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Investigating the Impact of Skill-Related Videos on Online
Learning

Anonymous Author(s)

ABSTRACT
Many online learning platforms and MOOCs incorporate some
amount of video-based content into their platform, but there are
few randomized controlled experiments that evaluate the effective-
ness of the different methods of video integration. Given the large
amount of publicly available educational videos, an investigation
into this content’s impact on students could help lead to more ef-
fective and accessible video integration within learning platforms.
In this work, a new feature was added into an existing online learn-
ing platform that allowed students to request skill-related videos
while completing their online middle-school mathematics assign-
ments. A total of 18,535 students participated in two large-scale
randomized controlled experiments related to providing students
with publicly available educational videos. The first experiment
investigated the effect of providing students with the opportunity
to request these videos, and the second experiment investigated
the effect of using a multi-armed bandit algorithm to recommend
relevant videos. Additionally, this work investigated which features
of the videos were significantly predictive of students’ performance
and which features could be used to personalize students’ learning.
Ultimately, students were mostly disinterested in the skill-related
videos, preferring instead to use the platforms existing problem-
specific support, and there was no statistically significant findings
in either experiment. Additionally, while no video features were
significantly predictive of students’ performance, two video fea-
tures had significant qualitative interactions with students’ prior
knowledge, which showed that different content creators were
more effective for different groups of students. These findings can
be used to inform the design of future video-based features within
online learning platforms and the creation of different educational
videos specifically targeting higher or lower knowledge students.
The data and code used in this work is hosted by the Open Science
Foundation and can be found at CLICK HERE FOR BLINDED LINK.
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1 INTRODUCTION
There is currently a plethora of educational content available for
free online. While this can empower students savvy enough to
navigate to relevant content on their own, searching for relevant
content can frustrate less experienced students, increasing their
cognitive load and making it more difficult for them to obtain the
same benefits [7]. Often, learning platforms will develop their own
instructional content by working with, or crowdsourcing from ex-
perts, e.g., [3, 12], but this can be time consuming and expensive. In
many cases, teachers will search for hours to find relevant instruc-
tional content to distribute to their students [10]. We are interested
in reducing the cost for learning platforms to provide relevant in-
structional content to students and taking the burden of identifying
and distributing relevant instructional content off teachers.

Prior research has shown that distributing educational videos to
students has a positive impact on their learning [11, 15]. In these
studies, the problem-specific videos were created by the researchers
and were designed to explain how to solve the specific mathemat-
ics problems for which they were provided. Building off this prior
research, this work investigated if free and publicly available skill-
related videos have a similar positive effect on students’ learning.
Videos aggregated from YouTube via automated searches were
incorporated into the ASSISTments online learning platform [6]
and provided to students upon their request. In addition to a ran-
domized experiment investigating the effectiveness of these videos,
multi-armed bandit algorithms (MABs) were used to identify which
videos were most effective for each mathematics skill using the
ASSISTments Automatic Personalized Learning Service (APLS) [14].
The effectiveness of the videos recommended via MAB were com-
pared to randomly recommended videos to investigate the impact
that MABs could have on the incorporation of these videos into
online learning platforms.

Additionally, features of these videos, extracted using various
machine learning APIs, were evaluated for their correlation with
students’ performance and for their ability to personalize students
learning based on students’ prior knowledge. For a feature to be ca-
pable of personalizing students’ learning, there must be a qualitative
interaction between the feature and prior knowledge. A qualitative
interaction indicates that one group of students benefits more from
one value of the feature while another group benefits more from a
different value of the feature. For example, if high-knowledge stu-
dents benefited more from long videos and low-knowledge students
benefited more from short videos, then the video length feature
could be used to personalize students’ learning.
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To summarize, this work answers the following research ques-
tions:

(1) What is the effect of incorporating publicly available skill-
related videos into an online learning platform on students’
performance?

(2) What is the effect of using multi-armed bandit algorithms to
recommend videos on students’ performance?

(3) What features of these videos are most predictive of students’
performance?

(4) What qualitative interactions between video features and
students’ prior knowledge are most predictive of students’
performance?

2 BACKGROUND
2.1 Instructional Videos
Instructional videos have been used successfully in the context of
online learning many times. In a randomized controlled study in
which the same problem-specific tutoring was provided to students
in video or text format, it was shown that videos led to higher stu-
dent performance than text [11]. Additionally, a combined analysis
of five different randomized controlled experiments that compared
video feedback to text feedback within the ASSISTments online
learning platform found that videos were more effective than text
across a variety of measures such as mastery speed and posttest
score [15]. While these studies demonstrate the effectiveness of
videos for problem-specific support, in this work we propose using
videos to give more general, skill-related instruction.

Massive open online courses (MOOCs) are a good example of
using videos not to provide specific feedback for individual prob-
lems, but to convey information on various topics in general. Many
MOOCs feature videos in a wide variety of formats [17], from
recordings of classroom lectures, to completely virtual presenta-
tions, to hybrid approaches, as well as various levels of integration
with online assessments to enable students to practice as they learn.
Not only do videos come in a variety of formats, but students use
videos differently, and prefer videos formatted in a variety of ways.
For example, a study of MITx MOOCs found that there was a dis-
tinct bimodal distribution in students’ video usage across different
courses, demonstrating differences in preference of how to use the
MOOC videos [21]. Additionally, prior work has found that some
students prefer classroom lecture recordings while others prefer
fully digital presentations, and that these preferences are statisti-
cally significantly correlated with their motivation for enrolling in
the MOOC [22]. While the study in this work is not done within a
MOOC, these MOOC studies show the variety of formats and pref-
erences for video-based content. The skill-related videos provided
to students in this study may follow usage trends similar to the
videos in MOOCs.

2.2 Multi-Armed Bandit Algorithms
Multi-Armed bandit algorithms (MABs) are a simple type of re-
inforcement learning where the algorithm takes one of multiple
possible actions, is given a numeric reward based on criteria de-
fined by the researcher, and models the relationship between each
action and the expected reward. Over time, a MAB uses its model
to try and maximize the reward it receives by taking actions with

the highest expected reward [18]. MABs assume that the reward
received for an action is independent of the sequence of actions
taken, unlike more complicated reinforcement learning algorithms.

Research has shown in simulation that MABs would be able to
increase students’ learning during randomized experiments per-
formed within online learning platforms, but would also increase
the false-discovery rate of significant experiment results [16]. Al-
though there are methods to adjust how a MAB operates to correct
for some of the increase in false-discovery rate [23, 24], to avoid any
bias, this work includes a randomized controlled experiment to in-
vestigate the effectiveness of providing students with skill-related
videos. However, MABs have been shown via a large-scale ran-
domized experiment to sightly improve students’ performance by
learning the most effective problem-specific support messages for
middle-school mathematics problems [14]. Compared to randomly
receiving one of multiple relevant problem-specific supports, stu-
dents that received the support recommended by the MAB got the
next problem in their assignment correct more often [14]. Therefore,
to both maximize the benefit of skill-related videos and to study the
effects of MABs on student performance in a different but similar
context to the previous study, this work also studies the effect of
using a MAB to recommend skill-related videos to students.

2.2.1 Thompson Sampling. The MAB used in this work is Thomp-
son sampling. Thompson sampling was used in previous stud-
ies comparing MABs to random selection [14, 16] and has out-
performed other algorithms when recommending content to stu-
dents [14, 16]. Thompson sampling models the expected reward
of each action it can take as a distribution of the rewards it has
received for that action before. Each time Thompson sampling re-
ceives a reward for taking an action, that reward is used to update
the action’s prior distribution. Thompson sampling selects which
action to take by randomly sampling from each action’s prior re-
ward distribution, and then takes the action corresponding to the
highest random sample [20]. By randomly sampling from the prior
distributions, Thompson sampling balances learning more about
actions that have not been taken frequently with taking actions
that lead to the highest reward on average. At the beginning of
Thompson sampling’s use it will know very little about each action,
and thus each prior distribution will have a high variance. The high
variance will lead to random samples far from the mean reward of
each action, which will make Thompson sampling’s choice of action
very similar to random selection. However, once each action has
been taken many times, the variance of the prior reward distribu-
tions tends to decrease, and Thompson sampling will begin to take
the action with the highest expected reward more frequently. The
Thompson sampling algorithm used in this work is Beta-Bernoulli
Thompson Sampling (BBTS), which models the prior distribution
of a binary reward as a Beta distribution, and has been proven to be
asymptotically optimal in [8]. BBTS has been used successfully in
the past to recommend problem-specific support to students [14].

2.3 The ASSISTments APLS
The experiments in this work were performed within ASSISTments,
an online learning platform that focuses on middle-school math-
ematics. Since 2021, ASSISTments has been able to use MABs to
personalize the content provided to students through the Automatic
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Personalized Learning Service (APLS) [14]. The APLS allows for
algorithms to make content recommendations for students in real-
time. The APLS has the capacity to incorporate features of students,
problems, and the content itself to its decision of what content to
provide to a student. When multiple recommendation algorithms
are available in the APLS, one is selected randomly, which enables
randomized experiments between algorithms [14]. In this work, a
random selection model and a BBTS model were added to the APLS
for recommending videos. This way, the APLS administers the ex-
periment comparing MABs to random selection, and the random
selection model administers the experiments comparing videos.

Each night, the APLS calculates a reward for each recommenda-
tion made in the past 24-hours and updates each recommendation
algorithm using these rewards. If a student was able to complete
the next problem on their first try without any additional tutoring,
the algorithm receives a reward of 1 for its video recommendation.
Otherwise, the algorithm receives a reward of 0. In the studies in
this work, the algorithms received rewards regardless of whether
or not the student observed the skill-related video because both
the random selection model and the BBTS model had the option to
recommend no video. If a reward was only given when students
viewed the videos, a reward could never be calculated for recom-
mending no video. The downside of this is that the population
of students that never observe the skill-related videos, while not
biasing the prior reward distributions, add noise, making it more
difficult to learn the differences in effectiveness between videos.

3 SKILL-RELATED VIDEOS
3.1 The Show Video Button
Prior to this work, ASSISTments only had the capacity to offer
students problem-specific support. Given that it has been shown
multiple times that the problem-specific support in ASSISTments
benefits students [12, 15, 19], it would have been potentially detri-
mental to replace this problem-specific support with skill-related
videos. Instead of replacing this tutoring, a new button was added
to the ASSISTments Tutor. The ASSISTments Tutor is shown in
Figure 1. Figure 2 shows the explanation, in yellow, that appears
when a student clicks the Show Explanation button, which is the
pre-existing button used to request problem-specific support. This
tutoring only explains how to solve the specific problem on screen.

The new ShowVideo button is to the left of the ShowExplanation
button. When a student clicks on the Show Video button, a new
tab containing a skill-related video opens in the student’s web
browser. Viewing a skill-related video does not directly explain how
to solve the specific problem in the Tutor, and therefore, there is
no penalty for requesting a skill-related video, unlike the problem-
specific support, which removes a fraction of a student’s score
when requested. To familiarize students with the new Show Video
button, an information icon, shown in Figure 1 directly to the left
of the Show Video button, was provided. When students hover over
the information icon, the message “Clicking this button does not
reduce your score. It shows a video to help you solve the problem”
is displayed. Figure 2 shows an example of a video1 opened in a
new tab when a student clicks the Show Video button.

1https://www.youtube.com/embed/xLcgug8iEYY

Figure 1: A mathematics problem in the ASSISTments Tutor.
The new Show Video button appears to the left of the pre-
existing Show Explanation button.

Figure 2: A mathematics problem in the ASSISTments Tutor
with an explanation highlighted in yellow.

3.2 Video Incorporation
To incorporate skill-related videos into the ASSISTments APLS, the
following steps had to be taken.

(1) Skill Labeling: Tag every problem in ASSISTments with the
most relevant Common Core Skill Code [1].

(2) Video Filtering: Identify publicly available YouTube videos
relevant to each skill.

(3) Feature Extraction: Create features of the videos and incorpo-
rate them into the APLS in order to investigate their impact
on student performance.

3.2.1 Skill Labeling. The Common Core State Standards for Math-
ematics [1] discretize the United States mathematics curriculum
into a tree of branching codes, where each leaf refers to a specific

2023-01-31 17:09. Page 3 of 1–10.
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Figure 3: An example of a skill-related video.

concept that students must learn during their mathematics edu-
cation. For example, the Skill Code 7.G.A.1 refers to a 7th grade
geometry problem (7.G). The letter A refers to a section of the
7th grade geometry curricula, specifically the section described
as “Draw, construct, and describe geometrical figures and describe
the relationships between them” The number 1 is the final part
of the skill code which refers to the skill in section A described
as “Solve problems involving scale drawings of geometric figures,
including computing actual lengths and areas from a scale drawing
and reproducing a scale drawing at a different scale”

For each 6th grade through 8th grade mathematics problem in
the Engage New York2, Illustrative Mathematics3, and Utah Middle
School Math Project4 curricula, two teachers labeled each mathe-
matics problem with the Common Core Skill Code most relevant
to solving the problem. If the two teachers agreed, then that was
the final skill code incorporated into ASSISTments. If the teachers
disagreed, a third teacher was used to decide which of the two skill
codes was correct. Essentially, two out of three teachers had to
agree on the skill code for each mathematics problem before it was
labeled. In total, 16,167 mathematics problems were tagged with
their most relevant skill.

3.2.2 Video Filtering. After all the mathematics problems were
tagged with their most relevant skill code, the skill code descrip-
tions were used as the search term in YouTube in order to find
relevant videos for each skill. The first ten results of each search
were collected and shown to middle-school math teachers. The
teachers were instructed to select the first five relevant videos for
each skill. If less than five videos were relevant, then the teachers
were instructed to go to YouTube and find the remaining videos
themselves. Even though part of this work was to investigate how
well BBTS would be able differentiate between more and less effec-
tive videos, the videos were still evaluated by teachers because at
no point in this work would it have been acceptable for students to

2http://www.nysed.gov/curriculum-instruction/engageny
3https://illustrativemathematics.org/
4http://utahmiddleschoolmath.org/

have been shown noneducational content. This process was used to
find five relevant videos for each skill. The number five was chosen
somewhat arbitrarily, with the goal of having enough videos for
there to be variations between them, but few enough videos that
BBTS would have time to learn the effectiveness of each video. In
total, 1,315 videos were collected for 263 skills.

3.2.3 Feature Extraction. Once five videos for each skill were col-
lected, a variety of machine learning APIs and YouTube metadata
was used to create features for each video. Two APIs, Speechace5
and DeepAffects6, were used to extract features related to the voice
of the speaker in the video if there was one. The Azure Face API7
was used to examine qualities of the face in the video if the speaker
included their face. Lastly, YouTube metadata from the video pages8
was used to extract features related to the length and appeal of the
videos. The number of dislikes for a video was made private by
YouTube on November 10th, 20219, but these features were ex-
tracted prior to that change. Of the dozens of features available
through these sources, 12 were included as features in the APLS
and used for further analysis of the experimental results. If all the
features had been included, the false discovery rate of features
that significantly impact student performance would have been
much higher. The following 12 features were chosen because of
their relevance to the educational quality of the videos, as deter-
mined qualitatively by a combination of middle-school mathematics
teachers and researchers.

• Length: The length, in seconds, of the video, determined
using YouTube metadata.

• View Count: The number of views of the video, determined
using YouTube metadata.

• Percent Likes: The ratio of likes to views, determined using
YouTube metadata.

• Percent Dislikes: The ratio of dislikes to views, determined
using YouTube metadata.

• Percent Comments: The ratio of comments to views, de-
termined using YouTube metadata.

• Pronunciation Score: A score from 0-100 that assesses how
well the words in the video are pronounced, determined
using Speechace API.

• Unknown Pronunciation Score: A binary indicator for
whether or not Speechace was unable to calculate a pronun-
ciation score.

• Male Tone: A binary indicator for whether or not the tone of
the speaker sounded as though they were male, determined
using the DeepAffects API.

• Reading Tone: A binary indicator for whether or not the
tone of the speaker sounded as though they were reading,
determined using the DeepAffects API.

• Passionate Tone: A binary indicator for whether or not the
tone of the speaker sounded passionate, determined using
the DeepAffects API.

5https://docs.speechace.com/
6https://docs.deepaffects.com/docs/introduction.html
7https://azure.microsoft.com/en-us/products/cognitive-services/face/
8https://www.youtube.com/
9https://blog.youtube/news-and-events/update-to-youtube/
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• Unknown Tone: A binary indicator for whether or not
DeepAffects was unable to analyse part of the tone.

• Face Included: A binary indicator of whether or not there
was a face included in the video, determined using Azure
Face API.

4 METHODOLOGY
4.1 Empirical Studies
Two randomized controlled experiments were performed using the
ASSISTments APLS between March 3rd, 2022 and July 18th, 2022.
The first experiment investigated the impact of skill-related videos
on student performance, and the second experiment investigated
the impact of using a MAB, specifically BBTS, to recommend skill-
related videos compared to randomly recommending skill-related
videos. Both studies were run simultaneously at the problem level,
on different subsets of the student population. When a student
started a problem, they were first randomized with equal probabil-
ity between receiving a randomly recommended video or a BBTS
recommended video. Students randomized to a BBTS recommended
video were the treatment population for the second experiment, and
BBTS was used to recommend one of the five relevant videos for the
skill the problem was tagged with or no video (six options per rec-
ommendation). Students randomized to a randomly recommended
video were the control population for the second experiment, and
were randomly given one of the five relevant videos for the skill the
problem was tagged with or no video with equal probability (1/6
chance of receiving each video, 1/6 chance of receiving no video).
Students in the control population of the second experiment that
were randomized to no video were considered the control popula-
tion for the first experiment, and students randomized to any of
the five videos were considered the treatment population.

Essentially, all students participated in the second experiment,
and the half of students that were given randomly recommended
videos participated in the first experiment as well. Both experiments
were intent-to-treat analyses because the Show Video button was
visible or not based on which condition a student was in. Because
the presence of the button could have an effect on students’ behav-
ior, a student was included in the analysis if they were randomized
into a condition, regardless of whether or not they viewed the
skill-related video. Both experiments used next-problem correct-
ness as the dependent measure. Correctness is a binary indication
of whether the student got the problem correct on their first try
without any additional support (1) or not (0).

4.1.1 Video Vs. No Video Analysis. To analyse the results of the
first experiment, a mixed-effects logistic regression model [4] was
fit to predict students next-problem correctness given the following
inputs.

(1) A constant.
(2) The average correctness of the student across the prior weeks

problems.
(3) The average correctness of the problem a skill-level video

was provided (or not provided) for across the prior weeks
instances of students completing the problem.

(4) The average correctness of the next problem used to calculate
the dependent measure across the prior weeks instances of
students completing the problem.

(5) A binary indication of whether or not the student was in the
treatment (1) or control (0) condition.

(6) A random effect for each skill’s impact on the treatment
effect.

Inputs 2, 3, and 4 are all covariates meant to remove variations
in the results from students with different prior knowledge and
problems of different difficulty. Input 5 measures the average effect
of offering students the opportunity to request a skill-related video,
and each of the skill-level random effects in Input 6 measures the
effect of offering students the opportunity to request a skill-related
video for each skill separately. The random effects were included
because each skill has a different set of five videos available for it,
and it could be that some skills had very helpful videos while other
skills did not, which would not be captured by Input 5.

The coefficient and statistical significance of Input 5 can be used
to measure the impact of providing students with the opportunity
to request skill-related videos on their performance, and the coef-
ficients and statistical significance for the random effects can be
used to determine the skill-level impact of this new feature.

4.1.2 BBTS Vs. Random Selection Analysis. To analyse the results
of the second experiment, a mixed-effects logistic regression model
[4] was fit to predict students next-problem correctness given the
same inputs as the mixed-effects model for the first experiment but
with the treatment variable now being whether or not BBTS (1) or
random selection (0) was used to determine which video was made
available to the student, and the following additional inputs.

(1) The number of recommendations made so far by the selected
model for the given skill.

(2) The interaction between Input 1 and whether or not the
student was in the treatment (1) or control (0) condition.

(3) A random effect for each skill’s impact on Input 1.
(4) A random effect for each skill’s impact on Input 2.
Unlike the first experiment, where we do not expect the effect

of having a video available to change over time, we do expect the
effect of the videos provided through BBTS to change over time
compared to randomly selected videos because at the beginning of
BBTS’s use, it makes basically random recommendations, but over
time, BBTS learns which videos are most effective and offers them
to students more often.

The coefficient and statistical significance of Input 2 captures
this change over time and measures the impact of using BBTS to
select videos compared to randomly selecting videos. The mixed
effects in Input 4 capture how the impact of using BBTS to select
videos changes for each skill.

4.2 Video Feature Analysis
In addition to measuring the impact that videos and the methods
used to select them have on student performance, this work used the
data from the first experiment to investigate what features of videos
made them more or less effective for the students that requested
them. A logistic regression model [9] was fit using only the data
from samples where students viewed the randomly recommended
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videos to predict students’ next problem correctness given the
following inputs.

(1) A constant.
(2) Random effects for the average effectiveness of videos for

each skill.
(3) The average correctness of the student across the prior weeks

problems.
(4) The average correctness of the problem a skill-level video

was provided (or not provided) for across the prior weeks
instances of students completing the problem.

(5) The average correctness of the next problem used to calculate
the dependent measure across the prior weeks instances of
students completing the problem.

(6) All of the video features except for Unknown Pronunciation
Score and Unknown Tone.

In the regression, Inputs 1 and 2 allow for the average likelihood
of getting the next problem correct after viewing a video to vary
based on skill. This is important because different skills could be
easier or harder to explain via video, and the model should be able
to take this into account. Inputs 3, 4, and 5 are covariates to account
for the variance in students’ propensity to get the next problem
correct. The video features “Unknown Pronunciation Score” and
“UnknownTone”were excluded from the logistic regression because
many factors could have influenced either of the video feature APIs
abilities to extract features, and these features being significant
would not be an interpretable finding. Considering that every fea-
ture investigated for its impact on student learning increases the
severity of the hypothesis correction used in this analysis, these
two features were intentionally left out.

The coefficients and confidence intervals of the video features
were used to determine if they had an impact on student perfor-
mance. The Benjamini-Hochberg procedure [2] was used to correct
the false discovery rate of significant features.

4.3 Opportunities for Personalization
In addition to exploring the impact that different video features had
on students’ performance, this work used the data from students
that requested randomly selected videos to look for qualitative in-
teractions between features of the videos and the students’ prior
knowledge. A qualitative interaction exists if one group of students
benefits more from one type of content, while another group of
students benefits more from a different type of content. For exam-
ple, a qualitative interaction between students’ prior knowledge
and video length would exist if high-knowledge students got the
next problem correct more often after viewing long videos and
low-knowledge students got the next problem correct more often
after viewing short videos. These qualitative interactions are each
an opportunity to personalize students’ learning. To identify any
qualitative interactions in the data, the same method used in [14]
to identify statistically significant qualitative interactions between
students and the content available to them was used. Using this
method, the regression𝑦 = 𝛽0+𝛽1𝑥1+𝛽2𝑥2+𝛽3 (𝑥1⊕𝑥2) is fit, where
𝑥1 is a video feature, converted to a binary indicator of whether
or not the value is above or below average for that feature, 𝑥2 is a
binary indicator of whether or not the student’s prior correctness

is above or below average, and 𝑦 is the student’s next problem cor-
rectness. Using this model, a qualitative interaction exists if 𝛽23 is
greater than 𝛽21 , which is derived with more detail in [14]. 𝑝-values
for the statistical significance of these qualitative interactions were
calculated using a bootstrapping approach in which the regression
above was fit 10,000 times on different samples of equal size to the
original data sampled with replacement from the original data. The
distribution of 𝛽23 − 𝛽21 was used to perform a one-sample t-test
to determine the 𝑝-value of the null hypothesis: 𝛽23 − 𝛽21 ≤ 0. The
𝑝-values for the significance of different video features’ qualitative
interactions were corrected for multiple hypothesis testing using
the Benjamini-Hochberg procedure [2].

5 RESULTS
FromMarch 3rd, 2022 to July 18th, 2022, 479,032 video recommenda-
tions were made to 18,267 students as they completed one of 27,589
problems. More problems were included in the experiments than
were tagged for this work because some problems in ASSISTments
were already tagged with their most relevant skill. On average,
about 1,835 recommendations were made per skill, and each video
was recommended an average of about 369 times. Unfortunately,
out of all these recommendations, only 3,196 videos were actually
requested by students. The vast majority of the time, students did
not request videos. Compared to the about 15% of the time that
students request problem-specific support, students only requested
skill-related videos about 0.7% of the time.

Of the 2,383 students that requested at least one video, only
22% percent of those students requested a second, and less than
1% of those students requested at least 5 videos. Figure 4 shows
this trend in skill-related video requests compared to problem-
specific support requests. Students were not only less interested in
skill-related videos from the start, but after requesting one video,
students were much less likely to request another compared to
the trend for problem-specific supports. Additionally, about 51%
percent of the time that a video was requested, the problem-level
support for the same problem was requested afterwards. Due to
the intent-to-treat design of the randomized experiments, students’
lack of interest in videos added a tremendous amount of noise to
the results.

5.1 Video Vs. No Video
In the first experiment, 280,646 samples of a student being random-
ized when they started a problem between having the option to
request a skill-related video or not were collected. In the control
condition, there were 46,707 instances of one of 11,840 students
completing one of 13,491 problems without the option to request
a video. In the treatment condition, there were 233,939 instances
of one of 16,974 students completing one of 23,119 problems with
the option to request a video. There are more samples in the treat-
ment than the control because students were randomized with
equal probability to each of the five relevant videos or no video.
Therefore, there are about five times more samples in the treatment
condition than the control.

Using the model described in Section 4.1.1, the coefficient and
95% confidence interval for the average treatment of being shown a
video was about 0.0002± 0.0250, which is far from being statistically
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Figure 4: The number of students that requested from one
to ten instances of tutoring for both skill-related videos and
problem-specific support.

significant. Figure 5 shows the coefficients and confidence intervals
for the random effects of being offered a skill-related video for
each skill separately, sorted from lowest to highest coefficient. Even
when examining the effect of offering students skill-related videos
on a per-skill basis, there were no significant effects. The model
fit to determine these coefficients was a logistic regression, so the
coefficients in Figure 5 should not be interpreted as effect sizes,
they should solely be interpreted as indications that there were no
statistically significant effects, which makes determining effect size
moot.
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Figure 5: The coefficients and 95% confidence intervals for
the random effects of offering students skill-related videos
compared to not offering videos, sorted from lowest to high-
est coefficient.

5.2 BBTS Vs. Random Selection
In the second experiment, 559,917 samples of a student being ran-
domized when they started a problem were collected. Students
were randomized between BBTS or random selection determining
which video (or lack thereof) they could request. In the control
condition, there were 280,646 instances of one of 17,377 students
completing one of 24,276 problems with the option to request a
randomly recommended video. In the treatment condition, there
were 279,271 instances of one of 17,309 students completing one of
24,315 problems with the option to request a BBTS recommended
video. There are about an equal number of samples in each condi-
tion because students were randomized with equal probability to
receive BBTS recommendations or random recommendations.

Using themodel described in Section 4.1.2, the coefficient and 95%
confidence interval for the average impact over time of using BBTS
to recommend videos was about -0.10 ± 0.14, which is again, far
from being statistically significant. Figure 6 shows the coefficients
and confidence intervals for the random effects of the impact over
time of using BBTS to recommend videos for each skill separately,
sorted from lowest to highest coefficient. Even when examining
the effect of using BBTS to recommend videos on a per-skill basis,
there were no significant effects. The model fit to determine these
coefficients was a logistic regression, so the coefficients in Figure
6 should not be interpreted as effect sizes, they should solely be
interpreted as indications that there were no statistically significant
effects, which makes determining effect size moot.
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Figure 6: The coefficients and 95% confidence intervals for
the random effects of the impact over time of using BBTS to
recommend videos compared to randomly recommending
videos, sorted from lowest to highest coefficient.

5.3 Video Features
In total, 1,677 randomly recommended videos were requested by
1,372 different users across 1,303 problems. Using the model de-
scribed in Section 4.2, Figure 7 shows the coefficients and 95%
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confidence intervals for the video features. The confidence inter-
vals in Figure 7 are calculated prior to any hypothesis correction.
After hypothesis correction using the Benjamini-Hochberg pro-
cedure [2], none of the video features were significant predictors
of students’ next-problem correctness. The model fit to determine
these coefficients was a logistic regression, so the coefficients in
Figure 7 should not be interpreted as effect sizes, they should solely
be interpreted as indications of which features were significant
prior to correcting for multiple hypotheses.

−4

−2

0

2

Pe
rc

en
t L

ik
es

Pe
rc

en
t D

is
lik

es

Pr
on

un
ci

at
io

n 
Sc

or
e

M
al

e 
To

ne

Pa
ss

io
na

te
 T

on
e

R
ea

di
ng

 T
on

e

Fa
ce

 In
cl

ud
ed

Vi
ew

 C
ou

nt

Pe
rc

en
t C

om
m

en
ts

Le
ng

th

Video Feature

Ef
fe

ct
 a

nd
 %

95
 C

on
fid

en
ce

 In
te

rv
al

Effects of Every Video Feature

Figure 7: The coefficients and 95% confidence intervals for
the impact of each video feature on students’ propensity to
get the next problem correct.

5.4 Opportunities for Personalization
Using the methodology described in Section 4.3, of the ten potential
qualitative interactions between students’ prior knowledge and
video features, two qualitative interactions were present and statis-
tically significant. Both qualitative interactions are shown in Figure
8. In both plots, students with above-average prior correctness out-
perform students with below-average prior correctness on average,
regardless of video features. However, students with below-average
prior correctness benefited more from videos with above-average
pronunciation scores and male toned speakers while students with
above-average prior correctness benefited more from videos with
below-average pronunciation scores and non-male toned speakers.

While these findings are statistically significant (both have 𝑝
< 0.001 after correction), they are only correlational. If all other
features of the videos were held constant, and the only difference
was the speakers tone or pronunciation, then it would be possible
to look for causality, but this is not the case for these skill-related
YouTube videos. There are likely many covariates outside of the

feature set created in this work that are correlated with pronuncia-
tion score and tone that effect these results. However, finding any
opportunities to personalize students’ learning at scale is rare, and
it is interesting that even though so few students seemed to engage
with the skill-related videos, there were still significant differences
between the effectiveness of certain videos for specific groups of
students.

Figure 8: The two significant qualitative interactions between
students’ prior correctness and video features.

6 DISCUSSION
From this work it seems that students are not interested in en-
gaging with skill-related videos. It is unlikely that students were
uninterested in the videos simply because they were videos be-
cause prior research in ASSISTments offered students a choice
between video-based or text-based problem-specific support and
found that about 29% of students chose the videos [5]. The pres-
ence of problem-specific support, which is more direct, relevant,
and shorter, likely made students see the extra videos as a waste
of time. Even though viewing the problem-specific support low-
ered students’ scores while the skill-related videos did not, most
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students use ASSISTments for in-class work or homework assign-
ments, which are generally low pressure assignments meant to
help prepare them for tests that are more impactful to their grades.
Students might not care about their homework score and prioritize
getting the most direct and relevant advice over general advice that
may or may not be as helpful. An important distinction between
the videos in this work and the videos in MOOCs is that MOOC
videos are meant to be the primary instructional material, whereas
in this work the videos were supplemental instructional material.
This likely had an impact on students motivation to engage with
the videos because their teachers were probably providing them
with primary instruction in a way they were more familiar and
engaged with.

Regarding the analysis, using an intent-to-treat design made it
very difficult to observe any effect of skill-related videos or of using
BBTS to recommend them. Students only requested a video about
0.7% of the time. Unless seeing that a video is available but not
requesting it effects students’ propensity to get the next problem
correct, 99.3% of the data in the treatment condition was equivalent
to the data in the control condition. The amount of noise this adds
to the analyses made the confidence intervals too large to see any
effects, even on a per-skill basis.

By only including data from instances where students requested
a randomly recommended video, this work was able to investigate
the impact that different video features had on student performance.
This part of the analysis was not an intent-to-treat design, and in-
stead looked only at the impact that the videos had on the treated,
i.e., the students that requested them. Interestingly, even though no
video feature was a significant predictor of students’ next-problem
correctness, two video features, Male Tone and Pronunciation Score,
had a significant qualitative interaction with students’ prior cor-
rectness. These findings are almost certainly not causal because
other features of the videos were not controlled for. Students with
below-average prior correctness benefited more from videos with
above-average pronunciation scores and male toned speakers while
students with above-average prior correctness benefited more from
videos with below-average pronunciation scores and non-male
toned speakers. There were a handful of videos in this study in
which a woman with a southern accent effectively explained a va-
riety of mathematics skills. It likely that this woman, and similar
content creators in the data, happen to explain concepts at a level
that was more appropriate for students with higher knowledge,
and because this woman has a lower pronunciation score and a
non-male tone, the data reflects that these features have qualitative
interactions with students’ prior knowledge. In reality it is likely
not the features themselves that led to these qualitative interac-
tions, but the content creators that happened to correlate with those
features.

7 LIMITATIONS AND FUTURE WORK
The results of these studies do not imply that skill-related videos are
ineffective, but rather that there was no effect in this particular use
case. This work only looked at the impact of skill-related videos on
middle-school mathematics students within ASSISTments. It could
be that without the problem-specific support that ASSISTments
provides, skill-related videos would have a larger effect. It could

also be that different age or socioeconomic groups are impacted
differently than the population in this study. More studies should
be conducted to investigate the impact of skill-related videos in
different contexts, and to ensure that if there is an impact in a
particular context, that this impact is fairly distributed amongst
different groups of students.

While the intent-to-treat analysis was necessary to unbiasedly
compare videos to no videos, it was not as necessary to investigate
the impact of using BBTS to recommend videos compared to ran-
dom selection. If BBTS was not allowed to recommend no video,
then BBTS could have been updated only when students actually
requested videos, and these samples could have been compared
to only the times that students requested randomly recommended
videos. This would have likely resulted in a larger effect by remov-
ing about 99.3% of the data used to updated the BBTS model in
which students never requested videos. This would have allowed
the BBTS model to learn the trends in the data more easily, and
likely led to a larger difference over time between BBTS recom-
mendations and random recommendations. Moving forward, more
experiments comparing BBTS to random selection in ways that are
more fair to BBTS should be conducted.

Additionally, better covariates for predicting students’ next-
problem correctness could be created to help remove some of the
noise in the intent-to-treat analysis. The covariates used in all the
models in this work for students’ prior knowledge and problem dif-
ficulty had Pearson correlations [13] with students’ next-problem
correctness of only around 0.2. Serious work could be done to thor-
oughly investigate different combinations of student and problem
past performance measures in order to create more predictive co-
variates.

Lastly, the videos in this work were collected from YouTube
via algorithmic searches and teacher ratings. If, in the future, one
wished to perform a causal analysis of the significance of different
video features and their qualitative interactions with students, it
would be better to create the videos from scratch. If everything
except one video feature of interest was held constant, the analyses
in Sections 4.2 and 4.3 could be regarded as causal for that feature.

8 CONCLUSION
Overall, it did not appear that offering students the option to request
skill-related videos had a positive impact on their performance. This
mostly stemmed from students’ lack of interest in the skill-related
videos. Students only requested a skill-related video about 0.7% of
the time, compared to the about 15% of the time that they requested
problem-specific tutoring, which implies they would much prefer
concise advice directly related to the task at hand, regardless of the
impact it has on their score. Although this work did not show any
significant impact of providing skill-related videos to students, it
was able to analyse which features of videos correlated most with
students’ performance when they did request a video. This analysis
found that while there were no video features that significantly
predicted students’ performance, there were two video features that
had qualitative interactions with students’ prior knowledge. These
qualitative interactions implied that particular content creators cre-
ated videos that were more helpful for higher-knowledge students,
while other content creators made videos that were more effective
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for lower-knowledge students. Moving forward, the educational
research community can take away two main findings from this
work. The first is that students are unlikely to be interested in con-
tent that they do not see as directly relevant to them. Therefore,
when creating or curating tutoring for students, taking the effort to
ensure each piece of content is direct and relevant is likely to pay
off. Secondly, it seems possible to create videos that are better for
higher or lower knowledge students. This should motivate random-
ized controlled studies to determine which aspects of video based
learning specifically influence videos’ effectiveness for different
groups of students. Uncovering the causal mechanisms behind these
qualitative interactions paves the way for more effective forms of
personalized learning.
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