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ABSTRACT
There is a growing need to empirically evaluate the quality
of online instructional interventions at scale. In response,
some online learning platforms have begun to implement
rapid A/B testing of instructional interventions. In these
scenarios, students participate in series of randomized ex-
periments that evaluate problem-level interventions in quick
succession, which makes it difficult to discern the effect of
any particular intervention on their learning. Therefore, dis-
tal measures of learning such as posttests may not provide
a clear understanding of which interventions are effective,
which can lead to slow adoption of new instructional meth-
ods. To help discern the effectiveness of instructional in-
terventions, this work uses data from 26,060 clickstream se-
quences of students across 31 different online educational
experiments exploring 51 different research questions and
the students’ posttest scores to create and analyze different
proximal surrogate measures of learning that can be used at
the problem level. Through feature engineering and deep
learning approaches, next-problem correctness was deter-
mined to be the best surrogate measure. As more data
from online educational experiments are collected, model
based surrogate measures can be improved, but for now,
next-problem correctness is an empirically effective proximal
surrogate measure of learning for analyzing rapid problem-
level experiments. The data and code used in this work can
be found at https://osf.io/uj48v/.
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1. INTRODUCTION

There is a growing need to empirically evaluate the quality
of online instructional interventions at scale. This is in part
motivated by the lack of empirical evidence for many ex-
isting interventions, especially in mathematics. According
to Evidence for ESSA, a website that tracks empirical re-
search on educational practices created by the Center for Re-
search and Reform in Education at Johns Hopkins Univer-
sity School of Education, only four technology based inter-
ventions have strong evidence for improving students’ math-
ematics skills [4]. In response, more and more online learn-
ing platforms are creating infrastructure to run randomized
controlled experiments within their platforms [19, 11, 18] in
order to increase the impact of the their programs on student
learning and facilitate research in the field. This infrastruc-
ture allows for rapid A/B testing of different instructional
interventions. In an A/B testing scenario, students assigned
to particular assignments or problems within these online
learning platforms will be automatically randomized to one
of multiple experimental conditions in which different in-
structional interventions will be provided to them. While
this paradigm allows for rapid testing of many hypotheses,
this rapid testing environment makes statistical analysis dif-
ficult. In some cases, students participate in many random-
ized controlled experiments in parallel or in quick succession.
For example, in ASSISTments, an online learning platform
in which students complete pre-college level mathematics as-
signments [8], students can be randomized between different
instructional interventions for each mathematics problem in
their assignment. In these scenarios, it is important to eval-
uate the effect of the interventions as quickly as possible.
If one were to wait until the end of a section of the cur-
riculum, or even the end of the current assignment before
evaluating students’ mastery of the subject matter, then the
effect of an intervention for a single problem near the begin-
ning of the assignment would be obfuscated by the effects of
all the following interventions. For this reason, prior work
has only used students’ behavior on the problem they at-
tempted after receiving an intervention but before receiving
another intervention to evaluate the effectiveness of the first
intervention [12, 16]. However, the measures used in prior
work were chosen based on theory, without any empirical
evidence that they are in fact an effective surrogate measure
of learning.

https://osf.io/uj48v/


To address the lack of empirical evidence for these proximal
surrogate measures of learning, the first goal of this work
was to create a variety of surrogate measures from students’
clickstream data on the problem they attempted after re-
ceiving an experimental intervention. These measures were
created through feature engineering, discussed in Section 3,
and model fitting, discussed in Sections 4.1 and 4.2.

After creating surrogate measures, The second goal of this
work was to evaluate how effective these measures were at
estimating the treatment effects between pairs of conditions
in online experiments. To achieve this goal, data was col-
lected to compare 51 different pairs of conditions from 31
assignment-level online experiments with posttests in which
students were exposed to the same intervention multiple
times within the same assignment, but were not exposed
to any other interventions. By determining the extent to
which each measure was a surrogate for students’ posttest
scores, discussed more in Sections 2.3 and 4.4, the surrogate
measures could be compared to each other.

To summarise, this work strives to answer the following two
research questions:

1. What surrogate measures can be created from short
sequences of students’ clickstream data?

2. Which of these surrogate measures is the best surro-
gate for posttest score?

2. BACKGROUND
2.1 Rapid Online Educational Experimenta-

tion
Experimentation is a cornerstone of formative improvement
of online instructional interventions [18, 1]. Systems like AS-
SISTments E-TRIALS were established to allow researchers
to test learning theories and feature ideas through exper-
iments within online mathematics assignments [11]. Us-
ing systems like E-TRIALS, students are randomized be-
tween different assignment-level interventions and complete
a posttest at the end of their assignment to evaluate their
learning.

Although assignment-level experiments provide some rele-
vant information to online program designers, these design-
ers are faced with a nearly infinite number of decisions about
what features to build and how to build them. Since only
one causal inference can be estimated from each manipu-
lation [9], designing assignment-level experiments for each
potentially impactful variant of a feature is often infeasible.
Rapid online educational experimentation provides a more
efficient alternative to more traditional assignment-level ex-
periments by assigning students to a condition at each prob-
lem and instead of requiring students to complete a posttest,
using the student’s performance on the subsequent problem
as the outcome.

One example of rapid online educational experimentation
is the TeacherASSIST system, which randomizes students
between crowdsourced hints and explanations [12]. In this
system, there were over 7,000 support messages produced by
11 educators [16]. Each time a student attempted a problem

for which they were provided with a randomly selected sup-
port message, their subsequent problem was used to evaluate
the quality of the support. This system allowed for a much
more efficient deployment of experiments and evaluation of
feature nuances.

2.2 Unconfounded Outcomes For Rapid On-
line Experiments

In order for rapid online experimentation to lead to causal
inference, we must identify outcomes that are unconfounded
by the other experimental manipulations to which a stu-
dent was exposed. Distal outcomes, such as end-of-unit or
assignment-level posttest scores, do not allow a researcher to
determine which of the treatments the student was exposed
to during the experiment produced the effect. An alterna-
tive, used by [12, 16] to evaluate TeacherASSIST, is to use
data from the problem students completed directly after the
experimental condition, i.e., next-problem measures.

Although individual students’ behaviors and performance
may be influenced by the aggregate of experimental ma-
nipulations within an assignment, the average difference in
next-problem measures is unconfounded due to the random
assignment at the problem level. Next-problem measures
are unconfounded by either the prior experimental condi-
tions or next-problem experimental conditions because the
assignment to each condition is independently random and
therefore the effects of the prior and post-conditions are zero.
Therefore, the remaining difference in the next-problem mea-
sures between treatment and control is an unconfounded
measure of the treatment effect.

2.3 Surrogate Measures
Although measures taken during the next problem after the
experiment, such as next-problem correctness, are uncon-
founded by other experiments within the problem set, it is
not yet known whether these measure are good estimates
of distal outcomes. In assignment-level A/B testing, a re-
searcher creates a posttest designed to measure the expected
effect of the treatment condition compared to the control
condition, but within online instructional interventions, the
next problem was designed for pedagogical purposes, not
to evaluate the effects of the intervention. Therefore, to use
next-problem measures to validate the impact of a condition,
we must validate whether these measures assess researchers’
outcomes of concern.

One way to think about these next-problem measures is as
surrogate measures. Surrogate measures are used in medical
experiments when the outcome is either difficult to assess or
distal [17]. Surrogates can either have causal or correlation
relations to the outcome [10]. Validating causal surrogates
requires a causal path from the treatment to the surrogate
and subsequently to the outcome, such that the indirect path
through the surrogate has a larger effect than the direct path
through from the treatment to the outcome. Alternatively,
an associative surrogate is valid when the following three
criteria are met [10]:

1. There is a monotonic relationship between the treat-
ment effect on the surrogate and the treatment effect
on the outcome across experiments.



2. When the treatment effect on the surrogate is zero, the
treatment effect on the outcome is also zero.

3. The treatment effect on the surrogate predicts the trea-
tment effect on the outcome.

In this work, various next-problem measures are evaluated
for their effectiveness as an associative surrogate measure of
posttest scores.

3. DATA AGGREGATION
3.1 Data Source
The data used in this work comes from ASSISTments, an
online learning platform that focuses on pre-college math-
ematics curricula. In July, 2022 ASSISTments released a
dataset of 88 randomized controlled experiments that were
conducted within the platform since 2018 [?]. These experi-
ments compared various assignment-level and problem-level
interventions. For example, in one experiment, students
were randomized between receiving either open response
problems, or multiple choice problems during and assign-
ment, then their learning was measured using a posttest.

In this work, the experimental assignments from ASSIST-
ments that had posttests were used in order to compare
learning measures derived from a student’s clickstream data
on the problem immediately after receiving an intervention
for the first time to their posttest score. To avoid bias
from missing posttest scores, only data from experiments
in which there was no statistically significant difference in
students’ completion rates between conditions were used,
and students that did not complete the posttest were ex-
cluded from the analysis. In some contexts it would be
better to impute missing posttest scores as the minimum
score. However, the purpose of this work was to create
a surrogate measure for posttest score in situations where
it is infeasible to require students to complete a posttest,
and therefore it seems more appropriate to remove missing
posttest scores to ensure that the surrogate measures stu-
dents’ posttest scores, not their propensity to complete an
assignment. This additional filtering step removed only one
of the ASSISTments experiments from the analysis. Addi-
tionally, the data used in this work is limited to students who
participated in the experiments prior to July 23rd, 2021. On
July 23rd, 2021 all unlisted YouTube videos created prior to
2017 were made private [6]. Many of the experiments in-
cluded YouTube videos uploaded prior to 2017, which were
made private, ruining the experiments that contained them.
In total, 26,060 clickstream sequences of a student complet-
ing a problem and their corresponding posttest score were
collected for model training and analysis across 51 differ-
ent research questions within 31 different experimental as-
signments. These sequences and the code used to evaluate
them has been made publicly available and can be found at
https://osf.io/uj48v/.

3.2 Expert Features
As established by prior work, i.e. ([12, 16, 14]), collecting
data to evaluate the effectiveness of an intervention is often
limited to data from the next problem in a student’s assign-
ment before they receive another intervention. This work ex-
tracted five expert features from students’ clickstream data

on their next problem that have been useful predictors of
student behavior in prior work [20, 21]. Table 1 describes
the expert features evaluated for their effectiveness as a sur-
rogate measure of posttest score.

3.3 Clickstream Data
In addition to expert features, this work used deep learning
to create surrogate measures of learning from students’ click-
stream data. The clickstream data consisted of the action
sequences of students within the ASSISTments tutor from
the time they start the problem after they received an exper-
imental intervention to the time they either receive another
intervention or complete the problem. This short window of
time is not confounded by other experimental interventions
and is likely to give the clearest insight into the impact of
experimental interventions being tested in quick succession.

The students’ clickstream data was broken down into a se-
ries of one-hot encoded actions followed by the time since
taking the last action. The first action was always ”prob-
lem started”, therefore this action was dropped from stu-
dents’ clickstreams prior to being given to a deep learn-
ing model. The time since taking the last action was log-
transformed in order to weight the difference between short
time periods more than long time periods and to reduce the
impact of large outliers, which are due to students walking
away from their computers during assignments and return-
ing later. Additionally, the log-transformed times are scaled
within the range [0, 1]. Scaling the time within the same
range as the one-hot encoded actions helps the model bal-
ance the importance of the different features. Each action
sequence was equal in length to the longest action sequence,
which was 12 actions. When students took less than the
maximum number of actions, their action sequences were
zero padded from the start of the sequence. Table 2 pro-
vides an example sequence of a student’s clickstream data
in which a student unsuccessfully attempted to get a prob-
lem correct twice, then took a break, then returned to their
assignment, got the problem incorrect again, and then on
their fourth attempt, got the problem correct. The first six
columns contain all zeros because the student only took a
total of six actions. This representation of students’ click-
stream action sequences was chosen because of its success in
previous work for various prediction tasks [20, 15, 21].

4. METHODOLOGY
4.1 Expert Feature-Based Models
To derive a surrogate measure of learning from the expert
features, three approaches were taken. The first approach
was to simply use each expert feature as a surrogate measure
of learning, the second approach was to fit a linear regression
on posttest score using the expert features as input, and the
third approach was to fit a linear regression on the treatment
effect on posttest score using the treatment effects on each
expert feature as input. The third was included because if
the goal is to predict the treatment effect on posttest score,
than it might be more effective to fit a model that combines
the treatment effects on different expert features into the
treatment effect on posttest score than to simply predict
posttest score. This would be advantageous in a scenario
where there was information in the expert features that was
predictive of a student’s propensity to learn independent of

https://osf.io/uj48v/


Table 1: Expert Features

Feature Name Description
Correctness A binary indicator of whether or not the student answered the problem correctly

on their first try without tutoring of any kind.
Tutoring Requested A binary indicator of whether or not the student requested tutoring of any kind.
No Attempts Taken A binary indicator of whether or not the student did not make any attempts to

answer the problem.
Attempt Count The number of attempts made by the student to answer the problem.

First Response Time The natural log of the total seconds from when the problem was started to when
the student submitted an answer or requested tutoring of any kind for the first
time.

Table 2: A Student’s Clickstream Data Sequence After Processing

Feature Name Clickstream Data Sequence
problem resumed 0 0 0 0 0 0 0 0 1 0 0 0

tutoring requested 0 0 0 0 0 0 0 0 0 0 0 0
wrong response 0 0 0 0 0 0 1 1 0 1 0 0
correct response 0 0 0 0 0 0 0 0 0 0 1 0
problem finished 0 0 0 0 0 0 0 0 0 0 0 1

time since last action 0.00 0.00 0.00 0.00 0.00 0.00 0.62 0.51 6.39 0.12 0.38 0.01

the intervention they were given. In that scenario, a model
trained to predict posttest score might learn to rely on that
information, which would lead the model to predict more
similar posttest scores between different experimental con-
ditions than were actually observed. By directly predicting
the treatment effect on posttest score, the model must learn
to use the features that are predictive of the effect of the
experimental conditions. The downside of this approach is
that each research question’s data was reduced to a single
sample in the regression. Therefore, while the second ap-
proach had the full 26,060 samples of student data to fit on,
the third approach only had 51 samples to fit on; one for
each research question.

4.2 Deep Learning Models
Two deep learning approaches were used to create a surro-
gate measure of learning from students’ clickstream data.
Both approaches trained a recurrent neural network to pre-
dict students’ posttest scores given their clickstream data
using Bidirectional LSTM layers [22, 5], which read the click-
stream data both forward and backward to learn the rela-
tionship between students’ actions and their posttest scores.
Following the same intuition as Section 4.1, the first model
used the mean squared error of its posttest score predictions
as its loss function, the second model used the squared error
of the treatment effect calculated from its posttest score pre-
dictions as its loss function. Essentially, the first model was
trained to predict accurate posttest scores, and the second
model was trained to predict posttest scores that would lead
to the same treatment effect estimates as the actual posttest
scores.

4.3 Model Training
To fairly evaluate the surrogate measures of learning, each
model was trained and evaluated using a leave-one-out cross-
validation approach partitioned by the experimental assign-
ment. Many of the experimental assignments evaluated mul-
tiple research questions using the same control. Therefore,

all the research questions in the held-out experimental as-
signment were evaluated using the model trained on all the
other experimental assignments, as opposed to performing
leave-one-out cross-validation partitioned by research ques-
tion. This ensured that no data was shared between the
training data and the held-out data.

For the expert feature-based models, an ablation study was
performed to identify which combination of features, when
used as input, led to the highest correlation between surro-
gate measure and posttest treatment effects. In this ablation
study, the models were trained first using all of the expert
features as input, and then models were trained using all
but one of the features. If any of the all-but-one-feature
models out-performed the model with all the features, then
that model became the best model so far, and more models
were trained using all but one of the features in the new best
model. Eventually, the best model will not have improved
from removing any of its features, denoting that this model
has the optimal set of features as input.

For the deep learning models, the models were initialized,
trained, and evaluated ten times, averaging the results of
each evaluation. Neural networks cannot be solved for the
optimal value of their weights; gradient descent is instead
used to optimize them starting from random initializations.
These random initializations can lead to more or less optimal
weights at the end of training. Therefore, by training the
model multiple times starting from different random initial-
izations and then averaging the results, the evaluation of the
model’s surrogate measure is more reliable. During training,
over-fitting was prevented for the first model by using half
the data as a validation set and ending training when the
prediction error on the validation set increased. A validation
set was not used for the second model because of the lack of
training data (only one sample per research question). In-
stead, over-fitting was prevented for the second model by
tracking the loss and ending training when the loss began to
settle.



4.4 Evaluation of Surrogate Measures
As discussed in Section 2.3, a surrogate measure must meet
three criteria (see Section 2.3 for their descriptions). Criteria
1 and 3 can be simultaneously evaluated by looking at the
Pearson correlation between the treatment effect on the sur-
rogate measures and the treatment effect on posttest score
because a high Pearson correlation between two measures in-
dicates that there is a monotonic linear relationship between
them [2], and the linearity implies predictability. The higher
the Pearson correlation between treatment effects across all
research questions, the more effective the surrogate measure
is.

To evaluate Criteria 2, after the surrogate measures were
used to determine the treatment effects for the different re-
search questions, a linear regression was fit to predict the
treatment effect on posttest given the treatment effect on
one of the surrogate measures and an intercept. If the co-
efficient of the intercept is small and statistically insignifi-
cant, then there is no evidence that Criteria 2 was violated.
Therefore, the best surrogate measure was determined to be
the measure with the highest Pearson correlation between its
treatment effects and the posttest treatment effects across all
the research questions (Criteria 1 and 3), as long as the mea-
sure did not have a significant intercept when its treatment
effects were used to predict the posttest treatment effects
(Criteria 2).

5. RESULTS
5.1 Evaluation of Surrogate Measures
The treatment effect of each research question was calcu-
lated using each surrogate measure described in Sections 4.1
and 4.2. To evaluate whether the surrogate measures met
Criteria 1 and 3 from Section 2.3, the treatment effects on
each surrogate measure across all the research questions were
correlated with the treatment effects on posttest score. Ta-
ble 3 reports the different surrogate measures, the Pearson
correlation [2] of their treatment effects, and the statistical
significance of these correlations.

Of all the expert features, correctness and tutoring requested
were the only two features whose treatment effects were sta-
tistically significantly correlated with the treatment effect on
students’ posttest scores. Correctness had a positive corre-
lation with posttest score, indicating that students that got
the next problem correct on their first try without any sup-
port tended to have higher posttest scores than those who
did not, and tutoring requested had a negative correlation
with posttest score, indicating that students that requested
tutoring on the next problem tended to have lower posttest
scores than those who did not.

When performing the ablation study to identify the optimal
set of expert features for the linear regression used to predict
posttest score (Section 4.1, Approach 2), no other feature
could be used in combination with correctness to improve
the model’s predictions. Therefore, using this linear regres-
sion to predict posttest was an equivalent surrogate measure
to just using correctness as a surrogate measure itself.

When performing the ablation study to identify the opti-
mal set of expert features for the linear regression used to
predict treatment effect on posttest (Section 4.1, Approach

3), the highest performing model used tutoring requested
and attempt count. Ultimately, this approach was inferior
to the other approaches at identifying surrogate measures
using expert features.

To evaluate Criteria 2 from Section 2.3, a linear regression
was fit for each surrogate measure using data from all the
research questions to predict the treatment effect on posttest
given the treatment effect on the surrogate measure and an
intercept. None of the models had a large or statistically
significant intercept. Therefore, the best surrogate measure
was simply next-problem correctness.

6. DISCUSSION
Ultimately, next-problem correctness was the best surrogate
measure of learning. The treatment effect on next-problem
correctness had the highest Pearson correlation with the
treatment effect on posttest, and there was no evidence that
the treatment effect on next-problem correctness was not
zero when the treatment effect on posttest was zero, which
satisfies all three criteria discussed in Section 2.3. It was not
expected that one of the simplest surrogate measures, which
had been used previously despite no empirical evidence to
support that choice, would be the best surrogate. One possi-
ble reason for why the predictive models did not perform well
is that the behavior of students within an experiment could
be highly dependent on the material in the assignment. For
example, geometry problems might on average take more
time to answer than algebra problems, which would make
students first response time less informative of their learn-
ing because it is in part dependent on the subject matter.
Methods like Knowledge Tracing and Performance Factor
Analysis, which measure students’ mastery of mathematics
concepts, take into account the knowledge components of the
students’ assignments when predicting student performance
to compensate for this dependence [3, 13]. By providing
the models with more nuanced information about student
behavior, it is possible they were picking up on behavioral
trends that were not generalizable across experiments. Ad-
ditionally, the sample size of the data was fairly low. Only 51
research questions were used in this analysis, and it is likely
that data from more experiments testing a greater variety
of interventions would help the models learn to differentiate
between generalizable trends and trends specific to subsets
of experiments.

These reasons help to explain what may have caused the
models to underperform, but from a different perspective,
what caused next-problem correctness to perform so well? It
seems likely that next-problem correctness was a strong sur-
rogate because posttest score is simply a different measure
of problem correctness. In other words, next-problem cor-
rectness is a measure of whether the student got the problem
immediately following the intervention correct, and posttest
score is a measure of whether the student got a few prob-
lems ahead of the intervention correct. It makes sense that
two measures that revolve around a student’s propensity to
answer problems correctly would correlate. This leads to
the question: is correctness what matters? If the goal of
education is ultimately to give students better, more ful-
filling lives, then perhaps test scores are not what a sur-
rogate should measure. There is plenty of evidence of test
scores falling short when attempting to correlate them with



Table 3: The Correlations between Surrogate Measure and Posttest Score Treatment Effects

Surrogate Measure Treatment Effect Correlation with Posttest Score Correlation p-value

Expert Features as a Surrogate Measure (Section 4.1, Approach 1)
Correctness 0.62 <0.001

Tutoring Requested -0.59 <0.001
No Attempts Taken -0.01 0.935
Attempt Count -0.16 0.264

First Response Time 0.04 0.784

Expert Features Used to Predict Posttest Score (Section 4.1, Approach 2)
Posttest Prediction 0.62 <0.001

Expert Feature Treatment Effects Used to Predict Treatment Effect on Posttest (Section 4.1, Approach 3)
Treatment Effect Prediction 0.50 <0.001

Deep Learning Posttest Prediction with Mean Squared Error Loss (Section 4.2, Approach 1)
Posttest Prediction 0.60 <0.001

Deep Learning Posttest Prediction with Treatment Effect Squared Error Loss (Section 4.2, Approach 2)
Posttest Prediction 0.49 <0.001

things like college and career success. For example, stud-
ies have found that SAT scores do not explain any addi-
tional variance in college GPA for non-freshman college stu-
dents after taking into account social/personality and cog-
nitive/learning factors [7].

Perhaps next-problem correctness being the best surrogate
measure is an indication that the experiments in ASSIST-
ments are not properly evaluating students’ learning. The
process of giving students an assignment and then immedi-
ately following it with a posttest is likely more a measure of
performance rather than learning, which requires long term
retention and transfer [23]. The use of posttests immediately
following these experimental assignments could be particu-
larly problematic in cases where the assignments themselves
require students get three problems correct in a row before
completing the assignment. These cases essentially require
that students reach similar levels of mastery before evaluat-
ing their learning, which likely removes large portions of the
effects of the experimental conditions.

6.1 Limitations and Future Work
While in this work next-problem correctness was found the
be the best proximal surrogate measure for posttest score,
there are some factors that could limit the generalizability of
these findings. Firstly, this work uses data entirely from AS-
SISTments Skill Builder assignments. In these assignments,
students are given a series of mathematics problems on the
same skill, and are given immediate feedback on each prob-
lem as they complete it. next-problem correctness could be
especially relevant in this context because the next problem
is guaranteed to evaluate the same knowledge components
as the previous problem. In assignments where problems re-
quire different skills, the problem following an intervention
could be only tangentially related to the problem for which
the intervention was provided, and thus a student’s perfor-
mance on the next problem would not be a good measure
of the effectiveness of the intervention. In the future, us-
ing next-problem correctness as a surrogate measure should
be evaluated in other kinds of online learning environments,
perhaps in contexts where the content students see is cho-
sen adaptively. In this scenario, students will see different

problems following an intervention, and combining the next-
problem correctness of multiple problems could have positive
or negative effects on next-problem correctness’s value as a
surrogate measure of learning.

Additionally, in this work, only 51 different research ques-
tions were used to evaluate the quality of different measures,
with a total of 26,060 samples. It is possible that some of
the model based attempts at creating a surrogate measure
of learning would be more successful if given more data from
a wider variety of situations in which A/B testing was per-
formed. Having a larger and more diverse dataset to train
the models from also opens up the possibility to train multi-
ple specific models for different subgroups of users or exper-
iments. With the limited data in this work, it was unlikely
that splitting the data into subgroups would have helped any
of the models. However, with more data it could be the case
that a model trained on students with similar backgrounds
would be more effective at interpreting behaviors specific to
those students. It could also be the case that training a
model for a specific type of experiment, for example, exper-
iments that alter the way in which students must answer
the question as opposed to experiments that alter the sup-
port messages students receive, could improve the model’s
ability to pick up on different student behaviors associated
with these different experiments. In the future, if more data
becomes available, models trained on subgroups should be
explored.

7. CONCLUSION
In this work, we attempted to derive and validate an effec-
tive surrogate measure of learning for use in online learn-
ing platforms where rapid A/B testing is used to compare
problem-level instructional interventions at scale. To ac-
complish this, a variety of proximal surrogate measures for
posttest score were created through feature engineering, re-
gression, and deep learning. After evaluating each surrogate
measure by ensuring it met the criteria for an associative
surrogate as described in [10], students’ next-problem cor-
rectness was determined to be the best surrogate. However,
these results could be an indication that the ASSISTments
experiments focus on performance rather than learning, and



that they should be restructured to measure a more nuanced
interpretation of learning.

Follow-up work should be done to validate next-problem cor-
rectness as a measure of learning for different types of ex-
periments in different domains and learning environments.
Moving forward, using next-problem correctness as a mea-
sure of learning within online learning platforms could be
an effective way to evaluate students’ progress and com-
pare problem-level interventions to each other. We hope this
work can help support the educational data mining commu-
nity by providing methods to create and validate surrogate
measures.
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