
GADGET: Online Resource Optimization for
Scheduling Ring-All-Reduce Learning Jobs

Menglu Yu1 Ye Tian1 Bo Ji2 Chuan Wu3 Hridesh Rajan1 Jia Liu4,1
1Department of Computer Science, Iowa State University

2Department of Computer Science, Virginia Tech
3Department of Computer Science, The University of Hong Kong

4Department of Electrical and Computer Engineering, The Ohio State University

Abstract—Fueled by advances in distributed deep learning
(DDL), recent years have witnessed a rapidly growing demand
for resource-intensive distributed/parallel computing to process
DDL computing jobs. To resolve network communication bot-
tleneck and load balancing issues in distributed computing,
the so-called “ring-all-reduce” decentralized architecture has
been increasingly adopted to remove the need for dedicated
parameter servers. To date, however, there remains a lack of
theoretical understanding on how to design resource optimization
algorithms for efficiently scheduling ring-all-reduce DDL jobs
in computing clusters. This motivates us to fill this gap by
proposing a series of new resource scheduling designs for ring-
all-reduce DDL jobs. Our contributions in this paper are three-
fold: i) We propose a new resource scheduling analytical model
for ring-all-reduce deep learning, which covers a wide range
of objectives in DDL performance optimization (e.g., excessive
training avoidance, energy efficiency, fairness); ii) Based on the
proposed performance analytical model, we develop an efficient
resource scheduling algorithm called GADGET (greedy ring-all-
reduce distributed graph embedding technique), which enjoys a
provable strong performance guarantee; iii) We conduct extensive
trace-driven experiments to demonstrate the effectiveness of the
GADGET approach and its superiority over the state of the art.

I. INTRODUCTION

In recent years, the rise of complex deep learning appli-
cations has led to a rapidly growing demand for resource-
intensive (e.g., GPUs, memory, energy) distributed/parallel
computing to process deep learning training tasks. Tradition-
ally, most distributed deep learning (DDL) frameworks are
based on the parameter server (PS)-worker architecture, which
consists of a set of PS(s) and workers. Despite its simplic-
ity, the PS-worker architecture suffers from two scalability
limitations: i) The topology of the PS-worker architecture
creates a communication bottleneck at each PS as the num-
ber of workers increases; and ii) The centralized PSs are
vulnerable to the single-point-of-failure risk. To overcome
these scalability weaknesses, the more sophisticated “ring-all-
reduce” (RAR) parallel computing architecture has become
increasingly popular for DDL training and has been supported
by many mainstream DDL frameworks (e.g., Tensorflow [1],

This work has been supported in part by NSF grants CAREER CNS-
2110259, CNS-2112471, CNS-2102233, CCF-2110252, ECCS-2140277,
CNS-2112694, CCF 1934884, CNS 2120448, a Google Faculty Research
Award, and Hong Kong RGC grants HKU 17204619, 17208920, 17207621.

Pytorch [2]). Specifically, by forming a ring between the
workers to jointly perform parameter sharing and reduction,
the RAR architecture removes the need for dedicated PS(s),
hence alleviating the single point of failure.

However, with the increasing adoption of the RAR ar-
chitecture for DDL training, an important question naturally
emerges: How could we design resource optimization algo-
rithms to efficiently schedule RAR-based DDL training jobs
over networked computing clusters? Answering this question
is critical because: i) Multi-core high-throughput GPU hard-
ware for cloud-based machine learning services is expensive,
which requires efficient GPU utilization. For example, an
Amazon EC2 eight-core GPU instance with NVLink connec-
tion costs more than $31 per hour [3]; ii) Due to the resource
competition among multiple RAR-based DDL training jobs
in the cluster, if scheduling is not done strategically, DDL
training jobs could suffer from large latency; and iii) RAR-
based DDL jobs are often trained by variants of the iterative
stochastic gradient descent (SGD) method to optimize thou-
sands or even millions of parameters. Their completion times
are defined by the convergence processes of these SGD-based
methods, which often exhibit the “diminishing return effect”
in terms of the gains in training accuracy as the number of
iterations increases. For instance, it has been shown in [4] that
approximately 75% of DDL jobs reach within 0.1% of the
lowest training loss using only 40% of the epochs. Allocating
too many computing resources to one job not only induces
high GPU and energy costs as well as unfairness to other
DDL jobs, but also leads to unnecessary training time with
little learning accuracy performance gain in return.

However, optimizing scheduling and resource allocation for
RAR-based DDL is highly non-trivial due to several technical
challenges. First, the hop-by-hop dependence in the ring struc-
ture renders the placement of workers highly sensitive to intra-
and inter-server communications, decided by the underlying
computing network topology. Also, as will be shown later,
the ring topology violates the loop-less assumption of many
existing algorithms for virtual computing resource allocation
problems [5]–[7], which necessitates new algorithmic design
techniques. Second, the resource allocation for each RAR-
based DDL job is subject to packing-type constraints (due
to resource limits), which implies NP-Hardness. Lastly, the

scheduler is not aware of DDL job arrivals beforehand, which
calls for online optimization algorithm design. Perhaps due to
these challenges, to date, results on scheduling and resource
allocation for RAR-based DDL training remain limited. This
motivates us to fill this gap by proposing an efficient resource
scheduling algorithm called GADGET (greedy ring-all-reduce
distributed graph embedding technique), which addresses the
aforementioned technical challenges with strong theoretical
performance guarantees. The main results in this paper and
their significance are summarized as follows:
• By extracting the key architectural features of RAR-based
DDL training jobs, we develop a new analytical model for
scheduling RAR-based DDL jobs over networked environ-
ments. Based on this model, we formulate a general online
performance optimization framework for RAR-based DDL
training. We note that, due to the heterogeneous internal
(i.e., between containers in the same physical server) and
external (i.e., between physical machines within or beyond
the same rack) communications, the resource scheduling and
allocation problem for RAR-based DDL training is far more
challenging than those for the PS-worker architecture.
• To address the new challenges arising from RAR-based
DDL training, we develop an efficient GADGET algorithm
that can provide provably strong performance guarantee.
Our GADGET approach is based on a “divide-and-conquer”
approach. Specifically, we first show that the formulated
RAR-based training scheduling problem over the temporal
domain possesses a submodular structure due to its partition
matroid nature, and hence can be decomposed in the tempo-
ral domain and solved by a greedy approach with worst-case
approximation ratio guarantee.
• Next, we focus on the decomposed subproblem in each
time-slot, which remains NP-Hard due to the packing-
type constraints. We note that the ring-structure of RAR-
based DDL jobs renders existing methods ineffective. To
address this challenge, we propose a generalized virtual
graph embedding (G-VNE) technique that guarantees a 1

3Γ -
fraction of the maximum utility value, where Γ ≥ 1 is
a problem-dependent constant. Combining this with the
submodular property implies that GADGET achieves an

1
3Γ+1 overall competitive ratio.
• Lastly, we conduct experiments to examine the perfor-
mance of our GADGET algorithm. We demonstrate the
good approximation ratio of G-VNE, which is the main
component of GADGET algorithm by using real-world
trace-driven simulations. We also show that, compared to
existing baseline scheduling schemes, our GADGET algo-
rithm can effectively meet the topology constraints, while
achieving a good overall performance.
Collectively, our results contribute to a comprehensive and

fundamental understanding of RAR-based machine learning
system optimization. The rest of this paper is organized as fol-
lows. We review related work in Section II, and present prelim-
inaries to familiarize readers with the necessary background
of RAR in Section III. We then present the system model,

problem formulation, and an overview of our algorithmic ideas
in Section IV. We propose our online resource scheduling
algorithm by decoupling it into time-independent subproblems
in Section V, and then solve the NP-hard subproblem with our
G-VNE approach in Section V-C. We evaluate performance
of our proposed algorithms through numerical experiments in
Section VI, and conclude this paper in Section VII.

II. RELATED WORK

Due to the rise of deep learning and their intensive compu-
tation workload, scheduling optimization for DDL to expedite
the training process has attracted increasing attention recently.
To date, the PS-worker architecture [8] has been widely
adopted and its scheduling design has been relatively well
studied (e.g., [9]–[12]). However, as pointed out in Section I,
the PS-worker architecture suffers from communication bottle-
necks and reliability limitations. Thanks to its better scalability
compared to the PS-worker architecture [13], the RAR archi-
tecture has received strong interest in the research community
and has been recently adopted by modern DDL frameworks.
So far, however, results on scheduling designs for the RAR
architecture remain scarce. To our knowledge, PACE [14] is
the only existing work in the literature designed for all-reduce
tensors based on the RAR architecture, aiming at maximizing
the overlap between communication and computation using
DAG (directed acyclic graph) of DNN training. However, the
goal of PACE is to speed up the training process of a single
job, instead of optimizing the scheduling of multiple jobs
to improve the system-wide performance (e.g., minimize the
average completion time). In contrast, our goal in this work is
to design the first scheduler tailored for the RAR-based DDL
jobs in computing clusters. We propose a theoretical frame-
work that enables rigorous RAR-based DDL training resource
optimization in large-scale computing clusters (typically with
a multi-layer hierarchical topology, e.g., fat-tree).

We note that there also exists other lines of research on
resource scheduling for optimizing DDL training performance
(e.g., latency, energy efficiency), but they are agnostic to
the underlying distributed/parallel architectures. Here, we also
provide a quick overview, although they are not directly com-
parable to our work. In [15], a GPU scheduler called Tiresias is
proposed based on the assumption that DDL job performance
could be estimated from historical job duration information.
Meanwhile, a resource provisioning method called Cynthia
was developed in [16] to study the impact of system het-
erogeneity, i.e., servers in the system may have different
hardware configuration (e.g., CPU, amounts of memory), on
both synchronous and asynchronous training, and to optimize
the training performance. Also, due to the growing training
workloads that incur huge energy consumption in the GPU
clusters, the design of energy-efficient scheduling algorithms
also receives significant interest recently. For example, in [17],
[18], various scheduling schemes are proposed for CPU/GPU
hybrid clusters, aiming at maximizing the energy efficiency
without significantly sacrificing the system performance. We

Gradient subvector 3 summation for Workers A and C

3

2 3

2 32 3

2

2

3

3

(n = 1, 2, 3)

2

Final State

Gradient subvector n of Worker B

Gradient subvector 1 summation for Workers A and B

Gradient subvector n summation
Sum of full gradient vectors of Workers A, B, and C

(Share−Only)

State 4

Step 4

for Workers A, B, and C (n = 1, 2, 3)

n

n Gradient Subvector n of Worker C
(n = 1, 2, 3)

Worker A

3 1 3 1

1 2 32 3

2

(Share−Reduce)

Worker A

Worker C Worker B

Worker A

Worker C Worker B

3

Worker C

Worker A

Worker B

Initial State

Worker A

Worker C Worker B

Step 1

Effectively

(Share−Only)

2

1 2

1 3 2 3

Worker A

Worker C Worker B

3 1

State 3

2

31

1 2

3

Worker C Worker B

Step 3

State 2

Step 2

1

1

1 3

2

(Share−Reduce)

State 1

(n = 1, 2, 3)
Gradient subvector n of Worker A

for Workers B and C
Gradient subvector 2 summation

2

n

1

1

1

1

n

1

Fig. 1: A three-worker illustrative example of the ring-all-
reduce (RAR) process.

note, however, that all of these DDL scheduling algorithms are
heuristic methods that do not provide performance guarantees.

III. DISTRIBUTED LEARNING WITH RING-ALL-REDUCE:
A PRIMER

In this section, we provide an overview on DDL training
based on the RAR parallel computing architecture, to famil-
iarize readers with necessary background and fix terminologies
that will be used in this paper.

1) Distributed Stochastic Gradient Descent (SGD): At the
heart of deep learning lies an optimization problem in the form
of minw∈Rd L̄(w) , 1

N

∑N
i=1 L(w, ξi), where w contains the

model parameters to be learned, L(w, ξi) is a loss function,
and N is the total number of samples. In an w-worker DDL
system, the dataset is often partitioned and trained by each
worker. Let Dj denote the j-th partition of the dataset trained
by a worker j ∈ {1, . . . , w}. Then, the training problem can
be decomposed as minw∈Rd L̄(w) =

∑w
j=1

|Dj |
N Lj(w), where

Lj(w) , 1
|Dj |

∑
i∈Dj L(w, ξi). To date, most DDL systems

in practice adopt the distributed stochastic gradient descent
(SGD) method, where, in iteration k, the weight parameter
vector w is updated as wk+1 = wk − ηk

(∑n
j=1

|Dj |
N gkj

)
,

k = 1, 2, Here ηk is the step-size (aka learning rate) in
iteration k, and gkj denotes the stochastic gradient computed
by worker j in iteration k.

2) The Ring-All-Reduce (RAR) Architecture: The above
SGD update requires a weighted sum of all stochastic gradi-
ents, gj , ∀j ∈ {1, . . . , w} (the iteration index k is omitted for

notational simplicity). To compute this weighted sum in the
PS-worker architecture, each worker j simply sends gj to the
PSs, which then perform the summation and return the result
to each worker. However, this implies that a 2wd amount of
data exchange per iteration is required under the PS-worker
architecture, which scales linearly as the number of workers
increases and is problematic in large-scale DDL training.

To address this limitation, the more sophisticated RAR
architecture is proposed. The basic idea of RAR is to form
a ring between the workers, where each worker performs
gradient reduction (e.g., summation) and sharing by receiving
gradients from its upstream worker and sending the local
reduction result to its downstream worker. In general, for
a w-worker RAR structure, each worker splits its gradients
into w sub-vectors (see Fig. 1 for an example for w = 3).
The RAR process is divided into two phases. The first is
the “Share-Reduce” phase (t = 1, . . . , w − 1), where each
worker sends its reduced sub-vector (i.e., the sub-vector sum)
to its downstream worker, while receiving the reduced sub-
vector from its upstream worker to compute a new reduced
sub-vector. The second phase is the “Share-Only” phase (t =
w, . . . , 2w − 2), where each node sends its newly received
fully-reduced sub-vector to its downstream worker, while
receiving a new fully-reduced sub-vector from its upstream
worker. Since each worker sends d

w amount of data for 2(w−1)

times, the total amount of data each worker sends is 2d(w−1)
w ,

which is asymptotically independent of w as w gets large.
3) Per-Iteration Training Time for RAR-Based DDL:

Consider a w-worker RAR-based DDL training job. We use
b to denote the bandwidth between workers. We use G to
denote the computation speed of a worker. Since each worker
sends a gradient sub-vector of size d/w at each time step for
2(w − 1) times, the transmission time can be computed as
2d(w−1)
wb . Also, since it takes w − 1 times in total to perform

gradient sub-vector summations, the computation time can be
computed as d(w−1)

wG . Hence, the total time for a single RAR
operation is d(w−1)

w [2
b + 1

G]. In each iteration of RAR-based
DDL training, in addition to the all-reduce operation time, each
worker needs to perform a forward pass (FP) and a backward
pass (BP) to compute the stochastic gradients. The FP time
can be computed as tfM , where tf is the model-dependent
per-sample FP time and M is mini-batch size. The BP time tb

is independent of the mini-batch size. In addition, there is extra
latency γ caused by communication overhead (e.g., ACK time
for message transmission, negotiation time among all workers
before conducting RAR [13]). By putting all the above time
consumption components together, we have the per-iteration
training time τ for RAR-based DDL as:

τ =
d(w − 1)

w

[
2

b
+

1

G

]
+ tfM + tb + γ.1 (1)

We can see that τ depends on the learning model size, worker

1In this paper, we focus on GPU computation and network communication
times and neglect the data IO latency due to the use of high-speed solid
state drives (SSDs), short pre-fetch time of pre-stored training programs, and
overlapping of data chunks fetching and training through pipelining.

communication and computation speeds, batch size, communi-
cation overhead, and FP/BP times (in turn, the learning model),
but is asymptotically upper bounded by d(2

b+ 1
G)+tfM+tb+γ

as the number of workers w goes to infinity.

IV. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we will present a general analytical frame-
work for resource scheduling and allocation for RAR-based
DDL training performance optimization.

Consider a computing cluster with a set of physical servers
denoted as S . Each server has a certain amount of computing
resources (e.g., GPUs, memory). The system is time-slotted
with horizon T , {1, 2, · · · , T}. Over time, RAR-based DDL
jobs dynamically arrive and compete for the shared resources
with unfinished jobs. Let ai denote the arrival time of job i,
which is unpredictable to the scheduler. Let I denote the set
of jobs arrived over time horizon T . The jobs are preemptive
if resources are insufficient and could be resumed later.2 All
jobs’ workers are implemented as containers. Next, we will
develop RAR-based DDL scheduling models in detail.

1) Resource Constraint Modeling: We let yis[t] denote the
number of workers scheduled on server s for job i in time-
slot t. Let Ni be the largest number of assigned concurrent
workers in each time-slot, we have:∑

s∈S
yis[t] ≤ Ni, ∀i ∈ I, ∀t ∈ T . (2)

Let R denote the set of computing resources (e.g., GPUs,
memory, training time budget). Let lri be the amount of type-
r resource consumed by each worker of job i. We use F ri
to denote the maximum type-r resource demand requested by
job i. To ensure that job i does not exceed type-r resource’s
limit, we have:∑

t∈T
lri
∑
s∈S

yis[t] ≤ F ri , ∀i ∈ I, ∀r ∈ R. (3)

Let Crs denote the type-r resource capacity of server s. To
ensure that server’s type-r limit is not violated, we have:∑

i∈I
lri yis[t] ≤ Crs , ∀s ∈ S, t ∈ T , ∀r ∈ R. (4)

We use a binary variable xis[t] = 1 to indicate that job i uses
server s in each time-slot t and let xis[t] = 0 if otherwise. Note
that, when server s is used for job i, yis[t] should not exceed
any maximum resource demand F ri , the resource capacity of
server s, and the largest number of workers of job i in each
time-slot t. Also, observe that xis[t] = 0 forces yis[t] = 0.
Combining these facts yields:

yis[t]≤xis[t] min

{
Ni,

Crs
lri
,
F ri
lri
, ∀r
}
, ∀i∈I, s∈S, t∈T .(5)

To ensure no workers are allocated before jobs arrive, we have:

yis[t] = 0, ∀i ∈ I, s ∈ S, t < ai. (6)

2Flexible resource allocation enabled by containers can be exploited to sus-
pend a job and reclaim its resources without losing the execution progress [19].

(a) Intra−connect commucation only.

Server 1 Server 2

Server 3 Server 4

Server 1 Server 2

Server 3 Server 4

Server 1 Server 2

Server 3 Server 4

w w

w

w

w
w

ww

w

inter−connect communicationintra−connect communication

(c) Inter−connect communication only.(b) Hybrid communication.

Fig. 2: Various placement schemes with three workers.

2) RAR Topological Constraint Modeling: A key compo-
nent in scheduling an RAR-based DDL training job is to guar-
antee that the physical network topology corresponding to the
resource scheduling decisions should be compatible with the
logical topology of the job’s computational graph. Toward this
end, we note that the computational graph of an RAR-based
DDL training job i is a directed ring graph Gi = (Vi, Ei),
where Vi is the set of logical vertices representing workers,
and Ei represents the set of logical edges denoting the RAR
directions between the workers. Also, physical servers and
network links in the cluster can be modeled as a directed
substrate graph. Next, we model the topological constraints.

We use Pss′ [t] to denote the set of all possible paths between
severs s and s′ in the physical substrate graph in time-slot t.
We use a binary variable r(p,i)

ss′ [t] = 1 to indicate that a path
p ∈ Pss′ [t] is used by job i in time-slot t, and let r(p,i)

ss′ [t] = 0,
otherwise. If neither server s nor s′ hosts any worker of job i
in time-slot t, then r(p,i)

ss′ [t] = 0, which implies:

r
(p,i)
ss′ [t] ≤ xis[t]xis′ [t], ∀s, s′∈S, p∈Pss′ [t], i∈I, t∈T . (7)

Also, we use bi and Bpmin[t] to denote the reserved bandwidth
requirement of job i and the bottleneck link capacity of path
p ∈ Pss′ [t], respectively. To ensure that the bottleneck link
capacity in any activated path p is not exceeded, we have:∑
i∈I

r
(p,i)
ss′ [t]bi ≤ Bpmin[t], ∀s, s′ ∈ S, p ∈ Pss′ [t], t ∈ T . (8)

Next, to ensure that the allocated workers of job i can indeed
form a directed ring graph, we consider two cases. First, if
only one server hosts all workers for job i, then the cyclic
constraint is automatically satisfied since a server can support
any computational graph topology for co-located workers
(Fig. 2(a)).3 Second, if workers are located on different servers,
it can be observed that each server that hosts some of job i’s
workers (i.e., xis[t] = 1) should have a degree of exactly two
for job i’s paths in order to form a cycle (Fig. 2(b)-(c)). These
two cases can be compactly written in one constraint as:

1

{∑
s′∈S

xis′ [t]−1>0

}(∑
s′∈Si[t]

∑
p∈Pss′ [t]

r
(p,i)
ss′ [t]−2

)
= 0,

∀i ∈ I, s ∈ S, t ∈ T . (9)

where Si[t] denotes the set of servers containing job i at time t.
To see why Eq. (9) is a valid constraint, note that if all workers

3Servers in Fig. 2 are connected cyclically, i.e., there are communication
links between servers 1 and 2, 2 and 4, 4 and 3, 3 and 1.

of job i are hosted by server s, we have 1{
∑
s′∈S xis′ [t]−1 >

0} = 0, which implies Eq. (9) trivially holds. Note also that
the first summation in this term is over the set Si[t]. This
guarantees that there is only one big cycle instead of multiple
small cycles.

3) Objective Function and Problem Statement: Let
µi(·) be the utility function associated with job i’s resource
allocation, which is non-decreasing and concave to represent
the “diminishing return effect.” In this paper, our goal is
to maximize the overall utility of all jobs. Let ζi represent
some general notion of “per-worker efficiency/cost” (see three
concrete examples next). Putting all modeling together, the
DDL job scheduling problem (DDLJS) can be formulated as:

DDLJS :Maximize
x,y

∑
i∈I

µi

(
ζi
∑
t∈T

∑
s∈S

yis[t]
)

subject to Constraints (2)− (9).

We note that Problem DDLJS is a general analytical frame-
work that has many applications. Here, we provide three
examples to highlight its practical relevance: 1) Excessive
Training Avoidance [4]: Here, ζi can represent the number
of training iterations per-unit time of each worker of job
i, which can be obtained by inverting Eq. (1). The utility
function can be chosen as µ(k) = (O(1/

√
k))−1 = C

√
k

for some C > 0, which is the typical convergence rate of
SGD-type algorithms with respect to the iteration index k.
2) Energy-Efficiency Optimization [18]: Here, ζi denotes
the per-worker power consumption of job i. We can choose
µ(·) = −c(ζi

∑
t∈T

∑
s∈S yis[t]), where c(·) is a quadratic

function, which is often used in the power system literature
to model energy consumption costs. 3) Resource Fairness in
Training: Here, we can let ζi = 1, ∀i, and adopt the classical
“proportional fairness” utility function [20], i.e., µ(·) = log(·).

V. SOLUTION APPROACH

Problem DDLJS is a challenging online optimization prob-
lem (the scheduler does not have arrival information {ai, ∀i}).
What exacerbates the problem is the fact that even its offline
planning version (assuming {ai, ∀i} are known beforehand) is
a mixed-integer non-convex programming (MINCP) problem,
which is NP-Hard in general. Moreover, Eq. (9) contains an
indicator function that is not amenable to conventional opti-
mization techniques. In light of all these challenges, our goal
in this paper is to pursue an online approximation algorithmic
design that offers theoretical competitive ratio guarantee.

A. Basic Idea

To overcome the above challenges, we propose an online
algorithmic design called GADGET (greedy ring-all-reduce
distributed graph embedding technique). Our basic idea of
GADGET contains two key steps: i) Through a careful ex-
amination, we show that Problem DDLJS is submodular with
respect to scheduling decisions in the temporal domain. Thus,
it is possible to design a temporally greedy scheduling algo-
rithm with a provable competitive ratio; ii) For the resource
allocation subproblem in each time-slot that remains NP-Hard,

jobs using generalized VNE

Check existing job

and resource status

Greedily maximize utility of unfinishedt = 1

t = t + 1

Fig. 3: Algorithmic idea overview.

we show that it can be viewed as a generalized virtual network
embedding problem (G-VNE). As a result, it is also possible to
(non-trivially) modify existing VNE techniques (see, e.g,. [5]
and references therein) to adapt to our setting and solve each
subproblem with provable approximation ratio guarantee. We
illustrate the basic idea of our GADGET algorithm in Fig. 3.
In what follows, we will discuss these two key steps in detail.

B. An Online Temporally Greedy Approach

In this subsection, we establish the submodularity of Prob-
lem DDLJS over the temporal domain. First, consider the
following online temporally greedy algorithm. We let zi,t ,∑t
τ=1

∑
s∈S yis[τ] be the accumulative number of worker-

time allocated for job i up to time t. Define I[t] , {i ∈ I :
t ≥ ai and zi,t−1 < minr∈R F

r
i /l

r
i } as the set of jobs that

are active (i.e., in-training and not resource-violated in time-
slot t). Given the scheduling {zi,t−1}i∈I[t] in previous time
slots, we greedily find the resource allocation in time-slot t by
solving the following optimization problem:

Maximize
∑
i∈I[t]

µi

(
ζi
∑
s∈S

yis[t] + ζizi,t−1

)
(10)

subject to
∑
s∈S

yis[t] ≤
(

min
r∈R

F ri
lri

)
−zi,t−1, ∀i∈I[t], (11)

Constraints (2), (4)− (9) only at t , ∀i∈I[t],

yis[t] ∈ Z+, xis[t]∈{0, 1}, ∀i∈I[t], s ∈ S.

Constraint (11) ensures that the accumulated “worker-time
product” in time slot t does not exceed the remaining worker-
time-product limit (determined by the bottleneck resource
type) for all active jobs. Note that Problem (10) remains a
challenging NP-Hard packing problem, for which an approx-
imation algorithm will be developed later in Section V-C.
With Problem (10), our online temporally greedy algorithm
is presented in Algorithm 1.

Algorithm 1: Online Temporally Greedy Approach.

1 Initialization: Set zi,t ← 0, ∀t ∈ T , i ∈ I;
2 for t ∈ T do
3 I[t],{i ∈ I : t ≥ ai and zi[t−1]<minr∈R F

r
i /l

r
i };

4 yis[t]← Solutions of Problem (10) using
Algorithm 2 developed in Section V-C;

5 return yis[t];
6 zi,t ← zi,t−1 +

∑
s∈S yis[t];

Next, we show that Algorithm 1 provides competitive ratio
guarantee by proving that Problem DDLJS is submodular over
the temporal domain. For the paper to be self-contained, we
restate some necessary basics of submodular optimization and

matroid theory here, and refer readers to standard sources of
submodular optimization (e.g., [21]) for further details.

Definition 1 (Submodularity). A set function f(·) : 2V → R

is submodular if for every B ⊆ V , and A′ ⊆ A ⊆ V , we have
f(A ∪ B)− f(A) ≤ f(A′ ∪ B)− f(A′).

An important subclass of submodular functions are those
that have the monotone property defined as follows:

Definition 2 (Monotonicity). A set function f(·) : 2V → R is
monotone if for every A ⊆ B ⊆ V , we have f(A) ≤ f(B).

In this paper, we focus on non-negative monotone submod-
ular functions. Submodular optimization is also closely related
to the notion of matroid, which is defined as follows:

Definition 3 (Matroid). A matroid is a pair (V,J) such that
V is a finite set, and J ⊆ 2V is a collection of independent
subsets of V satisfying: 1) ∅ ∈ J ; 2) for A ⊆ B ⊆ V , if
B ∈ J , then it implies A ∈ J ; 3) if A,B ∈ J , and |A| < |B|,
then ∃ v ∈ B \ A such that A ∪ {v} ∈ J .

Matroids have many interesting properties and subclasses.
One important subclass of matroids that is useful in this paper
is the partition matroid, which is defined as follows:

Definition 4 (Partition Matroid). Partition V into disjoint
subsets {Vj}. Let 0≤νj≤|Vj |, ∀j be integers associated with
the Vj’s. Define a collection of subsets J ={H∈V : |H∩Vj |≤
νj , ∀j}. Then, the pair (V,J) is a partition matroid.

We now show that Problem DDLJS is a submodular op-
timization problem in the temporal domain. To avoid am-
biguity, we will use the term “schedule” to refer to an
(x,y)-decision over the entire time horizon T ; and we use
the term “allocation” to refer to an (x,y)-decision in a
particular time-slot (i.e., a “snapshot” in time). We let H ,
{H[t], t ∈ T } be the space of all schedules, where H[t]
denotes the space of all resource allocation in time-slot t
(which may or may not be feasible). Define the ground set
V , {yis[t], ∀i, s, t|yis[t] ∈ H[t], ∀t} ⊂ Z|I|×|S|×|T |+ to
be the space of all possible schedules of the y-components.
Also, let V[t] = {yis[t], ∀i, s|yis[t] ∈ H[t]} ⊂ Z|I|×|S|+

denote the feasible y-allocation space in time-slot t. Clearly,
{V[t], t ∈ T } is a partition of V since V[t1]∩V [t2] = ∅. Now,
we choose νt = 1, ∀t ∈ T . Consider any schedule E ∈ V .
Since at most one resource allocation decision can be chosen in
each time slot in E , we have |E ∩V [t]| ≤ 1 = νt, ∀t. Let J be
the collection of all such feasible schedules {E}. Then, the pair
(V,J) containing all schedules forms a partition matroid, and
finding an optimal feasible schedule is equivalent to finding
an optimal independent set of this partition matroid.

Next, we let zi[t] =
∑
s∈S yis[t] denote the total number

of workers of job i in time-slot t. Clearly, zi[t] = 0, ∀t < ai.
Recalling the definition of zi,t, we have zi,t = zi[ai]+zi[ai+
1] + · · ·+ zi[t]. For any schedule E (could be infeasible), we
define zEi [t] ,

∑
{yis[t]∈E∩V[t]} yis[t]. Accordingly, we define

zEi,t , zEi [ai] + · · ·+ zEi [t]. Then, we can rewrite the objective

function in (10) as F (E) ,
∑
i∈I µi(ζiz

E
i,T). Since µi(·) is

concave and increasing, F (E) is monotonically increasing as
t increases. Next, we show that F (E) is also submodular.

Lemma 5. F (E) is a submodular function.

Proof. We pick two schedules A and B such that A ⊆ B ⊆ V .
Now, for a resource allocation decision v ∈ V [t] in time-slot
t. Consider the following two cases:
• Case 1) v ∈ B: In this case, we have F (A∪{v})−F (A) ≥
F (B ∪ {v})− F (B) = 0, which holds trivially.
• Case 2) v 6∈ B: In this case, we have

F (B∪{v})−F (B)=
∑
i∈I

(
µi(ζiz

B
i,T +ζiz

v
i [t])−µi(ζizBi,T)

)
(a)

≤
∑
i∈I

(
µi(ζiz

A
i,T +ζiz

v
i [t])−µi(ζizAi,T)

)
=F (A∪{v})−F (A),

where (a) follows from µi(·) being concave, monotone, and
increasing. Then, the proof is complete by Definition 1.

The main competitive ratio result of GADGET is stated in
the following theorem. Due to space limitation, we provide a
proof sketch in this paper.

Theorem 6. Algorithm 1 produces a schedule that is α
α+1 -

competitive, where α ∈ (0, 1] is the approximation ratio of
solving Problem (10) in each time-slot.

Proof Sketch. The main idea of our proof is to leverage the
p-system result for greedy algorithms with approximation,
where p denotes the ratio between the maximum and minimum
cardinalities of maximal independent sets in a family of
independent sets. It has been shown (e.g., [22]) that applying
an online greedy algorithm with an approximation ratio of
α ∈ (0, 1] in each round for a p-system yields a competitive
ratio of α

α+p . Hence, the result in Theorem 6 is proved once
we show that Problem DDLJS is a 1-system (p=1).

Toward this end, recall that the space of all possible sched-
ules V = {yis[t], ∀i, s, t} is partitioned into a collection of dis-
joint “allocations” {V[t]}, t ∈ T , where V[t] = {yis[t], ∀i, s}
and the independence family is J = {H ∈ V : |H∩V [t]| ≤
1, ∀t}. For any Y = {U [t] ⊆ V [t], ∀t} ⊆ V , let B(Y) be
the set of maximal independent sets of V included in Y ,
which implies that |H ∩ U [t]| ≤ 1. Then, we can show that
B(Y) = {{uk[t] ∈ U [t], ∀t}, ∀k}, where k is the element
(scheduling) index in the set U [t]. Thus for any A ∈ B(Y),
the cardinality of A is the same (i.e., |A| = |Y |), which
immediately implies that p = 1 and the proof is complete.

C. Solving the Per-Time-Slot Problem in (10)

Under the temporally greedy approach in Algorithm 1, it
remains to solve an NP-Hard problem in (10). Due to the
challenges in directly handling the ring topological constraint
in (9) that is mixed-integer and highly unstructured, we take
an “indirect” approach by noting that Problem (10) is a gener-
alized virtual network embedding (VNE) problem (embedding
a virtual computational graph onto a substrate physical graph
while respecting all capacity constraints). Notably, VNE with

Menglu Yu

request graphs of cactus-type topologies has been solved in [5],
which includes the ring topology as a special case. The
basic idea of the solution is based on randomized rounding
the routing graphs over the underlying multi-commodity flow
(MCF) problem (see, e.g., [5], [23] for details).

However, our work differs from standard VNE [5] in the
following two key aspects: 1) Unlike in standard VNE where
the number of nodes in each request graph is given, the number
of nodes (i.e., workers) is part of the problem in (10); 2) Unlike
standard VNE with a one-dimensional resource capacity con-
straint, Problem (10) has multi-dimensional resource capacity
constraints. Due to these differences, we refer to Problem (10)
in this paper as the generalized VNE (G-VNE).

To address these challenges, we again take a “divide-and-
conquer” approach: i) We observe that, although the number
of workers is unknown, its upper bound qi[t] can be obtained
efficiently by solving Problem (10) with continuous relaxations
of Constraints (2), (4), and (11); ii) Once the upper bound of
the number of workers is known, we can reformulate the G-
VNE problem with a “one-hot” worker number constraint.

To reformulate the G-VNE problem, we let ρi[t] ∈ {0, 1}
be the binary variable to indicate whether job i is embedded
in time slot t. Let Qi[t] , {1, . . . , dqi[t]e} be the set of all
possible numbers of workers at time t for job i. Let binary
variable χi,κ[t] ∈ {0, 1} denote whether a ring of size κ ∈
Qi[t] is chosen at time t. We use V κi and Eκi to represent
the sets of nodes and edges of the chosen κ-ring, respectively.
Let %ui,κ,a[t] and θu,vi,κ,a,b[t] denote whether node a ∈ V κi and
edge (a, b)∈Eκi are mapped to a physical node u∈Vs and a
physical link (u, v) ∈ Es at time t, respectively.

Next, we use da,ri,κ and da,bi,κ to denote the type-r resource
demand for node a ∈ V κi and resource demand for edge
(a, b) ∈ Eκi in the chosen κ-ring of job i, respectively.
Let gu,rs and eu,vs be the type-r resource capacities of node
u ∈ Vs and edge (u, v) ∈ Es in the substrate network,
respectively. Also, let hu,ri [t] and ou,vi [t] denote the cumulative
type-r resource allocation on node u and the cumulative and
aggregated resource allocation on edge (u, v) of job i in
the substrate network at time t, respectively. Let πi,κ[t] be
the incremental utility with the κ-ring chosen at time t, i.e.,
πi,κ[t] = µi(ζizi,t−1 + ζi

∑
κ∈Qi[t] κχi,κ[t]−µi(ζizi,t−1). We

let δ+(u) and δ−(u) denote the sets of outgoing and incoming
edges of a node u, respectively. Then, the G-VNE problem in
time-slot t can be reformulated as an integer linear program
(ILP) (omitting time index “[t]” for notational simplicity):

Maximize
∑
i∈I

∑
κ∈Qi

πi,κχi,κ (12)∑
κ∈Qi

χi,κ = ρi, ∀i ∈ I, (13)∑
u∈Vs

%ui,κ,a = χi,κ, ∀i ∈ I, κ ∈ Qi, a ∈ V κi , (14)∑
(u,v)∈δ+(u)

θu,vi,κ,a,b −
∑

(v,u)∈δ−(u)

θv,ui,κ,a,b = %ui,κ,a − %ui,κ,b,

∀i ∈ I, κ ∈ Qi, (a, b) ∈ Eκi , u ∈ Vs, (15)

∑
κ∈Qi

∑
a∈V κi

da,ri,κ%
u
i,κ,a = hu,ri , ∀i ∈ I, u ∈ Vs, r ∈ R, (16)

∑
κ∈Qi

∑
(a,b)∈Eκi

da,bi,κθ
u,v
i,κ,a,b = ou,vi , ∀i ∈ I, (u, v) ∈ Es, (17)

∑
i∈I

hu,ri ≤ gu,rs , ∀u ∈ Vs, ∀r ∈ R, (18)∑
i∈I

ou,vi ≤ eu,vs , ∀(u, v) ∈ Es. (19)

Here, Constraint (13) ensures that at most one of the κ-
ring graphs (κ = 1, . . . , dqie) from Qi can be selected.
Constraint (14) ensures that if job i is embedded (ρi = 1)
and if a κ-ring graph is selected (χi,κ = 1), then each node
a ∈ V κi must be mapped to some physical node in Vs, i.e.,
there exists a node u ∈ Vs such that %ui,κ,a = 1. Constraint (15)
induces a non-splittable unit flow for each edge (a, b) ∈ Eκi
from the physical location that a is mapped to the physical
location that b is mapped. Constraints (16)–(17) compute the
cumulative resource on physical nodes and edges, respectively.
Constraints (18)–(19) ensure no violation of the physical
nodes and edges resource capacities, respectively. Note that
Constraints (13), (16) and (18) are the major differences from
the MCF formulation of the standard VNE problem (see, e.g.,
[5]), where each job has only one request graph (i.e., |Qi| = 1)
and each node has only one resource type.

Now, consider a linear program (LP)-based ring selection
approach: Let {χ̄i,κ, ρ̄i} be the LP-relaxation solution of
Problem (12) and π̄i,k be the its utility value. Select κi =
maxκ∈Qi:χ̄i,κ>0

{π̄i,κχ̄i,κ} as the request ring-graph of job i
for ρ̄i > 0. That is, we set χi,κi =1 and χi,κ=0 if κ 6=κi, for
each job with ρ̄i > 0. Then, we can show that this LP-based
ring selection scheme has the following approximation ratio:

Lemma 7 (LP-based Ring Selection). Let Γ = maxidqie.
The LP-based ring selection scheme achieves at least a 1/Γ-
fraction of the utility obtained by an offline optimal approach.

Proof. Let χ∗i,κ∗ , π
∗
i,κ∗ be the optimal solution and objective

value with κ∗ being the optimal ring size, respectively. Let
χ̂i,κ̂, π̂i,κ̂ be the solution and objective value of our LP-based
scheme, respectively, with κ̂ being the ring size of the LP-
based scheme. Let Πi , min{Ni, C

r
s

lri
,
F ri
lri
, ∀r, s}, ∀i. Then,∑

i π
∗
i,κ∗χ

∗
i,κ∗∑

i π̂i,κ̂χ̂i,κ̂
≤
∑
i

∑
κ π̄i,κχ̄i,κ∑

i π̂i,κ̂χ̂i,κ̂

(a)

≤ max
i

∑
κ π̄i,κχ̄i,κ
π̂i,κ̂χ̂i,κ̂

(b)

≤ Γ.

To see why (a) holds, let ῑi ,
∑
κ π̄i,κχ̄i,κ and ι̂i , π̂i,κ̂χ̂i,κ̂.

Let i∗ = arg maxi
{∑

κ π̄i,κχ̄i,κ
π̂i,κ̂χ̂i,κ̂

}
. Thus, we have ῑi∗

ι̂i∗
−

∑
i ῑi∑
i ι̂i

=
ῑi∗

∑
i ι̂i−ι̂i∗

∑
i ῑi

ι̂i∗
∑
i ι̂i

=
∑
i(ῑi∗ ι̂i−ῑi ι̂i∗)

ι̂i∗
∑
i ι̂i

≥0. Also, (b) follows from
i) the LP relaxation: π̄i,κχ̄i,κ

π̂i,κ̂χ̂i,κ̂
≤ 1, ∀i, ∀κ∈Qi); and ii) |Qi|=

dqie≤Πi. This completes the proof.

Next, upon determining the ring size κ, we perform virtual
network embedding with multi-dimensional resource con-
straints. First, similar to [5, Formulation 2], we resolve the
uncertainty that may occur in embedding cyclic graphs by
creating an augmented LP [5] that binds multiple copies of a

“reduced version” of Problem (12), where the set of κ̂-rings
has been chosen following the LP-based ring selection. Then,
we solve the augmented LP to obtain a relaxation solution,
which can be used to recover a set of mapping-selection tuples
Mi = {(ϕki , ωki), k = 1, . . . , |Mi| : ϕki > 0,

∑
k ϕ

k
i ≤ 1} for

each job i, where the mapping ωki (a candidate of embedding)
is chosen with probability ϕki , and rejected with probability
1−
∑
k ϕ

k
i . Note that to address the multi-dimensional resource

challenge in computing Mi, our key idea is to conduct
mapping search to determine ωki (r) for each r ∈ R by
leveraging techniques in [5, Sec. III-C]. Then, we choose
ωki = ∩r∈Rωki (r). After the set {Mi, ∀i} is calculated, we
perform randomized rounding with probabilities based on ϕki -
values to obtain the embedding. Putting all these together, we
summarize our LP-based ring-selection and multi-dimensional
resource embedding (LP-RS-MDE) method in Algorithm 2.

Algorithm 2: LP-based Ring-Selection and Multi-
Dimensional Resource Embedding (LP-RS-MDE).

1 Initialization: Choose ub as the maximum number of
roundings, and set iter ← 1;

2 Set the values of constants α, βr, γ (see Theorem 8);
3 Solve the LP relaxation of Problem (12) and set ring

sizes κi = maxκ∈Qi:χ̄i,κ>0{π̄i,κχ̄i,κ} for all job i;
4 Solve an augmented LP with ring sizes fixed in Step 3;
5 for i ∈ I[t] do
6 Compute Mi={(ϕki , ωki)} based on the solution of

the augmented LP, where ϕki , ω
k
i are determined

by [5, Sec. III-C] and the bottleneck resource;
7 while solution is not (α, βr, γ)-approx. & iter<ub do
8 foreach i ∈ I[t] choose ωki with probability ϕki ;
9 iter ← iter + 1;

To analyze LP-RS-MDE’s performance, we let drmax(i, u)
and dmax(i, u, v) denote the maximal type-r resource demands
that job i imposes on node u and edge (u, v) in the sub-
strate network, respectively. Let Crmax(i, u) and Cmax(i, u, v)
denote the maximal type-r resource allocation that a valid
mapping of job i may impose on the substrate network’s nodes
and edges, respectively. We define two constants as follows:

∆r(Vs) , max
u

∑
i∈I[t]:dr

max(i,u)>0

(Crmax(i, u)/drmax(i, u))2, ∀r,

∆(Es) , max
(u,v)

∑
i∈I[t]:dmax(i,u,v)>0

(Cmax(i, u, v)/dmax(i, u, v))2.

Also, we let Au,r[t] and Au,v[t] represent the overall type-r
resource allocation on node u ∈ Vs and on edge (u, v) ∈ Es
after randomized rounding at time t, respectively. Then we
have following analytical results:

Theorem 8 (Performance of LP-RS-MDE). Assume that the
substrate network has at least three servers (|Vs| ≥ 3). Then,
LP-RS-MDE achieves at least (1/3)-fraction of the optimal
value of Problem (12), with probabilities of resource constraint
violations satisfying P{Au,r[t] ≥ βrgu,rs } ≤ |Vs|−4, ∀r, u, t,

and P{Au,v[t] ≥ γeu,vs } ≤ |Es|−4, ∀(u, v), t, where βr = 1 +
ε
√

2∆r(Vs) log(|Vs|), ∀r, and γ = 1 + ε
√

2∆(Es) log(|Es|).

To prove Theorem 8, note that unlike the single-dimensional
resource capacity in standard VNE [5], the analysis of Algo-
rithm 2 needs to consider multi-dimensional resource capacity
violation (see Eqs. (16) and (18)). Toward this end, we observe
that the mapping computation in Step 6 of Algorithm 2 implies
that a similar approach as in [5] can be used to analyze the
final mapping for each type-r resource in each job, which in
turn leads to the results stated in Theorem 8. We omit the
proof details here due to space limitation. Next, we analyze
the running time complexity of LP-RS-MDE.

Theorem 9 (Time Complexity of LP-RS-MDE). LP-RS-MDE
has polynomial time complexity O((|I[t]| · |Gs|)3 + ub · I[t]).

Proof. The main components of the running time include
solving the LP relaxations to obtain fractional solutions
(Lines 3-4 in Algorithm 2), computing valid mappings using
decomposition approach (Lines 5-6 in Algorithm 2), and then
performing randomized rounding on these computed mappings
(Lines 7-9 in Algorithm 2). The time complexity of solving
the LP relaxations is O((|I[t]| · |Gs|)3) [24]. The mapping
search step terminates when %i ≤ 0, and in each termination,
at least one variable becomes 0. The number of variables
for each job i is bound by O(|Gi| · |Gs|) for each copy of
Problem (12). Specifically, the mapping search visits all nodes
and edges in the request graph. Also, in each visit, in order
to find the set of mapping-selection tuples {Mi, ∀i}, the
substrate network will be traversed. Thus, the total number
of variables is upper bounded by O(|Gi| · |Gs|). Further, there
are at most O(|Vs|) copies of Problem (12), which implies
O(|Gi| · |Gs| · |Vs| · |I[t]|) complexity. Finally, the rounding
time of each job i is bounded by ub, and thus the running time
is bounded by O(ub ·I[t]). Hence, the overall time complexity
of the LP-RS-MDE method is O((|I[t]| · |Gs|)3 +ub · I[t]),
and the proof is complete.

By combining results in Theorems 6 and 8, we have:

Theorem 10 (Competitive Ratio of GADGET). Algorithm 1
produces a schedule that yields a utility value at least (1

3Γ+1)-
fraction of the maximum utility value of Problem DDLJS,
with probabilities of resource violations satisfying P{Au,r[t] ≥
βrgu,rs , ∃t ∈ T } ≤ 1− (1− |Vs|−4)T , ∀u, r, and P{Au,v[t] ≥
γeu,vs , ∃t ∈ T } ≤ 1 − (1 − |Es|−4)T , ∀(u, v), where Γ and
βr, γ are as defined in Lemma 7 and Theorem 8.

VI. EMPIRICAL STUDIES

In this section, we conduct simulations to evaluate our
GADGET algorithm. We use “excessive training avoidance” as
an application example (cf. Section IV, Page 5), which aims to
maximize the overall utility in a GPU computing cluster. Here,
Eq. (3) is specialized to

∑
t

∑
s yis[t] ≤ Fi, ∀i, where Fi is the

maximum number of iterations specified by users upon their
job submissions. Eq. (4) is specialized to

∑
i yis[t]≤Cs, ∀s, t,

where Cs is the GPU capacity of server s.

40 60 80 100

The number of jobs

0

1000

2000

3000

4000

5000

6000

T
o

ta
l
u

ti
lit

y

GADGET

FIFO

DRF

Tiresias

Fig. 4: Total utility compar-
isons.

40 60 80 100

The number of jobs

4

3

2

1

F
a

c
to

r
o

f
u

n
it
s
 n

o
d

e
 r

e
s
o

u
rc

e

74.07

70.76

55.26

76.87

59.31

40.33

66.03

47.97

32.75

95.56

92.67

89.72

90.9

86.71

84.61 84.82

40

50

60

70

80

90

Fig. 5: Embedded ratio
overview w.r.t node resource.

Fig. 6: Embedded ratio
overview w.r.t edge resource.

10 20 30 40 50

The number of jobs

0.6

0.65

0.7

0.75

0.8

A
p
p
ro

x
im

a
ti
o
n
 r

a
ti
o

Fig. 7: Approximation ratio.

1) Experiment Settings: We use a “fat-tree” GPU com-
puting cluster running for T = 200, with S = 50 servers.
The servers are randomly divided into “racks” and the num-
ber of racks is randomly chosen between [2, 5]. Following
similar settings as in [25], we configure each server with
the number of GPUs randomly chosen from the discrete set
{1, 2, 4, 8}. We adopt the job arrival pattern from the Google
Cluster data [26]. The job parameters are integers generated
uniformly at random from the following intervals: Ni∈[1, 5],
Fi∈ [1000, 6000], ζi∈ [50, 500], and bi ∈ [100 Mbps, 5 Gbps].
The bandwidths between racks and servers are chosen from
[200 Gbps, 3200 Gbps] [27] and [10 Gbps, 100 Gbps] uni-
formly at random, respectively. We adopt the Sigmoid utility
function [28]: µi(yis[t]) =

λi,1

1+e−λi,2(ζi
∑
s∈S yis[t]+ζizi,t−1−λi,3) ,

where λi,1 ∈ [1, 100] represents the priority of job i, λi,2 ∈
(0, 1) is to represent the sensitivity of the job to the number
of iterations, and λi,3 ∈ [300, 3000] represents the expected
number of iterations that should be trained.

2) Baselines: We compare GADGET with the following
representative job scheduling policies for computing clusters:
• FIFO in Hadoop and Spark [29]: Jobs are scheduled in

the order of their arrivals with a fixed number of workers.
• Dominant Resource Fairness Scheduling (DRF) in

Yarn [30] and Mesos [31]: Jobs are scheduled based on
their dominant resource share.
• Least Attained Service (LAS) in Tiresias [15]: Resource

scheduling among active users in the cluster is conducted
in a round-robin fashion across jobs, according to the total
number of accelerator hours consumed by each job.

Since the above scheduling policies do not consider the
underlying topology constraints, we place workers based on
the simple heuristic that greedily allocates workers to servers.
where a cycle can be attained. For FIFO and Tiresias, the
number of workers is fixed to a number within [1, 10].

3) Experiment Results: Fig. 4 illustrates the comparisons
of our GADGET algorithm to the above baselines. We can
see that GADGET algorithm significantly outperforms the
baseline algorithms, and the gains in total utility value over
the baselines become more pronounced as the number of jobs
increases. This shows that the dynamic resource allocation in
GADGET achieves higher resource utilization than those of
the static resource allocations (i.e., the number of workers
remains fixed throughout the training process) in the baselines.

Next, we examine the impacts of node GPU and edge
bandwidth resource capacities in the substrate network on the
performance of GADGET. The results are shown in Figs. 5
and 6, where one unit of node and edge resource in the y-axes
represents (GPU=100, bandwidth=200Gbps). We evaluate the
ratio between the numbers of embedded jobs and active jobs
in each time slot, and the results in Figs. 5 and 6 are the
average ratio over three trials. We can see that increasing the
node and edge capacities in the cluster has a positive impact,
which allows more jobs to be embedded in each time slot.
Intuitively, as the GPU capacity of each node increases, jobs
with high bandwidth demands have a higher probability to be
allocated using intra-server communication, which typically
has a much larger bandwidth capacity than that of inter-server
communication. Also, the larger the GPUs number, the more
jobs can be trained simultaneously. Similarly, the larger the
edge capacity, the more jobs with inter-server communications
can be scheduled.

Lastly, we investigate the performance of our proposed G-
VNE technique, which is a major component of our GADGET
algorithm. We evaluate the embedding performance in terms of
the ratio between the total utility obtained by our algorithm and
the optimal total utility. The optimal utility of Problem (12)
at each time slot is computed using the global optimization
solver Gurobi based on the branch-and-bound approach (of
exponential complexity) [32]. The results are shown in Fig. 7.
We can see that the actual performance ratio is better than our
theoretical bound in Theorem 8, which achieves 60%–80% of
the optimal utility obtained by the global optimization solver.

VII. CONCLUSION

In this paper, we studied online resource scheduling for the
training of RAR-based DDL jobs in computing clusters. We
first developed an analytical optimization framework and then
developed an online scheduling algorithm called GADGET
In GADGET, by showing the temporal submodularity of the
online scheduling problem, we developed a greedy scheduling
approach with competitive ratio guarantee. Then, for the NP-
Hard subproblem in each time-slot, we proposed a generalized
virtual network embedding technique with approximation ratio
guarantee. Trace-driven simulations confirmed the superior
performance of GADGET over existing schemes. 4

4The authors have provided public access to their code or data at https:
//zenodo.org/record/5847644#.YervbxNKhTZ.

REFERENCES

[1] M. Abadi, P. Barham et al., “TensorFlow: A system for large-scale
machine learning,” in Proc. of USENIX OSDI, 2016.

[2] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. K’́opf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, 2019, pp. 8024–8035.

[3] “Amazon EC2 P3 Instances,” 2021. [Online]. Available: https:
//aws.amazon.com/ec2/instance-types/p3/

[4] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and
F. Yang, “Multi-tenant gpu clusters for deep learning workloads: Anal-
ysis and implications,” Microsoft Research, Tech. Rep., 2018.

[5] M. Rost and S. Schmid, “Virtual network embedding approximations:
Leveraging randomized rounding,” in Proc. IFIP Networking, 2018.

[6] C. Avin and S. Schmid, “Toward demand-aware networking: A
theory for self-adjusting networks,” CoRR, 2018. [Online]. Available:
http://arxiv.org/abs/1807.02935

[7] M. Rost, E. Döhne, and S. Schmid, “Parametrized complexity of virtual
network embeddings: Dynamic & linear programming approximations,”
in SIGCOMM Comput. Commun., vol. 49, no. 1, 2019, pp. 3–10.

[8] M. Li, D. G. Andersen et al., “Scaling distributed machine learning with
the parameter server,” in Proc. of USENIX OSDI, 2014.

[9] T. M. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project
adam: Building an efficient and scalable deep learning training system,”
in Proc. of USENIX OSDI, 2014.

[10] F. Yan, O. Ruwase, Y. He, and T. Chilimbi, “Performance modeling and
scalability optimization of distributed deep learning systems,” in Proc.
of ACM KDD, 2015.

[11] P. Sun, Y. Wen, N. B. D. Ta, and S. Yan, “Towards distributed machine
learning in shared clusters: A dynamically-partitioned approach,” in
Proc. of IEEE Smart Computing, 2017.

[12] Y. Bao, Y. Peng, C. Wu, and Z. Li, “Online job scheduling in distributed
machine learning clusters,” in Proc. of IEEE INFOCOM, 2018.

[13] A. Sergeev and M. D. Balso, “Horovod: Fast and easy distributed deep
learning in tensorflow,” in arXiv preprint arXiv:1802.05799, 2018.

[14] Y. Bao, Y. Peng, Y. Chen, and C. Wu, “Preemptive all-reduce scheduling
for expediting distributed DNN training,” in IEEE INFOCOM, 2020.

[15] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian, H. Liu,
and C. Guo, “Tiresias: A gpu cluster manager for distributed deep
learning,” in 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), 2019, pp. 485–500.

[16] H. Zheng, F. Xu, L. C. andZ. Zhou, and F. Liu, “Cynthia: Cost-
efficient cloud resource provisioning for predictable distributed deep
neural network training,” in 2019 48th International Conference on
Parallel Processing (ICPP), 2019.

[17] X. Mei, X. Chu, H. Liu, Y. Leung, and Z. Li, “Energy efficient real-time
task scheduling on cpu-gpu hybrid clusters,” in IEEE INFOCOM 2017
- IEEE Conference on Computer Communications, 2017, pp. 1–9.

[18] V. Chau, X. Chu, H. Liu, and Y.-W. Leung, “Energy efficient job
scheduling with dvfs for cpu-gpu heterogeneous systems,” in Proceed-
ings of the Eighth International Conference on Future Energy Systems,
ser. e-Energy ’17, 2017, pp. 1–11.

[19] W. Chen, J. Rao, and X. Zhou, “Preemptive and low latency datacen-
ter scheduling via lightweight containers,” in 2017 USENIX Annumal
Technical Conference, 2017.

[20] I. Hou and P. Gupta, “Proportionally fair distributed resource allocation
in multiband wireless systems,” in IEEE/ACM Transactions on Network-
ing, vol. 22, no. 6, 2014, pp. 1819–1830.

[21] A. Schrijver, “Combinatorial optimization: polyhedra and efficiency,” in
Springer-Verlag, Berlin, 2003.

[22] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, “Maximizing a
monotone submodular function subject to a matroid constraint,” in SIAM
Journal on Computing, vol. 40, no. 6, 2011, pp. 1740–1766.

[23] P. Raghavan and C. D. Thompson, “Provably good routing in graphs:
Regular arrays,” in Proc. 17th ACM STOC, 1985, pp. 79–87.

[24] P. Vaidya, “An algorithm for linear programming which requires
o(((m + n)n2 + (m + n)1.5n)L) arithmetic operations,” in Math-
ematical Programming, 1990, pp. 175–201.

[25] K. Mahajan, A. Balasubramanian, A. Singhvi, S. Venkataraman,
A. Akella, A. Phanishayee, and S. Chawla, “Themis: Fair and efficient

gpu cluster scheduling,” in 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), 2020, pp. 289–304.

[26] C. Reiss, A. Tumanov et al., “Heterogeneity and dynamicity of clouds
at scale: Google trace analysis,” in Proc. of ACM SoCC, 2012.

[27] S. Kipp, “Data center bandwidth scenarios.” [Online]. Available:
https://www.ieee802.org/3/ad hoc/bwa/public/may11/kipp 01 0511.pdf

[28] Z. Huang, B. Balasubramanian, M. Wang, T. Lan, M. Chiang, and D. H.
Tsang, “Need for speed: Cora scheduler for optimizing completiontimes
in the cloud,” in Proc. of IEEE INFOCOM, 2015.

[29] M. Zaharia, M. Chowdhury, M. J. Franklin, and et al, “Spark: Cluster
computing with working sets,” in n Proc. of USENIX HotCloud, 2010.

[30] V. K. Vavilapalli, A. C. Murthy et al., “Apache hadoop yarn: Yet another
resource negotiator,” in Proc. of ACM SoCC, 2013.

[31] B. Hindman, A. Konwinski et al., “Mesos: A platform for fine-grained
resource sharing in the data center,” in Proc. of USENIX NSDI, 2011.

[32] K. Kobayashi and Y. Takano, “A branch-and-cut algorithm for solving
mixed-integer semidefinite optimization problems,” in Computational
Optimization & Applications, vol. 2, no. 75, 2020, pp. 493–513.

