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Abstract— Accurate tracking of transparent objects, such as
glasses, plays a critical role in many robotic tasks such as
robot-assisted living. Due to the adaptive and often reflective
texture of such objects, traditional tracking algorithms that
rely on general-purpose learned features suffer from reduced
performance. Recent research has proposed to instill trans-
parency awareness into existing general object trackers by
fusing purpose-built features. However, with the existing fusion
techniques, the addition of new features causes a change in the
latent space making it impossible to incorporate transparency
awareness on trackers with fixed latent spaces. For example,
many of the current days’ transformer-based trackers are fully
pre-trained and are sensitive to any latent space perturbations.
In this paper, we present a new feature fusion technique that
integrates transparency information into a fixed feature space,
enabling its use in a broader range of trackers. Our proposed
fusion module, composed of a transformer encoder and an MLP
module, leverages key query-based transformations to embed
the transparency information into the tracking pipeline. We
also present a new two-step training strategy for our fusion
module to effectively merge transparency features. We propose a
new tracker architecture that uses our fusion techniques to
achieve superior results for transparent object tracking. Our
proposed method achieves competitive results with state-of-
the-art trackers on TOTB, which is the largest transparent
object tracking benchmark recently released. Our results and
the implementation of code will be made publicly available at
https://github.com/kalyan0510/TOTEM.

I. INTRODUCTION

Object tracking is a fundamental problem in robotics that
aims to locate and identify an object in a sequence of images
or videos. Researchers have dedicated much effort [1], [2],
[3], [4] to addressing various challenges in object tracking,
such as occlusions, fast-moving objects, and changing light-
ing conditions. However, tracking transparent objects is a
somewhat less explored topic. Transparent objects, such as
glass and plastic, are common in everyday life, and reliably
tracking them has numerous practical applications in robotics
[5], surveillance, and augmented reality. Transparent object
tracking can be used in robotic medical procedures to track
and visualize the movement of glass vials and syringes.

Though there is a pressing need to track transparent
objects reliably, it is very challenging. These objects possess
unique properties since they primarily borrow texture from
the background and are also reflective. When such an object
moves, its appearance changes drastically due to background
influence. These properties pose severe issues to appearance-
based trackers as they tend to extract feature information
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Fig. 1: Qualitative comparison of the proposed TOTEM tracking
algorithm with state-of-the-arts [1], [6] on three challenging se-
quences from TOTB [6]. Owing to the effective fusion technique
tailored for transparency awareness, TOTEM can accurately localize
transparent objects under challenging scenarios. All figures in this
paper are best viewed digitally, in color, significantly zoomed in.

from visual cues of striking color and edge patterns. Thereby
generic trackers tend to rely on falsely extracted background
features, thus performing poorly on transparent objects.

In contrast to some application-specific tracking tasks
such as person tracking or UAV tracking, transparent object
tracking suffers from the absence of a dedicated training
dataset. Consequently, end-to-end training to improve track-
ing performance is impractical currently. To overcome this
challenge, recent research has proposed to use knowledge
transfer techniques to imbue generic trackers with trans-
parency awareness. Specifically, features from a backbone
module trained for transparent object segmentation are fused
into the tracker pipeline. It is hypothesized that such a
backbone encodes transparent textures well and thus helps
trackers perform with accuracy.

However, while the above feature fusion approach seems
promising, it is not always straightforward. Simple fusion
techniques may not always be effective, as the fusion of
features in a pipeline can disrupt the feature space and require
retraining of the entire model to learn to utilize the fused
features. Retraining can be particularly challenging when
labeled data is scarce. The solution in [6] uses ATOM [7] and
DiMP [3] trackers, which are capable of consuming fused
features without requiring full retraining, as they consist of
fully online-learned modules. However, this approach may
not be viable for many state-of-the-art trackers that rely on
components pre-trained on large datasets.

Our proposed fusion technique selectively fuses trans-



parency features with the original ones without disrupting
the feature space, thus allowing for integration with most
trackers. Our module consists of a transformer encoder block
and an MLP block. The transformer block has attention
layers to efficiently fuse transparency information. The MLP
block projects the fused features back into the original feature
space. This property of our fusion module allows for the
integration of learned transparency priors in many trackers.
Moreover, we have demonstrated that the fusion module
can be trained efficiently in a two-step process. Specifically,
an additional pre-training step is performed, which com-
pels the fusion module to rely exclusively on transparency
features for tracking by cutting off the feed of originally
extracted features to the fusion module. Further, we design a
new tracker, called TOTEM (Transparent Object Track-ing
with feature Enhancing Module), that uses our fusion
methods to achieve robust performance on transparent object
scenarios, as shown in Fig. 1.
The contributions of this work are as follows:
- We propose a novel transparency feature fusion module
for tracking transparent objects.
« We devise a novel two-step training strategy for effec-
tive learning.
- We design a new tracker architecture TOTEM aimed at
better transparent object tracking.
« We perform extensive experiments over the transparent
object tracking benchmark (TOTB) [6] with ablation
studies to showcase the benefit of our design choices.

II. RELATED WORK

Transparent objects and tracking. Transparent objects
present unique challenges for classification, segmentation,
and tracking due to their optical properties. Previous studies
[8], [9], [10] have proposed handcrafted techniques that
rely on reflective and refractive light properties to model
transparent objects. Recently, due to the progress of deep
learning techniques, algorithms that gain complex skills by
learning from huge data have shown promising results. The
works of [11], [12] prove that learnable components such as
convolution-based feature extractors and transformer encoder
blocks can leverage from training on labeled transparent
object datasets for accurate segmentation. Similarly, [13],
[14] learn over huge data to model transparent objects.

However, the problem of tracking transparent objects
remains a challenge due to the scarcity of labeled datasets. To
address this, a large tracking benchmark named TOTB is con-
structed in [6] for transparent objects. Further, they proposed a
transfer learning approach that introduces transparency
awareness into existing generic object trackers. However,
their method is only applicable to trackers with online
learned tracking modules. In contrast, our proposed fusion
module does not have any restrictions on applicability. Given
the recent popularity of transformers in tracking architectures
[1], [15], [16], which are typically pre-trained models, our
approach shows promise in leveraging these strong baselines.
Particularly, our model is built on top of TOMP [1], a
transformer model prediction tracker.

Segmentation and Dataset. Research over transparent ob-
jects has gained momentum in recent years, with several
datasets such as [14], [12], [11] providing valuable sources
for learning transparency priors for object segmentation. In
this work, we leverage the pixel-level segmentation dataset
[11], which includes annotations for five different categories
of transparent objects. This dataset closely represents real-
world transparent objects and provides accurate pixel-level
labeling for improved localization. While the dataset from
[17] offers exhaustive labeling, it is not used in this work
due to the synthetic nature of the objects and their limited
representation of real-world scenarios. Further, we use dif-
ferent portions of TOTB [6] for training and benchmarking
our tracker algorithm.

Feature fusion. Recently, more attention has been devoted
to multi-modal architectures. These works mainly benefit
from the early fusion techniques [18], [19] like concatenation
[6], feature pruning [20], and re-weighting [21], [22]. These
fusion methods mainly aim at merging the information
from multiple modalities and do not necessarily operate as
learnable modules. Lately, more robust fusion methods were
proposed that utilize the transformer’s attention mechanism
to fuse features. For example, the works of [23], [1] use
transformers for fusing image features.

Our proposed fusion technique distinguishes itself from
existing ones by being designed to work with pre-trained
networks. Unlike existing fusion modules, which are trained
as part of the end-to-end training of the network, our fusion
module is trained separately to produce features that are
compatible with pre-trained networks. To achieve this, we
equip our fusion module with MLPs to project the features to
the known latent space of the pre-trained network.

IIl. PROPOSED METHOD

The core idea of our proposed method is to enhance the
effectiveness of generic object trackers for transparent object
tracking. The TOMP framework (detailed in section Il1-A)
serves as the baseline object tracker. Next, we describe a
separate network for extracting transparency features in
section IlI-B. Then, we present a novel fusion technique in
section Il1-C that combines these features with the baseline
object tracker to enhance its effectiveness.

A. Baseline Tracker - TOMP

One of the robust paradigms for visual object tracking
is discriminative model prediction-based target localization.
Specifically, a kernel (target model) is predicted to accurately
represent the appearance of the target object and is used to
localize the target in subsequent frames by proposing bound-
ing boxes. A transformer-based model predictor, TOMP [1],
utilizes the self-attention operations between test and refer-
ence branch features to produce a kernel.

TOMP consists of a test and a training branches. The
training branch operates on two input ground-truth/memory
frames ltr1, ltr2 B RH*W >3 \where H and W indicate the
image size. In the train branch, the target state information
(bounding box size and position) is encoded and fused with
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Fig. 2: Full architecture overview of our tracking pipeline. The original ResNet backbone extracts the features x;i [
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discriminative ability. Lastly, the predicted model is applied over the encoder features to localize the target.

deep image features Xir1, Xtr2 RN*wxc  Features from
both the training and test branches are jointly processed
in the transformer model predictor. This module contains a
transformer encoder and a decoder block. The encoder
produces enhanced features by reasoning across the test and
train branch features. The decoder operates on the processed
features from the encoder to generate the desired kernel.
This kernel is then applied over the encoder features using
separate classification and regression heads to produce the
target’s center response map y @ R"*W*1 and the bounding
box size estimations response map d B R"*W>4 respectively.
Here d represents the offsets from the predicted center point
to the sides of the bounding box, encoded as (left, top, right,
bottom) adjustments.

The entire network is trained end-to-end by minimizing
classification loss L1, and regression loss L produced over
the input of randomly selected frame triplets (ltr1, ltr2, lte)
from a video sequence. We propose to utilize this architecture
for the problem of transparent object tracking and further
make modifications (Fig. 2) to improve its performance.

B. Transparency Feature extraction

As discussed earlier, one of the challenges the trackers face
with transparent object tracking is the transparency property
causing visual distortion over the target’s appearance cues. To
overcome this issue, trackers need to gain an understanding
of the texture of transparent objects. Specifically, they should

be able to abstract out the texture of a transparent object from
its background and use this knowledge to localize the same
object (even when it adapted a different background). Such
ability is not something a typical opaque object tracker would
gain while training. So in our work, we adopt a backbone
that is trained to extract the transparency features. One simple
method to benefit our tracker with transparency awareness is
to train it over transparent object video sequences. Since we
lack annotated video sequences, we incorporate transparency
awareness by transferring it from another model (trained for
a different objective).

We propose to use a separate backbone network (as shown
in Fig. 2) that has the ability to understand the transpar-ent
object’s texture (caused by refraction, reflection, and
translucence). Motivated by the transfer learning approach
in [6], we adopt a similar approach of using the feature
extractor from a segmentation network. Particularly, the
segmentation network Trans2Seg [11] trained to segment
and classify pixels belonging to transparent objects is used.
By hypothesizing that such a segmentation network must
intermediately learn to encode the patterns from transparency
features like reflectivity, refractivity, and translucence, we
propose to use the feature extractor and encoder part of
Trans2Seg [11] to produce transparency features.

Trans2Seg consists of a convolution-based backbone, a
transformer encoder module, a transformer decoder module
and a segmentation head, connected sequentially in this or-



der. In the end-to-end training environment, the incentive of
the backbone and transformer encoder would be to produce
features that encode the unique properties of transparent
objects. The decoder and the segmentation head would learn
specific priors to categorize the transparent objects. Since
we are mainly interested in image encodings, we adopt the
backbone and encoder module part of Trans2Seg as the
transparency feature extractor for our tracker.

The backbone module takes in an input image |
RH*Wx3 and produces a feature vector & Rhxwxc,
where H and W are the image height and image width
respectively, and h, w and c are the height, width, and the
number of channels of the produced feature map. Further,
the transformer encoder operates over the input feature X
and produces a globally attended and enriched feature map x’
which has the same shape as that of X. We refer our reader to
[11] for more details of this module.

C. Fusing the transparency features

Why fusion. One way to utilize transparency features for
tracking is to replace the tracker’s backbone with the above
transparent feature extractor directly. But this may hurt the
tracking performance because the transparency backbone is
trained for a less related objective and thus may not extract
features specific to the tracking problem. For example,
a motion-blur-affected object is never encountered when
training the Trans2seg network, whereas correctly extracting
motion features is critical for tracking. So, we adopt a
fusion-based approach to take advantage of the transparency
feature while still retaining essential cues for tracking. Also,
this way, the tracker learns to selectively ingress the useful
encodings of the input image detail.

However, there are certain challenges to using trans-
parency features in the above-discussed transformer model
predictor architecture. Firstly, all the components in this
tracker are offline learned, meaning that any change in
architecture that modifies intermediate feature space must
be accompanied by offline re-training. The perk of direct
inference without training after feature fusion, as observed in
[6], does not exist with the selected baseline TOMP. Further,
we do not have a large-scale training dataset consisting of
transparent object video sequences. So we must adopt a
simple fusion mechanism that does not require full-scale re-
training from scratch.

We found that it is best to fuse the transparency features
into the TOMP pipeline just before the transformer model
predictor block. This way, we can leverage the strong local
and global reasoning provided by the transformer encoder-
decoder module over the transparency features.

The fusion module (depicted in Fig. 2) is designed taking
into account the following constraints:

- The end-to-end model, after the transparency feature
fusion, should not require re-training over the large
datasets, given their lack of availability

- fusion of transparency features should not regress the
tracker’s performance on transparent object tracking

- it should be lightweight both in terms of the number of

learnable parameters and the number of computations

To be able to reuse most of the learning modules, we
designed our fusion module to be trained without having to
re-train the existing components of the TOMP. While this de-
sign choice helps with the above constraints, it poses certain
challenges. The TOMP model predictor is completely made
of learned parameters, and it expects the input features to
belong to a specific feature space. The feature space refers to
the mapping between each channel in the feature vector and
the set of specific patterns that activate a channel’s response.
Most of the machine-learned components are sensitive to the
feature space of the input. For example, we cannot simply
replace the backbone network of a classification model with a
better feature extractor and see a performance improvement.
At least the classification heads have to be re-trained before
the model can produce any meaningful output.

For the same reason, we cannot simply concatenate the
transparency features with the features extracted by the
TOMP backbone to achieve performance improvement. In
fact, this will cause the network to lose performance be-
cause the transparency features are unexpected perturbations
(noise) to the model predictor. So, we propose a feature
fusion module and a training strategy that produce enriched
features by combining useful cues from each source. Because
of the training objective, the module produces a fused feature
that would align with the feature space of the original TOMP
backbone.

Fusion Module. Our transformer-based feature fusion mod-
ule sits between the backbone and transformer encoder stages
of the TOMP pipeline and fuses the features x @ Rh*wWxc
and x" BRM*W*C into a new feature x @ Rh*Wxc,

This module is designed to operate pixel-wise rather than
to use global context information. So, the fusion occurs
between the corresponding feature vectors xj jy @ R® and x

'(i,j) R © at every pixel position (i, j) & {[0, h) x [0, w)}.
Note that attention operations do not occur across spatial
locations.

The module consists of two main components: 1) Trans-
former Encoder and 2) a Fully Connected Projection module.

1) Transformer Encoder: The Transformer Encoder fuses
the vectors x,j) and X’(i,j> by transforming a query em-
bedding equery into an intermediate feature representation
finterim (shown in eq. 1 and 2). Inspired by the architecture
described in [1], [24], we designed this module Tenc with
multiple encoder layers. But different from [24], we do not
use a 1 x 1 convolutional layer to project the features into
a smaller dimension, as this would throw away important
detail. Also, we do not add any positional embeddings, as no
spatial information needs to be preserved. Each encoder layer
follows standard architecture and consists of a multi-head
self-attention module and a feed-forward network. We
perform experiments in the next section exploring the effect
of using a query embedding versus using one of the
transformed input features.

z = concat(xj), X<;,j>' equery) BR3*C (1)
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2) Fully Connected Projection Module: Additionally, hy-
pothesizing that we need a separate module ¢ to project
the fused features finterim onto the latent space, on which
the TOMP’s model predictor operates, we employ a two-
layer fully connected neural network (see eq. 3). Further, to
match the distribution of feature activations across spatial and
channel dimensions between the newly projected feature and
the original feature x " we add an instance normalization
layer at the end of the"module ¢.

X(,;,j) = @(finterim) (3)
D. Tracker Pipeline

The end-to-end structure of the proposed model TOTEM
is illustrated in Fig. 2. First, we use the original backbone
network to extract the deep image features of both the test
and train branch input frames. Parallelly, we also extract the
transparency features for the same set of input frames. These
features are then fused independently using the proposed
fusion module. The fused features in the training branch are
further combined with target state encodings. The features
from both branches are flattened and concatenated to form a
sequence of feature vectors. This sequence is then processed
by the transformer encoder to produce enhanced features
by reasoning globally across frames. Next, the Transformer
Decoder predicts the target model weights by using the
output of the transformer encoder. Finally, the predicted
model is applied to the test branch features output by the
transformer encoder to localize the target.

E. Training

All the components belonging to the TOMP, and the
Trans2Seg model, are initialized with pre-trained weights
while the weights of the fusion module are initialized ran-
domly following a Xavier initialization [25]. The training is
performed over two steps where only the fusion module
weights are updated with each back-propagation. In the
first step (illustrated in Fig. 3), TOTEM does not use the
features extracted by the original backbone. Instead, the
fusion module only uses transparency features to produce a
compatible output. In the first step configuration, the fusion
module learns to use the transparency features (belonging to

an unrelated feature space) with TOMP’s model predictor.
The second step follows the usual setting where both the
original and transparency features are input to the fusion
module.

Empirically this two-step approach showed better perfor-
mance compared to the usual training approach. We hypothe-
size that this approach works effectively because, without the
first step, the fusion module learns to over-rely on the original
features which are already in the feature space the module is
learning to project into. So, by forcing the module to learn to
solely use the transparency features, we encourage the fusion
module to first learn to recognize transparency features. Then
during the second step, it leverages the learned priors from
step one to effectively fuse transparency features into the
pipeline.

IV. EXPERIMENTS

A. Implementation and Setup

Datasets. For evaluation, we mainly use the Transparent
Object Tracking Benchmark (TOTB) [6] dataset. This dataset
comprises 15 common transparent object classes, with each
containing 15 sequences (225 in total). Given the lack of any
labeled training data sets, we split TOTB into two sections: a
small section comprising 45 video sequences belonging to 3
object classes (Beaker, GlassBall, and WubbleBubble) is used
for training while the remaining 180 sequences (belonging to
other 12 object classes) are used for testing. Since the fusion
module is a lightweight module with only around 5 million
learnable parameters, it can be trained from very little data.
Additionally, the training partition of the LaSOT [26] dataset
is used in addition to the above-defined TOTB train partition.

Training. We train our tracker on above mentioned splits of
TOTB and LaSOT datasets for 25 epochs with 4000 image
triplets sampled at every epoch. We set batch size as 18
and used ADAMW [27] optimizer with a learning rate of
0.0001. The proposed fusion module uses a 4-layer
transformer encoder and operates on 256-dim feature vectors.
The training is performed in two steps, as described in
section I11-E. We used 12GB TITAN Xp GPUs to train and
test our model. Our model TOTEM runs at 6FPS during
inference.

B. Comparison study

To establish baselines for comparison, we employ the
recent transparent object tracker TransATOM [6] and its base
ATOM [7]. In addition, we also compare against TOTEM’s
base tracker TOMP [1]. To ensure fair comparison all models
are fine-tuned end-to-end on the same training dataset. Note
that, TOTEM s also fine-tuned end-to-end for this experi-
ment.

We report our results using the success (SUC), normalized
precision (NPRE), and precision (PRE) metrics. The SUC
plot in Fig. 4a displays the overlap precision OP as a func-
tion of the threshold Th. The NPRE and PRE plots (shown in
Fig. 4b and Fig. 4c respectively) show the corresponding
precision values against the overlap threshold. Trackers are
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Fig. 4: Tracking performance of TOTEM, its baseline TOMP, and the two state-of-the-art trackers (TransATOM and TransDiMP), in
terms of precision, normalized precision and success metrics. Our tracker TOTEM achieves the best results with all three metrics. (Legend
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ranked according to their area-under-the-curve (AUC) score
for each plot, which is presented in the legend. Our proposed
TOTEM tracker outperforms the previous state-of-the-art
TransATOM tracker by a significant margin of 13.4% in
terms of Success AUC. Importantly, our proposed tracker
outperforms its baseline TOMP by 3.3% thanks to the
transparency cues incorporated by our fusion module.

C. Attribute analysis

In order to analyze the performance of our algorithm on
certain tracking challenges, we evaluate our tracker TOTEM
under 12 different attributes. We explore the performance
gain specifically due to the addition of transparency feature
fusion by comparing TOTEM against the baseline TOMP.
Also, we include the evaluations of ATOM vs TransATOM
in this section so that we can compare the performance gains
dues to transparency feature infusion in our work against that
in [6].

Both the baselines TOMP and ATOM are directly adapted
from their respective works [1], and [7] without any modifi-
cations, whereas TransATOM and TOTEM follow the same
training settings as described in the above section 1V-B.

Tab. | lists the comparison results against all 12 attributes
using the success AUC metric. We observe that TOTEM
performs best on 10 out of 12 attributes. TOTEM shows a
major improvement in the case of lllumination Variation,
Deformation, Aspect Ration Change, and Low Resolution
attributes (see Fig. 5a, 5b and 5c respectively) outperforming
its baseline with Sucess AUC scores of 82.2%, 79.2%, 73.5%
and 74.0% by 7.1%, 13%, 6.4% and 10.9% respectively.
This huge improvement in tracking accuracy can be di-
rectly attributed to the use of transparency features in the
pipeline. Deformation and aspect ratio changes are a result of
variations in the target object’s shape. Such variations are hard
to be dealt with if a tracker cannot fully understand the
target’s appearance. For example, a backbone network that
does not understand a target might encode two variant poses
of it into embeddings that do not relate well. Such
inefficiency in the backbone can further cause the model
prediction module to perform poorly at generating kernel

weights that produce accurate localization. In the case of
TOTEM tracker, the Trans2Seg model is extensively trained
to understand transparent objects and thus has the ability to
extract relevant features. For example, it might produce
embeddings invariant to background patterns, given that such
property benefits the network for performing segmentation
tasks on transparent objects. Having transparency features
fused into our baseline tracker’s pipeline will directly help
with better localization. In our case, the transparency features
helped the model to perform better in case of appearance-
varying situations.

D. Ablation Study

Our tracker TOTEM benefits from three main components.
First, we use TOMP as the baseline, which has a significant
performance advantage over the other baselines (ATOM
and DIMP, for example). Second, we utilize the Trans2Seg
backbone along with its encoder to extract transparency
features. Third, our proposed fusion module combines the
transparency features into our baseline tracker’s pipeline. In
this section, we ablate each component and show that the
design helps improve accuracy. We additionally evaluate our
two-step training strategy against other methods.

Baseline. We evaluate our baseline model TOMP against
the baselines of the other transparent object trackers as
shown in the Tab. Il. All the trackers follow their original
configuration and are not pre-trained on TOTB. This analysis
provides us with the portion of improvement we solely gain
by using a transformer-based model predictor, independent
of other factors. We observe that TOMP outperforms ATOM
and DIMP by 11.4% and 13.5% in success AUC scores,
respectively. TOMP provided a better starting point whichin
itself has surpassed the previous state-of-the-art tracker
TransATOM by a margin of 8.6%.

Transparency Features. In this subsection, we ablate the
components of Trans2Seg from TOTEM to analyze the
benefit due to transparency features in our pipeline.

We created a new tracker model, TOTEM-T, to enable
a fair ablation study of transparency features. TOTEM-
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Fig. 5: Tracking performance of different tracking algorithms over the attribute on which TOTEM shows significant improvement over

the baseline in terms of success metric. (Legend shows values in rate unit)

SUC PE NPE Fusion Approach  SUC PE NPE Training Method SUC PE NPE
TOTEM-TE 704 729 81.3 TOTEM-MLPHead 66.3 67.8 77.4 One step train 70.2 729 82.4
B TOTEM-equery ~ 69.7 73.1 81.4 Two step train 713 74.7 83.0
TOTEM-T 703 727 8138 TOTEM-FFNFuse 67.7 69.3 79.4
TOTEM 756 814 87.8 TOTEM 702 72.9 82.4 Two step train + end-to-end fine-tune 75.6 81.4 87.8
TABLE Ill: Analysis of trans-

; TABLE IV: Analysis of fusion module
parency features on tracking per-

TABLE V: Analysis of training approach on track-

on tracking performance.
formance.

T uses our fusion module just like TOTEM, but it does
not have transparency features in the input. This way, the
only difference between TOTEM and TOTEM-T is the use
of transparency features with the fusion module. Tab. IlI
shows success (SUC) AUC results comparing TOTEM-T
with TOTEM. TOTEM shows better accuracy in tracking
with SUC, PRE, and NPRE metrics at 75.6%, 81.4%, and
87.8%, respectively (with gains of 5.3%, 8.7%, and 6%)
compared to TOTEM-Ts 70.3%, 72.7%, and 81.8%. This
proves that transparency features are certainly beneficial.
Further, we perform another ablation study with TOTEM-
TE by removing the Transformer encoder component from
the transparency feature extractor. This model is observed
to perform fairly in comparison with TOTEM-T, signifying
that the encoder block from Trans2Seg plays a crucial role
in providing transparency awareness.

Fusion Module. We evaluate the effectiveness of the pro-
posed fusion module by comparing it against the standard
feed-forward network (FFN) based fusion. We create a model
TOTEM-FFNFuse that uses an 8-layer feed-forward network
that projects a concatenated feature (of dimensions 512 =
256 + 256) into a fused feature (of size 256dim). For

ing performance.

fairness, we design the FFN fusion module to have the
same number of learnable parameters as our transformer-
based fusion module. In Tab. IV, we observe that TOTEM
outperforms TOTEM-FFNFuse in SUC metric by a margin
of 2.5%. This indicates that our transformer-based fusion
module is effective in fusing the transparency features into
the TOMP pipeline.

Further, we ablate components within the fusion mod-
ule. We first investigate the benefit of having a learnable
query embedding equery in the fusion stream by comparing
TOTEM with an ablated variant, TOTEM-equery, that lacks a
learnable feature in its fusion input. Tab. IV shows TOTEM-
equery has a slight performance drop of .5% and 1.0% in SUC
and NPRE metrics, respectively, while showing only a 0.2%
improvement in PE metrics. Overall a slight improvement is
noticed. Given that equery is only a 256-sized floating point
weight and has comparably less computation overhead, the
design choice of including it is beneficial.

We also ablate the MLP module ¢ that projects the
fused features into the encoder input space. In this test, we
create a variant TOTEM-@ by ablating the MLP. In Tab. 1V,
when compared to TOTEM this variant showed a significant



performance drop of 3.9% in the SUC metric, indicating
that MLP projection module is crucial to the performance of
fusion.

Two-step training approach Along with the new fusion
module, we proposed a two-step approach for training it,
reasoning that it helps the module use transparency features
well. In Tab. V, we produced results comparing the two-step
approach with simple one-step training. Here, we observe
that the two-step approach outperforms the simple method
by 1.1% in the SUC metric. We also notice 1.8% and 0.5%
gains with our approach in the PRE and NPRE metrics,
respectively.

Additionally, we demonstrate the efficiency of end-to-end
fine-tuning when performed in complement with two-step
training. Here, we fine-tune our entire tracker instead of only
updating the fusion module’s weights. With this extra tuning,
TOTEM observes a performance improvement of 4.3% in the
SUC metric. Interestingly, observing from the SUC metrics
of TOMP from Fig. 4a and Tab. Il, we only observe a gain of
2.3% with the baseline. This further shows the benefit of
fusing the transparency features.

V. CONCLUSION

In this work, we explored an important yet under-explored
problem of transparent object tracking. We proposed a novel
tracker architecture named TOTEM, which benefits from
understanding the unique texture properties of transparent
objects. In particular, we successfully transferred the in-
formation learned from transparent object segmentation to
tracking by using the pretrained Trans2Seg (a segmentation
network) model to aid our tracker with extra transparency
cues. In addition, we presented a new fusion module that
learns to fuse features from different streams and projects
them to the feature space of the original stream. Due to the
projection property, our module can be added/removed from
the tracker pipeline without retraining the network. Further,
we explored a new training strategy i.e., two-step training
that explicitly improves the fusion performance of our pro-
posed module. Comprehensive experiments are performed,
showing that TOTEM considerably outperforms the previous
state-of-the-art and its baseline. Our ablation studies show
that each design choice we made toward TOTEM has a
positive contribution to its performance.

Future Work. The fusion module combined with our two-
step training strategy shows promising performance gains.
In the future, we would extend the module to aid generic
trackers in gaining application-specific skills. For example,
camouflaged object tracking can be made possible without
explicit training data with the help of our fusion techniques.
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