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ABSTRACT

In this paper, we consider a new multi-armed bandit (MAB) framework motivated
by three common complications in online recommender systems in practice: (i)
the platform (learning agent) cannot sample an intended product directly and has
to incentivize customers to select this product (e.g., promotions and coupons); (ii)
customer feedbacks are often received later than their selection times; and (iii)
customer preferences among products are influenced and reinforced by historical
feedbacks. From the platform’s perspective, the goal of the MAB framework is to
maximize total reward without incurring excessive incentive costs. A major chal-
lenge of this MAB framework is that the loss of information caused by feedback
delay complicates both user preference evolution and arm incentivizing decisions,
both of which are already highly non-trivial even by themselves. Toward this end,
we first propose a policy called “UCB-Filtering-with-Delayed-Feedback™ (UCB-
FDF) policy for this new MAB framework. In our analysis, we consider delayed
feedbacks that can have either arm-independent or arm-dependent distributions.
In both cases, we allow unbounded support for the random delays, i.e., the ran-
dom delay can be infinite. We show that the delay impacts in both cases can still
be upper bounded by an additive penalty on both the regret and total incentive
costs. This further implies that logarithmic regret and incentive cost growth rates
are achievable under this new MAB framework. Experimental results corroborate
our theoretical analysis on both regret and incentive costs.

1 INTRODUCTION

In recent years, the multi-armed bandit (MAB) framework has received a significant amount of
interest in the learning research community. This is partly due to the fact that, in many online e-
commerce recommender systems (e.g., Amazon and Walmart), the problem of online learning of the
optimal products while making profits at the same time can be well formulated by an MAB problem.
However, although many MAB algorithms have been proposed in this area, it is worth noting that
most of the existing MAB models in the literature have not considered the joint effect of three
common phenomena in e-commerce recommender systems: (i) In many e-commerce recommender
systems, the platform (the learning agent) cannot sample an intended product (an intended arm)
directly and has to incentivize customers (e.g., through promotions and coupons) to sample the
product and receive the sampling feedback from the customers indirectly (e.g., ratings and reviews);
(i1) Customer feedbacks are often received much later than their purchasing times (e.g., a review
may or may not be submitted by a customer even months later after purchasing a product); and (iii)
Customer preferences among products are influenced and reinforced by historical feedbacks, which
may even lead to various viral effects over some products (the more good reviews one product has
received, the more likely that the next arriving customer will prefer this product). The lack of a
fundamental understanding and joint studies of these three important factors in MAB policy designs
motivates us to fill this gap in this paper.

Toward this end, we propose a new MAB framework that jointly considers i) incentivized sampling,
ii) delayed sampling feedback, and iii) self-reinforcing user preferences in online recommender sys-
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tems. However, we note that the MAB policy design for the proposed new MAB framework is highly
non-trivial due to the complex couplings between the aforementioned three factors. First, similar to
conventional MAB problems, there exists a dilemma between sufficient exploration through sam-
pling to learn an optimal arm (i.e., an optimal product), which may incur numerous pullings of
sub-optimal arms, and the greedy exploitation to play the arm that has performed well thus far to
earn profits. Second, there is another dilemma to the learning agent between offering sufficiently
attractive incentives to mitigate biases (due to lack of initial data and self-reinforcing user prefer-
ences) and avoid spending unnecessarily high incentives that hurt the learning agent’s profits. Last
but not least, the delayed sampling feedbacks may render the estimation of arms’ quality during
the MAB process highly inaccurate, introducing yet another layer of uncertainty to the MAB on-
line learning problem, which is already plagued by complications from incentivized sampling and
self-reinforcing user preferences. As in most MAB problems, we adopt “regret” as our performance
metric in this paper, which is defined as the cumulative reward gap between the proposed policy and
an optimal policy design in hindsight. Under the regret setting, the complications due to these three
key factors naturally prompt the following fundamental questions:

(1) How should the agent design an incentivizing strategy to strike a good balance between explo-
ration and exploitation to achieve sublinear (hopefully logarithmic) regrets?

(2) To avoid offering exceedingly high incentives, how should the agent incentivize in order to
attract a user crowd that prefer an optimal arm, so that the users’ self-reinforcing preference
could automatically gravitate toward this optimal arm without further incentives?

(3) Under various delayed feedback situations in the new MAB framework (e.g., unbounded ran-
dom delays, heavy-tailed delay distributions, and arm-dependent delays), could we still achieve
low regrets with low incentive costs?

In this paper, we answer the above fundamental questions affirmatively by proposing a new
“Delayed-UCB-Filtering” policy for the MAB framework that jointly considers incentivizing sam-
pling, delayed sampling feedback, and self-reinforcing user preferences. We show that our proposed
policy achieves O(log T') regret with O(log T') incentive payments. The success of our policy design
hinges upon two key insights: (i) the self-reinforcing user preference effect is actually a “blessing in
disguise” and can be leveraged to establish an important “dominance” condition (more on this later)
that further implies O(log T') regret and incentive costs; and (ii) the impacts of delayed feedback on
regret and incentive costs can be upper bounded under appropriate statistical settings to preserve the
“dominance” condition. Our key contributions and main results are summarized as follows:

* We propose a new MAB model that jointly considers incentivized arm sampling, delayed sam-
pling feedback, and self-reinforcing user preferences, all of which are important features of online
recommender systems. To develop efficient and low-cost incentivized policy for this new MAB
model, we propose a three-phase “UCB-Filtering-with-Delayed-Feedback™” (UCB-FDF) policy,
which contains an incentivized exploration phase, an incentivized exploitation phase, and a self-
sustaining phase. In our UCB-FDF policy, the first two phases judiciously integrate delayed
feedback information, while in third phase, the system solely relies on self-reinforcing user pref-
erences to converge to the pulling of the optimal arm.

* We first show a fundamental fact that, under our UCB-FDF policy, delayed sampling feedback
only has an additive penalty on the regret and incentive cost performances, and that this additive
penalty grows logarithmically with respect to time. Specifically, we first investigate the delayed
feedback impact under the assumption that the feedback delay is an i.i.d. random variable across
samplings with a finite expectation. We show that the UCB-FDF policy achieves logarithmic
growth rates of regret and incentive costs under this setting. Then, we relax the i.i.d. feedback
delay assumption to allow the feedback delay distribution to be arm-dependent. Under this setting,
we also show that similar logarithmic growth rates of regret and incentive can still be achieved.

+ We conduct extensive experiments on Amazon Review Data ! to demonstrate and verify the per-
formance of our UCB-FDF policy as well as the impacts of delayed feedback on real-world sce-
narios. We also verify our theoretical analysis through various product categories and demonstrate
the efficacy of our proposed UCB-FDF MAB policy.

The rest of the paper is organized as follows. In Section 2, we review the literature to put our work
in comparative perspectives. In Section 3, we formulate our new MAB model that captures the three
common phenomena. In Section 4, we present our UCB-FDF policy and analyze its performance.

"https://nijianmo.github.io/amazon/
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Then, we present our experiment settings and results in Section 5. Due to space limitations, the
proofs and part of experiemntal results are relegated to the appendix.

2 RELATED WORK

In this section, we provide a quick overview on three lines of research related to our work: i) bandits
with delayed feedback, ii) bandits with random preferences, and iii) incentivized bandits.

1) Bandits with Delayed Feedback: Motivated by practical issues in the clinical trials, Eick (1988)
was the first to introduce a two-armed bandit model with delayed responses, where the patients’
survival time reports after the treatment are delayed. Recently, Joulani et al. (2013) provided a sys-
tematic study and showed that for delay 7 with a finite expectation, the worst case regret scales with
O(vKTlog T+ KE|[r]), where K is the number of arms. Meanwhile, Vernade et al. (2017) showed
that stochastic MAB problems with delayed feedback have a regret lower bound O (K log T'). How-
ever, this work assumed that the distribution of the random delay is arm-independent. In contrast,
Joulani et al. (2013) considered arm-dependent delay distributions that have an upper bound of the
maximum random delay. More recently, Manegueu et al. (2020) considered arm-dependent and
heavy-tailed delay distributions, where only an upper bound on the tail of the delay distribution is
needed, without requiring the expectation to be finite. Also, Lancewicki et al. (2021) studied the
case where the delay distribution is reward-dependent, which implies that the random delay in each
round may also depend on the reward received on the same round. However, most of these works
on delayed bandits are based on the standard stochastic MAB framework. In contrast, we consider
delayed feedback in incentivized bandit learning with self-reinforcing user preferences, which is a
more appropriate model for real-world recommender systems than the standard stochastic MAB.

2) Bandits with Random Preferences: The impacts of random user preferences in e-commerce
platforms have received increasing interest in several different areas in learning and economics. Ex-
isting works in (Agrawal et al., 2017; 2019) formulated the user preference variation given different
product bundles by the multi-nomial logit model on top of the bandit learning framework and pro-
posed a Thompson Sampling approach that achieves a worst-case regret bound of O(v NT log TK),
where N is the size of recommended arm bundle. With a different focus on preference modeling,
Barabasi & Albert (1999); Chakrabarti et al. (2006); Ratkiewicz et al. (2010) investigated the net-
work evolution with “preferential attachment” that formulates the social behavior known as self-
reinforcing preferences, among which the works in (Shah et al., 2018; Zhou et al., 2021) are the
closet to our work. To our knowledge, Shah et al. (2018) was the first to consider self-reinforcing
user preferences in bandit learning problems. Later, Zhou et al. (2021) incorporated self-reinforcing
user preferences into the incentivized bandit learning framework. The key difference between these
two works is that, in the model in (Shah et al., 2018), only one arm is revealed to users in each round,
while in the model in (Zhou et al., 2021), all arms are revealed to users and users’ arm selections are
influenced by incentives. However, both of these works fall short in modeling online recommender
systems in practice as they assume that an arm-sampling feedback is observable in the same time-
slot when an arm is pulled. However, for most e-commerce recommender systems in practice, user
feedbacks are often not immediately observable. As a result, the decision on which arm to pull next
has to be made without some of the feedbacks from arm-pulling actions in the past.

3) Incentivized Bandits: To our knowledge, Frazier et al. (2014) was among the first to adopt
incentive schemes into a Bayesian MAB setting. In their model, the agent seeks to maximize time-
discounted total reward by incentivizing arm selections. Later, Mansour et al. (2015) studied the
non-discounted reward setting. For the non-Bayesian setting, Wang & Huang (2018); Zhou et al.
(2021) proposed policies that maximize the total non-discounted reward with bounded incentive
costs. Bandits with budget (Guha & Munagala, 2007; Goel et al., 2009) also share some similarities
with our work, where the agent takes actions under resource constraints that are either fixed or with
a given growth rate bound. However, none of the aforementioned works considered the impacts
of delayed feedback on the regret and incentive costs performances. Note that, due to the loss of
information caused by delayed feedback, larger variances in the mean-reward estimations of the
arms are inevitable. This implies that, in order to achieve a more accurate arm quality estimation
under delayed feedbacks, a higher incentive cost is necessary.
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3 SYSTEM MODEL

The system has a set of X > 2 arms denoted by A = {1,..., K}, and each arm a follows a
Bernoulli reward distribution P, with an unknown mean p, > 0. The bandit time horizon has T'
rounds. In each time step ¢ = 1,2,...,T, a user arrives and chooses an arm I; to pull. Then, the

user will receive a random reward feedback X; ~ Pj,. Both the arm selection I; and the feedback

X, are observable to the agent. We use T}, (t) £ 22:1 L{7,—q} to denote the number of times that

arm q is pulled up to time step t. We let 7,,(0) = 0, Va € A. We assume that there is a unique best

arm a* € A in the sense that a* = arg max,ec 4 [tq and let u* = piq+. Also, we define A, £ w—pg
as the gap between the mean of the optimal arm and the mean of arm a.

3.1 DELAYED FEEDBACK MODELING

In this paper, we consider delayed feedback, i.e., when an arm I; is pulled at time step ¢, the corre-
sponding Bernoulli reward X is observed after a delay period 77, 4, i.e., the feedback X is observed
at time step t 4 77, ;. Without loss of generality, we model the random delay time as a random vari-
able 74+ ~ 7,, where the delay distribution 7, of arm a is unknown to the agent.

We consider two settings of delayed feedback. We first consider i.i.d. delays {7;};<7 across time
and arms, i.e., the delay distributions are identical for all arms. Thus, we omit the arm index in
the notations of delay feedback in this setting. Next, we generalize the delay modeling by allowing
arm-dependent delay distributions, where the delay distributions are allowed to differ across arms.
In both settings, we do not make further assumptions on the delay distributions, except that we only
require a finite delay expectation. Note that we allow the support of the delays to be unbounded,
i.e., an infinite delay time is possible in both settings. This models the practical scenarios in online
recommender systems that some user feedbacks (e.g., ratings and reviews) may never be received.

Under delayed feedbacks, we denote the total number of missing feedbacks from arm a up to a time
step t as D, (t) £ 22:1 Listr, >ty Welet D (1) = maxi<s<¢ Dy(5), Va € A as the maximum
total number of delayed feedback for arm a up to time ¢. Note that D (t) = 0, Va € A corresponds
to the non-delayed setting. In this case, T, (¢) denotes the total number of pulling times of arm a
up to time ¢. At each time step t, the agent observes a set of time-stamped feedback denoted by
S¢ € N x {0, 1}. In the set S;, each element is a pair of time index and a Bernoulli reward value,
and the time index is the time step when the corresponding reward is observable. Note that in this
model, by observing the set S;, the agent is aware of the information of both the time step when the
feedback is received, and the arm that generated the feedback. We denote the total reward generated
by arm a up to time t as S, (t) 2 >\ X - Lir,—a,s4r, . <t}» and let S,(0) = 0, Va € A.

3.2 USER PREFERENCES AND INCENTIVE IMPACT MODELING

In this paper, we assume that the arrival at time ¢ has a non-zero probability p,(t) € (0, 1) to pull
each arm a € A. We note that p, (¢) can also be thought of as the user’s preference rate of arm a, and
> acaPalt) = 1,Vt < T. We adopt the widely accepted multinomial logit model in the economics
literature(Bawa & Shoemaker, 1987) to model arm a’s preference rate at time step ¢ as follows:

f(Sa(t - 1) + ea)
Siea f(Sit —1)+6;)

where f(-) : R — (0, +00) is a feedback function that is increasing, and 6, > 0 denotes a fixed
initial preference bias of arm a. We note that the preference rate modeling in (Zhou et al., 2021) is
also based on the multinomial logit model, which appears to be in the same form as in (1). However,
the key difference between our preference model in (1) and that in (Zhou et al., 2021) is that the
accumulative award information S;(¢ — 1) in (1) accounts for reward information that can only be
observed up to time ¢. In other words, S;(t — 1) in (1) is affected by feedback delays. In fact, the
preference model in (Zhou et al., 2021) can be viewed as a special case of our model with zero delay.

Pa(t) = (D

Since the arriving users select arms based on preferences, while the agent aims to maximize the total
reward in the long run, there exists a general difference between users’ arm preferences and agent’s
intended arm selection. To induce users to pull arms following the agent’s goal, the agent needs to
intervene users’ arm pulling by offering incentives on its desired arm, so as to increase the user’
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preference of pulling the arm. That is, the agent incentivizes arm I} at time step ¢ so that py/(t)
increases accordingly. Note that when p/(t) increases, the preference rates on the other arms will
decrease since ), 4 pa(t) = 1,¢ < T'. In this paper, we adopt the “coupon effect” model, which
is widely used in the economics and marketing literature (Bawa & Shoemaker, 1987). Specifically,
we consider a fixed incentive b in each time step and denote the time-dependent incentive impact as
g(b, t). Then, the posterior preference rates of the arms with incentive b are updated as follows:

pilt) +9(bt) . _
=4 196 @)

7pi(t) i1#£a

1+ g(b,t) '

We remark that the definition of the posterior preference update in (2) also follows from the multi-
nomial logit model, which is widely used to model user preferences and their variations in bandit
field (Chen & Wang, 2017; Avadhanula, 2019; Dong et al., 2020; Zhou et al., 2021). Based on the
defined posterior preference, as incentive impact g(b,t) increases to infinity (either the incentive
value b increases to infinity or the users are more sensitive to incentives as time goes by), the user
preference will be induced to pulling the agent’s desired arm a with probability one. For further
detailed interpretations of the incentive impact function g(b,t), we refer readers to the literature
(e.g., (Zhou et al., 2021)). Note also that, due to the random user behaviors, it is possible that
I} # I, i.e., the arm that the agent incentivizes is not the one that a user pulls eventually. We define

the accumulative incentive up to time step ¢ as By £ Zt be, where b, € {0,b}, vVt < T, denotes

s=1
the agent’s binary decision whether to offer incentive b at time step ¢.

3.3 REGRET MODELING

As in most bandit learning problems, the goal of the agent is to maximize the total expected reward
E[Y,c4S4(T)] in the long run. Toward this end, we need the notion of the oracle incentivized
policy, where in hindsight, the agent is aware of the optimal arm a* and can always offer an infinite
amount of payments to users with feedback being observable immediately, so that the posterior
preference rate of arm a* is always infinitely close to one. As a result, the expected accumulative
reward generated under the oracle policy up to time 7" is E[S,~(T")] = p* - T. However, since the
optimal arm a* is unknown to the agent, the goal of the agent is to maximize the total expected
reward E[I'r] in the long run by designing an incentivized policy with low accumulative incentive
in the presence of self-reinforcing preferences and feedback delay. Similar to conventional MAB,
we measure the performance gap between our accumulative reward against that of the oracle policy,
which is denoted by regret Rr. The expected (pseudo) regret is defined as follows:

E[Rr] = p* - T —E[ ) Su(T)].
acA

In this paper, our goal is to minimize E[R7] with low expected accumulative payment E[Br], i.e.,
sub-linear growth rate regarding time horizon 7'. It is clear that any policy with bounded payment
cannot outperform the oracle policy. Thus any expected regret defined by comparing with bounded-
payment policy is upper bounded by our regret.

4 BANDIT POLICY DESIGN AND PERFORMANCE ANALYSIS

In this section, we first present the general version of the UCB-FDF policy that works with any
delay distributions, where we upper bound the delay impact on the regret and incentive costs. Based
on this general result, we then study the regret and incentive costs performance of UCB-FDF un-
der the assumptions of 1) i.i.d. feedback delay across arms/times and 2) arm-dependent delay
distributions. In both cases, we denote the total number of missing feedbacks over all arms by

D(t) £ 3, c.4 Da(t), and denote the maximum number of missing feedbacks during the first ¢ time

steps by D*(t) £ maxj<s<¢ D(s). For arm a at time step ¢, we denote the number of its pulling
times whose feedback is observed by T/ (t) = T,(t) — D,(t), and denote the maximum mean gap
by A* = max,cq4 A,. At time step ¢, we denote the sample mean estimation (due to delayed
feedbacks) of arm a by fi,(t) = S, (t)/T,(t). Our UCB-FDF policy is illustrated in Algorithm 1.
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Algorithm 1 The UCB-Filtering-with-Delayed-Feedback Policy (UCB-FDF).

Require: Time horizon 7" and incentive payment b, the confidence interval of arm a at time step ¢

defined as ¢, (t) = /InT/(2T7(t)).

1: Initialization: Incentivize pulling the arms satisfying 7" (¢) = 0 with incentive payment b until
minge4 7o (t) > 1. Let set Y = A. Mark current time as t.

2: Exploration Phase: While |/| > 1, remove all the arms from set I/ satisfying ji,(t) + ¢, (1) <
max;zaieu (f1i(t) — ¢;(t)) if there is any, then incentivize pulling arm a € arg min; ey T}, (¢)
with payment b. If |U/| = 1, letarm &¢* = {a : a € U} and mark current time as ¢;.

3: Exploitation Phase: Incentivize pulling arm ¢* with payment b until it dominates: Sj-(t) >
D azar (Sa(t) + Dy(t)). Mark current time as ¢5.

4: Self-Sustaining Phase: Users pull arms based on their own preferences until time 7.

UCB-FDF policy contains three phases: an incentivized exploration phase, an incentivized exploita-
tion phase, and a self-sustaining phase. UCB-FDF policy tackles feedback delays in the following
two key aspects: (i) correcting the sample mean estimate of arms by only considering the number of
pulling times that have observed feedback, (ii) setting the length of the exploitation phase in such a
way that the outstanding rewards do not harm the emergence of “dominance” (i.e., one arm receiving
at least half of the rewards) of the sampled optimal arm. Subsequently, these two aspects also influ-
ence the regret and incentive. In order to have enough arm exploration with an unbiased sample mean
estimate, the loss of counted number of pulling times necessitates a carefully designed exploration
phase that incentivizes the pulling of the least informed arm a € arg min;ey T, (t) under delayed
feedbacks. Similarly, the delay-based dominance threshold (i.e., Sa-(t) > >, 4 (Sa(t) + Da(t))
in Step 3 of Algorithm 1) guarantees the dominance of sampled optimal arm, while also accounts
for a longer exploitation phase to mitigate the delayed feedback effect. We now analyze the upper
bounds of the pseudo regret and expected incentive of the UCB-FDF policy.

Lemma 1. (UCB-Filtering-with-Delayed-Feedback) Given a fixed time horizon T, if g(b,t) > 1,
and f(x) = O(x®) with a > 12, then the pseudo regret of Algorithm 1 E[Ry) is upper bounded by
8A4(g(b,1) — 1) + 8A* g(b, 1)A*(E[D*(T)] 4 4K)
E(Rr| < InT + ,
R = 2 =18 o, 1

with the expected payment E[Br] upper bounded by

2g(b,1) +1[8InT Z 8InT
g(b,1) —1 [ A? A2

min a,;éa* a

E[Br] < b

+E[D*(T)] + 4K |.

Remark 1. The UCB-FDF policy achieves a sub-linear total incentive cost by leveraging the prop-
erty of self-reinforcing preference. We can show that as long as the self-reinforcing preference
function f(x) satisfies the condition f(x) = ©(x*) with « > 1, then “monopoly” happens with
probability one (i.e., the scenario where only one arm has positive probability to be pulled, thus
this particular arm is the only preferred arm). A natural incentivizing policy is to incentivize sam-
pled optimal arm until it achieves monopoly. However, the key challenge here is that the onset
of monopoly could take infinite time steps, which implies linear total incentive. Moreover, self-
reinforcing property is not merely disrupting the system from converging to the optimal arm. The
key idea in our UCB-FDF policy design is that under the condition of the self-reinforcing preference
function f(-), after one arm establishes its dominance (i.e., the arm a generates at least half of the
current total reward), it will have exponentially increasing probability to beat other arms and achieve
monopoly. More importantly, we can show that the onset of arm dominance takes sub-linear times,
thus allowing us to achieve sub-linear total incentive costs.

Remark 2. The feedback delay affects the observation of arm dominance, since the missing re-
ward information from suboptimal arms, if not compensated carefully, can potentially destroy the
dominance status of the optimal arm. Thus, to guarantee dominance of the optimal arm, a longer
exploitation phase is necessary, and thus a large total incentive is required.

*The notation ©() in this paper is defined as that, if f(2) = ©(g(z)), then there exist o and two constants
C1,C> > 0, such that Cig(z) < f(x) < Cag(z) forall z > xo.
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The existence of delays in our MAB model introduces an additive term ©(E[D*(T)]) in both regret
and incentive costs, which is dependent on the maximum accumulated delayed feedback up to time
horizon T'. Based on Lemma 1, in what follows, we will analyze the upper bounds of the expected
maximum accumulated delayed feedback under different assumptions on delay distributions.

4.1 ARM-INDEPENDENT DELAY WITH A FINITE EXPECTATION

We now analyze the delay impact under our first assumption. In the arm-independent case, we
consider an i.i.d. sequence {7;}; of random delay regarding time step ¢ < 7. We do not make any
assumption on the shape of the delay distribution, except that we only assume a finite expectation
E[r]. Thus, an infinite random delay is possible under this assumption, implying some feedbacks
may never be observed by the agent. Our results show that under this assumption, we can still
achieve similar orders of the regret and incentive costs growth rates, since the key fact is that we can
upper bound the expected number of such unexpectedly large random delays for every time step ¢.

Existing works (e.g., (Joulani et al., 2013)) provided a systematic study on the delay effect on the
partial monitoring problem with side information, including the stochastic problems. Although these
works only considered the classic stochastic MAB, they share some similarities with our work in
that their analysis of delay effects also leveraged the maximum number of missing feedbacks during
the first ¢ time steps D*(¢). However, since our UCB-FDF policy has a different structure compared
to these works on delayed stochastic MAB, their delay analysis is not applicable to our policy. Next,
we restate a result in (Joulani et al., 2013), which will be useful in our analysis.

Lemma 2 (Lemma 2 in Joulani et al. (2013)). Assume {71,...,7:} is a sequence of i.i.d. random
variables with finite expected value, and let B(t, s) = s + 2logt + v/4slogt. Then, it holds that

E[D*(t)] < B(t,E[r1]) + 1.

Theorem 3. (Arm-Independent Delay) Under i.i.d. delays with a finite expectation and the condi-
tions of Lemma 1, the pseudo regret of Algorithm 1 B[R] is upper bounded by

[29(1), 1)A*+ Z 8Aq(g(b,1) — 1) + SA*} n T+g(b, DA*(\/A4E[m]InT + E[r] + 4K + 1)
o)1 2= (g 1) —1)A2 G -1 /
with the expected payment E[Br| upper bounded by
2g(b,1)+1
g(b,1)—1

b

8 8
2+ +ZE InT + /4E[r]InT + E[r] + 4K + 1|.

min ata* a

We note that the gap summation of arms ), “a* A, plays an important role in both regret and
total incentive. As arm gaps getting smaller, it is more difficult to distinguish the optimal arm from
others. Thus, a longer exploration phase is required to conduct enough sampling, which implies a
larger regret and a larger total incentive costs. On the other hand, the feedback delay causes additive
terms in both regret and incentive costs in terms of the expected delay E[r;], and the delay impact
can be upper bounded as long as the expected delay E[7] is no larger than time horizon T'.

4.2 ARM-DEPENDENT DELAY WITH FINITE EXPECTATIONS

Now, we further relax the assumption on the delay to allow arm-dependent delays. In this case, the
delay has two key impacts on the system: (i) for each arm, there is a different real-time information
loss when estimating the sample mean, (ii) for the whole arm set, different scales of delay cause an
uneven arm estimation, which results in a larger risk of the elimination of the optimal arm in the
UCB-based exploration step. We formally state our arm-dependent delay assumption as follows:

Assumption 1. The delays of arm a € A form an independent delay sequence {7}, where each
element is a random variable satisfying T, 1 ~ Tq, with a finite expectation E[1, 1] < 400, Va € A.

Under Assumption 1, we show a more general result on the upper bound of E[D*(¢)] as follows:
Lemma 4. Under Assumption 1, given a finite number of arms K > 0, it holds that
t
E[D*(t)] < ;4 2E[ran] + 3K log —.
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The result in Lemma 4 implies larger upper bounds of the regret and incentive, due to the existence
of the pre-log factor K. This is a consequence of the situation where, as we consider arm-dependent
delay distributions, the worst case could be evenly distributed expected delays E[r, 1] of arm a with
respect to time horizon 7'. Formally, we state the upper bounds of regret and incentive as follows:

Theorem 5. (Arm-Dependent Delay) Under Assumption 1 and the conditions of Lemma 1, the
pseudo regret of Algorithm 1 B[R] is upper bounded by

3 8A,(g(b,1) — 1) + 8A* T+ g(b,1)A*(BKIn L + >, 4 2E[r,1] + 4K)

o (g(b7 1) — 1)A(2L g(b,1) -1 ’

with the expected payment E[Br| upper bounded by

29(b,1) +1[( 8 8 T
- S )T 43K+ Y Efr,] + 4K
g(b,1)— 1 KN t2 A2> s HK“L; o]+ }

min ata* a

Similar to the results under the i.i.d. delay assumption, we can still upper bound the regret and
incentive by an logarithmic growth rate O(log T") under arm-dependent delay. This implies that even
under the weak delay assumption where only finite expectation is needed, UCB-FDF can estimate
arms without too much bias, and finally achieve logarithmic regret with logarithmic incentive costs.

5 EXPERIMENTAL RESULTS

In this section, we first introduce our experiment setting and the dataset, then illustrate our experi-
mental results. Due to the space limit, the full experimental results are provided in Appendix B.

5.1 EXPERIMENTAL SETUP

1) System Parameters: We conduct experiments under two different delay settings. The system
parameters are set as follows: a three-armed model with Arm/ being the optimal arm, and the initial
preference bias 6 = [1, 5, 5], i.e., the optimal arm has the least initial bias. We choose a three-armed
model since large arm set requires a proportional large time horizon to distinguish optimal arm, while
in the public Amazon Review Data, the amount of reviews for most products is limited (no more
than 3,000 for each product). The self-reinforcing preference function is chosen as f(x) = x® with
o = 2. The constant incentive for each time step is set as b = 1.5 with an incentive impact function
g(b,t) = b. For the delay distribution, we use normal distributions in both assumption setting, as
normal distributions have an infinite support x € R. Under the arm-independent delay setting, we
choose the delay distribution as 7z ~ N (10, 2). Under the arm-dependent delay setting, we choose
the delay distributions as 79 ; ~ N (80,2), 72 ~ N(10,2), and 73, ~ N(10,2) for Arms 1, 2, and
3, respectively. We only generate non-negative samples of delay under both assumptions.

Product Category Arml(optimal) Arm2 Arm3

Pet Supplies 0.773 0.656 0.626
Electronics 0.757 0.605 0.617
Home and Kitchen 0.875 0.588 0.673
Books 0.915 0.551 0.706

Table 1: Means of products (arms) in different categories.

2) Dataset: We use Amazon Review Data (Ni et al., 2019) to provide a practical learning environ-
ment. The Amazon Review Data includes 233 million customer reviews (ratings, posting times) for
29 product categories. In the experiment, we select three products to serve as the arms that have
the largest number of reviews in category Pet Supplies, Electronics, Home and Kitchen, and Books,
respectively. For each product (arm), we leverage the rat ing and unixReviewTime informa-
tion in each review, and the total number of reviews is 3,000 for each product. The range of ratings
in Amazon Review Data is the discrete set {1, 2, 3,4,5}. We convert the rating values to binary by
setting the rating values 1 and 2 as 0 and the rating value 4 and 5 as 1, and the reviews with rating
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Figure 1: The performance of policy UCB-FDF in the face of no delay in (a), the performance of
policy UCB-FDF in the face of arm-independent delay in (b), the performance of policy UCB-FDF
in the face of arm-dependent delay in (c), and the performance of policy UCB-List in the face of
arm-dependent delay in (d).

value 3 are removed. For each product, the binary review ratings are sorted by unixReviewTime,
so the ratings come in real-world order in the experiment. We summarize the mean values of the
products by their Bernoulli ratings in the four selected categories, as shown in Table 1.

5.2 RESULTS AND DISCUSSIONS

1) Results: The experiment results are illustrated in Figure 1. (a) shows the average regret and
incentive trends with policy UCB-FDF under setting with no delay. (b) and (c) show the average
regret and incentive trends with policy UCB-FDF under settings with arm-independent delays and
arm-dependent delays, respectively. In Figures (c) and (d), we compare the performances with
policy UCB-FDF and baseline policy UCB-List (Zhou et al., 2021). Specifically, Figure (d) shows
the performance under policy UCB-List in the face of arm-dependent delays that is the same as that
in (c). Each curve is constructed by regret or incentive values with different time horizons from
T =150 to T' = 3000, incremented by 150. Each node value in curves are averaged by 100 trials.

2) Discussion: Comparing (a) with (b) and (c) in Figure 1, we can observe the delay impact on
regret and total incentive, that both the regret and total incentive are increased due to the delayed
feedback. Comparing (c) and (d) in Figure 1, we observe that under the bandit instances in the face
of same delayed feedback, our policy UCB-FDF reaches sub-linear growth rate in both regret and
total incentive, except the total incentive in category Pet Supplies, since it may require more time
steps to converge while our data is limited, while the policy UCB-List cannot guarantee sub-linear
growth rate for both regret and total incentive.

6 CONCLUSION

In this work, we proposed a practical bandit model that considers the joint effect of the incentive
impact, delayed feedback and self-reinforcing user preferences in real-world recommender systems.
We proposed a UCB-FDF policy that achieves logarithmic growth rates of pseudo regret and to-
tal incentive costs for a fixed time horizon 7'. We also analyzed how different delay assumptions
influence the regret and incentive costs. Specifically, we considered arm-independent delays and
arm-dependent delays with weak assumption that only requires a finite expectation. The evaluations
with real-world customer review data showed the effectiveness of our UCB-FDF policy in achieving
sub-linear regret while spending only sub-linear total incentive costs under delayed feedback.
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A APPENDIX I: PROOFS

A.1 PROOF OF LEMMA 1

Lemma 1. (UCB-Filtering-with-Delayed-Feedback) Given a fixed time horizon T, if g(b,t) > 1,
and f(x) = O(x%) with o > 13, then the pseudo regret of Algorithm 1 E[Rr| is upper bounded by
8Aq(g(b,1) — 1) + 8A* b, DA*(E[D*(T)] + 4K
g < 3 $2a00 ) ) £8AT g0 A (ED (D) + 4K)
o (g(b,1) —1)A2 g(b,1) -1

with the expected payment E[Br) upper bounded by

E[Br] <b-

2g(b,1) +1[8InT 8InT N
9(b,1) [ 3 + E[D*(T)] + 4K |.

g(b,1) —1 [ A2 A2

min aiax a

By the law of total expectation, the expected regret up to time 7" can be bounded as follows:

[Rr]
= E[R, ] + E[Rr | &* = a*|P(&* = a*) + E[Rr | &* # a*|P(a* # a*)
< E[R:,] +E[Rr | " = a*]| + T -P(a* # a”)
— E[Ry| + E[Rs, | &* = a*] + E[Rr — Ry, | &* = a*] + T - P(@* # a”)
—E[Ry] + E[Re,] + E[Rs, — Ry, | 8" = a’] + B[Ry — Ry, | @* = a*] + T-P@* £ a*). (3)

We start from bounding the term E[R;,]. Note that the goal of the initialization step is to ensure that
the confidence interval for each arm is initialized. Then we have

E[Rq,] < Elto]

() <1 + g(b,1)
<m- - v 7
g(b, 1)

+E[Tl]>

S m- (Elr] +2), (4)

where (i) is because that by definition of initialization, for each arm a, it contributes to ¢y in terms
of its incentivizing attempts for being pulled by users once, and its delay period after which arm a
will be regarded as initialized, then at time step ¢, when offered incentive b, arm a has probability
no less than g(b,t)/(1 + g(b,t)) to be pulled by users, thus the number of attempts for arm a to be

pulled once is a geometric random variable with parameter no less than g(b,¢)/(1 + g(b,t)), with
expectation value (14 g(b,t))/g(b,t), and (ii) is because that by condition g(b,t) > 1, we have
(1+g(b,t))/g(b,t) < 2.

Then we bound the term E[R;, |. During the exploration phase, since the regret is caused by pullings
of sup-optimal arms, the expected regret after ¢ < ¢; time steps can be written as

> AE[TL(1)]

aFa*,acA

Thus we can bound the expected regret during the exploration phase E[R;,] by bounding each
E[T,(t1)] for a # a*. Let U(¢) denote the set of arms that are activated, i.e., can get incentive,
at time ¢. Consider the following two cases during the exploration phase:

(a) Attime ¢t < 1, a* € U(t) and there exists at least one suboptimal arm a € A, a # a* such that
a € U(t). Recall that ¢, (¢ \/ln T/2(T. D,(t)) is the confidence interval of arm a at time

3The notation ©() in this paper is defined as that, if f(2) = ©(g(z)), then there exist o and two constants
C1,C> > 0, such that Cig(z) < f(x) < Cag(z) forall z > xo.

12
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step t. In this case, we have:

P(3a #a* :a € U(t),a* € U(t)) %)
2 P(1alt) + calt) >
< P(j1a(t) + calt) > @ (t) = ca= (1))

L (ul0) + ) > o+ ) +P(0) - ) < - 5, ©
where (i) is obtained since arms a, a* € U(t) implies that the upper confidence bound of either arm
is larger than the other arms’s lower confidence bound, (ii) is because p, + A, /2 = pu* — A, /2, and
the event {fio (t) + ¢4 (t) > 4*(t) — cq+(t)} implies either the event {jio (t) + ca(t) > pa + Ao /2}
or the event {[i*(t) — co= (t) < p* — A, /2}. We consider the first probability in Eq. (6), and similar
bound will be obtained for the second probability. By Chernoff-Hoeffding bound we have

A, R A,
P@AU+%@>Mw¥2)=P@AU—m>2—%@)
< o~ 2Tu®-Da() (5 —ca®)

:e—(lnT-}-ATZ(Ta(t)—Da(t))—Aa 2(Ta,(t)—Da(t))1nT). 7

Let A7?"(Ta(t) — Dy(t)) — Aa\/2(T,(t) — Da(t)) InT = 0, we obtain T, (t) = 8InT/A2 + D, (t)
and Eq. (7) equals 1/7'. Note that as (T,(¢t) — D,(t)) increases, Eq. (7) decreases monotonically.
Thus, in this case, the expected regret contributed by a suboptimal arm a € A during the exploration
phase is bounded by

AGE[Ty(t)] < ST + A, (E[Da(tl)] +T-P(t<ty:aclU(t),a" € u(t))>
< SET+AQ(E{DG<M)1 +2) (8)
< SKIT—FAG(E[DZ(LH)} +2). ©)

(b) At time ¢t < 1, a* is eliminated by some suboptimal arm a € U(t),a # a*. In this case, with
similar technique as that in case (a) and Chernoff-Hoeffding bound, we have

P(3a#a*:acU(t),a” ¢U())
< P(fia(t) — calt) > 4 (1) + car (1)
) A, . A,
< P(fiae (1) + Car (1) < prar = ) + P(j1a(t) = ca(t) > pa + 57)
< 2T O=Dar (1) (S teas () ~2ATo(O=Da() (Sr+ea(t)”

e—ATZ(Ta* (£)=Dox (£))—InT—Aa\/2(Tox (1) =D (£)) In T

+ e_ATg(Ta(t)_Da(t))_lnT_Aa\/Q(Ta(t)—Da(t)) InT
<or~ % (10)

Note that P(¢* # a*) = P(3a # a* : a € U(t),a* ¢ U(t)). Thus, in this case the expected regret
contributed by a suboptimal arm a € A is upper bounded by

AGE[T,(t1)] < AT -P(a € U(L),a* ¢ U(t)) = 2A,. (11)

Summing Eq. (9) and Eq. (11) over all suboptimal arms, the expected regret during the exploration
phase is bounded by:
E[Ry,] < )

a#a* a

8InT

+ Ay (E[D(t1)] +4). (12)

13
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During the exploration phase at time step ¢ < ¢;, since the agent offers incentive payment b to
the user for pulling arm 4, the probability that the arm i is pulled is (p;(t) + g(b,t)) /(1 + g(b, t))
lower bounded by g(b,t)/(1 + g(b,t)). Thus, the number of attempts for arm i to get pulled is a
geometric random variable with expectation no larger than (1 + g(b,t))/g(b,t). Since the above
cases (a) and (b) imply that at most 8 InT//A2 + E[D; (t1)] + 4 expected number of pullings from
each suboptimal arm ensures a good estimation of the optimal arm, thus, the expected number of
incentivizing attempts on a suboptimal arm a to guarantee 8 In7//A2 + E[D?(t1)] + 4 number of
pullings is upper bounded by:

t1

g(b,1)+1/8InT y

E|: E ].{Ig_a}:| g g(b 1) A2 +E[Da(t1)] +4 :
s=1 ’ a

Thus, E[7] is upper bounded by:

- Spl S| 2T (B ) ), o

ac€A s=1 min ata* a acA

where (i) is due to the requirement of T}« (¢;) to be at most 8 InT//A2 .+ E[D}.(t1)], since the

min
exploration phase stops once the sampled strongest suboptimal arm is eliminated. By the definition
of dominance, arm a* is expected to dominate at time ¢t > ¢, if

pa BT (8) = Do (0] > 3 paBIT (1)
a#a*

We tighten the condition by narrowing the left-hand-side and amplifying the right-hand-side, and
obtain the sufficient condition of dominance as follows:

paE[Tae (t) = Da- (1)) > > paB[Tu(t)]

oy
> BT (£) — D2 () — Ta- (12)] > ; n (Emm)] T E[Ta(t) - Tamﬂ)

= o E[Tar (8) =D (1)~ Toe (11)] > ;[% In T+ pr (B[DZ (8)]+4) + 1B [Ta () - T, a(tl)]}
= g W - IE[D};*(t)]} S a;* [Z’”g InT + pq (E[D (1)) + 4)] + W
SR —n] > ggz E * 1 [; SEQT +3 (ED;0)] + 4)] : (14)

a acA

where (i) is obtained since T+ (¢1) > 0 and D3. (¢t) > Dg-(t), (ii) is because by incentivizing arm
a*, we have pa-(t) > g(b,t)/(g(b,t) + 1) and pa(t) < 1/(g(b,t) + 1) for a # a*, and (iii) is the
rearrangement. Since time ¢, is defined as the earliest time to reach dominance, we can upper bound
E[ts — t1] by

b,1)+1 8InT .

Elty — t1] < 90, 1) { Z 5+ Z (E[D}(t2)] +4)]. (15)

g(b,1) — ata* S
Thus, we can bound the regret during the exploitation phase E[R;, — Ry, | a* = a*] in (3) by
E[R Ry |a" =a” 2 A E[ta — 1
[t2_ t1|a’_a]—g(b,1)+1' [2_1]
8A*InT A*(E[D}(t2)] +4
<Y me 1t X ( [b 1(2)]1 Lo
a#a* a(g( ’ )_ ) cA g( ) )_

a

where (i) follows because during the exploitation phase there is always a positive probability p, (t)
which is at most 1/(g(b,t) + 1) to pull suboptimal arm a. After arm a* dominates, we want to

14
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prove that arm a* has exponentially large probability to achieve monopoly, so as to upper bound the
regret in the self-sustaining phase E[Ry — Ry, | a* = a*]. Since the dominance proof only involves
the accumulated reward S, (), our situation reduces to the non-delay case in expectation. Thus, we
omit the proof in Zhou et al. (2021) and show the result by

E[RT _ RTS ‘ aF = a*] < e—(logT)'Y + e—(logT—‘rl)‘r fo, (17)
with the summation on the right hand side bounded by O((log T)'~7e~1°sT)") and v € (0,1/4).
Now, summing up Egs. (4),(10),(12),(16),(17), we obtain the regret upper bound stated in Lemma 1.
By using Eqs (13) and (15), the expected incentive E[Br] can also be upper bounded by
E[Br]
(Elt1) + Efts —t1]) - b
g(b,1)+1[8InT Z (SblnT
- g1 [ A7 AZ

min aa*

+ 4b) + E[D*(tl)]}

g(b,1) + 1{ 8bInT
aF#a*

" g(b,1) -1 Az T bE[D*(t2)] + 4bK}

® g(b,1)+1[8InT 8bInT
<
~ogb1) LA 2 &

min ata* a

+ bE[D*(t5)] + 4bK}

g(b,1) +1 8bInT
E[D* 4K
T -1 2 A +OE[D"(t2)] + 4b

_gb,)+1 8T (g, 1)+1 g(b1)+1 8bInT .
T 1) A, gD g )1 a;*Tg”E[D (t2)] + 4bK
i 2g(b,1) +1[8bInT 8bInT .
< I
= g 1) -1 [Afmn a;* Az TUEID “2”*4“47

where (i) follows from D*(t3) > D*(t1) since ta > t1, and (ii) follows from rearranging of the
coefficients containing g(b, 1).

A.2 PROOF OF THEOREM 3

Theorem 3. (Arm-Independent Delay) Under i.i.d. delays with a finite expectation and the condi-
tions of Lemma 1, the pseudo regret of Algorithm 1 B[R] is upper bounded by

29(b, 1)A* 8A.(g(b,1) — 1) + 8A* g(b,1)A*(/4E[]InT + E[r] 4+ 4K + 1)
[g(b, H—1" a;* (g(b,1) — 1) A2 g(b,1) —1 ’

} InT+

with the expected payment E[Br| upper bounded by

29(b,1) + 1 8 8
- 9 Z \InT + /AE[r|InT +E AK +1].
b O [( + 1z +Y N) nT + [A]InT + E[r] + 4K +

min ata* a

Combining the results in Lemma 1 and Lemma 2, we obtain that the regret is upper bounded by

E[Rr] < Z

a#a*

8Aa(g(b,1)—1)+8A*1 T+g(b,1)A*(E[Tl]+2lnT+ AE[r]In T+4K+1)
(ob1)—1)az g(b.1) 1

Then by some straightforward rearrangements we obtain the regret upper bound in Theorem 3.
Similarly, by replacing E[D*(T")] with its upper bound in the incentive upper bound, we obtain the
rearranged incentive upper bound in Theorem 3.
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A.3 PROOF OF LEMMA 4

Lemma 4. Under Assumption 1, given a finite number of arms K > 0, it holds that

t
E[D*(t)] < ) 2E[ra1] + 3K log e
acA

We consider a two-armed model with arm a and b, with arm-dependent delay distribution 7, and 7y
Without loss of generality, we assume that E[7, 1] > E[7, 1]. Then, the worst case where D*(¢) is
maximized is that one first consecutively pull arm a for ¢, times, then consecutively pull arm b for
the rest ¢t — ¢, times. Now, consider another two cases where arm a and arm b are pulled for ¢, times
and t — ¢, times independently, we denote their maximum outstanding feedback up to time step ¢,
and t — t, by D} (t,) and Dj (t — t,) respectively. We obtain the relationship below at time step ¢:

D*(t) < Dy(ta) + Dy (t — ta),
Now, by the result in Lemma 2, we obtain that

E[D*(t)] < E[D;(ta)] + E[Dy (t — ta)]
©)

< 3" Efria] +2(logta +1og(t — o)) +2y/Elra 1] logta + 2y/Elm 1] log(t — ta)
i=a,b

(ii)

< Z E[r;1] + 2(1og to + log(t — ta)) + E[rg,1] + logt, + E[rp1] + log(t — ta)
i=a,b

= Z 2E[7;1] + 3(log tq + log(t — ta))
i=a,b

(iii) t

< Y 2E[ria] +3-2log 5

i=a,b

where (i) is by the result in Lemma 2; (ii) comes from the inequality 2vab < a + b; and (iii)
comes from the fact that ¢/2 is the maximizer of function h(z) = logx + log(t — ). This result
can be straightforwardly extended to multi-armed model with K > 2 by the relationship D*(t) <

ZiEA D:(tl) with ZiEA ti =t.
A.4 PROOF OF THEOREM 5

Theorem 5. (Arm-Dependent Delay) Under Assumption 1 and the conditions of Lemma 1, the
pseudo regret of Algorithm 1 B[R] is upper bounded by

Z 8Aq(g(b,1) — 1) + 8A* W4 g(b,1)A*(BKIn L + >, 4 2E[r41] +4K)
(9(b,1) —1)A2 g(b,1) —1 ’

a#a*
with the expected payment | Br| upper bounded by

2(b,1)+1[/ 8 8 T
. — | InT Kln— E 4K |.
b g(b@)l[(A? +ZAZ,>H F3K It D Blraal + }

min . ggx acA

Combining the results in Lemma 1 and Lemma 4, we obtain that the regret is upper bounded by

t
_ . (b, DA (X, 4 2B[ran] + 3K log — + 4K
Bl < 3 804(g(b.1) 1) +8A" (Xaea S
S (e 1) —1)A2 g(b,1) — 1

Thus we obtain the regret upper bound in Theorem 5. Similarly, by replacing E[D*(T')] with its
upper bound in the incentive upper bound, we obtain the rearranged incentive upper bound in The-
orem 5.
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B APPENDIX II: EXPERIMENTS

We provide the full details of the experiments here.

B.1 DELAY ASSUMPTIONS COMPARISONS

In this section, we compare our policy UCB-FDF with UCB-List in Zhou et al. (2021). The system
parameters are almost the same as that in Section 5.1. We use the three-armed model with the initial
preference bias 6 = [1, 5, 5]. The self-reinforcing preference function is chosen as f(x) = z* with
a = 2. The constant incentive for each time step is set as b = 1.5 with an incentive impact function
g(b,t) = b. The experiment results are illustrated in Figure 2. We choose the delay distribution as
Tt ~ N(10,2), 7o ~ N(15,2), and 73 ~ N(18,2) for arml, arm2, arm3, respectively. We
only generate non-negative samples of delay under both assumptions. (a) and (b) show the average
regret and incentive trends with policy UCB-FDF under settings with arm-independent delays and
arm-dependent delays, respectively. Each curve is constructed by regret or incentive values with
different time horizons from 7" = 150 to 7" = 3000, incremented by 150. Each node value in curves
are averaged by 100 trials. Figure (c) illustrates the 100 values of regret or incentive costs with time
horizon 7" = 3000 under arm-dependent delays.
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Figure 2: Regret and incentive trends of four categories under two different delay settings in (a) and
(b). Jittered plot of 100 random cases with 7" = 3000 under arm-dependent delays in (c).

Discussions: From the figures, we observe that our UCB-FDF policy achieves sub-linear growth
rates for regret and incentive costs under our assumptions of feedback delays. Comparing results
under arm-independent delays in Figure 2(a) and arm-dependent delays in Figure 2(b), we observe
that arm-dependent delays require higher incentive costs and result in larger regret, due to the longer
exploration and exploitation phases. Comparing regrets in different categories, we observe that the
regret growth trends of categories “Books” and “Home and Kitchen” increase rapidly initially but
quickly slow down, since the arms in these two categories have larger gap summations Za#* A,.
Although a large gap summation may cause larger regret before the policy finds the optimal arm,
it also allows the algorithm to distinguish the optimal arm faster. More straightforward results
can be seen by the incentive curves in different categories. From a different angle, as we show in
Figure 2(c), some of the total incentives in category Pet Supplies are exactly 4500, implying that in
many random cases, the policy is still in the exploration or exploitation phase, while in most of the
random cases in categories Books and Home and Kitchen, the incentive can stop early while also
reach sub-linear regret. This difference is also caused by the variation in gap summations.
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B.2 DELAY DISTRIBUTION COMPARISONS

In this section, we compare performance of policy UCB-FDF under different delay distributions
using the data in category Books. The experiment results are illustrated in Figure 3. (a) in Fig-
ure 3 shows the different regret under different delay distributions, and (b) shows the corresponding
total incentive. For arm-independent delays, we show the policy performance under distribution
N(20,5), N(40,5), and Ezp(0.1), Exp(0.01). For arm-dependent delays, we choose the delay
distribution as 71 ; ~ N(40,5), 724 ~ Exp(0.01), 73, = 0 for arm1, arm2, arm3, respectively.

We also show the average exploration phases (#1) and average exploitation phases (¢2) under four dif-
ferent settings of delay distribution: i) no delay; ii) arm-independent delay with normal distribution
N (40, 5); iii) arm-independent delay with exponential distribution Exp(0.01); iv) arm-dependent
delay with 74 4 ~ N(40,5), 724 ~ Exp(0.01), 73, = 0 for arm1, arm2, arm3, respectively. The
results are shown in Table 2.
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Figure 3: Regret of policy UCB-FDF in the face of different delay distributions in (a), and the
corresponding total incentive in (b).

Time Horizon 300 600 900 1200 1500 1800 2100 2400 2700 3000
No delay 300 600 781 790 796 803 809 813 816 818
7 N (40,5) 278 527 691 705 717 724 736 743 748 796
L MEzp(0.01) 298 595 863 880 896 901 907 915 919 927
Arm-dependent | 279 555 739 760 764 769 780 783 788 800
Time Horizon 300 600 900 1200 1500 1800 2100 2400 2700 3000
No delay 300 600 795 802 @ 811 816 823 826 831 835
7 N(40,5) 291 539 745 7759 771 777 787 793 7198 847
2 [Exp(0.01) 299 596 894 1010 1024 1024 1030 1038 1043 1051
Arm-dependent | 290 567 793 816 823 827 836 841 846 854

Table 2: The average exploration phases (¢;) and average exploitation phases (#2) under four differ-
ent settings of delay distribution.

Discussion: From Figure 3, we observe that the policy performance is impacted by different delay
distributions and different distribution parameters. It aligns with our theoretical analysis that the
case with no delay has the smallest regret, and as delay expectation getting larger, we have larger
expected regret and larger total incentive. From Table 2, we firstly have the general observation that
as time horizon increases, both the exploration phase and the exploitation phase are increasing, due
to a more accurate estimation over arms. On the other hand, we observe that the length of exploration
phase is problem-dependent, while the length of exploitation phase is positive proportional with the
value of expected delay, which is due to our exploitation mechanism where dominance threshold
grows with expected delay.
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B.3 COMPARISON WITH DIFFERENT PARAMETERS

In this section, we compare the performance of policy UCB-FDF under different system parameters
using the data in category Books, specifically, we compare the impact of different strengths of feed-
back function f(-) and incentive impact function g(-). We use the setting f(x) = z* with « = 2
and g(b,t) = b as the comparison group. For the other four groups of experiment, we use o = 3
and o = 4 for feedback function with g(b,t) = b, and g(b,t) = 2b and g(b,t) = 3b for incentive
impact function with o = 2, respectively. (a) in Figure 4 shows the different regret under different
parameters, and (b) shows the corresponding total incentive.
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Figure 4: Regret of policy UCB-FDF in the face of different feedback functions and incentive impact
functions in (a), and the corresponding total incentive in (b).

Discussion: For the feedback function f(-), as « increases, the strength of self-reinforcing prefer-
ences is enhanced, which implies that the preferences are easier to be induces to one arm, so that we
observe smaller regret. For the incentive impact function g(b, t) = c-b, as the coefficient ¢ increases,
the preference impact of a unit payment is enhances, implying that users are easier to be affected
(controlled) by the incentive, thus we observe a slightly smaller regret, with obviously decreased
total incentive.
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