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Abstract

In this paper, we study a class of bilevel opti-
mization problems, also known as simple bilevel
optimization, where we minimize a smooth ob-
jective function over the optimal solution set of
another convex constrained optimization problem.
Several iterative methods have been developed
for tackling this class of problems. Alas, their
convergence guarantees are either asymptotic for
the upper-level objective, or the convergence rates
are slow and sub-optimal. To address this issue,
in this paper, we introduce a novel bilevel opti-
mization method that locally approximates the
solution set of the lower-level problem via a cut-
ting plane and then runs a conditional gradient up-
date to decrease the upper-level objective. When
the upper-level objective is convex, we show that
our method requires O(max{1/ϵf , 1/ϵg}) iter-
ations to find a solution that is ϵf -optimal for
the upper-level objective and ϵg-optimal for the
lower-level objective. Moreover, when the upper-
level objective is non-convex, our method requires
O(max{1/ϵ2f , 1/(ϵf ϵg)}) iterations to find an
(ϵf , ϵg)-optimal solution. We also prove stronger
convergence guarantees under the Hölderian error
bound assumption on the lower-level problem. To
the best of our knowledge, our method achieves
the best-known iteration complexity for the con-
sidered class of bilevel problems.

1 INTRODUCTION

Bilevel optimization is a form of optimization where one
problem is embedded within another. It captures a hierarchi-
cal structure, where an upper-level function is minimized
over the solution set of a lower-level problem. This class
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of problems has attracted great attention due to their appli-
cations in hyper-parameter optimization (Franceschi et al.,
2018; Shaban et al., 2019), meta-learning (Rajeswaran et al.,
2019; Bertinetto et al., 2019), and reinforcement learning
(Hong et al., 2020). In this paper, we focus on a specific
form of bilevel optimization formally defined as

min
x∈Rd

f(x) s.t. x ∈ argmin
z∈Z

g(z), (1)

where Z is a compact convex set and f, g : Rd → R are
continuously differentiable functions on an open set con-
taining Z . We assume that g is convex but not necessarily
strongly convex, and hence the lower-level problem in (1)
could have multiple optimal solutions. We remark that prob-
lem (1) is often referred to as the “simple bilevel problem”
in the literature (Dempe et al., 2010; Dutta and Pandit, 2020;
Shehu et al., 2021) to differentiate it from the more general
settings where the lower-level problem is parameterized by
some upper-level variables. This class of bilevel problems
appears in several settings as discussed in Section 2. The
key challenge to solve problem (1) stems from the fact that
its feasible set—the solution set of the lower-level problem—
does not admit a simple characterization and is not explic-
itly given. This rules out the possibility of directly applying
projection-based methods as well as the conditional gradient
(CG) type methods, since projection onto or minimizing a
linear objective over the feasible set is intractable.

A possible scheme in this case is reformulating problem (1)
as a constrained optimization problem with functional con-
straints and applying primal-dual methods. Specifically,
problem (1) can be written as

min
x∈Rd

f(x) s.t. x ∈ Z, g(x) ≤ g∗, (2)

where g∗ is the optimal value of the lower-level problem.
However, a critical issue is that problem (2) does not satisfy
strict feasibility and hence the Slater’s condition fails, which
is required for most primal-dual methods. Even relaxing
the constraint (g(x) ≤ g∗ + ϵ) to ensure strict feasibility
would inevitably lead to numerical issues. In fact, as ϵ ap-
proaches zero and the problem becomes nearly degenerate,
the dual optimal variable may tend to infinity, which slows
down the convergence and leads to numerical instability
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Table 1: Summary of bilevel optimization algorithms. The abbreviations “SC”, “C”, and “non-C” stand for “strongly
convex”, “convex”, and “non-convex”, respectively.

References Upper level Lower level Convergence Oracle needed
Objective f Objective g Feasible set Z Upper level Lower level

MNG (Beck and Sabach, 2014) SC, differentiable C, smooth Closed Asymptotic O(1/ϵ2) projection

BiG-SAM (Sabach and Shtern, 2017) SC, smooth C, composite Closed Asymptotic O(1/ϵ) projection

Tseng’s method (Malitsky, 2017) C, composite C, composite Closed Asymptotic o(1/ϵ) projection

a-IRG (Kaushik and Yousefian, 2021) C, Lipschitz C, Lipschitz Closed O(max{1/ϵ4f , 1/ϵ
4
g}) projection

This paper, Theorem 1 C, smooth C, smooth Compact O(max{1/ϵf , 1/ϵg}) linear solver

This paper, Theorem 2 Non-C, smooth C, smooth Compact O(max{1/ϵ2f , 1/(ϵf ϵg)}) linear solver

(Bonnans and Shapiro, 2013) (A detailed discussion about
this instability issue is provided in Appendix D). Therefore,
problem (1) cannot be simply treated as a classic constrained
optimization problem and calls for new theories and algo-
rithms tailored to its hierarchical structure.

Another approach to solving problem (1) is the Tikhonov-
type regularization (Tikhonov and Arsenin, 1977), where the
objective functions of both levels are combined using a reg-
ularization parameter σ>0 to form a single-level problem.
It is known that as σ→0, any cluster point of the solutions
of the regularized single-level problem is a solution to the
bilevel problem in (1). In fact, under certain assumptions as
shown in (Friedlander and Tseng, 2008; Dempe et al., 2021),
the solution set of problem (1) exactly matches with the reg-
ularized problem for sufficiently small σ. Alas, checking
such conditions and finding the threshold are often difficult
in practice. To avoid this issue, Cabot (2005) and Solodov
(2007) proposed adjusting the regularization parameter σ
dynamically and proved an asymptotic convergence guaran-
tee. Along another line of research, several works (Yamada,
2001; Xu, 2004) have studied the more general problem of
solving a variational inequality over the fixed-point set of a
nonexpansive mapping, to which the problem in (1) is a spe-
cial case. In particular, the hybrid steepest descent method
by Yamada (2001) and the sequential averaging method
(SAM) by Xu (2004) converge asymptotically to the op-
timal solution when the parameters are properly chosen.
However, these results fail to provide any non-asymptotic
guarantee for either the upper- or lower-level objectives.

More recently, there has been a surge of interest in establish-
ing non-asymptotic convergence rates for problem (1). One
of the first methods of this kind is the minimal norm gradi-
ent (MNG) method proposed by Beck and Sabach (2014).
When the upper-level function f is strongly-convex and the
lower-level function g is convex and smooth, they showed
that MNG converges asymptotically to the optimal solution
and achieves a complexity bound of O(1/ϵ2) in terms of
the lower-level objective value. Subsequently, built on the
SAM framework, Bilevel Gradient SAM (BiG-SAM) was
proposed by Sabach and Shtern (2017) and it was shown to

achieve a complexity ofO(1/ϵ) for the lower-level problem;
see also Shehu et al. (2021) for a related method. Malitsky
(2017) studied a version of Tseng’s accelerated gradient
method that obtains a convergence rate of o(1/k) for the
lower-level problem. However, these prior works only estab-
lish convergence rates for the lower-level problem, while the
rate for the upper-level objective is missing. The only excep-
tion is the work by Kaushik and Yousefian (2021): when f
and g are convex and Lipschitz continuous, they showed that
an iterative regularization-based method achieves a conver-
gence rate of O(1/k0.5−b) for the upper-level objective and
a rate of O(1/kb) for the lower-level, where b ∈ (0, 0.5)
is a user-defined parameter. As stated in Table 1, if one
sets b = 0.25 to balance the two rates, then finding a so-
lution that is ϵf -optimal for the upper-level problem and
ϵg-optimal for the lower-level problem would require a com-
plexity of O(max{1/ϵ4f , 1/ϵ4g}).

Contributions. In this paper, we present a novel conditional
gradient-based bilevel optimization (CG-BiO) method with
tight non-asymptotic guarantees for both upper- and lower-
level problems. At each iteration, our proposed CG-BiO
method uses a cutting plane to locally approximate the so-
lution set of the lower-level problem, and then combines it
with a CG-type update on the upper-level objective. Our
theoretical guarantees for CG-BiO are the following:

• When the upper-level function f is convex, we show
that CG-BiO finds x̂ that satisfies f(x̂)− f∗ ≤ ϵf and
g(x̂)−g∗ ≤ ϵg withinO(max{1/ϵf , 1/ϵg}) iterations,
where f∗ is the optimal value of problem (1) and g∗

is the optimal value of the lower-level problem. This
guarantee matches the best-known results in terms of
the lower-level objective and is optimal for bilevel
projection-free methods.

• When f is non-convex, CG-BiO finds x̂ that sat-
isfies G(x̂) ≤ ϵf and g(x̂) − g∗ ≤ ϵg within
O(max{1/ϵ2f , 1/(ϵf ϵg)}) iterations, where G(x̂) is
the Frank-Wolfe (FW) gap function (cf. (7)).

• With an additional r-th-order (r ≥ 1) Hölderian error
bound assumption on the lower-level problem, CG-
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BiO finds x̂ with |f(x̂) − f∗| ≤ ϵf within O(1/ϵrf )
iterations in the convex case, and x̂ with |G(x̂)| ≤ ϵf
within O(1/ϵr+1

f ) iterations in the non-convex case.

It is worth noting that the state-of-the-art methods for solv-
ing simple bilevel problems (stated in Table 1) require pro-
jection onto the set Z at each iteration. In contrast, as our
proposed method is a CG-based method, it requires access to
a linear solver instead of projection at each iteration, which
is suitable for the settings where projection is computation-
ally costly; e.g., when Z is a polyhedron.

Additional Related Work. In the general form of bilevel
problems, the upper-level function f may also depend on
an additional variable w ∈ Rm that in turn influences the
lower-level problem:

min
x∈Rd,w∈Rm

f(x,w) s.t. x ∈ argmin
z∈Z

g(z,w). (3)

Problem (3) has been studied in depth, and we refer the
readers to the extensive survey by Dempe (2020). Note that
for any fixed w, the above problem boils down to a sim-
ple bilevel problem in (1). In recent years, gradient-based
methods for problem (3) have become increasingly popular
including implicit differentiation (Domke, 2012; Pedregosa,
2016; Gould et al., 2016; Ji et al., 2021) and iterative differ-
entiation (Maclaurin et al., 2015; Franceschi et al., 2018).
However, most of the existing methods work under the as-
sumption that the lower-level problem is strongly convex
in z for any w and thus has a unique minimum. Note that
such an assumption would render the simple bilevel prob-
lem in (1) trivial, as it amounts to solving the lower-level
problem only. More relevant to our work, some concurrent
papers consider the case where the lower-level problem can
have multiple minima (Liu et al., 2020; Li et al., 2020; Liu
et al., 2021a,b; Sow et al., 2022; Gao et al., 2022). They
either reformulate problem (3) as a constrained optimiza-
tion problem in the same spirit as (2), or build upon existing
methods (in particular, BiG-SAM by Sabach and Shtern
(2017)) for solving the simple bilevel problem. Moreover,
as they consider a more general problem than ours, their
theoretical results are necessarily weaker, providing only
asymptotic convergence guarantees or slower rates. In this
paper, we explore a fundamentally different approach for
solving the bilevel problem in (1) directly and provide tight
non-asymptotic convergence guarantees for our method.

2 PRELIMINARIES

In this section, we first discuss a few motivating examples
for problem (1), which can be generalized to two broader
classes of problems: lexicographic optimization (Gong et al.,
2021) and lifelong learning (Chaudhry et al., 2019). Addi-
tional discussions and examples are provided in Appendix E.
Then, we state the required assumptions and notions of opti-
mality that we use for our theoretical results.

2.1 Motivating Examples

Several machine learning applications consist of a main
objective g, such as the training loss, and a secondary objec-
tive f , such as a regularization term or an auxiliary loss. In
this case, a natural approach is to fully optimize the main
objective and use the secondary objective as a criterion to
select one of the optimal solutions. This approach is also
known as lexicographic optimization (Gong et al., 2021) and
can be formulated as the simple bilevel problem in (1). In
Examples 1 and 2, we provide instances of such problems.

In the paradigm of Lifelong Learning, the learner faces a
stream of possibly related tasks and the central theme is to
accumulate the knowledge learned from the past and contin-
ually improves it given new tasks. We can cast this problem
as a simple bilevel problem, where the lower-level loss cor-
responds to samples from seen tasks, while the upper-level
loss captures the error on a new task. The goal is to improve
the model using the new task while ensuring that it still per-
forms well over the previous tasks. We illustrate an instance
of this class of problems in Example 3.
Example 1 (Over-parameterized regression). In a con-
strained regression problem, we aim to find a parameter
vector β ∈ Rd that minimizes the loss ℓtr(β) with respect
to the training dataset Dtr. We also constrain β to be in
some set Z ⊆ Rd representing some prior knowledge. For
instance, we have Z = {β | ∥β∥1 ≤ λ} for some λ > 0
in a sparse regression problem. Without an explicit regular-
ization, an over-parameterized regression problem over the
training dataset possesses multiple global minima. In fact,
while any optimization algorithm can achieve one of these
many global minima, not all optimal regression coefficients
perform equally. Hence, one can consider a secondary ob-
jective, such as the loss over a validation set Dval, to select
one from the minimizers of the training loss. This leads to
the following bilevel problem:

min
β∈Rd

f(β) ≜ ℓval(β)

s.t. β ∈ argmin
z∈Z

g(z) ≜ ℓtr(z).
(4)

We note that problem (4) can also appear as a subproblem
in hyperparameter selection problems (Gao et al., 2022). In
this case, both the upper-level and lower-level objectives are
smooth and convex if the loss ℓ is smooth and convex.
Example 2 (Fair classification). In a binary classification
problem, we aim to find a mapping from the feature vectors
xi to the target labels yi. Due to the bias in the dataset,
standard training procedures could lead to a model that dis-
criminates against certain social groups. To alleviate this
issue, we can use a fairness metric as a secondary objective
to promote fairness in the decision of the model. One com-
mon criterion is the p%-rule: given a sensitive attribute v
such as race or sex, we require that for any a and b,

min

(
P(ŷ = 1 |x, v = a)

P(ŷ = 1 |x, v = b)
,
P(ŷ = 1 |x, v = b)

P(ŷ = 1 |x, v = a)

)
≥ p

100
,
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where ŷ is the prediction of the model. However, this objec-
tive is hard to optimize and hence we use the covariance as a
surrogate loss as suggested in (Zafar et al., 2017; Gong et al.,
2021). Let h(x;β) be the output of the model parameterized
by β, and consider the following problem:

min
β∈Rd

(cov(h(x;β), v))2 s.t. β ∈ argmin
z∈Z

ℓtr(z).

Specifically, we aim to minimize the correlation between
our prediction model and the sensitive feature v without
sacrificing its performance over the training set.
Example 3 (Dictionary learning). The goal of dictionary
learning is to learn a concise representation of the input
data from a massive dataset. Let A={a1, . . . , an} denote a
dataset of n points with ai∈Rm for any i∈N ≜{1, . . . , n}.
We aim to find a dictionary D = [d1, . . . ,dp] ∈ Rm×p such
that each data point ai can be well approximated by a lin-
ear combination of a few basis vectors in D. A common
approach is to formulate this as the following non-convex op-
timization problem (Kreutz-Delgado et al., 2003; Yaghoobi
et al., 2009; Rakotomamonjy, 2013; Bao et al., 2016):

min
D∈Rm×p

min
X∈Rp×n

1

2n

∑
i∈N
∥ai −Dxi∥22

s.t. ∥dj∥2 ≤ 1, j = 1, . . . , p; ∥xi∥1 ≤ δ, i ∈ N .

(5)

Note that we normalize the basis vectors to have bounded ℓ2-
norm and impose ℓ1-norm constraints to encourage sparsity
in {xi}ni=1. Further, we refer to X = [x1, . . . ,xn] ∈ Rp×n

as the coefficient matrix.

In real applications, the data points typically arrive sequen-
tially and the underlying representation may be gradually
evolving. Thus, it is desirable to update our dictionary in a
continuous manner. Suppose that we already have learned
a dictionary D̂ ∈ Rm×p and the corresponding coefficient
matrix X̂ ∈ Rp×n for the dataset A. When a new dataset
A′ = {a′1, . . . , a′n′} arrives, we hope to expand our dictio-
nary by learning new basis vectors from A′ while retaining
the learned information in D̂. To achieve so, we aim to find
the dictionary D̃ ∈ Rm×q (q > p) and the coefficient matrix
X̃ ∈ Rq×n′

for the new dataset A′, and at the same time
enforce D̃ to perform well on the old dataset A together
with the learned coefficient matrix X̂. This leads to the
following bilevel problem:

min
D̃∈Rm×q

min
X̃∈Rq×n′

f(D̃, X̃)

s.t. ∥x̃k∥1 ≤ δ, k = 1, . . . , n′; D̃ ∈ argmin
∥d̃j∥2≤1

g(D̃),
(6)

where the objective f(D̃, X̃) ≜ 1
2n′

∑n′

k=1 ∥a′k−D̃x̃k∥22
is the average reconstruction error on the new dataset A′,
the lower-level objective g(D̃) ≜ 1

2n

∑n
i=1 ∥ai − D̃x̂i∥22

is the error on the old dataset A, and with a slight abuse
of notation we let x̂i denote the extended vector in Rq by
appending zeros at the end. Note that in problem (6), the
upper-level objective is non-convex while the lower-level
objective is convex with multiple minima.

2.2 Assumptions and Definitions

We focus on the case where the lower-level function g is
smooth and convex, while the upper-level function f is
smooth but not necessarily convex. Formally, we make the
following assumptions.

Assumption 1. Let ∥ · ∥ be an arbitrary norm on Rd and
∥ · ∥∗ be its dual norm. We assume

(i) Z ⊂ Rd is convex and compact with diameter D, i.e.,
∥x− y∥ ≤ D for all x,y ∈ Z .

(ii) g is convex and continuously differentiable on an open
set containing Z , and its gradient is Lipschitz with
constant Lg, i.e.,∥∇g(x) − ∇g(y)∥∗ ≤ Lg∥x − y∥
for all x,y ∈ Z .

(iii) f is continuously differentiable and its gradient is Lip-
schitz with constant Lf .

Remark 2.1. Instead of the Lipschitz gradient assumptions
above, we may assume that f and g have bounded curvature
constants. Such an assumption is common in the analysis
of the CG method and has the advantage of being affine-
invariant, e.g., see (Jaggi, 2013; Lacoste-Julien, 2016).

Throughout the paper, we use g∗ ≜ minz∈Z g(z) and X ∗
g ≜

argminz∈Z g(z) to denote the optimal value and the optimal
solution set of the lower-level problem, respectively. Note
that by Assumption 1, the set X ∗

g is nonempty, compact
and convex, but in general not a singleton as g could have
multiple minima on Z . Moreover, we use f∗ to denote
the optimal value and x∗ to denote an optimal solution of
problem (1), which are guaranteed to exist as f is continuous
and X ∗

g is compact.

For generality, we allow different target accuracies ϵf and ϵg
for the upper-level and lower-level problems, respectively,
and define an (ϵf , ϵg)-optimal solution as follows.

Definition 1 ((ϵf , ϵg)-optimal solution). When f is convex,
a point x̂ ∈ Z is (ϵf , ϵg)-optimal for problem (1) if

f(x̂)− f∗ ≤ ϵf and g(x̂)− g∗ ≤ ϵg.

When f is non-convex, x̂ ∈ Z is (ϵf , ϵg)-optimal if

G(x̂) ≤ ϵf and g(x̂)− g∗ ≤ ϵg,

where G(x̂) is the FW gap (Jaggi, 2013; Lacoste-Julien,
2016) defined by

G(x̂) ≜ max
s∈X∗

g

{⟨∇f(x̂), x̂− s⟩}. (7)

3 PROPOSED ALGORITHM

Before stating our proposed method, we start by the standard
CG method (Frank and Wolfe, 1956; Levitin and Polyak,
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Algorithm 1 CG-based bilevel optimization (CG-BiO)

1: Input: Target accuracy ϵf , ϵg > 0, stepsizes {γk}k
2: Initialization: Set x0 ∈ Z s.t. g(x0)− g∗ ≤ ϵg/2
3: for k = 0, . . . ,K − 1 do
4: Compute sk ← argmins∈Xk

⟨∇f(xk), s⟩
Xk≜{s ∈ Z : ⟨∇g(xk), s− xk⟩≤g(x0)− g(xk)}

5: if ⟨∇f(xk),xk − sk⟩ ≤ ϵf and
⟨∇g(xk),xk − sk⟩ ≤ ϵg/2 then

6: Return xk and STOP
7: else
8: xk+1 ← (1− γk)xk + γksk
9: end if

10: end for

1966) for solving problem (1). Recall that X ∗
g denotes the

solution set of the lower-level problem. If we assume x0 ∈
X ∗

g , then the CG update at iteration k is given by

xk+1 = (1− γk)xk + γksk,

where
sk = argmin

s∈X∗
g

⟨∇f(xk), s⟩ , (8)

and γk ∈ [0, 1] is the stepsize. However, the main challenge
here is that the solution set X ∗

g for the lower-level problem
is not explicitly given, and hence the linear minimization
required in (8) is computationally intractable. Moreover, the
standard CG method needs to be initialized with a feasible
point. In this case, x0 has to be an optimal solution of the
lower-level problem, which is hard to guarantee in general—
in finite number of iterations one may not be able to find an
exact optimal solution for the lower-level problem. Similar
issues also hold if we try to use projection-based methods
such as projected gradient descent to solve problem (2).

Our key idea is to perform a CG update over a local ap-
proximation set Xk at the k-th iteration instead of the hard-
to-characterize set X ∗

g . To this end, we borrow the idea of
cutting plane from the optimization literature (Boyd and
Vandenberghe, 2018) and let Xk be the intersection of Z
and the halfspaceHk:

Xk ≜ Z ∩Hk, (9)

Hk ≜ {s ∈ Rd | ⟨∇g(xk), s− xk⟩ ≤ g(x0)− g(xk)}.

Indeed Xk is potentially more tractable than X ∗
g , as the

difficult nonlinear inequality g(x) ≤ g∗ in (2) is replaced
by a single linear inequality. Also, by using the convexity
of g, we can show that the hyperplaneHk eliminates those
points known to have a larger value than g(x0). Thus, if
we initialize our algorithm such that x0 is near-optimal for
the lower-level problem, the linear inequality in (9) ensures
improvement in terms of the lower-level function. Further,
this also implies that Xk contains the solution set X ∗

g , so we
are guaranteed to make progress on the upper-level objective
f . We formalize this claim in the following lemma.

Lemma 1. Recall X ∗
g as the solution set for the lower-level

problem in (1) and recall the definition of the set Xk in (9).
Then, for any k ≥ 0, we have X ∗

g ⊆ Xk.

Now we are ready to introduce our proposed CG-BiO
method. We first initialize x0 ∈ Z as a near-optimal solu-
tion for the lower-level problem, i.e., g(x0)−g∗ ≤ ϵg/2 for
some prescribed accuracy ϵg . This can be done by running
the standard CG method on the lower-level problem, which
requires at most O(1/ϵg) iterations. Once the initialization
step is done, we simply run CG with respect to the approx-
imation sets Xk. Specificallly, at iteration k, we solve the
following subproblem over the set Xk defined in (9):

sk = argmin
s∈Xk

⟨∇f(xk), s⟩ , (10)

and update the iterate by xk+1 = (1− γk)xk + γksk with
stepsize γk ∈ [0, 1]. We assume access to a linear opti-
mization oracle that returns the solution of the subproblem
in (10), which is standard for projection-free methods (Jaggi,
2013; Lacoste-Julien, 2016; Mokhtari et al., 2018). In partic-
ular, if Z can be described by a system of linear inequalities,
then problem (10) corresponds to a linear program and can
be solved efficiently by a standard solver as we will show
in our experiments. We repeat the process above until we
reach an accuracy of ϵf for the upper-level objective and an
accuracy of ϵg for the lower-level objective. The steps of our
proposed CG-BiO method are summarized in Algorithm 1.

4 CONVERGENCE ANALYSIS

In this section, we analyze the iteration complexity of our
CG-BiO method. We first consider the case where the upper-
level function f is convex. In this case, we choose the
stepsize as γk = 2/(k + 2), which is a typical choice in the
standard CG method (Jaggi, 2013).

Theorem 1 (Convex upper-level). Suppose that Assump-
tion 1 holds and f is convex. Let {xk}K−1

k=0 be the sequence
generated by Algorithm 1 with stepsize γk = 2/(k + 2) for
k ≥ 0. Then we have

f(xK)− f∗≤ 2LfD
2

K + 1
, g(xK)− g∗ ≤ 2LgD

2

K + 1
+

ϵg
2
.

Theorem 1 shows that the gap of the upper-level objective
can be upper bounded by O(1/K), similar to the conver-
gence bound of standard CG. At the same time, the gap of
the lower-level objective can also be controlled by a term
of order O(1/K) in addition to the initial error ϵg/2. As a
corollary, Algorithm 1 will return an (ϵf , ϵg)-optimal solu-
tion when the number of iterations K exceeds

max

{
2LfD

2

ϵf
,
4LgD

2

ϵg

}
= O

(
max

{
1

ϵf
,
1

ϵg

})
.

Our complexity bound improves over the result by Kaushik
and Yousefian (2021), who considered a different setup
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where both the upper-level and lower-level functions are
Lipschitz but not necessarily smooth. Also, comparing
with existing works in the same setup, our convergence
rate for the lower-level objective matches those by Sabach
and Shtern (2017); Malitsky (2017), while we also provide
a non-asymptotic convergence bound for the upper-level
objective. To the best of our knowledge, our result provides
the best-known bound for the considered setting. We also
remark that our rate is tight at least within the family of
projection-free methods, since it is known that their worst-
case complexity is Θ(1/ϵf ) even for a single-level problem
(Jaggi, 2013; Lan, 2013).

Remark 4.1. The initialization step requires O(1/ϵg) itera-
tions, and hence, this additional term does not change the
overall complexity. The same applies for the non-convex
case below.

Now we turn to the case where f is non-convex. In this case,
we choose the stepsize as a constant depending on the target
accuracies as well as the problem parameters.

Theorem 2 (Non-convex upper-level). Suppose that As-
sumption 1 holds. Let {xk}K−1

k=0 be the sequence generated
by Algorithm 1 with stepsize γk = min

{ ϵf
LfD2 ,

ϵg
LgD2

}
for

all k ≥ 0. Define f = minx∈Z f(x). Then for

K ≥ max
{2LfD

2(f(x0)− f)

ϵ2f
,
2LgD

2(f(x0)− f)

ϵf ϵg

}
,

there exists k∗ ∈ {0, 1, . . . ,K − 1} such that G(xk∗) ≤ ϵf
and g(xk∗)− g∗ ≤ ϵg .

As a corollary of Theorem 2, the number of iterations re-
quired to find an (ϵf , ϵg)-optimal solution can be upper
bounded by O(max{1/ϵ2f , 1/(ϵf ϵg)}). We note that the
dependence on the upper-level accuracy ϵf also matches
that in the standard CG method for a single-level problem
(Lacoste-Julien, 2016; Mokhtari et al., 2018).

We end this section with the following remark. Since the
algorithm’s output x̂ may lie outside of the feasible set X ∗

g ,
both f(x̂) − f∗ in Theorem 1 and G(x̂) in Theorem 2 are
not necessarily positive. While this might seem unconven-
tional, we note that Kaushik and Yousefian (2021) also used
f(x̂) − f∗ as the performance metric. In fact, this is also
common in the literature on constrained optimization, where
the generated iterate could be infeasible and thus f(x̂)− f∗

could be negative (see, e.g., Beck (2017)). On the other
hand, we note that it is in general impossible to prove con-
vergence in terms of |f(x̂)− f∗| due to a negative result by
Chen et al. (2023). Specifically, for any first-order method
and a given number of iterations K, they showed that there
exists an instance of problem (1) where |f(xk) − f∗| ≥ 1
for all 0 ≤ k ≤ K − 1. Therefore, to provide convergence
bounds on |f(x̂)− f∗| or |G(x̂)|, it is necessary to impose
additional regularity conditions on problem (1), which we
discuss in the next section.

4.1 Convergence under Hölderian Error Bound

In this section, we complement the convergence results in
Theorems 1 and 2 by giving a lower bound on f(x̂)−f∗ and
G(x̂). Let x̂ be an (ϵf , ϵg)-optimal solution as defined in
Definition 1. Intuitively, since x̂ is ϵg-optimal for the lower-
level problem, it should be close to the optimal solution
set X ∗

g under some regularity condition on g. As such, we
can lower bound f(x̂)− f∗ by using the smoothness of f .
Formally, we assume that the lower-level objective satisfies
the Hölderian error bound, which quantifies the growth rate
of the objective value g(x) as the point x deviates from the
optimal solution set X ∗

g .
Assumption 2. The function g satisfies the Hölderian error
bound for some α > 0 and r ≥ 1, i.e,

α

r
dist(x,X ∗

g )
r ≤ g(x)− g∗, ∀x ∈ Z, (11)

where dist(x,X ∗
g ) ≜ infx′∈X∗

g
∥x− x′∥.

We note that the error bound condition in (11) is well-studied
in the optimization literature (see (Pang, 1997; Bolte et al.,
2017; Roulet and d’Aspremont, 2020) and the references
therein) and is known to hold generally when the function
g is analytic and the set Z is bounded (Łojasiewicz, 1959;
Luo and Pang, 1994). Two important special cases are: 1)
g satisfies (11) with r = 1, i.e., X ∗

g is a set of weak sharp
minima of g (Burke and Ferris, 1993; Burke and Deng,
2005); 2) g satisfies (11) with r = 2 known as quadratic
growth condition (Drusvyatskiy and Lewis, 2018).

Under Assumption 2, we can establish the following lower
bounds on f(x̂)−f∗ and G(x̂). Notably, the following result
is an intrinsic property of problem (1) and independent of
the algorithm we use.
Proposition 1. Assume that g satisfies Assumption 2, and
define M = maxx∈X∗

g
∥∇f(x)∥∗. Then for any x̂ that

satisfies g(x̂)− g∗ ≤ ϵg , it holds that:

(i) If f is convex, then f(x̂)− f∗ ≥ −M
( rϵg

α

) 1
r .

(ii) If f is non-convex and has Lf -Lipschitz gradient, then

G(x̂) ≥ −M
( rϵg

α

) 1
r − Lf

( rϵg
α

) 2
r .

By combining Theorems 1 and 2 with Proposition 1, we
obtain the following stronger convergence guarantees for
the output of our proposed method.
Corollary 1. Suppose that Assumption 1 holds and g satis-
fies the Hölderian error bound in Assumption 2 with α > 0
and r ≥ 1. Let M = maxx∈X∗

g
∥∇f(x)∥∗.

(i) If f in problem (1) is convex and we set ϵg = α
r

( ϵf
M

)r
,

then after K = O(1/ϵrf ) iterations we have |f(xK)−
f∗| ≤ ϵf and g(xK)− g∗ ≤ ϵg .

(ii) If f in problem (1) is non-convex and we set
ϵg = min{αr

( ϵf
2M

)r
, α
r

( ϵf
2Lf

)r/2}, then after K =

O(1/ϵr+1
f ) iterations there exists k∗ ∈ {0, . . . ,K−1}

such that |G(xk∗)| ≤ ϵf and g(xk∗)− g∗ ≤ ϵg .
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Figure 1: The performance of CG-BiO compared with BiG-SAM, a-IRG and MNG on problem (4).

Corollary 1 shows that under the r-th Hölderian error bound
assumption, we can find an iterate to be ϵf -close to optimal-
ity within O(1/ϵrf ) iterations in the convex case, and to be
ϵf -close to stationarity within O(1/ϵr+1

f ) iterations in the
non-convex case.

5 NUMERICAL EXPERIMENTS

In this section, we test our method on three different bilevel
optimization problems, described in Section 2, with real
and synthetic datasets and compare our method with other
existing methods in the literature (Beck and Sabach, 2014;
Sabach and Shtern, 2017; Kaushik and Yousefian, 2021;
Gong et al., 2021).

5.1 Over-parameterized Regression

For Example 1, we consider a sparse linear regression prob-
lem on the Wikipedia Math Essential dataset (Rozemberczki
et al., 2021), which consists of a data matrix A ∈ Rn×d

with n = 1068 instances and d = 730 attributes and
an outcome vector b ∈ Rn. We assign 60% of the
dataset as the training set (Atr,btr), 20% as the validation
set (Aval,bval) and the rest as the test set (Atest,btest).
Then the lower-level objective in (4) is the training error
g(z) = 1

2∥Atrz−btr∥22, the upper-level objective is the val-
idation error f(β) = 1

2∥Avalβ−bval∥22, and the constraint
set is Z = {β | ∥β∥1 ≤ λ} for some λ > 0 to induce spar-
sity in β. We also use the test error 1

2∥Atestβ − btest∥22 as
our performance metric. Note that the regression problem is
over-parameterized since the number of features d is larger
than the number of data instances in the training set.

We compare the performance of our method CG-BiO against
the MNG method by Beck and Sabach (2014), the Bilevel
Gradient SAM (BiG-SAM) by Sabach and Shtern (2017),
the averaging iteratively regularized gradient (a-IRG) by
Kaushik and Yousefian (2021), and the Dynamic Barrier
Gradient Descent (DBGD) by Gong et al. (2021). It is worth
noting that while we can implement these methods numeri-
cally, some of them are not directly applicable to our prob-
lem setting and thus lack any convergence guarantee; see
Appendix F for more discussions. For benchmarking pur-

poses, we use CVX (Grant and Boyd, 2014, 2008) to solve
the lower-level problem and the constrained reformulation
in (2) to obtain the optimal values g∗ and f∗, respectively.

In Fig. 1(a), we observe that CG-BiO converges at a faster
rate than the other baseline methods in terms of the lower-
level objective, which confirms our theoretical result (cf.
Table 1). Fig. 1(b) and (c) show that CG-BiO achieves a
smaller upper-level objective gap as well as a smaller test
error compared to other methods within the same run time.
Interestingly, after the initial stage, the upper-level objec-
tive f(βk) of CG-BiO increases, while the optimality gap
|f(βk) − f∗| decreases. This suggests that CG-BiO may
“overshoot” at the beginning due to its relatively large step-
size. Nevertheless, as the number of iterations increases and
the level of infeasibility decreases, the upper-level objec-
tive of CG-BiO approaches the optimal value of the bilevel
problem, which is in line with Proposition 1.

5.2 Fair Classification

We use the Adult income dataset (Dua and Graff, 2019)
containing 48,842 subjects each with 14 attributes, where
the task is to predict whether the annual income of a given
subject exceeds $50K. For efficiency, we randomly sample
2,000 data points as the training set and 1,000 as the test set.
We choose “sex” as the sensitive attribute v. Further, we
adopt the logistic regression classifier as our model, where
the posterior probability is given by P(ŷi = 1 |xi;β) =

1/(1 + e−x⊤
i β) for a given feature vector xi and parameter

β. Concretely, the lower-level problem is a sparse logistic
regression problem for some λ > 0:

min
β∈Rd

g(β)=− 1

n

n∑
i=1

logP(ŷi=yi |xi;β) s.t. ∥β∥1 ≤ λ,

(12)
while the upper-level objective is the squared covariance:

f(β)=
( 1

n

n∑
i=1

(vi − v̄)P(ŷi = 1 |xi;β)
)2

, (13)

where v̄ = 1
n

∑
i vi. Note that the lower-level objective in

(12) is convex while the upper-level in (13) is non-convex.
We numerically verified that the lower-level problem can
possess multiple optimal solutions.
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Figure 2: The performance of CG-BiO compared with BiG-SAM, a-IRG on the bilevel problem defined in (12) and (13).
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Figure 3: The performance of CG-BiO compared with BiG-SAM, a-IRG and the baseline CG method on problem (6).

In Fig. 2, we compare CG-BiO against BiG-SAM, a-IRG
and DBGD. For this example, we did not implement the
MNG method as it is computationally intractable; see Ap-
pendix F. For a fair comparison, we manually tune the
hyperparameters such that all achieve a similar performance
on the lower-level problem as shown in Fig. 2(a), and judge
their efficiency by the error of the upper-level objective.
Fig. 2(b) shows that CG-BiO is able to achieve a smaller
upper-level objective (smaller covariance). As a result, we
observe in Fig. 2(c) and (d) that it reaches a much better
p%-rule with a similar level of accuracy on the test set.

5.3 Dictionary Learning

We evaluate our CG-BiO method for problem (6) on a syn-
thetic dataset, similar to the setup in Rakotomamonjy (2013).
We first generate the true dictionary D̃∗ ∈ R25×50 consist-
ing of 50 basis vectors in R25, each of which has its entries
drawn from a standard Gaussian distribution and is normal-
ized to have unit ℓ2-norm. We further construct the two
dictionaries D∗ and D′∗ consisting of 40 and 20 basis vec-
tors in D̃∗, respectively (and hence they share 10 bases
in common). The two datasets A = {a1, . . . , a250} and
A′={a′1, . . . , a′200} are generated according to the rules:

ai = D∗xi + ni, i=1, . . . , 250;

a′k = D′∗x′
k + n′

k, k=1, . . . , 200,

where {xi}250i=1, {x′
k}200k=1 are sparse coefficient vectors

and {ni}250i=1, {n′
k}200k=1 are random Gaussian noise vectors.

Since neither A nor A′ contains the full information of the

true dictionary D̃∗, it is crucial for our learning algorithm
to update our dictionary given the new dataset A′ while
retaining our knowledge from the old dataset A.

In our experiment, we first solve the standard dictionary
learning problem in (5) using the dataset A to obtain the ini-
tial dictionary D̂ and the coefficient vectors {x̂i}250i=1. Then
we use the reconstruction error on A with respect to {x̂i}250i=1

to define the lower-level objective in problem (6), and use
the error on the new dataset A′ to define the upper-level
objective. In this case, D̂ serves as a near-optimal solution
for the lower-level problem. We compare CG-BiO with
BiG-SAM and a-IRG. Similar to the previous experiment,
we exclude MNG due to its computational intractability.
Moreover, to demonstrate the necessity of the cutting plane
in (9), we also run a baseline method that performs the CG
update over the set Z instead of Xk (cf. the update in (10)).
This method ignores the lower-level objective and may be
regarded as applying the standard CG method solely on the
upper-level objective. In all algorithms, we initialize D̃ with
the dictionary D̂ learned from A and initialize X̃ randomly.

We report our results in Fig. 3. In addition to the the upper-
and lower-level objective values, we use the recovery rate
of the true basis vectors as our performance metric. Specifi-
cally, a basis vector d̃∗

i in D̃∗ is regarded as successfully re-
covered if there exists d̃j in D̃ such that |⟨d̃∗

i , d̃j⟩|>0.9. In
Fig. 3(a) and (b), we observe that CG-BiO converges faster
than BiG-SAM and a-IRG, and it also achieves smaller er-
rors in terms of both the upper- and lower-level objectives.
DBGD achieves a similar upper-level objective value as
CG-BiO, but performs poorly in terms of the lower-level
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objective. On the other hand, the baseline CG method only
focuses on the upper-level objective and as a result incurs
a much larger error on the lower-level objective. In terms
of recovery rate, Fig. 3(c) shows that CG-BiO recovers al-
most all basis vectors in D̃∗ at the end of its execution and
performs slightly better than DBGD. In contrast, both BiG-
SAM and a-IRG only learn from the dataset A due to their
slow convergence, while the baseline CG method “forgets”
the basis vectors previously learned and only recovers those
underlying the new dataset A′.

6 CONCLUSION

In this paper, we proposed a CG-based method to solve
the class of simple bilevel optimization problems. We
closed an important gap in the existing literature by pro-
viding a tight non-asymptotic complexity bound for the
upper-level objective. Specifically, we proved that our CG-
BiO method finds an (ϵf , ϵg)-optimal solution after at most
O(max{1/ϵf , 1/ϵg}) iterations when the upper-level objec-
tive f is convex, and after at mostO(max{1/ϵ2f , 1/(ϵf ϵg)})
iterations when f is non-convex. We further strengthened
our results when the lower-level problem satisfies the Hölde-
rian error bound assumption. The numerical results also
showed the superior performance of our method compared
to existing algorithms.
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A SUPPORTING LEMMAS

A.1 Proof of Lemma 1

Let x∗
g be any point in X ∗

g , i.e., any optimal solution of the lower-level problem. By definition, we have g(x∗
g) = g∗. Since

g is convex and g∗ ≤ g(x0), we have

g(x0)− g(xk) ≥ g∗ − g(xk) = g(x∗
g)− g(xk) ≥

〈
∇g(xk),x

∗
g − xk

〉
,

which implies x∗
g ∈ Xk. Hence, we conclude that X ∗

g ⊆ Xk.

A.2 Improvement in One Step

The following lemma characterizes the improvement of both the upper-level and lower-level objective values after one step
of Algorithm 1.

Lemma 2. Let {xk}Kk=0 be the sequence generated by Algorithm 1. Suppose Assumption 1 holds, then for any k ≥ 0 we
have

f(xk+1) ≤ f(xk)− γkG(xk) +
1

2
γ2
kLfD

2, (14)

g(xk+1) ≤ (1− γk)g(xk) + γkg(x0) +
1

2
γ2
kLgD

2, (15)

Proof. Since the gradient of f is Lf -Lipschitz and Z is bounded with diameter D, we have

f(xk+1) ≤ f(xk) + ⟨∇f(xk),xk+1 − xk⟩+
1

2
Lf∥xk+1 − xk∥2

= f(xk) + γk ⟨∇f(xk), sk − xk⟩+
1

2
Lfγ

2
k∥sk − xk∥2

≤ f(xk) + γk ⟨∇f(xk), sk − xk⟩+
1

2
Lfγ

2
kD

2. (16)

Now using the definition of sk in (10), the definition of G(x) in (7) and Lemma 1, we obtain

⟨∇f(xk), sk − xk⟩ = min
s∈Xk

⟨∇f(xk), s− xk⟩ ≤ min
s∈X∗

g

⟨∇f(xk), s− xk⟩ = −G(xk). (17)

Then (14) follows from (16) and (17).

Similarly, since the gradient of g is Lg-Lipschitz, we have

g(xk+1) ≤ g(xk) + γk ⟨∇g(xk), sk − xk⟩+
1

2
Lgγ

2
kD

2. (18)

Moreover, since sk ∈ Xk, from the definition of Xk in (10) we get ⟨∇g(xk), sk − xk⟩ ≤ g(x0)− g(xk). Combining this
with (18) leads to (15).

B PROOF OF THE MAIN THEOREMS

B.1 Proof of Theorem 1

We first prove the convergence rate of the upper-level objective f , which largely mirrors the standard analysis of the CG
method (Jaggi, 2013). Since x∗ ∈ X ∗

g and f is convex, from the definition of G(xk) in (7) we have

G(xk) = max
s∈X∗

g

{⟨∇f(xk),xk − s⟩} ≥ ⟨∇f(xk),xk − x∗⟩ ≥ f(xk)− f∗. (19)

Subtracting f∗ from both sides of (14) in Lemma 2 and using (19), we obtain that

f(xk+1)− f∗ ≤ (1− γk)(f(xk)− f∗) +
1

2
γ2
kLfD

2. (20)
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Now define Ak = k(k + 1). By substituting γk = 2/(k + 2) and multiplying both sides of (20) by Ak+1, we get

Ak+1(f(xk+1)− f∗) ≤ Ak(f(xk)− f∗) +
2(k + 1)

k + 2
LfD

2 ≤ Ak(f(xk)− f∗) + 2LfD
2.

Hence, if follows from induction that

AK(f(xK)− f∗) ≤ A0(f(x0)− f∗) + 2KLfD
2 ⇒ f(xK)− f∗ ≤ 2KLfD

2

Ak
=

2LfD
2

K + 1
.

This completes the first part of the proof.

The proof for the lower-level problem follows from similar arguments. By subtracting g(x0) from both sides of (15) in
Lemma 2, we have

g(xk+1)− g(x0) ≤ (1− γk)(g(xk)− g(x0)) +
1

2
γ2
kLgD

2. (21)

By substituting γk = 2/(k + 2) and multiplying both sides of (21) by Ak+1, we obtain

Ak+1(g(xk+1)− g(x0)) ≤ Ak(g(xk)− g(x0)) + 2LgD
2.

Hence, if follows from induction that

AK(g(xK)− g(x0)) ≤ 2KLgD
2 ⇒ g(xK)− g(x0) ≤

2KLgD
2

Ak
=

2LgD
2

K + 1
.

Since g(x0)− g∗ ≤ ϵg/2, we obtain

g(xK)− g∗ ≤ 2LgD
2

K + 1
+

1

2
ϵg,

which completes the proof.

B.2 Proof of Theorem 2

Since we use a fixed stepsize in Theorem 2, in the following we will write γk = γ.

We first consider the upper-level objective f . The analysis here is similar to the one by Mokhtari et al. (2018). By using (14)
in Lemma 2, we have

G(xk) ≤
f(xk)− f(xk+1)

γ
+

1

2
γLfD

2.

Summing both sides of the above inequality from k = 0 to K − 1, we get

K−1∑
k=0

G(xk) ≤
f(x0)− f(xK)

γ
+

1

2
KγLfD

2 ≤
f(x0)− f

γ
+

1

2
KγLfD

2,

where we used the fact that f(xK) ≥ f = minx∈Z f(x). This further implies that

min
0≤k≤K−1

G(xk) ≤
1

K

K−1∑
k=0

G(xk) ≤
f(x0)− f

γK
+

1

2
γLfD

2. (22)

To upper bound the right-hand side of (22), note that our choices of the stepsize γ and the number of iterations K satisfy

γ ≤ ϵf
LfD2

and K ≥
2(f(x0)− f)

ϵfγ
.

Thus, we have

min
0≤k≤K−1

G(xk) ≤
f(x0)− f

γK
+

1

2
γLfD

2 ≤ ϵf
2

+
ϵf
2

= ϵf .

This guarantees that G(xk∗) ≤ ϵf by choosing k∗ = argmin0≤k≤K−1 G(xk).
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Now we move to the analysis of the lower-level objective g. For any k ≥ 0, by applying induction on (15) in Lemma 2, it
follows that

g(xk)− g(x0) ≤
1

2
LgD

2
k−1∑
j=0

γ2(1− γ)j ≤ 1

2
LgD

2γ,

where we used
∑k−1

j=0 (1 − γ)j ≤ 1/γ in the last inequality. Furthermore, since g(x0) − g∗ ≤ ϵg/2 and γ ≤ ϵg
LgD2 , this

implies that g(xk)− g∗ ≤ 1
2ϵg +

1
2ϵg = ϵg for any 0 ≤ k ≤ K − 1. In particular, we can take k = k∗ and conclude that

g(xk∗)− g∗ ≤ ϵg . This completes the proof.

C PROOFS UNDER HÖLDERIAN ERROR BOUND ASSUMPTION

C.1 Proof of Proposition 1

SinceX ∗
g is closed and compact, we can let x̂∗ = argminx∈X∗

g
∥x−x̂∥ such that ∥x̂∗−x̂∥ = dist(x̂,X ∗

g ). By Assumption 2,
we obtain

α

r
∥x̂∗ − x̂∥r ≤ g(x̂)− g∗ ≤ ϵg ⇔ ∥x̂∗ − x̂∥ ≤

(rϵg
α

) 1
r

.

When f is convex, we have

f(x̂)− f∗ ≥ f(x̂)− f(x̂∗) ≥ ⟨∇f(x̂∗), x̂− x̂∗⟩ ≥ −∥∇f(x̂∗)∥∗∥x̂− x̂∗∥ ≥ −M
(rϵg

α

) 1
r

,

where we used the convexity of f in the second inequality. When f is non-convex, we have

G(x̂) = max
s∈X∗

g

{⟨∇f(x̂), x̂− s⟩} ≥ ⟨∇f(x̂), x̂− x̂∗⟩

= ⟨∇f(x̂)−∇f(x̂∗), x̂− x̂∗⟩+ ⟨∇f(x̂∗), x̂− x̂∗⟩
≥ −∥∇f(x̂)−∇f(x̂∗)∥∗∥x̂− x̂∗∥ − ∥∇f(x̂∗)∥∥x̂− x̂∗∥
≥ −Lf∥x̂− x̂∗∥2 −M∥x̂− x̂∗∥ (23)

≥ −M
(rϵg

α

) 1
r − Lf

(rϵg
α

) 2
r

,

where we used the fact that∇f is Lf -Lipschitz in (23). This completes the proof.

C.2 Proof of Corollary 1

In the first case where f is convex, we set ϵg = α
r

( ϵf
M

)r
. By Theorem 1, we have f(xK)− f∗ ≤ ϵf and g(xK)− g∗ ≤ ϵg

when

K ≥ max

{
2LfD

2

ϵf
− 1,

4LgD
2

ϵg
− 1

}
= max

{
2LfD

2

ϵf
− 1,

4rMrLgD
2

αϵrf
− 1

}
= O

(
1

ϵrf

)
.

Moreover, Proposition 1 implies that f(xK) − f∗ ≥ −M
( rϵg

α

) 1
r ≥ −ϵf . Putting all pieces together, we conclude that

|f(xK)− f∗| ≤ ϵf and g(xK)− g∗ ≤ ϵg after K = O(1/ϵrf ) iterations.

In the second case where f is non-convex, we set ϵg = min{αr
( ϵf
2M

)r
, α
r

( ϵf
2Lf

)r/2}. By Theorem 2, we can find
k∗ ∈ {0, 1, . . . ,K − 1} such that G(xk∗) ≤ ϵf and g(xk∗)− g∗ ≤ ϵg when

K ≥ (f(x0)− f) ·max

{
2LfD

2

ϵ2f
,
2LgD

2

ϵf ϵg

}
= (f(x0)− f) ·max

{
2LfD

2

ϵ2f
,
2r(2M)rLgD

2

αϵr+1
f

,
2r(2Lf )

r
2LgD

2

αϵ
r
2+1

f

}
= O

(
1

ϵr+1
f

)
.

Moreover, Proposition 1 implies that G(xk∗) ≥ −M
( rϵg

α

) 1
r − Lf

( rϵg
α

) 2
r ≥ − ϵf

2 −
ϵf
2 = −ϵf . Thus, we conclude

|G(xk∗)| ≤ ϵf and g(xk∗)− g∗ ≤ ϵg after K = O(1/ϵr+1
f ) iterations.
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D PRIMAL-DUAL METHOD FOR THE BILEVEL PROBLEM

In this section, we discuss the convergence rate of primal-dual type methods for solving the bilevel problem in (1). We
consider the setting as in Theorem 1, in which both f and g are convex and smooth. To simplify the discussion, we further
assume Z = {z ∈ X | Az ≤ b} where A ∈ Rm×d, b ∈ Rm, and X is a convex and easy-to-project compact set.

To obtain the reformulation in (2), one first needs to estimate the optimal value g∗ of the lower-level problem. Since it is a
convex program with linear constraints, we can implement a first-order primal-dual method (see, e.g., (Chambolle and Pock,
2016)) to find g0 such that |g0 − g∗| ≤ ϵg/4 within at most O(Lg+∥A∥

ϵg
) iterations1. Next, problem (1) can be cast as the

following convex optimization problem with linear and nonlinear convex constraints:

min
x∈X

f(x) s.t. Ax ≤ b, g(x) ≤ g0 +
ϵg
2
, (24)

where we add the term ϵg
2 to ensure that the Slater’s condition holds. Now we can apply any classic or accelerated first-order

primal-dual methods (He et al., 2015; Xu, 2021; Hamedani and Aybat, 2021) to find a solution of problem (24) that is both
ϵf -suboptimal and ϵg

4 -infeasible. For example, the optimal convergence rates obtained by Xu (2021) and Hamedani and
Aybat (2021) imply that after K iterations, the average iterate x̄K satisfies

max {|f(x̄K)− f(x∗
ϵ )| , |g(x̄K)− g(x∗

ϵ )|} ≤ ∆/K,

where x∗
ϵ denotes an optimal solution of problem (24), ∆ ≜ O((Lf + Lg + Cg)D

2 + Cg |λ∗
1|

2
+ ∥A∥ ∥λ∗

2∥
2
), Cg is the

Lipschtiz constant of g, and λ∗
1 ∈ R and λ∗

2 ∈ Rm denote an arbitrary dual optimal solution corresponding to the nonlinear
and linear constraints in problem (24), respectively. Using the fact that f(x∗

ϵ ) ≤ f(x∗) and g(x∗
ϵ ) ≤ g0 +

ϵg
2 ≤ g∗ + 3

4ϵg,
we conclude

f(x̄K)− f(x∗) ≤ ∆/K and |g(x̄K)− g(x∗)| ≤ ∆/K +
3

4
ϵg.

Therefore, to achieve an (ϵf , ϵg)-optimal solution of problem (1), a primal-dual method overall requires

O
(

Lg+∥A∥
ϵg

+ ∆
min{ϵf ,ϵg}

)
primal-dual gradient calls, whereas our proposed method overall requiresO

(
Lg

ϵg
+

(Lf+Lg)D
2

min{ϵf ,ϵg}

)
linear minimization oracle calls. In particular, we observe that the convergence guarantee of primal-dual methods heavily
relies on the norm of the dual optimal variable |λ∗

1|, which may tend to infinity as ϵ approaches zero and the problem in (24)
becomes nearly degenerate.

D.1 Numerical Example

Here we consider a simple two-dimensional example to illustrate the numerical instability of primal-dual methods applied to
the relaxed problem (24). To this end, consider the following problem

min
x∈R2

0.5x2
1 − 0.5x1 + 0.1x2 s.t. x ∈ argmin

z∈Z
{−z1 − z2}, (25)

where Z = {z ∈ R2
+ | z1+z2 ≤ 1, 4z1+6z2 ≤ 5}. The lower-level problem has multiple solutions which can be described

by X ∗
g = {x ∈ R2 | x1 + x2 = 1, x1 ∈ [0.5, 1], x2 ∈ [0, 0.5]} and the optimal solution of (25) is (x∗

1, x
∗
2) = (0.6, 0.4). We

implemented accelerated primal-dual method with backtracking (APDB) proposed by Hamedani and Aybat (2021), one
of the state-of-the-art primal-dual methods, and compared it with our proposed method CG-BiO. Figure 4 illustrates the
iteration trajectories of both methods. We selected the relaxing parameter in (24) as ϵ = 10−5 for APDB. We also used
the same accuracy for ϵg and ϵf when implementing CG-BiO. The primal-dual method finds an ϵ-solution (dark red cross)
within 193 iterations while CG-BiO finds an ϵ-solution (green star) within 20 iterations. Furthermore, we observe a more
stable numerical behavior for CG-BiO in comparison with APDB, which corroborates our theoretical analysis above.

E ADDITIONAL MOTIVATING EXAMPLES

In this section, we provide some additional remarks and two more examples for the bilevel problem in (1).

1Note that this complexity can be improved to the optimal rate of O(
√

Lg

ϵg
+ ∥A∥

ϵg
) using an accelerated method.



A Conditional Gradient-based Method for Simple Bilevel Optimization with Convex Lower-level Problem

0 50 100 150 200
10

-6

10
-4

10
-2

(a) Lower-level gap

0 50 100 150 200

10
-6

10
-4

10
-2

(b) Upper-level gap

0.5 0.6 0.7 0.8

0.2

0.3

0.4

0.5

0.597 0.598 0.599 0.6 0.601

0.399

0.4

0.401

0.402

0.403

(c) Iteration trajectory

Figure 4: The performance of CG-BiO compared with APDB on problem (25).

E.1 Lexicographic Optimization

In Section 2.1, we have seen two instances of lexicographic optimization, where we use the secondary loss to improve
generalization (Example 1) or promote fairness (Example 2). In the following, we describe another standard example where
we use regularization to tackle ill-posed problems.
Example 4 (Ill-posed Optimization). Without an explicit regularization, the empirical risk minimization problem
minz∈Z ℓtr(z) can be ill-posed, i.e., it has multiple optimal solutions or is sensitive to small perturbation in the input
data. To tackle this issue, we can consider a secondary objective function R(·) as another criterion to select one of
the optimal solutions with some desired property. For example, we can find the minimal ℓ2-norm solution by choosing
R(x) = 1

2 ∥x∥
2
2. Such a problem can be formulated as the following bilevel problem:

min
β∈Rd

R(β) s.t. β ∈ argmin
z∈Z

ℓtr(z).

E.2 Lifelong Learning

A popular framework known as A-GEM (Chaudhry et al., 2019) formulates the lifelong learning problem as follows:

min
β

1

n′

n′∑
i=1

ℓ(⟨x′
i,β⟩, y′i) s.t.

∑
(xi,yi)∈M

ℓ(⟨xi,β⟩, yi) ≤
∑

(xi,yi)∈M

ℓ(⟨xi,β
(t−1)⟩, yi). (26)

Here, the objective function is the training loss on the current task Dt = {(x′
i, y

′
i)}n

′

i=1, and the inequality constraint ensures
that the model with parameter β performs no worse than the previous one on the episodic memoryM (i.e., some stored
data samples from the previous tasks).

In this paper, we consider a variant of problem (26), where we further tighten the constraint and require that the model also
minimizes the error on the episodic memory. This leads to the following bilevel problem:

min
β

1

n′

n′∑
i=1

ℓ(⟨x′
i,β⟩, y′i) s.t. β ∈ argmin

z

∑
(xi,yi)∈M

ℓ(⟨xi, z⟩, yi). (27)

Example 3 can be viewed as an instance of problem (27) where the learning problem at hand is dictionary learning. Below
we present another related example from representation learning.
Example 5 (Representation Learning). In meta-learning problems, we aim to pre-train a model that can be easily fine-tuned to
new tasks. This can be often achieved by learning a compact representation that is shared among multiple tasks (Tripuraneni
et al., 2021; Du et al., 2021; Collins et al., 2022). In particular, consider a multi-task linear representation learning
problem with T tasks at the training time. We assume that the data points for the i-th task are generated according to
yji = w∗

i
⊤B∗⊤xj

i + nj
i for j = 1, . . . ,mi, where nj

i is some random noise and B∗ ∈ Rk×d is a common representation
that maps the input in Rd to a lower dimensional feature vector in Rk. When we have access to a diverse set of tasks such
that their heads {w∗

i }Ti=1 span Rk, it is shown that one can find the ground truth representation B∗ by solving the following
problem:

min
B

min
w1,...,wT

T∑
i=1

mi∑
j=1

(
yji−w

⊤
i B

⊤xj
i

)2

s.t. ∥B∥F ≤ ∆, ∥wi∥1 ≤ δ, i = 1, . . . , T,
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where we impose the norm constraints on B and {wi}Ti=1 for some parameters ∆, δ > 0 to resolve the scale invariance of
the problem.

However, if the tasks at the training time are not diverse enough, then we can only learn a partial represention, i.e., a subset
of the feature maps in B∗. One way to further improve the learned representation is to leverage the new tasks we observe
during the test time. Concretely, let ŵ∗

1, . . . , ŵ
∗
T and B̂∗

tr denote the output of the training procedure. When we are given a
new task at the test time, we can improve the representation B̂∗

tr by solving the following bilevel problem:

min
B∈Rk×d

min
wT+1∈Rk

f(B,wT+1) s.t. B ∈ argmin
∥B′∥F≤∆

g(B), ∥wT+1∥1 ≤ δ, (28)

where f(B,wT+1) ≜
∑mT+1

j=1

(
yjT+1−w⊤

T+1B
⊤xj

T+1

)2
is the loss over the test set and g(B) ≜

∑T
i=1

∑mi

j=1

(
yji −

ŵ∗⊤
i B

′⊤xj
i

)2
is the loss over the training set. The rationale is that the solution of problem (28) can fit to both the old

training tasks and the new test task, and hence is a better approximation of B∗ compared to B̂∗
tr. This way, we maintain

the feature maps learned at the training time and at the same time learn new feature maps from the test task. Note that in
problem (28) the upper-level function is nonconvex, while the lower-level problem is convex with multiple solutions.

F EXPERIMENT DETAILS

In this section, we include more details of the numerical experiments in Section 5.

For completeness, we briefly review the update rules of MNG (Beck and Sabach, 2014), BiG-SAM (Sabach and Shtern,
2017), a-IRG (Kaushik and Yousefian, 2021) and DBGD (Gong et al., 2021) in the setup of problem (1). In the following,
we use ΠZ(·) to denote the Euclidean projection onto the set Z .

• Each step of MNG requires solving the following subproblem:

xk+1 = argmin
x∈Qk∩Wk

f(x), (29)

where

Qk ≜

{
z ∈ Rd | ⟨GM (xk),xk − z⟩ ≥ 3

4M
∥GM (xk)∥2

}
,

Wk ≜
{
z ∈ Rd | ⟨∇f(xk), z− xk⟩ ≥ 0

}
,

GM (x) ≜ M

[
x−ΠZ

(
x− 1

M
∇g(x)

)]
,

and M ≥ Lg is a hyperparameter. As we can see, the implementation of MNG is only feasible when the subproblem
in (29) is easy to solve. In particular, it is typically computationally intractable when the upper-level objective f is
non-convex.

• BiG-SAM is given by

yk+1 = ΠZ(xk − ηg∇g(xk)),

zk+1 = xk − ηf∇f(xk),

xk+1 = αk+1zk+1 + (1− αk+1)yk+1,

where ηf ≤ 2
Lf

and ηg ≤ 1
Lg

are stepsizes and αk = min{γk , 1} for some γ > 0. We note that the analysis by Sabach
and Shtern (2017) requires the upper-level objective to be strongly convex, and therefore is not directly applicable in
our setting. Nevertheless, we also implement their method and manually set the hyperparameters.

• The a-IRG algorithm is given by

xk+1 = ΠZ (xk − γk(∇g(xk) + ηk∇f(xk))) ,

where γk is the stepsize and ηk is the regularization parameter. In our experiment, we choose γk = γ0/
√
k + 1 and

ηk = η0/(k + 1)1/4 for some constants γ0 and η0.
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• The DBGD algorithm is given by

xk+1 = xk − γk(∇f(xk) + λk∇g(xk)), (30)

where γk is the stepsize and we set λk as

λk = max

{
ϕ(xk)− ⟨∇f(xk),∇g(xk)⟩

∥∇g(xk)∥2
, 0

}
and ϕ(x) = min{α(g(x)− ĝ), β∥∇g(x)∥2}.

Here, α and β are hyperparameters and ĝ is a lower bound on g∗. In our experiment, we choose α = β = 1 and ĝ = 0.
We also note that Gong et al. (2021) only considered unconstrained simple bilevel problems where Z = Rd. To enforce
the constraint, we replace (30) with the update rule xk+1 = ΠZ(xk − γk(∇f(xk) + λk∇g(xk))).

F.1 Over-parameterized Regression

Dataset Generation. The original Wikipedia Math Essential dataset (Rozemberczki et al., 2021) consists of an 1068×731
matrix. We randomly select one of the columns as the outcome vector b ∈ R1068 and the rest as the data matrix
A ∈ R1068×730. We let λ = 1 in the experiment, i.e., the constraint set is given by Z = {β | ∥β∥1 ≤ 1}.

Initialization. We run the standard CG method with the stepsizes chosen as 2/(k + 2) on the lower-level problem in (4).
We terminate the procedure once the FW gap is no more than ϵg/2 = 5× 10−5 or we have reached the maximum number
of iterations Nmax = 104.

Implementation Details. For our CG-BiO method, we set the target accuracies for the upper-level and lower-level problems
to ϵf = 10−4 and ϵg = 10−4, respectively. We choose the stepsizes as γk = 2/(k + 12) to avoid instability due to large
initial stepsizes. In each iteration, we need to solve a subproblem in the form of

min
s
⟨∇f(βk), s⟩ s.t. ∥s∥1 ≤ λ, ⟨∇g(βk), s− βk⟩ ≤ g(β0)− g(βk). (31)

We can reformulate the above problem as a linear program by introducing s+, s− ≥ 0 such that s = s+ − s−. Specifically,
problem (31) becomes

min
s+,s−

⟨∇f(βk), s
+ − s−⟩

s.t. s+, s− ≥ 0, ⟨s+,1⟩+ ⟨s−,1⟩ ≤ λ, ⟨∇g(βk), s
+ − s− − βk⟩ ≤ g(β0)− g(βk),

where 1 ∈ Rd is the all-one vector.

For MNG, we set M = λmax(A
⊤
trAtr). For BiG-SAM, we set ηf = 2/λmax(A

⊤
valAval), ηg = 1/λmax(A

⊤
trAtr) and

γ = 10. For a-IRG, we set γ0 = 0.01 and η0 = 1. For DBGD, we set γk = 10−4.

F.2 Fair Classification

Dataset Generation. We preprocess the original Adult income dataset (Dua and Graff, 2019) with the same procedure as in
(Zafar et al., 2017), leading to a dataset with 50 attributes for prediction. Moreover, we standardize all the attributes such
that they lie between 0 and 1. In our experiment, we set λ = 100.

Initialization. We run the standard CG method with backtracking line search (Pedregosa et al., 2020) on the sparse logistic
regression problem in (12). We terminate the procedure once the FW gap is no more than ϵg/2 = 5 × 10−5 or we have
reached the maximum number of iterations Nmax = 104.

Implementation Details. For our CG-BiO method, we set ϵf = 10−4 and ϵg = 10−4, respectively. We choose the stepsize
as γk = 0.005/

√
k + 1 instead of a constant stepsize as suggested by Theorem 2. Empirically, we observe that this leads to

faster convergence. The subproblem we need to solve is in the same form as problem (31), which is also solved by a LP
solver.

For BiG-SAM, we set ηf = ηg = 0.1 and γ = 1. For a-IRG, we set γ0 = 5 and η0 = 0.1. For DBGD, we set γk = 0.08.

F.3 Dictionary Learning

Dataset Generation. Each of the sparse coefficient vectors {xi}250i=1 and {x′
k}200k=1 has 5 nonzero entries, whose locations

are randomly chosen. Also, the absolute values of those nonzero weights are drawn uniformly from the interval [0.2, 1].
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The entries of the random noise vectors {ni}250i=1 and {n′
k}200k=1 follow i.i.d. Gaussian distribution with mean 0 and standard

deviation 0.01.

Initialization. The initialization consists of two phases. In the first phase, we run the standard CG algorithm on both the
variables D ∈ R25×40 and X ∈ R40×250 for 104 iterations with the stepsize chosen as 1/

√
k + 1 (k ≥ 0 is the iteration

counter). Then in the second phase, we keep the variable X fixed and update D using the standard CG algorithm with exact
line search. We terminate the procedure and output D̂ and X̂ until the FW gap with respect to D is no more than ϵg = 10−6.

Implementation Details. We choose δ = 3 in both problems (5) and (6). All three algorithms start from the same initial
point. We initialize D̃ ∈ R25×50 as the concatenation of D̂ ∈ R25×40 and 10 columns of all zeros. Moreover, we initialize
the variable X̃ randomly by drawing its entries from a standard Gaussian distribution and normalizing each column to have
a ℓ1-norm of δ. For our CG-BiO method, we choose the stepsize as γk = 0.3/

√
k + 1 instead of a constant stepsize as

suggested by Theorem 2. Empirically, we observe that this leads to faster convergence. The same stepsize rule is also used
in the baseline CG method. In each iteration, we need to solve a subproblem in the form of

min
D̃
⟨∇fD̃(D̃k, X̃k), D̃⟩ s.t. ∥d̃i∥2 ≤ 1, ⟨∇g(D̃k), D̃− D̃k⟩ ≤ g(D̃0)− g(D̃k). (32)

By using the KKT condition, it can be shown that the above problem is equivalent to finding a zero of the following
one-dimensional nonlinear equation involving λ ≥ 0:

D̃ = ΠZ(∇fD̃(D̃k, X̃k) + λ∇g(D̃k)), ⟨∇g(D̃k), D̃− D̃k⟩ = g(D̃0)− g(D̃k),

where the projection on Z = {D̃ ∈ R25×40 : ∥d̃i∥2 ≤ 1, i = 1, . . . , 40} amounts to a column-wise projection on the
Euclidean ball. In practice, we find that it can be solved efficiently by MATLAB’s root-finding solver.

For BiG-SAM, we set ηf = ηg = 0.1 and γ = 10. For a-IRG, we set γ0 = 0.01 and η0 = 1. For DBGD, we set γk = 0.1.


	INTRODUCTION
	PRELIMINARIES
	Motivating Examples
	Assumptions and Definitions

	PROPOSED ALGORITHM
	CONVERGENCE ANALYSIS
	Convergence under Hölderian Error Bound

	NUMERICAL EXPERIMENTS
	Over-parameterized Regression
	Fair Classification
	Dictionary Learning

	CONCLUSION
	SUPPORTING LEMMAS
	Proof of Lemma 1
	Improvement in One Step

	PROOF OF THE MAIN THEOREMS
	Proof of Theorem 1
	Proof of Theorem 2

	PROOFS UNDER HÖLDERIAN ERROR BOUND ASSUMPTION
	Proof of Proposition 1
	Proof of Corollary 1

	PRIMAL-DUAL METHOD FOR THE BILEVEL PROBLEM
	Numerical Example

	ADDITIONAL MOTIVATING EXAMPLES
	Lexicographic Optimization
	Lifelong Learning

	EXPERIMENT DETAILS
	Over-parameterized Regression
	Fair Classification
	Dictionary Learning


