1] from the output value,
the softmax function (σ) applies the exponential function.

σ(x⃗i) =
exi∑K
j=1 e

xj

(3)

where x⃗i indicates the values in the NN output layer, exi and
exj denote standard exponential function for output vector,
respectively.

B. Performance Evaluation

To support interactive learning, it is vital to maintain real-
time training of NNs with the system while maintaining high
accuracy. We performed an evaluation with Intel i9-9980HK
Processor, 2.4 GHz, 8 cores. Figure 7 shows that training time
with the DS-2400 dataset was about 8.14 ± 1.89 seconds.
With the DS-2400 dataset, the average training time was
maintained to be less than 0.5 seconds. At the same time,



(a) (b) (c) (d)

Fig. 5: Visual representations of 940 digit patterns from the DS-2400 dataset in (a) and (b) and TT-MNIST dataset in (c) and
(d). (a) and (c) show PCA projections using all digit patterns. (b) and (d) use hidden layer outputs as additional features.

(a)

(b)

Fig. 6: An example of NN training with four-digit patterns (a)
and recognizing a new digit with the trained NN (b).

the training accuracy was above 97%. This indicates that
the system supports users in performing real-time interactive
analysis on digit recognition by training NNs. With the TT-
MNIST dataset, we found that the training accuracy was
maintained above 96%. The training time gradually increases
as the size of the samples grows. Approximately 70 seconds
have been taken to train 60,000-digit patterns. Overall, the
proposed system takes less than 2 seconds to train up to
10,000 digit patterns (training with MSE < 0.05, resulting in a
training accuracy of 0.98). Since the system supports real-time
training on user-generated digit patterns, we can consider the
system effectively helps the user understand how NNs work
to effectively recognize the digits.

VI. DISCUSSION

As we mentioned above, the system is helpful for users
to understand the logic behind NNs in recognizing digits. To
understand how effective the system is in enhancing users’

learning on NNs, we utilized the system during the workshop
1 for community college students. Most of the students do
not have any knowledge or experience using NNs or related
applications. They showed high interest in creating digit
patterns and training NNs to recognize digits. Three groups
were formed. They created patterns spending about 10 minutes
(see Table I). To understand the effectiveness of user-generated
digit patterns, we tested the user-generated NNs using both
the DS-2400 and TT-MNIST datasets. Although the testing
accuracy was not high, we found that the trained NN by
Group2 (using only 40 digit patterns) showed about 0.5 testing
accuracy for the DS-2400 dataset.

TABLE I: Testing the NNs created by workshop participants
with the two datasets (i.e., DS-2400 and TT-MNIST).

Group1 Group2 Group3
Generated Patterns 29 40 13
Testing Accuracy (with DS-2400) 0.29 0.50 0.32
Testing Accuracy (with TT-MNIST) 0.26 0.30 0.20

The students commented that the system was highly inter-
active and useful for them to understand the underlying idea
of NNs. They also reported the importance of utilizing both
interactive pattern generation and visualization to upgrade their
knowledge of NNs. Since the evaluation through workshop
participants is purely informal user testing, it is essential to
conduct formal user testing to examine the system’s effective-
ness in enhancing the user’s understanding levels. Therefore,
we plan to extend our study to conduct a formal user evaluation
to validate the usefulness of the developed system.

Although the system is useful for advancing users’ un-
derstanding of NNs through interactive learning, it has a
limitation of not showing the connection weights in NNs.
Although representing the weight changes does not deliver ad-
ditional information about understanding the internal changes
of NNs, many researchers have emphasized the effectiveness
of showing them [15], [29]. Thus, designing an effective
visual representation technique to show the connection weight
changes in NNs is critical for advancing the users’ knowledge

1NSF funded 2022 Artificial Intelligence Awareness summer workshop:
https://csit.udc.edu/mudl/



0

0.1

0.2

0.3

0.4

0.5

0.6

1
0

1
1
0

2
1
0

3
1
0

4
1
0

5
1
0

6
1
0

7
1
0

8
1
0

9
1
0

1
0
10

1
1
10

1
2
10

1
3
10

1
4
10

1
5
10

1
6
10

1
7
10

1
8
10

1
9
10

2
0
10

2
1
10

2
2
10

2
3
10

T
ra

in
in

g
 T

im
e

 (
s

e
co

n
d

s)

Number of Digit Samples

(a)

90

91

92

93

94

95

96

97

98

99

100

1
0

1
1
0

2
1
0

3
1
0

4
1
0

5
1
0

6
1
0

7
1
0

8
1
0

9
1
0

1
0
10

1
1
10

1
2
10

1
3
10

1
4
10

1
5
10

1
6
10

1
7
10

1
8
10

1
9
10

2
0
10

2
1
10

2
2
10

2
3
10

T
ra

in
in

g
 A

c
cu

ra
c

y 
(%

)

Number of Digit Samples

(b)

0

10

20

30

40

50

60

70

80

10
00

40
00

70
00

10
00
0

13
00
0

16
00
0

19
00
0

22
00
0

25
00
0

28
00
0

31
00
0

34
00
0

37
00
0

40
00
0

43
00
0

46
00
0

49
00
0

52
00
0

60
00
0

T
ra

in
in

g
 T

im
e

 (
s

ec
o

n
d

s
)

Number of Digit Samples

(c)

90

91

92

93

94

95

96

97

98

99

100

10
00

40
00

70
00

10
00
0

13
00
0

16
00
0

19
00
0

22
00
0

25
00
0

28
00
0

31
00
0

34
00
0

37
00
0

40
00
0

43
00
0

46
00
0

49
00
0

52
00
0

60
00
0

T
ra

in
in

g
 A

c
cu

ra
c

y 
(%

)

Number of Digit Samples

(d)

Fig. 7: Training time (seconds) and accuracy with different sizes of training data with (a) and (b) the DS-2400 dataset and (c)
and (d) the TT-MNIST dataset. The x−axis shows the training digit sample size. (a) and (c) represent training time (seconds)
and (b) and (d) show training accuracy.

of what information is effective in recognizing digits by NNs.
It is important to note that PCA has an inherent ambiguity in
the signs of resulting principal components. Thus, it generated
multiple sign-flipped visual representations (see Figure 8).

VII. CONCLUSION AND FUTURE WORK

In this paper, we designed an interactive learning system
to help users understand how neural networks perform digit
recognition. The developed interactive learning system allows
users to generate digit patterns and train them to recog-
nize them in real time. To support real-time training and
recognition, we introduced a simplified neural network with
backpropagation to the system. Most importantly, we applied
a visualization technique to show the difference among the
digit patterns in a PCA projection space. In our experiments,
we demonstrated the computational speed of training neural
networks to evaluate the system’s effectiveness. The key
findings from this study are: (1) The developed interactive
learning system took a short training time, which is critical
for users to learn and understand NNs in real time; (2) The
training accuracy was high (e.g., 96 ∼ 97%) that validates the
accuracy of the developed system as a tool to train NNs; and
(3) Through our informal user testing based on the responses
from community college students participated in the summer
AI workshop, we received highly positive feedbacks although
the number of the participants was fairly small (about ten
participants).

For future work, we plan to conduct formal user testing
to determine the system’s effectiveness in terms of how much
the user can understand the principle of neural networks. Since
the system has been designed as a stand-alone application, a
conversion of the system to a web-based application will be
performed to make it become broadly available and accessi-
ble through a web browser. We will also extend the visual
representation of digit samples with different dimensional
reduction techniques, such as t-distributed stochastic neighbor
embedding (t-SNE) [30] or Uniform Manifold Approximation
and Projection (UMAP) [31]. The complete codes and a
pre-compiled executable are available at https://github.com/
drjeong/DigitPerceptron

REFERENCES

[1] D. D. Miller and E. W. Brown, “Artificial intelligence in medical
practice: the question to the answer?” The American journal of medicine,
vol. 131, no. 2, pp. 129–133, 2018.

[2] B. du Boulay, “Recent meta-reviews and meta–analyses of aied systems,”
International Journal of Artificial Intelligence in Education, vol. 26,
no. 1, pp. 536–537, 2016.

[3] E. Karasözen and B. Karasözen, “Earthquake location methods,” GEM-
International Journal on Geomathematics, vol. 11, no. 1, pp. 1–28, 2020.

[4] Y. Duan, J. S. Edwards, and Y. K. Dwivedi, “Artificial intelligence for
decision making in the era of big data–evolution, challenges and research
agenda,” International journal of information management, vol. 48, pp.
63–71, 2019.

[5] S. A. D. Popenici and S. Kerr, “Exploring the impact of artificial
intelligence on teaching and learning in higher education,” Research
and Practice in Technology Enhanced Learning, vol. 12, no. 1, p. 22,
Nov 2017.

[6] F. Wang, R. Kaushal, and D. Khullar, “Should health care demand
interpretable artificial intelligence or accept “black box” medicine?” pp.
59–60, 2020.

[7] A. Barredo Arrieta, N. Dı́az-Rodrı́guez, J. Del Ser, A. Bennetot,
S. Tabik, A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins,
R. Chatila, and F. Herrera, “Explainable artificial intelligence (xai):
Concepts, taxonomies, opportunities and challenges toward responsible
ai,” Information Fusion, vol. 58, pp. 82–115, 2020.

[8] A. Holzinger, M. Dehmer, F. Emmert-Streib, R. Cucchiara, I. Augen-
stein, J. D. Ser, W. Samek, I. Jurisica, and N. Dı́az-Rodrı́guez, “Infor-
mation fusion as an integrative cross-cutting enabler to achieve robust,
explainable, and trustworthy medical artificial intelligence,” Information
Fusion, vol. 79, pp. 263–278, 2022.

[9] K. Haresamudram, S. Larsson, and F. Heintz, “Three levels of ai
transparency,” Computer, vol. 56, no. 2, pp. 93–100, 2023.

[10] Y. Bathaee, “The artificial intelligence black box and the failure of intent
and causation,” Harvard Journal of Law & Technology, vol. 31, p. 889,
2018.

[11] S. Roweis, “Em algorithms for pca and spca,” Advances in neural
information processing systems, vol. 10, 1997.

[12] D. H. Jeong, C. Ziemkiewicz, B. Fisher, W. Ribarsky, and R. Chang,
“ipca: An interactive system for pca-based visual analytics,” Computer
Graphics Forum, vol. 28, no. 3, pp. 767–774, 2009.

[13] W. Tyson, R. Lee, K. M. Borman, and M. A. Hanson, “Science,
technology, engineering, and mathematics (stem) pathways: High school
science and math coursework and postsecondary degree attainment,”
Journal of Education for Students placed at risk, vol. 12, no. 3, pp.
243–270, 2007.

[14] Y. Xu, X. Liu, X. Cao, C. Huang, E. Liu, S. Qian, X. Liu, Y. Wu,
F. Dong, C.-W. Qiu, J. Qiu, K. Hua, W. Su, J. Wu, H. Xu, Y. Han,
C. Fu, Z. Yin, M. Liu, R. Roepman, S. Dietmann, M. Virta, F. Kengara,
Z. Zhang, L. Zhang, T. Zhao, J. Dai, J. Yang, L. Lan, M. Luo, Z. Liu,
T. An, B. Zhang, X. He, S. Cong, X. Liu, W. Zhang, J. P. Lewis, J. M.
Tiedje, Q. Wang, Z. An, F. Wang, L. Zhang, T. Huang, C. Lu, Z. Cai,
F. Wang, and J. Zhang, “Artificial intelligence: A powerful paradigm for
scientific research,” The Innovation, vol. 2, no. 4, p. 100179, 2021.

[15] M. You and J. Yin, “Real-time visualization of neural network training
to supplement machine learning education,” in 2019 IEEE Integrated
STEM Education Conference (ISEC). IEEE, 2019, pp. 371–374.



(a) n = 10 (b) n = 50 (c) n = 100 (d) n = 200 (e) n = 300

(f) n = 400 (g) n = 500 (h) n = 600 (i) n = 700 (j) n = 800

(k) n = 900 (l) n = 1000 (m) n = 1200 (n) n = 1300 (o) n = 1400

(p) n = 1500 (q) n = 1600 (r) n = 1700 (s) n = 1800 (t) n = 1900

(u) n = 2000 (v) n = 2100 (w) n = 2200 (x) n = 2300 (y) n = 2400

Fig. 8: Visual representations of n numbers of digit patterns from the DS-2400 dataset.

[16] J.-B. Lamy and R. Tsopra, “Visual explanation of simple neural net-
works using interactive rainbow boxes,” in 2019 23rd International
Conference Information Visualisation (IV). IEEE, 2019, pp. 50–55.

[17] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and
D. Pedreschi, “A survey of methods for explaining black box models,”
ACM Comput. Surv., vol. 51, no. 5, aug 2018.

[18] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the
loss landscape of neural nets,” in Proceedings of the 32nd International
Conference on Neural Information Processing Systems, ser. NIPS’18.
Red Hook, NY, USA: Curran Associates Inc., 2018, p. 6391–6401.

[19] A. Chatzimparmpas, R. M. Martins, I. Jusufi, and A. Kerren, “A survey
of surveys on the use of visualization for interpreting machine learning
models,” Information Visualization, vol. 19, no. 3, pp. 207–233, 2020.

[20] R. Mariescu-Istodor and I. Jormanainen, “Machine learning for high
school students,” in Proceedings of the 19th Koli calling international
conference on computing education research, 2019, pp. 1–9.

[21] J. Kim and J. Shim, “Development of an ar-based ai education app for
non-majors,” IEEE Access, vol. 10, pp. 14 149–14 156, 2022.

[22] R. Rojas, Neural Networks - A Systematic Introduction. Berlin:
Springer-Verlag, 1996.

[23] Y. Bengio, Practical Recommendations for Gradient-Based Training of
Deep Architectures. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 437–478.

[24] C.-N. Chou, C.-K. Shie, F.-C. Chang, J. Chang, and E. Y. Chang,
Representation Learning on Large and Small Data. John Wiley &
Sons, Ltd, 2019, ch. 1, pp. 1–28.

[25] L. Lu, Y. Shin, and G. E. Karniadakis, “Dying relu and initialization:
Theory and numerical examples,” Communications in Computational
Physics, vol. 28, no. 5, pp. 1671–1706, 2020.

[26] R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and J. Mc-
Donald, Parallel programming in OpenMP. Morgan kaufmann, 2001.

[27] R. C. Gonzalez and R. E. Woods, Digital image processing. Upper
Saddle River, N.J.: Prentice Hall, 2008.

[28] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141–142, 2012.

[29] O. Deperlioglu and U. Kose, “An educational tool for artificial neural
networks,” Computers & Electrical Engineering, vol. 37, no. 3, pp. 392–
402, 2011.

[30] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, no. 86, pp. 2579–2605, 2008.

[31] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform manifold
approximation and projection for dimension reduction,” arXiv preprint
arXiv:1802.03426, 2018.


