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Abstract Purpose: Finding effective methods to evaluate surgeon technical skill has proven
a complex problem to solve computationally. Previous research has shown that obtaining
non-expert crowd evaluations of surgical performances concords with the gold standard of
expert surgeon review, and that faster playback speed increases ratings for videos of higher-
skilled surgeons in laparoscopic simulation [[1], [2]. The aim of this research is to extend
this investigation to real surgeries that use non-expert crowd evaluations. We address two
questions (1) whether crowds award more favorable ratings to videos shown at increased
playback speeds, and (2) if crowd evaluations of the first minute of a surgical procedure
differ from crowd evaluations of the entire performance.

Methods: A set of 56 videos of practicing (non-novice) surgeons including robotic prosta-
tectomy, hysterectomy, and partial nephrectomy (for 28 “expert” surgeons, and 28 who are
“proficient”), were used to evaluate the perceived technical skill of the surgeons at each
video playback speed used (0.4x, 1.2x, 2.0x, 2.8x, and 3.6x) for the first minute of the
previously rated performance, using the Global Evaluative Assessment of Robotic Skills
(GEARS) assessment criteria. Each video was subsequently rated at 1x speed to obtain ob-
jective ratings for the first minute of the surgical procedure.

Results: Crowds on average did rate videos higher as playback speed was increased. This
effect was observed for both proficient and expert surgeons. Each increase in the playback
speed by 0.8x was associated with, on average, a 0.16-point increase in the GEARS score
for expert surgeons and a 0.27-point increase in GEARS score for proficient surgeons, with
both groups being perceived as obtaining relatively equal skill at the fastest playback speed.

Jason Kelly
Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN
E-mail: kell1917 @umn.edu

N. Heller
Department of Computer Science & Engineering, University of Minnesota, Minneapolis, MN

A. Petersen
Division of Biostatistics, University of Minnesota, Minneapolis, MN

T. Lendvay
Department of Urology, University of Washington, Seattle, WA

T. Kowalewski
Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN


http://arxiv.org/abs/2004.10197v1

2 Jason D. Kelly et al.

It was also found that 22 out of the 56 surgeons were perceived to be significantly different
in skill when just viewing the first minute of performance, with 11 of the 28 surgeons in
both skill categories being rated as belonging to the opposing category.

Conclusion: The observed increase in skill ratings with video playback speed replicates find-
ings for laparoscopic experts in [2], and extends to the context of real robotic surgeries. The
change in perceived technical skill due to increased playback speed for experts and profi-
cient surgeons suggests that crowds do seem biased in rating surgeons as more highly skilled
when they appear quicker, even if speeds seems unrealistic. Furthermore, the large differ-
ences in skill labels when comparing the first minute of surgery to the entire 15 minute video
warrants further investigation into how much perceived skill ratings vary in time (sub-task
level) vs. summative metrics (task level).

Keywords Crowd Sourcing - Video Playback - Surgical Technical Skill - Speed Perception -
Bias

1 Introduction

A third of all deaths in the United States are caused by medical errors, and surgical errors are
one of the largest contributors to this [3]]. Technical surgical skill is directly related to patient
outcomes [4], but it remains a difficult computational task to correctly classify surgeons
into skill levels with a compelling level of accuracy, i.e. never misclassifying an ‘obvious
novice’ as an ‘obvious expert’ and vice versa - the MAC Criterion [3]. The de facto gold
standard for evaluating technical skill is video evaluation by an expert surgeon using Likert-
scale assessment metrics, in which evaluators submit ratings on an anchored scale of 1-5.
Using crowds of non-expert evaluators are a surprisingly accurate way to inexpensively and
rapidly obtain skill level ratings for videos of surgical performances, with a pass/fail rating
that matches 100% of pass/fail ratings by expert surgeons [6]. The fact remains, however,
that humans can be biased in their thinking, and subjective metrics of rating performances
can lead to results we would not expect from computational models of evaluation.

Fig. 1: Frame from a video collected for this study, recorded from a daVinci surgical robot,
Intuitive (Sunnyvale, CA).
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A popular laparoscopic surgical skill assessment metric is the Global Evaluative Assess-
ment of Robotic Skills (GEARS), which is the most common assessment tool for robotic
surgery skills [7]. The subdomains in this metric include: bimanual dexterity, efficiency,
depth perception, force sensitivity and robotic control. Task time is not a direct metric used
to evaluate the technical skill of laparoscopic surgeons with tools like GEARS, however time
for task completion is often seen as one of the most predictive objective forms of evaluating
technical skill [8], [9]. However, there must be ways of objectively evaluating skill between
multiple performances which were completed in the same time span.
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Fig. 2: Illustration of research results (left) which found the frequency of gait in simulated
animals (right) affects the estimated size [10].

1.1 Changes in Perception due to Speed

Research in biological motion processing has observed a relationship between the gait fre-
quency and estimated size of animals and other objects which replicate the joints of the
human body. It was found that when a computer simulation was used to artificially modify
the gait speed of these objects to unnaturally high speeds, study participants perceived the
size of the moving objects as changing. As the gait frequency was increased, the estimated
size of the object enlarged, shown in Fig.[2] [10], [11]]. The results from this study may sug-
gest a link between how humans evaluate biological motion and the speed of a movement.
It is possible this phenomenon extends to other areas of evaluation, such as technical skill in

surgery.

1.2 Technical Skill Ranges

Previous work has shown that crowds are able to discriminate the levels of novice and expert
surgeons and their scores change as playback speed changes - even into motions appearing
artificially sped up [2]]. This was a limited study using a small dataset of laparoscopic train-
ing exercises from the Basic Laparoscopic Urologic Skills dataset [12], [13]], with extremes
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of skill levels (e.g. “obvious novice” medical students with no suturing experience). To test
whether this phenomenon relates to actual surgical procedures, a larger dataset must be used
which incorporates videos of real surgical footage and more practical ranges of surgeon
skill. However, surgeons which are allowed to safely operate on patients can’t ethically be
“obvious” novice surgeons, according to the MAC Criterion [S]. This means the surgeons
in a dataset of real surgical footage will comprise a smaller range of technical skill levels,
with all surgeons being more comparably rated. This necessitates the need to further sepa-
rate experts into two groups: proficient and expert surgeons. Proficient surgeons as stated in
[14] are defined as a surgeon who is well advanced in any branch of knowledge or skill. We
will adopt this as our term for surgeons who are in the bottom quintile of scores from our
surgical videos, as they are still well above average skilled surgeons.

Our motivation in this work is to investigate whether, by increasing video playback
speed in real robotic surgery, surgeons will be perceived by crowds as more skilled when
they appear to be moving faster, and how these effects vary from expert and proficient sur-
geons. We will do this by evaluating the ability of non-expert crowd workers to discriminate
proficient surgeons from experts. Finally we seek to examine the effect of video duration on
ratings following [15].

2 Methods
2.1 Dataset

This study used a novel Robotic Surgery Readiness (RSR) Study dataset, which consists of
343 videos of live robotic surgeries, with matching kinematic data also recorded, though
unused here. These surgeries were performed by attending surgeons and trainees in urology,
gynecology, and general surgery at the University of Washington Medical Center and the
Puget Sound Veterans Administration. Each video was manually edited to include roughly
the first 15 minutes of surgical activity performed by the surgeon. There are a wide vari-
ety of surgical procedures recorded from this dataset including: prostatectomy, cystectomy,
hysterectomy, partial nephrectomy, and sacrocolpopexy. An image of a frame from one of
these surgeries is shown in Fig.[Il A GEARS score for each performance was also obtained
from crowd evaluation.

The range of scores for the RSR videos was fairly small, with most lying between 20-22
out of 25. In an effort to get the largest possible range of skill from this dataset, 28 perfor-
mances from the top quintile of scored performances and 28 from the bottom quintile of
performances were used and given labels of ‘expert’ and ‘proficient’, respectively, keeping
in mind that almost all of the performances would have objectively been considered expert-
like. For semantic analysis, the first minute of surgical activity was extracted from each
12-15 minute video for analysis by crowds.

Amazon Mechanical Turk was the crowd-sourcing platform used for this study, in which
each non-expert crowd worker was paid an average of $0.40 to watch and evaluate a video.
A web domain was created for which Turkers would be redirected to, where they submitted
a consent form and were asked questions about videos. Two different kinds of experiments
were conducted: technical skill perception at different playback speeds and sub-task level
skill labeling.
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Table 1: Likert-scale technical skill perception questionnaire, with five of the six domains
of the GEARS assessment tool, excluding autonomy.

Score | Depth Perception

(1) Constantly overshoots target, wide swings, slow to correct
(@)

3) Some overshooting or missing of target, but quick to correct
“

(5) Accurately directs instruments in the correct plane to target

Score | Bimanual Dexterity

(1) Uses only one hand, ignores non-dominant hand, poor
coordination

@)

3) Uses both hands, but does not optimize interaction
between hands

“

5) Expertly uses both hands in a complementary way to
provide optimal exposure

[ Score | Efficiency

(1) Inefficient efforts; many uncertain movements;
constantly changing focus or persisting without progress

(@)

(3) Slow, but planned movements are reasonably organized

“

5) Confident, efficient and safe conduct, maintains focus

on task, fluid progression

Score | Force Sensitivity

(1) Rough moves, tears tissue, injures nearby structures, poor control,
frequent suture breakage

(2)

3) Handles tissue reasonably well, minor trauma to adjacent
tissue, rare suture breakage

(4)

(5) Applies appropriate tension, negligible injury to adjacent

structures, no suture breakage

Score | Robotic Control |

(1) Consistently does not optimize view, hand position, or repeated collisions
even with guidance

(@)

3) View is sometimes not optimal. Occasionally needs to relocate arms.
Occasional collisions and obstruction of assistant.

“

(5) Controls camera and hand position optimally and independently.

Minimal collisions or obstruction of assistant.

2.2 Technical Skills Perception at Different Playback Speeds

Technical skill perception was measured by surveying non-expert crowds to give each video
performance a GEARS score by rating each of the 5 subdomains shown in Table [1l Forty
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“turkers” were recruited independently for each video, in which each video at each play-
back speed was independently submitted to the website in order to avoid a grouping bias.
Videos were altered to play at 0.4x, 1.2x, 2.0x, 2.8x, and 3.6x, edited using FFmpeg [16], in
which frames were either taken out or added in order to create the resulting playback speed.
The score from each of five subdomains (Depth Perception, Bimanual Dexterity, Efficiency,
Force Sensitivity, and Robotic Control) were summed to create a cumulative score for each
performance in the range of 5-25.

A linear mixed effects model was used to analyze the significance of the various speeds
to the evaluations received. The significance of the time spent on reviewing a video and the
labels given to the surgeons were also examined. It was hypothesized that each Mechanical
Turker on the site should be assumed to have a different slope, to match the difference with
which they relatively evaluate different videos. The evalutor ID given to each rater was
assigned a random effect. In addition, fixed effects for both the speed at which the video
was played and the amount of time spent on the video by the evaluator were controlled for
in the model. The mixed model was compared with a null model, which did not include
the fixed effects, using ANOVA hypothesis testing and comparing the relative information
criteria and correlation between the scores and the various parameters. All data aggregation
and statistics were calculated in Python 3.6 [17] and R [18].

2.3 Sub-Task Level Skill Labeling

To learn if the first minute of surgical activity displayed the same level of technical skill as
the entire 15 minute video and should have the same label, the first minute of each video
at 1x (normal playback speed) was submitted to crowds for review. The mean of these new
scores were then calculated, and the 50th percentile was used as the cut-off point to signify
in this dataset of 56 videos, whether a surgeon would be labeled as a proficient or expert
level surgeon. The differences in these labels were then analyzed further and visualized, to
find if the previously obtained scores for the entire 15 minute video possessed significantly
different skill levels in the first minute, such that the label of the corresponding surgeon was
different than what we had originally obtained.

3 Results

Table 2: Results from the linear mixed effects model testing speed and time spent on evalu-
ation

Fixed Effects Estimate Standard Error df tvalue Pr(>]|t|)
Initial linear mixed effects model (BIC = 52465.36)

Speed 0.046 0.013 13360 3.47 5.31e-04

Elapsed Time -0.0023 3.47e-4 13720 -6.57 5.18e-11

Final linear mixed effects model (BIC = 52410.60)
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Table 3: The types of robotic surgery performed and demographics of the surgeons from the
56 videos used.

Surgery Type N

Demographic N
Prostatectomy 17 Male 17
Hysterectomy 11
o 5 Female 11
P y Mean Age 46.70

Cystectomy 4

Other 19 12.85

Mean Yrs. Experience

3.1 Data Demographics

Table[Blsummarizes the types of robotic surgery and the demographic data from the N = 56
videos (and surgeons) used in this work.

3.2 Technical Skill Perception

GEARS Crowd Scores at Different Speeds
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Fig. 3: All mean crowd evaluations (bold lines) from each proficient and expert surgeon at
various video playback speeds. Each single surgeons video (semi-transparent colors) indi-
cates ratings from N = 40 turkers.
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Fig. 4: The efficiency subdomain as compared to the mean of the other GEARS subdomains,
for expert and proficient surgeons.

The mean of the GEARS score for each group and video are shown in Fig.[3l For expert
videos, each increase in the playback speed by 0.8x was associated with, on average, a
0.16-point increase in the GEARS score (95% CI: 0.10-0.22 point increase; p < 0.05). On
average these scores appear to increase within a sublevel of the playback speeds around 0.4x
to 2.0x, and then level out at all remaining playback speeds. For proficient surgeon videos,
each increase in the playback speed by 0.8x was associated with, on average, a 0.27-point
increase in the GEARS score (95% CI: 0.19-0.35 point increase; p < 0.05). Thus, while
both experts and proficient surgeons experienced increased perceived technical skill as the
playback speed was increased, the mean score obtained at the fastest video playback speed
reached an almost equal skill level for both proficient and expert level performances. Fig. 4]
shows the increase in the efficiency subdomain as well as the mean of the other four domains
to visualize whether efficiency (seen as the most related to speed) is the only increasing
domain. As shown, no major difference is apparent between the two types of domains.

3.3 Sub-Task Level Labeling

Figure [Bl illustrates the difference in GEARS scores by non-expert crowd workers, when
viewing the first minute of the video compared to the entire video. As shown, there is a
noticeable difference in the scores given at these two levels. Most surgeons, when viewed
for the entire 15 minutes, are rated slightly higher than when only the first minute of surgical
activity is performed. Viewing just the label given to the performance (proficient or expert),
by analyzing whether the video was above or below the median score in the group of 56
videos, a total of 11 previously labeled proficient level surgeons, and 11 previously labeled
expert surgeons switched the label they were originally given, when only the first minute of
surgical activity was evaluated.

4 Conclusion

The results from the technical skill perception study give support to our initial hypothesis
that increasing the video playback speed would increase the ratings of experienced sur-
geons. Now this evidence extends to real surgeries using robotic surgical performances.
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Fig. 5: GEARS scores given to the entire 15 minute video of a performance, compared to
only the first minute of the same video.

Surprisingly, however, we discovered that for sub-groups of expert level surgeons ( profi-
cient and expert ) the increase in score happens at a quicker rate for proficient surgeons
than for expert level surgeons. Increasing the playback speed of a slightly less than expert-
level surgeon tends to “wash out” the minor mistakes they have made in the performance,
effectively making the two groups appear more equally skilled at higher playback speeds.
Additionally from analyzing the ‘Efficiency’ subdomain from the GEARS assessment, it
appears that - surprisingly - crowds are also biased to give higher ratings in domains which
are not associated with speed.

The results from the sub-task level skill labeling experiment show us that it may be
necessary to have video evaluated in smaller duration segments, due to the notable disagree-
ment with the skill level assigned to the entire video vs. just using the first minute. This
lends support to the notion that a surgeon’s technical skill may fluctuate in time (on the or-
der of minutes) throughout a surgical procedure. This warrants further study of non-constant
skill mapped to a single summative rating, as this would induce substantial label noise of
computational skill evaluation using machine learning.

We conclude that increasing the video playback speed of performances of practicing
surgeons in typical robotic surgeries results in increased scores as reported by non-expert
crowds. This effect is surprisingly uniform across GEARS subdomains, even those which
should be unaffected by speed. We further conclude that more studies should be done to
investigate variance in time of sub-task level videos of surgical procedures, as the technical
skill of a surgeon may fluctuate on the order of minutes or less during the procedure.
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