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How Common are Common Wrong Answers? Exploring
Remediation at Scale
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ABSTRACT
The process of synthesizing solutions for mathematical problems
is cognitively complex. Students formulate and implement strate-
gies to solve mathematical problems, develop solutions, and make
connections between their learned concepts as they apply their
reasoning skills to solve such problems. The gaps in student knowl-
edge or shallowly-learned concepts may cause students to guess at
answers or otherwise apply the wrong approach, resulting in errors
in their solutions. Despite the complexity of the synthesis process in
mathematics learning, teachers’ knowledge and ability to anticipate
areas of potential difficulty is essential and correlated with student
learning outcomes. Preemptively identifying the common miscon-
ceptions in students that result in subsequent incorrect attempts can
be arduous and unreliable, even for experienced teachers. This pa-
per aims to help teachers identify the subsequent incorrect attempts
that commonly occur when students are working on math problems
such that they can address the underlying gaps in knowledge and
common misconceptions through feedback. We report on a longi-
tudinal analysis of historical data, from a computer-based learning
platform, exploring the incorrect answers in the prior school years
(’15-’20) that establish the commonality of wrong answers on two
Open Educational Resources (OER) curricula–Illustrative Math (IM)
and EngageNY (ENY) for grades 6, 7, and 8. We observe that incor-
rect answers are pervasive across 5 academic years despite changes
in underlying student and teacher population. Building on our find-
ings regarding the Common Wrong Answers (CWAs), we report on
goals and task analysis that we leveraged in designing and develop-
ing a crowdsourcing platform for teachers to write CommonWrong
Answer Feedback (CWAF) aimed are remediating the underlying
cause of the CWAs. Finally, we report on an in vivo study by analyz-
ing the effectiveness of CWAFs using two approaches; first, we use
next-problem-correctness as a dependent measure after receiving
CWAF in an intent-to-treat second, using next-attempt correctness
as a dependent measure after receiving CWAF in a treated analysis.
With the rise in popularity and usage of computer-based learning
platforms, this paper explores the potential benefits of scalability
in identifying CWAs and the subsequent usage of crowd-sourced
CWAFs in enhancing the student learning experience through re-
mediation.
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1 INTRODUCTION
The process of learning mathematics is cognitively complex. Solv-
ing a mathematics-based problem requires students to comprehend
the problem requirements and demonstrate their knowledge and
understanding of the topic. Students often deconstruct the problem
task into smaller sub-tasks across multiple underlying concepts
when synthesizing a solution. As part of the synthesis process,
students practice various mathematical syntaxes, rules, and op-
erations, reinforcing their knowledge and understanding of the
underlying concepts that ultimately help students learn and de-
velop their understanding of the main problem task. While learning
and synthesis appear intuitive and easily understandable, analyzing
such processes can be particularly challenging; the individual steps
to reach a solution are not obvious because synthesis is a process
that is intrinsic to the learner. Students can leverage their intrinsic
cognitive ability to take various approaches to synthesize a solution.
The approaches can differ in various ways, e.g., the complexity of
the broken-down sub-task and the order in which the sub-tasks are
solved.

Despite the variation in the approach, students require a funda-
mental understanding of the mathematical processes to solve the
problem; however, gaps in student knowledge or misconception,
errors on one or more steps in solving a problem due to miscon-
ception or “slip”[12] can lead to a variety of incorrect responses.
Alternatively, gaps in student knowledge and shallow learning con-
cepts can cause students to guess at answers or apply the wrong
problem-solving approach, resulting in an entirely different set of
incorrect answers [7]. Regardless of the cause, without directed feed-
back on how to resolve errors experienced during problem-solving,
the errors may impede a student’s learning progress. Understand-
ing the common errors that students experience as they interact
with mathematics-based problems is critical for guiding the design
of effective instructional practices to help students learn correct
mathematical processes and problem-solving strategies [28].

The process of diagnosis and examination of “Common Wrong
Answers” (CWAs) is critical to understanding learning processes in
the context of mathematics. CWAs may be utilized to develop better
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educational technologies that, in conjunction with teachers, can
address the needs of individual students–educational technologies
often referenced as Computer Based Learning Platform (CBLP),
Online Learning Platforms (OLP), or Intelligent Tutoring Systems
(ITS).

In this paper, we leverage historical data on a CBLP in the analy-
sis of CWAs on Open Educational Resource (OER) curricula: Illus-
trative Math (IM) and EngageNY (ENY) for students in grades 6, 7,
and 8 across 5 school years. Through the analysis, we explore the
commonality of CWA across multiple academic years with shifts
in the underlying student and teacher population working on the
problems. We then extend our analysis by conducting goals and
task analysis in an engineering crowdsourcing platform that teach-
ers can use to develop Common Wrong Answer Feedback (CWAFs).
CWAFs aim to address student misconceptions and gaps in knowl-
edge by providing instructional guidance that nudges the students
towards the solution while addressing the error in their approach
whenever applicable. Finally, we conduct a within-subject-problem-
level randomization exploring the efficacy of CWAFs at scale by
using next-problem correctness in a treated analysis 1.

1.1 Research Questions
Toward the exploration of “How common are CWAs?” and “Can we
remediate them?”, the paper addresses the following main research
questions:

(1) Do students commonly make similar errors when working
on math problems?

(2) What fundamental goals and tasks must a crowdsourc-
ing platform provide when facilitating the generation of
CWAF?

(3) Does the remediation of CWAs with CWAFs lead to better
learning outcomes?

2 BACKGROUND
2.1 CommonWrong Answers
Common Wrong Answers (CWAs) are common mistakes or errors
that typically arise from a buggy rule, a common misconception
about the topic, or a lack of knowledge among the students. Several
prior research in the domain of cognitive science and mathematics
learning have investigated the common errors made by students
during the process of solving a mathematics-based problem [7–
9, 29, 43, 44].

Some of the prior works on this [11, 36] have explored the recti-
fication of these common errors in students understanding through
instruction. Brown et. al [7] in their prior work analyzed common
student mistakes when solving multi-digit subtraction problems
and used their analyses to develop a diagnostic model that detects
and explains these errors. Brown et. al further [8] introduced the
“generative theory of bugs”, which is a set of formal principles to
explain the known/common errors in a procedural skill. Other stud-
ies like Sison et. al [37] present student modeling approaches in
identifying the common errors or bugs in student works. In their

1The data and code used in this paper is shared through open-science practices at
BLINDED-URL

work, they also talked about the importance of identifying a “bug li-
brary”, which is the collection of the most common misconceptions
or errors made by a population of students. However constructing
these libraries is a challenging task, as these misconceptions vary
based on the population of students and different groups of students
may exhibit different types of misconceptions when synthesizing a
solution for mathematical problems.

In addition to the principles of learning theory and cognitive skill
acquisition, various prior research [36] have also explored the po-
tential of algorithmically identifying the common misconceptions
of students, to further rectify the incorrect and buggy processes
in students’ work. Selent et al. [36] explored the use of machine
learning methods to predict CWAs and their causes. Further, they
explored the effectiveness of suggesting buggy messages when a
student makes common mistakes. With the use of these buggy
messages to rectify common errors in students’ work, they mea-
sured the reduction of help-seeking behavior in an online learning
platform.

2.2 Feedback Intervention
Feedback is one of the major factors influencing learning outcomes
and achievement. However, the impact of feedback depends on the
type and way of delivery. Prior research on Feedback Interventions
(FI) through conducted meta-analyses has produced mixed results
on their effectiveness on student performance [1, 2, 16, 20, 23, 33,
38, 39]. The results from these works have led to further research
toward the exploration of the nuances of FI, resulting in the devel-
opment of Feedback Intervention Theory (FIT) [20]. FIT operates
under the assumption that FIs aim to catch the recipient’s attention
across 3 hierarchically organized levels: task learning, task motiva-
tion, and meta-task. While there are concerns regarding the general
effectiveness of FIs it is much less of a concern in an educational
context. Hattie, 1999(c.f.[16]) reported on a synthesis of over 500
meta-analyses exploring the effect of schooling on students where
FIs[1, 2, 23, 33, 38, 39] were among the top 10 highest influences on
the student achievement–highlighting the effectiveness of FIs in
learning.

Effective Feedback can help learners track their progress, validate
the students’ effort, reinforce their progress, and impact their reac-
tions and behavior when working on activities[10, 15, 45]. While
feedback is indeed crucial to the student’s learning experience, the
quality of the feedback varies greatly. Studies, such as [42] present
the importance of student perception in the effectiveness of feed-
back. In their work, they report that detailed constructive feedback
from instructors were found to be the most beneficial, and if the
feedback was too vague, or did not have enough content, the use-
fulness of the feedback would wane. Studies, such as [22], discuss
that providing feedback in an online setting is an art and that there
are various best practices including generating positive feedback
and/or balanced feedback. In this paper, we focus on the exploration
of tailored feedback in the remediation of common bugs in students’
work; as such, we use the Hattie et al.(c.f. 2007) [17] conceptual-
ization of feedback 2. Hattie et al., 2007[17] expanded upon the
generalized FIT model and proposed a theoretical model aiming
2[17] Feedback is conceptualized as information provided by an agent (e.g., teacher, peer,
book, parent, self, experience) regarding aspects of one’s performance or understanding.
A teacher or parent can provide corrective information, a peer can provide an alternative
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Figure 1: A model of feedback for enhanced learning, taken from Hattie et. al [17]

to reduce the discrepancy between the current and desired under-
standing of learners in an educational context. Figure 1 presents
the theoretical feedback model proposed by Hattie et. al [17] for
enhanced learning. The theoretical model posits that the feedback
must answer three major questions: (1)What are the goals? (2)What
progress is being made toward the goal? (3)What activities need
to be undertaken to make better progress? The FIs address these
3 major questions by operating across operate on 4 levels of in-
struction: (a) task level, (b) process level, (c) self-regulation level,
and (d) self-level. Hence, effective feedback needs to incorporate
the following characteristics: recognize if the task requirement is
understood, exhibit the correct processes required to complete the
task, include instructions that direct the learner towards the follow-
ing productive actions, and include evaluation and affect(usually
positive) to personalize the instruction.

2.3 CommonWrong Answer Feedback
Remediation of common errors in students’ work has been a focus
of several prior research[26, 27]. Vanlehn et. al [41] in their study,
observed the interaction between expert human tutors and physics
students, and they study the effect of tutor explanations to remedy
student errors. In their study, they find that only some explanations
are associated with improved learning and that the effectiveness
of the feedback varied with the content and question. In addition,
short and concise explanations to remedy errors were observed to be
more effective compared to longer and more elaborate explanations.
Other studies [35] have identified the inability of guided instruc-
tions in the remediation of errors that arise from misconceptions
from previously learned skills, suggesting that deeply ingrained
misconceptions and bugs may be more difficult to rectify over time.

strategy, a book can provide information to clarify ideas, a parent can provide encour-
agement, and a learner can look up the answer to evaluate the correctness of a response.
Feedback thus is a “consequence” of performance.

Studies like [14, 21, 34] introduced the use of error analysis methods
as a step towards understanding students’ ability to identify and
explain errors in given problems. They presented students with
erroneous examples and asked them to detect and explain the error
in the given examples. Rushton et al. [34], reported on the approach
of error analysis leading to better knowledge retention over the
traditional methods of learning mathematics.

2.4 Crowdsourcing Instruction
Crowdsourcing has become an increasingly popular method in
K-12 education for gathering feedback on instructional materials
[13]. With the aid of various authoring tools, teachers and educa-
tors are able to create and distribute more representative educa-
tional content. Many online learning platforms and tools [4, 18]
support crowdsourcing of instruction and teacher-authored con-
tent. Research in the educational context has shown that crowd-
sourcing can improve the online learning experience by provid-
ing students with on-demand teacher support, tutoring, hints, and
explanations[19, 24, 30, 32]. Some other studies[3, 5] have also ex-
plored the use of crowdsourcing to collect teacher-given scores and
feedback messages for students’ open-ended math answers. Prior
research around this [31, 32] have demonstrated the effectiveness of
crowdsourcing instruction and tutoring content in online learning
platforms toward enhancing the quality of instructional materials
and the learning experience for students. As such in this study,
we intend to crowdsource CWAFs through the development of a
crowdsourcing platform for teachers toward the remediation of
CWAs.

3 EXPLORING COMMONWRONG ANSWERS
The exploration of the commonality of CWAs was conducted by
examining data from students in grades 6, 7, and 8 who worked on
problems in two commonly used mathematics curricula: Illustrative

3
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Figure 2: An example of two consecutive problems in a prob-
lem set that the student is working on that has the same set
of Common Core Standards associated with it.

Mathematics (IM) and EngageNY (ENY) over a five-year period
from ’15-’16 to ’19-’20. The students’ data were collected from a
CBLP [BLINDED FOR REVIEW]. A summary of the total number of
problems the students worked on across the 5 school years from ’15-
’16 to ’19-’20 is presented in table 1–the problems were considered
eligible for the count if they were worked on by more than 20
students in at least one of the five school years.We observe that ENY
on average is used more often than IM and on average teachers have
used the content for grade 7 ENY the most across the 5 academic
years.

Within the CBLP in this study, students typically work on a set
of assignments with multiple problems that may or may not be
associated with the same set of skills (Common Core Standards).
Figure 3 presents an example of two consecutive problems from the
ENY curriculum within the same set of Common Core Standards.
These two problems are associated with the same skill set – the
first question is asking to simplify the equation and the second
question is asking to verify the results. These problems have a
higher likelihood of knowledge transfer than problems coming
from different common core standards.

To investigate the frequency of incorrect responses, we analyzed
the first incorrect attempt made by each student while working on
the problems. Using this approach, we generated the top 3 most
common incorrect answers (CWAs) for each problem. We added an
additional condition to help increase the reliability of the CWAs by
only analyzing the problems that had been worked on by at least
20 students during the school year and more than 10 students had
made the most common wrong answer. We observed that 1,045

problems had CWAs across at least two academic years. An example
of CWAs across academic years is provided in table 2. We observe
that the common wrong answers for the problem shown in 3 meet
the threshold of commonality in 4 out of the 5 academic years with
the first CWA replicating in each year, however, the second and third
CWAs did fluctuate with some commonality across years where the
ranks of some of the CWAswere swappedwhereas certain academic
years had completely new CWAs were observed. Further, we can
observe that the number of students is decreasing across school
years, this decline can be attributed to a version upgrade to the
CBLP used in our analysis–teachers began migrating to the newer
version during the ’18-’19 academic year. While the reduction of
the number of students did decrease the total number of students
available for our exploration of CWAs in the later academic years
it doesn’t prevent us from demonstrating their prevalence as the
same CWAs repeated despite the changes in the student and teacher
population working on the problems. A more extensive example
of the CWAs from our analysis is in the supplementary materials
accompanying this paper.

From the exploratory analysis exploring the occurrence of CWAs
we observed that CWAs repeat across school years. Upon deeper
analysis of the problems with CWAs we observed that the major-
ity of the problems belonged to Practice Problems for the lesson
component that are designed to help students learn the content. In
the next section, we elaborate on an iterative process of goals and
task analysis that informed the design and development of a crowd-
sourcing tool for teachers to write CWAFs aimed at remediating
the gaps in student knowledge that resulted in the CWAs.

4 TASK ABSTRACTION
In this section, we elaborate on our design and development process
of a crowdsourcing tool. In order to understand the requirements
of a crowdsourcing tool, we interacted with various experienced
teachers, teacher trainers, domain experts, and researchers explor-
ing crowdsourcing tools. Overall our analysis can be divided into
two parts. We began with a goals analysis where we developed
a hierarchy of goals the tool needs to facilitate. These goals were
deconstructed into sub-goals that directly correlate with teacher
needs. We leverage the concrete set of subgoals to enumerate vi-
sualization components in the crowdsourcing tool that directly
facilitates the teachers’ needs. We utilize the “Nested Model for
Visualization” ( c.f., [25]) to develop a better understanding of the
fundamental goals and tasks of a crowdsourcing platform. We uti-
lize the design language proposed by Munzner, 2009 [25] in the
design and development of our tool to provide some fundamental
guardrails to similar projects exploring crowdsourcing in the future.

First, we establish the high-level goals and sub-goals a tool needs
to facilitate. Upon validating the goals and subgoals with end users
and domain experts, we conducted task abstraction to define low-
level tasks such as browsing, exploring, and identifying from the
Brehmer and Munzner topology that designers and developers can
utilize in developing the tool. While the crowdsourcing tool we
developed in this paper doesn’t contain elaborate visualization com-
ponents traditionally associated with most visualization projects,
The ”Nested Model for Visualization” and Brehmer and Muzner’s
topology (c.f., [6]) can be highly effective at identifying goals and
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Table 1: Summary of Total Problems and Problems with CWAs. The problems with CWAs met our threshold of more than 20
students working on the problem in at least two consecutive years and more than 5 students making the same common wrong
answer in each year.

Engage NY Illustrative Math
Academic Level Total Problems Problems with CWAs Total Problems Problems with CWAs
Grade 6 1351 210 2082 254
Grade 7 1845 511 2088 518
Grade 8 1076 92 1475 267

Table 2: CommonWrong Answer by Student Count

First CWA Second CWA Third CWA
Number of
Students

Incorrect
Count

Correct
Answer Answer Count Answer Count Answer Count

214 62 30 -30 42 5 5 13 2
354 75 30 -30 44 -17 3 -13 5
332 98 30 -30 71 -17 5 0 3
243 63 30 -30 38 -15 4 -17 4

tasks that can be leveraged in augmenting the ability of the teach-
ers in formulating effective feedback–the overarching goal of our
crowdsourcing tool. As such, we leverage design techniques popu-
lar in the HCI(Human Computer Interaction) domain to conduct
task abstraction and generalize a crowdsourcing tool’s develop-
ment process. We went through multiple iterations of goals and
task analyses to further refine our findings and report on the final
result in this section.

4.1 Goal Analysis
Table 3 lists the goals and sub-goals resulting from our analysis.
The overarching goal of the tool is to augment teacher ability in
gaining insight into the various process the students might have
taken that resulted in a “bug” during the synthesis of a solution
that resulted in the CWAs. While the underlying mechanism that
resulted in the CWAs is unknown, we aim to leverage teacher expe-
rience and intuition to discern the underlying cause and generate
appropriate feedback intervention to help remedy the cause. We
identified 3 distinct goals a crowdsourcing tool needs to facilitate.
The first two goals, G1, and G2, directly address teacher needs in
substantiating the CWAs and providing contextual insight to help
teachers formulate effective feedback. Goal 1 helps teachers under-
stand the general student performance on the problem, provide
evidence towards the commonality of the response, and identify
the problems within a set of problems where students struggle the
most, i.e., most likely problems within a set of problems where
gaps in student knowledge will impact their performance the most.
The intent of goal 2 is to provide contextual information that can
augment teacher ability when analyzing the CWAs and their po-
tential causes by providing contextual information. Additionally,
information on prior problems related to the same skill component
can provide scaffolding that teachers can leverage in contextualiz-
ing the problems and converging on a smaller subset of potential
causes for the CWAs. While the primary objective of the tool is to

facilitate the generation of CWAFs, both the teachers and domain
experts on multiple occasions emphasized the importance of goal 3
in dictating the quality of the feedback through collaboration and
validation from peers.

4.2 Task Analysis
For each sub-goal presented in table 3 we generated a list of low-
level sub-tasks designed to help teachers (a) look up other problems
within the problem set, (b) explore various knowledge components
the students struggled with while working on the problems, (c)
identify the potential causes of the CWAs, and (d) produce feedback
that can effectively help remediate gaps in student knowledge that
resulted in the CWAs. These sub-tasks are related to the abstract
visualization task from Brehmer, and Munzner’s topology [].

Table 4 presents the high-level task that can help inform the
design and development of features within the crowdsourcing tool
that can help facilitate one or more sub-goals which in turn, in
conjunction with other tasks, can help achieve the main goals of
crowdsourcing. While the tasks can be further decomposed into
auxiliary sub-tasks that can be specific to the objective of the project,
as such, we only report on the high-level task analysis. We find the
tasks to be self-explanatory; as such, we refrain from elaborating
upon the tasks at length in the text to avoid redundancy and pre-
serve space. Furthermore, it is important to note that this list is not
intended to be an exhaustive list that describes what constitutes
an effective crowdsourcing tool but rather a reference for others to
what we observed to be useful from our interaction with teachers
and other stakeholders during the design and development of the
tool.

5 CROWDSOURCING COMMONWRONG
ANSWER FEEDBACK

In this section, we briefly describe our implementation of the crowd-
sourcing tool guided by the goals and task analysis described in the
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Table 3: Fundamental goals of a crowdsourcing tool.

Generic Goals
G1 Substantiate the CommonWrong Answer

a Analyze general student performance on the problem.
b Validate the common wrong answer.

G2 Contextualize the CommonWrong Answer
a Identify problems where students struggle the most.
b Identify the underlying mechanism for the common wrong answer.

G3 Facilitate Collaboration and Support.
a Facilitate alternative perspectives to edify teachers’ understanding of the problem requirements.
b Facilitate collaboration and validation through peers support.

Table 4: Task analysis of each sub-goal.

Tasks
G1. a. Analyze general student performance on the problem.
T1 Identify problem properties, e.g., general difficulty, problem type, and answer.
T2 Identify student performance on a problem, e.g., total students, percent correct.
G1. b. Validate the common wrong answer.
T3 Examine the CWAs, e.g., incorrect answer, frequency of CWAs.
T4 Verify the CWAs is caused by mathematical error and not due to underlying bugs in the system.
G2. a. Identify problems where students struggle the most.
T5 Examine the problems within a problem set where students perform poorly.
T6 Identify the knowledge components required to do well on the problem set.
T7 Infer the amount of effort and attention required to solve the problem.
G2. b. Identify the underlying mechanism for the common wrong answer.
T8 Identify if the cause of the CWAs, e.g., misconception, gaps in knowledge, trick question, slip, or guess.
T9 Examine if the CWAs is influenced by a prior problem or if the problem will cause CWAs in the future.
G3. a. Facilitate alternative perspectives to edify teachers’ understanding of the problem requirements.
T10 Identify opportunities for the teacher to analyze the CWAs from multiple perspectives, e.g., feedback for high-

knowledge students, feedback to teachers when their students struggle with the problem.
G3. b. Facilitate collaboration and validation through peer support.
T11 Facilitate peer collaboration, e.g., synchronous and asynchronous pair work.
T12 Enable teachers to review each other’s feedback.

prior section. In order to facilitate the fundamental goals described
in table 3 we designed a new tool within the CBLPs. The tool al-
lows teachers to identify relevant CWAs, gain contextual insight
into the problems associated with the CWAs, and facilitates peer
collaboration to help further improve the quality of the CWAs.

Figure 3 shows the teacher view of a teacher working on a prob-
lem set in IM curricula for grade 7, unit 8, lesson 8 based on the
common core standard for teaching “Probability and Sampling”.
As shown in the figure, a teacher has analyzed the first CWA for
the problem and provided appropriate feedback addressing the stu-
dent’s misconception. The teacher can substantiate the CWAs by
examining the number of students that have worked on the problem,
the percentage of students who answered it incorrectly, identify-
ing the top 3 CWAs, and the percentage of students who made
the CWAs among students who answered it incorrectly. Besides
examining the validity of the CWAs the teacher can also explore
the other problems in the problem set and their respective CWAs
to gain insight into how students working on the problems have
historically struggled. We posit that this insight, combined with

the ability to collaborate with peers and review each others’ work,
can facilitate the generation of effective CWAFs.

As the primary objective of this paper is to examine CWAs and
investigate the fidelity of CWAFs in remediating the underlying
causes of the CWAs, we hired 24 teachers, teaching IM and ENY in
middle school, in two batches to help write CWAFs for problems
in IM and ENY for grade 7. As teachers in our initial analysis of
CWAs primarily used the “Practice Problems” as opposed to “Exit
Tickets” in ENY and ‘Student Facing Task” and “Cool Down” in
IM, respectively, the 24 teachers were asked to write CWAFs for
problems in the “Practice Problems” section. Furthermore, as the
generated feedback is intended to be used bymiddle school students,
the teachers were given an initial introductory training by domain
experts regarding the structure of the feedback and the use of
certain mathematical terms to ensure that the feedback remains
consistent with the mathematical terms used in each curriculum.
The domain experts also provided feedback on the CWAFs once the
teachers started writing feedback. Finally, the domain experts also
functioned as moderators to ensure consistency in the quality of
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Figure 3: Teacher perspective, visualization of a problem from IllustrativeMath curricula with CommonCore standard 7.SP.C.8.b
where a teacher has written feedback and a peer/moderator has reviewed it as well.

the CWAFs, and they were ultimately responsible for approving the
feedback to be eligible for use with students. The extra precaution
was taken to avoid any possibility of accidentally exposing students
to any harmful content.

In the next section, we describe a within student problem level
randomized control trial that we conducted to examine the efficacy
of CWAFs at scale.

6 IMPLEMENTING COMMONWRONG
ANSWER FEEDBACK

The crowdsourced CWAFs collected from the teachers were inte-
grated into the CBLP upon approval from the moderators. The
initial implementation of the first batch of the CWAs was con-
ducted in April of ’22. Over time and across multiple iterations, the
CWAFs, crowdsourced from teachers for 1,660 problems, have been
integrated into the system and are actively provided to students.

6.1 Experimental Design
Students are randomized to either a control or a treatment condition
during the assignment, i.e., students are assigned to business as
usual(no CWAF) or treatment(CWAFs) when they begin a problem.
Ideally, randomizing students once they make a CWA would be
more optimal; however, the process of triggering a server request

that randomizes students once they enter a CWA can take away
from the learning experience of the student and can ultimately
hamper their perception and usage of the platform itself as such
we randomize at the assignment and analyze the effectiveness of
CWAFs on the treated group. The students are randomized in a 90:10
split where there is a 90% chance that the student will be assigned
to a treatment and a 10% chance of being assigned to control. The
90:10 split was chosen to ensure that most, if not all, of the students,
had multiple opportunities to access the CWAFs and learn from the
feedback. At scale, a 90:10 randomization should still have enough
power to help explore the effectiveness of our treatment without
impeding students’ access to learning opportunities.

6.2 Dataset
Since the initial implementation of the first batch in April ’22,
CWAFs have been randomized across 20,044 students working on
1,387 problems in ENY and IM a total of 623,857 times; students
were assigned 560,897 times to treatment and 62960 times to con-
trol. While the students were assigned to treatment or control, they
only received CWAFs if their attempt was one of the top 3 CWAs
for the problem. As such, we dropped the students who did not
attempt to answer the problem with a CWAs at any point while
working on the problem. After dropping the students who did not
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make any attempts that identified as a CWA for both control and
treatment, we have 14,341 unique students who were randomized
and made at least one CWA when working across 1,018 problems.
With this, we have 94,765 students in treatment and 10,817 in con-
trol. While this data is for students working on problems within
the same problem set, different problems in a single problem set
can have different sets of common core standards associated with
different skills. As such, we filter the treated students to examine
the effectiveness of CWAFs by only analyzing the problems where
both the intervention and the next problem had the same common
core standards. This additional filtering requirement reduced the
number of distinct students to 12,089 and the number of distinct
problems to 617, where students were randomized 62,638 times into
treatment and 7,115 times into control.

6.3 Exploring effectiveness of Common Wrong
Answer Feedback

Toward remediation of common wrong answers (CWAs) with the
CWAFs, in the next step, we analyze the efficacy of CWAFs. We ex-
plore this by examining the binary correctness of the next problem.
For our exploration of CWAFs, we use the pre-registered model 3
in our analysis plan to investigate the effectiveness of CWAFs. The
pre-registered model is listed in 1.

𝑙𝑜𝑔𝑖𝑡 (𝑛𝑒𝑥𝑡𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 ∼
𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 ∗ 𝑝𝑟𝑖𝑜𝑟𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + ℎ𝑖𝑛𝑡𝑢𝑠𝑎𝑔𝑒+

𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑐𝑜𝑢𝑛𝑡 + (1|𝐶𝑊𝐴𝑤𝑟𝑖𝑡𝑒𝑟 ) + (1|𝑝𝑟𝑜𝑏𝑙𝑒𝑚) + (1|𝑐𝑙𝑎𝑠𝑠))
(1)

We examine the effectiveness of CWAFs by interacting the treat-
ment with average student performance on the previous 5 problems
prior to working on the treatment problem, total hint usage, and
attempts made on the treated problem. Additionally, we introduce
the CWA writer, treatment problem unique identifier, and the class
identifier of the student as a random intercept. The CWA writer is
introduced as a random intercept to examine the variance in the
effectiveness of the CWAFs across different teachers who wrote
the feedback. The problem is introduced as a random intercept to
control for the variance at a problem level that can be attributed to
the problem’s difficulty. Finally, the class is introduced as a random
intercept as student motivation, and learning behavior are often
influenced by their relative position with respect to their peers in
the same class.

In this analysis, we investigate the effectiveness of CWAF in re-
mediating gaps in student knowledge by using binary next-problem
correctness as a dependent measure. CWAFs are designed to ad-
dress and remedy the common misconceptions that the students
exhibit. However, within the study, students are typically working
on assignments with multiple problems that may or may not belong
to the same set of Common Core Standards (or the same skill set).
As these CWAFs address errors related to a specific set of skills, we
hypothesize that the likelihood of knowledge transfer is higher for
consecutive problems with the same set of skills. In contrast, the
transfer of knowledge might be less likely for consecutive prob-
lems focusing on different sets of skills. As such, we perform two
separate analyses examining the transfer of knowledge: 1) Between
3The study has been pre-registered following open-science practices at BLINDED-URL

Table 5: Exploring the effectiveness of CWAF by using next
problem correctness(binary) as a dependent measure for the
same set of Common Core Standards in consecutive prob-
lems.

consecutive problems with the same set of common core standards
and 2) Between consecutive problems in the same assignment ir-
respective of their common core standards. The results of these
analyses are presented in the following section.

6.3.1 Between Consecutive Problems with the same set of Common
Core Standards. For the problems within the same set of common
core standards within the consecutive problems, the results from
the regression analysis are reported in table 5. We observe that
students in the treatment condition are 7% more likely to answer
the next problem correctly for the problems with the same set of
common core standard tags. Additionally, students who make more
attempts or ask for hints are less likely to benefit from the CWAF
and answer the next problem correctly. While CWAFs do appear to
have a net positive benefit, the model indicates that students with
higher prior knowledge are less likely to answer the next problem
correctly when exposed to CWAFs.
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Table 6: Exploring the effectiveness of CWAF by using next
problem correctness(binary) as a dependent measure within
the same assignment irrespective of the set of Common Core
Standards associated with consecutive problems.

6.3.2 Between Consecutive Problems in the same Assignment irre-
spective of Common Core Standards. For the problems irrespective
of the common core standards within the consecutive problems,
the results from the regression analysis are reported in table 6. We
observed similar results on the other covariates; however, we did
not observe a significant difference between students in control and
treatment, indicating that the transfer of knowledge in consecutive
problems with different sets of common core standards may or may
not be observed.

7 DISCUSSION AND FUTUREWORKS
Our analysis found that incorrect answers on problems in ENY and
IM repeat across school years as different groups of students from
each school year made similar incorrect answers when working
on the same problems. While the same CWAs were not the most
common for the same problems in every school year, there was an
obvious pattern indicating an overlap in the top 3 CWAs across
school years. We also observed that teachers using IM and ENY

prefer to assign “Practice Problems” over “Exit Tickets” for ENY.
Similarly, teachers preferred to assign “Practice Problems” over
“Student Facing Task” and “Cool Down” for IM as assignments. This
claim was reinforced during the experimental analysis of CWAFs
as we only generated CWAFs for CWAs of problems in “Practice
Problems” of IM and ENY for grade 7. We observed that the CWAFs
were randomized 623,857 times since their implementation in April
’22. While various prior works exploring CWAs in the past have
expressed concern regarding the reliability of CWAs as students in
smaller samples often presented different CWAs on similar prob-
lems in studies exploring CWAs attributed to the “bugs” present in
the students’ synthesis of solutions [7, 40]. However, our analysis
of CWAs substantiates the prevalence of CWAs. A potential cause
of the replication challenges encountered by prior works [41] ex-
ploring the reliability of CWAs could be attributed to the smaller
sample size at the prevalence of CWAs is pronounced and consis-
tent at scale. It is important to note that our work does not claim to
provide insight into the various underlying mechanisms students
utilize when synthesizing solutions that can result in the incorrect
answer due to “bugs” in their processes, but rather through this
work, we aim to establish the reliability of the CWAs that can be
caused by gaps in student knowledge, misconceptions, guess, slip,
error, or bugs when formulating solutions.

While the primary objective of this paper was to explore the
fidelity of CWAFs in this paper, we also wanted to focus on various
design and development techniques that can potentially benefit
future research. While the Learning@Scale community at large has
designed and successfully developed systems at scale, it is some-
what concerning how we, as a community put little emphasis on
documenting the various design and development principles that
informed the successful implementation of such systems. As such,
in this paper, we leverage the design philosophy commonly used
in visualization projects to conduct goal and task abstraction that
can elucidate the various aspects of the tool that are fundamen-
tal in the overall successful adoption of the tool. In our case, the
objective was to develop a tool to augment teacher ability to ex-
amine CWAs when writing CWAFs. The primary benefit of the
goals and task analysis is the ability to identify critical features a
tool should facilitate and the hierarchy of these features to ensure
the successful implementation of the tool. As such, in this paper,
we present the fundamental goals and tasks a crowdsourcing tool
needs to facilitate a successful adoption. Each goal is designed to
build on prior goals and further enhance the process of facilitating
crowdsourcing. While there is no evidence to suggest that the de-
sign philosophy used in the development of this crowdsourcing tool
led to the creation of more effective feedback, we did observe that
the CWAFs lead to positive learning outcomes across consecutive
problems focusing on the same skill set. This positive outcome is
particularly important in the domain of CWAFs research as there is
mixed evidence regarding the fidelity of CWAFs, with some report-
ing positive results [26, 27, 41]. In contrast, others have reported
on the lack of benefit in using CWAFs [35]. A well-designed system
can provide powerful affordance that can enhance the quality of
the outcome by facilitating exploration, learning, and collaboration
when leveraging crowdsourcing.

In our final analysis, we examine the effectiveness of CWAFs by
examining the transfer of knowledge on the next problem using the
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binary correctness of the next problem as a dependent measure. We
observe that the student benefit from CWAFs and are more likely to
perform better on consecutive problems when working on the same
set of skills. This finding in the context of IM and ENY curricula
is particularly interesting; later problems focusing on the same set
of skills within a problem set are generally designed to be more
difficult than the prior problems. In comparison, the next problem
performance within the assignment, irrespective of the set of skills
associated with the problem, was not significant. However, rather
interestingly, the effect of the CWAFs was not significantly different
between the two regression models. Further analysis is required to
develop our understanding of the usage of CWAFs to understand
the underlying mechanism influencing knowledge transfer. While
the focus of the problems within a problem set can differ, they
are not entirely unrelated; future work needs to examine if the
CWAFs were not effective because the focus of the problems was
drastically different from each other or, conversely, if the CWAFs are
facilitating shallow learning resulting in the students performing
well on similar next problems without actually learning the concept
addressed by the problem. We aim to build on our findings from
this paper and further investigate student behavior around CWAFs.
Additional work is required to gain insight into the productive
usage of CWAFs. Prior works exploring student behavior around
help [15] have explored the use of response time decomposition in
inferring student effort in help usage.

Similarly, others have explored the correlation between structure,
simplicity, and length of feedback and learning outcomes[Blinded
for Review]. During our exploration of the effectiveness of the
CWAFs, we observed that the variance in the model due to the
CWA writer was negligible, indicating that the training and use of
moderators to generate a consistent set of CWAFs that was based
on the principle of Haitie et al. [] as demonstrated in ??was success-
ful. In future work, we intend to leverage the CWAFs generated
through moderated crowdsourcing as a baseline when comparing
the effectiveness of different CWAs. As these CWAFs were gener-
ated across 1,660 problems, this provides us with opportunities to
test the effectiveness of different types of feedback across differ-
ent topics and subfields of mathematics, e.g., geometry, statistics,
algebra, and arithmetic.

While the focus of this paper is the exploration of CWA and the
feasibility of crowdsourcing feedback from teachers to remediate
the gaps in student knowledge that resulted in the CWAs through
CWAF, we implore researchers and developers in our community of
L@S to utilize our findings in the task abstraction that informed the
design and development of our crowdsourcing tool and follow suit
in documenting the design approaches they took in the developing
their systems at scale to help inform future research.

8 CONCLUSION
At the onset of this research, we posited the validity of the idea
of CWAs. In the subsequent sections, we presented evidence sup-
porting that CWAs exist across problems and can be established at
scale. We substantiate our claim by demonstrating how CWAs re-
peat across academic years despite shifts in the underlying student
population. We leveraged this information to generate and collect
CWAFs from teachers through the development of a crowdsourcing

tool. Teachers using the crowdsourcing tool to generate CWAFs
resulted in better learning outcomes, and there was evidence of
knowledge transfer across consecutive problems focusing on the
same set of skills. Further, we observed no significant effect of
CWAFs when the consecutive problems focused on different sets
of skills.
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