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Abstract— Depth completion, which aims to generate high-
quality dense depth maps from sparse depth maps, has attracted
increasing attention in recent years. Previous work usually
employs RGB images as guidance, and introduces iterative
spatial propagation to refine estimated coarse depth maps.
However, most of the propagation refinement methods require
several iterations and suffer from a fixed receptive field, which
may contain irrelevant and useless information with very
sparse input. In this paper, we address these two challenges
simultaneously by revisiting the idea of deformable convolution.
We propose an effective architecture that leverages deformable
kernel convolution as a single-pass refinement module, and
empirically demonstrate its superiority. To better understand
the function of deformable convolution and exploit it for depth
completion, we further systematically investigate a variety of
representative strategies. Our study reveals that, different from
prior work, deformable convolution needs to be applied on
an estimated depth map with a relatively high density for
better performance. We evaluate our model on the large-scale
KITTI dataset and achieve state-of-the-art level performance
in both accuracy and inference speed. Our code is available at
https://github.com/AlexSunNik/ReDC.

I. INTRODUCTION
Reliable depth information is fundamental in many real-

world applications, such as robotics [1], autonomous driv-
ing [2], and 3D mapping [3]. It is critical for agents to better
sense the surrounding environment for more accurate and
effective actions. However, existing depth sensors usually
produce depth maps with incomplete data. For example,
LiDAR sensors have a limited number of scanlines and
operating frequencies, thus producing very sparse depth
measurements. Therefore, depth completion, which aims to
estimate dense depth maps from the sparse ones, has received
increasing attention recently.

A wide variety of deep convolutional neural network [4]
based approaches have been developed for effective depth
completion. They often formulate the task as a learned
interpolation, using high-quality RGB images from camera
sensors as guidance to up-sample sparse points into dense
depth images. Inspired by monocular depth estimation [5]–
[8], these approaches [9]–[19] typically use an encoder-
decoder network. In addition, to better leverage the two
different modalities of color and depth data, two-branch
network architectures are adopted.
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Nonetheless, the depth maps directly output from the
decoder are often still blurry or low in quality. Concretely,
as observed in [20], depth maps directly produced by deep
decoders may not preserve the input depth values at valid
pixels. Many approaches [20]–[24] thus introduce efficient
spatial propagation to refine coarse depth maps. However,
most of the propagation refinement methods suffer from
two major drawbacks. First, propagation at each pixel is
performed with a uniform-size receptive field and a regular
convolution. This limitation originates from the fixed geo-
metric structure of the convolution module. A convolution
unit can only sample the input feature map at fixed locations,
which may contain irrelevant and useless information with

very sparse input. Second, the propagation refinement mod-
ule usually needs to refine the coarse depth map for several

iterations to obtain satisfactory performance, which is not
ideal for good hardware latency and memory footprint.

In this paper, we address these two challenges simultane-
ously by Revisiting the idea of Deformable Convolution [25]
(ReDC), considering its capability of adaptively generat-
ing different receptive fields by learning offsets on regular
grid positions. Our key insight is that such a capability
(i) is desirable for depth completion so as to adaptively
attend to the most informative regions, and (ii) should be
exploited to refine coarse depth maps. To this end, we
propose an effective and efficient architecture that leverages
deformable kernel convolution as a refinement module and
empirically demonstrate its superiority. We build upon the
PENet [26] backbone, one of the publicly released state-of-
the-art methods. We observe a significant improvement over
PENet with our architecture. Notably, we found that with our
deformable refinement module, the coarse depth only needs

a single pass of refinement, distinguishing our model from
those iterative ones [22]–[24], [26] and enjoying noticeable
inference speedup.

Our approach is also different from and substantially
outperforms prior work that uses deformable convolution
for depth completion tasks [23], [24], [27], whose perfor-
mance is still inferior to the state of the art. For example,
Deformable Kernel Network (DKN) [27] obtains strong
performance on the NYU-v2 benchmark [28], but it performs
poorly on the more challenging KITTI benchmark [14], [29],
where the input depth maps exhibit much higher sparsity.
Similarly, DSP [24] and NLSPN [23] fail to achieve com-
petitive performance on KITTI, despite several iterations of
refinement.

To better understand the function of deformable convolu-
tion and leverage it for depth completion, we systematically
investigate a variety of representative strategies other than
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Fig. 1. Overview of our method ReDC. We first generate a coarse depth map D̂ from the backbone. Then, we pass it through our deformable refinement
module. We feed the feature maps coming from the final layer of the backbone decoder into a 1 ⇥ 1 convolution layer to regress a set of weights and
offsets for performing the interpolation on D̂ in a deformable manner.

our proposed approach. Our study reveals that different ways
of employing deformable convolution lead to significantly
different performance. Importantly, it needs to be applied on

a depth map with a relatively high density for better per-

formance. In other words, a direct application of deformable
convolution as in DKN [27] does not work with high input
depth sparsity like KITTI. This further supports our proposed
method of using deformable refinement over coarse depth.

We summarize our contributions as follows:
• We conduct a thorough study on the most effective

way of leveraging deformable convolution, promoting a
deeper understanding of deformable convolution within
the depth completion research community.

• We propose a novel and effective depth completion
architecture that requires only a single pass through the
depth refinement module, achieving more hardware and
memory-friendly performance.

• We achieve competitive state-of-the-art level depth com-
pletion performance in accuracy and inference speed on
the challenging KITTI dataset and surpass prior work
by a clear margin.

II. RELATED WORK
A. Depth Completion

Depth completion aims to generate dense depth maps
by completing sparse depth maps. Some work [14], [30]
produces dense depth maps from monocular sparse depth
maps only, while the majority of work [16], [20], [31], [32]
employs guidance or reference images like high-quality RGB
images to assist the dense depth map generation. These
approaches try to solve the challenge of irregular and ex-
tremely sparse input depth and the two completely different
modalities of color and depth with sparse and spatially-
invariant convolution [14], [31], [33], [34], uncertainty ex-
ploration [15], [35], and model fusion strategies [36]. Ad-
ditionally, some representative work tries to draw insights
from other tasks and exploits multi-scale features [34], [37]–
[39], surface normals [16], [17], semantic information [13],
[40], and context affinity [20], [22], [23] to improve depth
completion performance. Recently, PENet is proposed and
incorporates several effective features useful to boost depth

completion performance. Moreover, it proposes a simple
convolutional layer to encode 3D geometric cues which
are shown to further improve the performance. PENet is
one of the best publicly released models on the KITTI
depth completion benchmark, and we study our deformable
refinement module upon it and observe a clear improvement.

B. Deformable Convolution

The idea of deformable convolution is first introduced
and explored in DCN [25] to enhance the transforma-
tion modeling capability of convolutional neural networks
(CNNs). Due to the intrinsic nature of the depth completion
task, deformable convolution is quickly exploited to extract
more useful information from the very sparse depth maps.
DKN [27] explicitly learns sparse and spatially-invariant
kernels for depth completion by regressing offsets to sample
pixels at adaptive locations. It obtains superior performance
on the NYU-v2 depth [28] completion benchmark, indicat-
ing the potential effectiveness of the DKN module on the
depth completion task. However, our investigation shows
that its performance is degraded on the more challenging
KITTI benchmark with input depth of much higher spar-
sity. DSP [24] adaptively learns a different receptive field
and affinity matrix between non-local pixels by generating
memory-costly embedding for each non-local pixel, which is
impractical on edge devices. Still, it fails to reach state-of-
the-art level performance on KITTI and requires a minimum
of 3 iterations of refinement for decent performance, which
is also the case in another deformable model NLSPN [23].
We conduct a thorough study on deformable convolution and
explore its more effective usage with very sparse input depth
maps like KITTI. We propose a new efficient architecture
which achieves state-of-the-art level performance while using
much less inference time, and we comprehensively analyze
its effectiveness through experiments.

III. METHODOLOGY

We design an end-to-end trainable model ReDC with our
proposed deformable refinement module, as illustrated in
Fig. 1. We first feed a sparse depth map and a guidance
RGB image into the backbone model, which produces a



coarse depth map. We then use our refinement module based
on deformable kernel convolution to improve its quality. As
mentioned previously, we only pass it through the refinement
module once.

A. Overall Procedure

We represent the input sparse depth map as Xd, the
guidance RGB image as Xr, and the provided groundtruth
dense map in the training set as Y . We denote our completion
model as F (.) which produces a dense depth map D from Xd

and Xr. Concretely, this is expressed as D = F (Xd, Xr).
The completion model contains two parts, namely, the back-
bone Fb(.) which produces a coarse depth map D̂ and the
refinement module Fr(.) which improves the quality of the
coarse depth. The overall model can be expressed as:

D = Fr(Fb(Xd, Xr)). (1)

We next discuss the backbone choice and our deformable
refinement module.

B. Backbone

We follow PENet [26] for the backbone choice. The back-
bone network has a two-branch architecture, with one branch
extracting the color-dominant information and the other
extracting the depth-dominant information. Each branch is
of an encoder-decoder structure, and the results coming from
both branches are fused to generate the coarse depth D̂.
Depth generated by the color-dominant branch is denoted as
Dc, and depth from the depth-dominant branch is denoted
as Dd. For fusing the two depth maps, confidence masks
are also generated, which are Cc for Dc and Cd for Dd.
We perform the fusion following PENet and FusionNet [35].
Concretely, the final fused depth D̂ is computed as:

D̂(u, v) =
Dd(u, v) · eCd(u,v) +Dc(u, v) · eCc(u,v)

eCd(u,v) + eCc(u,v)
, (2)

where (u, v) denotes the location of each pixel. In practice,
a softmax is applied on Cc and Cd for normalization.

C. Refinement Module

We now present our deformable refinement module in
detail and how we utilize it to improve the quality of
the generated depth. Following previous work [27], [41]–
[44], we represent each point of our refined depth D as a
weighted average of points sampled from the coarse depth
D̂. Specifically, we represent it as:

Dp =
X

q2N (p)

Wpq(Z)D̂q, (3)

where p = (u, v) represents the point coordinate on the depth
map, N (p) defines a set of neighbors near the point p, and
Z is some guidance like extracted feature maps. Most of
the approaches [22], [45]–[47] mainly focus on learning the
weights W and employ a fixed square grid as predefined
neighbors to sample points. Deformable approaches [24],
[25], [27] try to learn a set of offsets added to each sampled
location in the regular square grid, producing a deformable
neighborhood region.

Here, we show how we design the architecture to learn
the kernel weights W and neighborhood N offsets. We
denote the feature map coming from the last layer of the
decoder of the color-dominant branch as Zc and that from
the depth-dominant branch as Zd, as illustrated in Fig. 1. We
concatenate the two feature maps channel-wise and represent
the combined feature as Z = {Zd, Zc}. Later, we add a
1⇥ 1 convolutional layer taking the combined feature Z as
input. It outputs a feature map of size k2 ⇥ 1⇥ 1, where k
represents the size of the interpolation kernel W . We then
apply sigmoid(.) on it to estimate the interpolation kernel
weights. Similar to [27], we found that a softmax instead of
sigmoid layer as used in [48]–[50] yields no performance
improvement. Same as the weights, we add another 1 ⇥ 1
convolutional layer on feature Z to regress the offsets as
well. It produces an output feature map of size 2k2 ⇥ 1⇥ 1
containing the relative offsets (both in x and y directions)
we use to apply to sampled locations on a regular grid. For
example, with k = 3, we would learn 9 offsets used to
sample 9 points sparsely chosen from a large neighborhood
area. Similar to [27], we choose to compute the residual
instead of directly generating the final output. The refinement
of the coarse depth D̂ can thus be expressed as follows:

Dp = D̂p +
X

q2N (p)

Wps(Z)D̂s(q), (4)

where N (p), as previously described, is a local k⇥k regular
square window centered at location p. We express s(q) the
sampled position as s(q) = q + �q, where �q comes from
the 2k2 ⇥ 1⇥ 1 shaped offset map � we regress. Since s(q)
could be fractional, in order to compute D̂s(q), we utilize a
two-dimensional bilinear kernel as in [25], [51] to compute
its value based on its 4 neighbors, detailed as follows:

D̂s(q) =
X

t2R(s(q))

G(s(q), t)D̂t, (5)

where R(s(q)) lists all of the four integer neighbors of s(q)
and G is a sampling kernel defined as:

G(s, t) = max(0, 1� |sx � tx|) ·max(0, 1� |sy � ty|).
(6)

D. Training Loss

We use a combined `2 and `1 loss for training our model,
which is defined as:

L(D,Y ) = ↵k(D � Y )� 1(Y > 0)k2+
(1� ↵)k(D � Y )� 1(Y > 0)k.

(7)

Here, � is the elementwise multiplication. For datasets like
KITTI, even the groundtruth depth map is of relatively
high sparsity, containing many invalid pixels. We follow the
common practice and only consider those having valid depth
values with the mask 1(Y > 0).



Fig. 2. Visualization of inference results obtained by our model ReDC and PENet [26] on three challenging samples from the KITTI training set. From
left to right: groundtruth dense depth map, guidance RGB image, inference from our model, and inference from PENet. `2 loss computed between the
groundtruth and inference result is presented at the top left corner. Regions to focus on are highlighted in red boxes, showing that our ReDC achieves
better performance with more accurate depth and finer detail.

Fig. 3. Visualization of inference results obtained by our model ReDC and PENet [26] on three challenging samples from the KITTI validation set.
Notation follows Figure 2. Consistent with Figure 2, our ReDC achieves better performance with more accurate depth and finer detail.

IV. EXPERIMENTS
A. Experiment Settings

Dataset: We evaluate our approach on the KITTI [29]
Depth Completion benchmark [14], with sparse depth maps
obtained by projecting 3D LiDAR points to corresponding
image frames. The density of the valid depth points is around
5% for the sparse depth maps and 16% for the groundtruth
dense depth maps. The dataset contains 93K data samples,
with 86K for training, 7K for validation, and 1K for testing.

Evaluation Metrics: We follow the common practice
and evaluate our approach under four standard metrics [14],
including root mean square error (RMSE) in mm, mean
absolute error (MAE) in mm, root mean squared error of
the inverse depth (iRMSE) in 1/km, and mean absolute
error of the inverse depth (iMAE) in 1/km. We also report
the inference time for a single depth-image completion in
seconds on RTX 2080Ti GPU with a 2.5GHz processor.

Baselines: We mainly compare with competitive pub-

licly released and peer-reviewed depth completion methods,
including PENet [26] and DSP [24]. In addition to the
discussed methods in Sec. II, we include very recent base-
lines like MFF-Net [18], RigNet [52], and GAENet [53],
as well as well-referenced baselines like PwP [17] and
UberATG [11]. Finally, we evaluate alternative strategies of
using deformable convolution for depth completion, such as
DKN [27].

Implementation Detail: We implement our approach
and conduct all experiments using PyTorch [54] with four
NVIDIA RTX 2080Ti GPUs running in parallel. We train
with an Adam optimizer [55] with weight decay set to 1e�5,
�1 set to 0.9, and �2 set to 0.99. We run the experiment for
a total of 30 epochs with an initial learning rate set to 1e�3,
decaying in a cosine annealing fashion. The batch size is set
to 2 samples per GPU for each step. We choose k = 3 which
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Fig. 4. Our model ReDC clearly outperforms competitive publicly released
methods in terms of accuracy metrics and inference runtime on the KITTI
test set. All metrics are the lower the better. Numerically, our ReDC achieves
728.31 (RMSE), 204.60 (MAE), 2.05 (iRMSE), and 0.89 (iMAE).

is the size of the interpolation kernel W discussed in Section
III-C. The loss function is the combined `2 and `1 losses
with ↵ set to 0.5. In terms of training data augmentation,
we follow the common practice and adopt random cropping,
random flipping, and color jittering [56], [57].

B. Main Results

Quantitative Comparisons: Figure 4 summarizes the
comparisons with baselines on the KITTI test set. Notice
that all methods are trained and tuned on the KITTI released

training and validation splits using sparse and dense depth
maps of the provided default density levels. In terms of the
inference runtime, we only include the reported results from
baselines measured on GPU for a fair comparison. Our
method ReDC achieves state-of-the-art level performance
in both accuracy (RMSE, MAE, iRMSE, and iMAE) and
inference runtime. Notably, our approach clearly outperforms
PENet, which our backbone is based on (Sec. III). This result



validates the effectiveness of our deformable refinement
module. Moreover, we include the comparison with methods
like DSP and NLSPN which also use deformable convolution
as part of their depth completion models. In addition to the
superior accuracy, our model significantly surpasses them in
terms of inference speed, demonstrating the strength of our
architecture.

Visualizations: We now visually compare the generated
depth maps from our model and the top-performing baseline
PENet in Figures 2 and 3. Note that, while the quanti-
tative metrics (Section IV-A) are computed only over the
pixel locations with valid groundtruth depth values, these
visualizations provide more comprehensive depth completion
results over all pixels. Therefore, they are complementary to
demonstrate the superiority of our approach.

In Figure 2, we show the three most challenging scenes
from the training set for both PENet and our method. We
visualize the groundtruth depth maps, RGB images, and
inference results from PENet and our model. We also provide
the `2 loss computed between the groundtruth depth maps
and inference results at the top left corner as an informative
indicator of the quality of the generated depth maps. We
highlight some challenging regions of interest in red boxes,
where our model performs substantially better than PENet.
We discuss the observation in detail as follows.

(I) Ours outperforms PENet on points with groundtruth.

In the highlighted box of the first hard training sample, we
see valid depth points in the groundtruth depth map. Our
generated depth correctly predicts the depth values in this
region, with the same visualization color as the groundtruth.
By contrast, PENet produces incorrect depth values.

(II) Ours also outperforms PENet on points without

groundtruth. In the highlighted box of the second hard train-
ing sample, we see that there are completely no valid data in
the provided groundtruth depth map. For reasonable estima-
tion in this case, the models have to rely on the RGB image
or leverage the depth data from informative neighborhood.
Our model correctly estimates the depth values in this region
and maintains smoothness with the surrounding area. This
is attributed to our deformable refinement module, which is
able to adaptively attend to the informative regions. However,
PENet fails on such a challenging region, producing a very
sharp transition and gap in the middle.

(III) Ours produces depth with finer detail and structure.

In the highlighted box of the third sample, we observe thin
traffic light poles in the image. Our model produces their
depth with finer detail and structure than that of PENet.

We also provide the same visualization analysis on the val-
idation set in Figure 3. We observe the similar phenomenon
that our model leads to more accurate depth estimation in
challenging regions which contain very few or a limited

number of valid depth points in groundtruth images, and
produces object depth with finer detail and structure. For
example, in the highlighted box of the third hard validation
example, we see that our model generates the depth of a tall
traffic pole with very high quality; whereas, PENet produces
a bunch of messy point clouds around the top of the pole.
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Fig. 5. Illustration of variants of leveraging deformable convolution
for depth completion. Our strategy works the best, which generates an
intermediate coarse depth map and then refines it by our deformable
refinement module.

TABLE I
Investigation on variants of leveraging deformable convolution for depth
completion on the KITTI validation set, demonstrating the superiority of

our approach. ‘NN’ denotes nearest-neighbor.
Model RMSE (#) MAE (#) iRMSE (#) iMAE (#)

Variant 1 w/ smaller backbone [27] 1130.47 241.58 4.00 0.97
Variant 1 w/ our backbone 900.54 251.32 2.59 0.99

Variant 2 w/ NN interpolation 875.75 235.58 2.40 0.98
ReDC (Ours) 813.05 218.30 2.32 0.89

TABLE II
Investigation on different interpolation techniques. Results are reported as
directly testing interpolated depth on the KITTI validation set without any
model learning. Nearest-neighbor interpolation performs the best overall.

Interpolation RMSE (#) MAE (#) iRMSE (#) iMAE (#)
RBF 2014.52 794.89 inf1 inf

Linear 2265.33 507.93 inf inf
Cubic 3022.93 644.99 inf inf

Nearest 2139.25 454.42 6.45 1.83

C. Investigation on Variants of Our Model

Our evaluation so far has validated the importance of
deformable convolution for depth completion, in a way
of refining the estimated coarse depth. Here we further
investigate alternative strategies of exploiting deformable
convolution, and show that our current approach is the
most effective to employ it to improve depth completion
performance, especially when the input depth maps are of

very high sparsity. Figure 5 illustrates several representative
variants and Table I summarizes their performance.

Specifically, (I) we start from a straightforward use of de-
formable convolution as Variant 1, where we directly apply
the learned weights and offsets on the input sparse depth Xd

following DKN [27]. We use the same backbone as in DKN.
This method has been shown to achieve high performance on
the NYU-v2 dataset [28] where the density of the input depth
maps is much higher than KITTI [27]. However, as shown
in Table I, it achieves very poor performance with RMSE
of 1130.47 on KITTI. (II) We then upgrade Variant 1 with
a more powerful backbone – the one used in both PENet
and our current model. Despite the observed improvement
(900.54 v.s. 1130.47 RMSE), it still fails to match compet-
itive depth completion performance on KITTI. This shows
that it is difficult to operate deformable convolution directly

1iRMSE and iMAE are inverse metrics. They attain an ‘inf’ (infinite)
value, when a model generates 0 in output depth at valid pixels.



Fig. 6. Visualization of inference results obtained by our model ReDC before and after the deformable refinement module. From left to right: groundtruth
dense depth, guidance RGB image, coarse depth D̂ before refinement, and final depth output D after refinement. `2 loss computed between the groundtruth
and inference result is presented at the top left corner. The coarse depth map is significantly refined by our deformable refinement module with only a

single pass.

on input depth of high sparsity, irrespective of an improved
feature extractor or backbone.

We thus conjecture that deformable kernel convolution
requires a relatively high density for input depth maps to
obtain good performance. Based on this assumption, we
pre-process the depth maps to increase their density by
using various interpolation techniques. We directly test the
interpolated depth from the sparse depth maps against the
groundtruth on the KITTI validation set, and report the
results in Table II. We observe that the nearest-neighbor
interpolation, filling the empty depth values based on their
nearest neighbors, achieves the best overall performance.

Based on this result, (III) we further explore Variant 2
(Figure 5), where we feed the nearest-neighbor interpolated
depth into Variant 1 with a strong backbone. As expected,
we observe an improvement (875.75 v.s. 900.54 RMSE) in
Table I, which validates our assumption that the density
of the input depth maps is crutial for the performance of
deformable convolution. Compared with Variant 2, our model
is substantially better under all the metrics, since we use a
learned coarse depth map. Collectively, the comparisons with
Variants 1 and 2 in Table I demonstrate the superiority of our
strategy – an intermediate coarse depth map is first generated
under the guidance of an RGB image via a deep backbone;
then, it gets improved by our deformable refinement module.

D. Ablation Studies

We conduct a variety of ablation studies to further
demonstrate the performance improvement brought by our
refinement module, and investigate the effect of different
components and hyperparameter settings in our approach.

Coarse-to-Fine Procedure: Figure 6 visually compares
the generated coarse depth D̂ before our refinement module
and the final depth map D. We also provide the `2 loss
computed between the groundtruth depth maps and the
generated depth maps at the top left corner as in Section IV-
B. We observe that the quality of the generated depth gets
significantly improved by our refinement module. Depth
values in many areas of the coarse depth maps get corrected,
and the depth detail of objects also gets refined. We also
provide the result of training and validating the backbone
alone without our refinement module in Table III which
shows obviously worse performance (835.37 v.s. 813.05
RMSE), highlighting the effectiveness of our refinement.

Hyperparameter Settings: We study the impact of dif-

TABLE III
Ablation studies on hyperparameter settings on the KITTI

validation set. Our current setting achieves the best performance.
Model RMSE (#) MAE (#) iRMSE (#) iMAE (#)

Backbone Only 835.37 235.00 2.47 0.97
ReDC w/ staircase lr decay 820.76 228.31 2.30 0.95

ReDC w/ `2 loss 815.53 227.35 2.38 0.95
ReDC w/ `2 loss + staircase 821.53 233.90 2.32 0.98

ReDC k = 5 850.34 234.31 2.30 0.95
ReDC (Ours) 813.05 218.30 2.32 0.89

ferent hyperparameter settings in Table III. (I) Learning
rate schedule: Instead of decaying the learning rate in
a cosine annealing fashion, we use a staircase schedule.
Specifically, the learning rate gets decayed by {0.5, 0.2, 0.1}
at epoch {10, 15, 25}. The performance is not as good as
cosine annealing (820.76 v.s. 813.05 RMSE). (II) Training
objective: The performance gets worse (815.53 v.s. 813.05
RMSE), when the training objective is switched to only an `2
loss instead of a combined `2 and `1 loss. The performance
further drops, when we use both staircase decay and `2 loss
(821.53 v.s. 813.05 RMSE). (III) Deformable kernel size:
We investigate whether a larger deformable kernel W would
improve the completion performance. We observe that, when
k = 5, the performance gets significantly degraded (850.34
v.s. 813.05 RMSE). These ablations show that our current
hyperparameter setting achieves the best performance.

V. CONCLUSION
In this paper, we revisited deformable convolution and

studied its best usage on depth completion with very sparse
depth maps. We found that different ways of employing
deformable convolution could lead to completely distinct
performance, and it needs to be applied on a depth map
with a relatively high density for optimal performance. We
proposed a new, effective depth completion architecture that
requires only a single pass through our deformable refine-
ment module, which separates our model from previous ones
which usually require a minimum of three passes to get good
performance. We achieved competitive state-of-the-art level
depth completion performance on the challenging KITTI
dataset and surpassed previous work by a clear margin.
We believe that this work will deepen the understanding of
deformable convolution in the depth completion community.
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