
Fast Computation of Branching Process Transition Probabilities via ADMM

Achal Awasthi Jason Xu
Duke University Duke University

Abstract

Branching processes are a class of continuous-
time Markov chains (CTMCs) prevalent for mod-
eling stochastic population dynamics in ecology,
biology, epidemiology, and many other fields.
The transient or finite-time behavior of these
systems is fully characterized by their transition
probabilities. However, computing them requires
marginalizing over all paths between endpoint-
conditioned values, which often poses a computa-
tional bottleneck. Leveraging recent results that
connect generating function methods to a com-
pressed sensing framework, we recast this task
from the lens of sparse optimization. We propose
a new solution method using variable splitting;
in particular, we derive closed form updates in
a highly efficient ADMM algorithm. Notably,
no matrix products—let alone inversions—are re-
quired at any step. This reduces computational
cost by orders of magnitude over existing meth-
ods, and the resulting algorithm is easily paral-
lelizable and fairly insensitive to tuning parame-
ters. A comparison to prior work is carried out in
two applications to models of blood cell produc-
tion and transposon evolution, showing that the
proposed method is orders of magnitudes more
scalable than existing work.

1 INTRODUCTION

Continuous time Markov Chains (CTMCs) have been
widely used in stochastic modeling of population dynam-
ics with diverse applications in the fields including genet-
ics, epidemiology, finance, cell biology, and nuclear fission
[Renshaw, 2015, Allen, 2010, Paul and Baschnagel, 2013].
Their popularity owes to their flexibility, interpretability, and
desirable mathematical properties. From the perspective of

Proceedings of the 26th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

statistical inference, one of the most fundamental quantities
characterizing a CTMC are its transition probabilities, the
conditional probabilities that a chain ends at a specific state
given a starting state and finite time interval, do not have
closed form expressions. The set of all transition probabili-
ties fully define a process, and form the backbone of central
quantities such as the likelihood function of discretely ob-
served data from a CTMC [Kalbfleisch and Lawless, 1985,
Guttorp, 2018]. Unfortunately, obtaining these transition
probabilities is often computationally intensive as it requires
marginalization over an infinite set of endpoint-conditioned
paths [Hobolth and Stone, 2009, Hajiaghayi et al., 2014].

Classically, this is achieved by computing the matrix ex-
ponential of the infinitesimal generator of the CTMC at a
computational cost of O(N3) where N is the size of the
state space. Since this procedure is not suited even for state
spaces of moderate sizes, practitioners often rely on sim-
plifying assumptions or simulation based approaches [Rao
and Teh, 2011, Ross, 1987, Grassmann, 1977], each with
their own potential drawbacks. Many core frequentist and
Bayesian inferential methods alike require iterative evalua-
tion of the observed data likelihood.

In certain structured classes within CTMCs, alternative ap-
proaches are possible. Transition probabilities can be cal-
culated explicitly for simple examples such as the Poisson
process, and the class of linear birth-death processes pro-
vides another special case that admits closed form solutions
[Crawford et al., 2014, Karlin and Taylor, 1975, Lange,
2010, Tavaré, 2018].

In this article, we focus on the case of multi-type branching
processes, for which efficient numerical techniques have
only recently been developed. Xu et al. [2015] make use of
a method that expresses the probability generating function
(PGF) as a Fourier series expansion. The generating func-
tions are obtained as solutions to differential equation sys-
tems, and the transition probabilities can be recovered from
fast numerical series inversion techniques, enabling maxi-
mum likelihood inference and Expectation-Maximization
(EM) algorithms [Doss et al., 2013]). These methods how-
ever can also become costly for large systems: for instance,
approximating Fourier inversion formula using a Riemann
sum requires O(N b) PGF evaluations, where b is the num-
ber of types in the branching process and N is the largest

Fast Computation of Branching Process Transition Probabilities via ADMM

population size at the end of the desired transition prob-
abilities, which entails millions of PGF evaluations even
for a two-type process with populations in the thousands.
As many likelihood-based procedures are iterative, scalable
alternatives to this computation are critical to avoid a bottle-
neck that renders these methods out of reach. When sparsity
is available in the probabilities, Xu and Minin [2015] sug-
gest using compressed sensing to reduce the number of
computations at the expense of solving a sparse optimiza-
tion problem using proximal gradient descent (PGD).

To make progress, this article revisits this compressed sens-
ing framework from the lens of variable splitting methods.
We show how the sparse optimization problem can be solved
orders of magnitude more efficiently via a careful imple-
mentation of the Alternating Direction Method of Multi-
pliers (ADMM) algorithm [Everett III, 1963, Eckstein and
Fukushima, 1994, Boyd et al., 2011]. Our approach oper-
ates on a vectorized version of the problem, avoiding large
matrix inversions that prevent the previous PGD approach
from applying to large-scale settings. Surprisingly, not only
does variable splitting avoid inversions, but can be accom-
plished without calls even to matrix multiplication by clever
use of the Fast Fourier Transform. Our method inherits
desirable convergence and recovery guarantees, and admits
easily parallelizable implementations. Moreover, it is sur-
prisingly inelastic to tuning parameters— we find that suc-
cessful performance is robust to a broad range of reasonable
penalty parameters. We validate these merits in thorough
empirical examples, showcasing significant advantages to
prior algorithms applied to a two-type branching model of
hematopoiesis, the process of blood cell formation, and a
model of transposon evolution from genetic epidemiology.

2 MARKOV BRANCHING PROCESSES

A Markov branching process is a continuous-time Markov
chain comprised of a collection of particles that proliferate
independently, and whose reproduction or death follows
a probability distribution. We consider continuous-time,
multi-type branching processes that take values over a dis-
crete state space of non-negative integers where each parti-
cle type has its own mean lifetime and reproductive pattern
[Lange, 2010, Karlin and Taylor, 1975]. For exposition, we
focus on the two-type case, though results apply generally.

Let X(t) denote a linear, two-type branching process that
takes values in a discrete state space ⌦, with Xi(t) repre-
senting the number of particles of type i present at time
t � 0, where each particle of type i at the end of its lifespan
can produce k particles of type 1 and l particles of type
2 with instantaneous rates ai(k, l). The overall rates are
multiplicative in the number of particles due to rate linearity,
which follows from the independence assumption.

While they are defined by the instantaneous rates, the transi-
tion probabilities provide an alternate characterization of a

branching process, also completely defining its dynamics:

p(j,k),(l,m)(t) = P(X(t+s) = (l,m)|X(s) = (j, k)). (1)

These transition probabilities play a central role in statistical
inference either in the form of maximum likelihood estima-
tion or within Bayesian methods where likelihood calcula-
tions often enter in schemes such as Metropolis-Hastings to
sample from the posterior density. Motivated by their broad
importance, we now focus our attention on computing them
in the class of continuous-time branching process.

2.1 Generating Function

The probability generating function (PGF) for a two type
process is

�jk(t, s1, s2;✓) := E✓(s
X1(t)
1 s

X2(t)
2 |X1(0) = j,X2(0) = k)

=
1X

l=0

1X

m=0

p(j,k),(l,m)(t;✓)s
l

1s
m

2 , (2)

with a natural extension existing for any m-type process.
Given the instantaneous rates aj(k, l), the system of differ-
ential equations governing �jk can be derived using Kol-
mogorov forward or backward equations as shown by Bailey
[1991]. Once we have �jk, the transition probabilities can
be formally obtained by differentiating �jk in Equation 2
and normalizing by an appropriate constant,

p(j,k),(l,m)(t) =
1

l!m!

@
l

@s1

@
m

@s2
�jk(t)

���
s1=s2=0

. (3)

However, in practice repeated numerical differentiation is
a computationally intensive procedure and often becomes
numerically unstable, especially for large l,m. To circum-
vent this issue, we use a technique by Lange [1982] that
allows us to use Fast Fourier transform (FFT) to calculate
the transition probabilities p(j,k),(l,m)(t) which occur as co-
efficients of sl1sm2 in Equation 2. We can map the domain
s1, s2 2 [0, 1]⇥ [0, 1] to the boundary of the complex unit
circle by setting s1 = e

2⇡i!1 , s2 = e
2⇡i!2 and view the

PGF as a Fourier series

�jk(t, e
2⇡i!1 , e

2⇡i!2) =
1X

l,m=0

p(j,k),(l,m)(t)e
2⇡il!1e

2⇡im!2 .

We can now compute the transition probabilities via the
Fourier inversion formula, approximating the integral by a
Riemann sum:

p(j,k),(l,m)(t) =

Z 1

0

Z 1

0
�jk(t, e

2⇡i!1 , e
2⇡i!2)

⇥ e
�2⇡il!1e

�2⇡im!2d!1d!2

⇡ 1

N2

N�1X

u=0

N�1X

v=0

�jk(t, e
2⇡iu/N

, e
2⇡iv/N)

⇥ e
�2⇡ilu/N

e
�2⇡imv/N

. (4)

Achal Awasthi, Jason Xu

3 COMPRESSED SENSING
FRAMEWORK

Compressed sensing (CS) is based on the principle that a
sparse or compressible signal can be reconstructed, often
perfectly, from a small number of its projections onto a
certain subspace through solving a convex optimization
problem. For our application, transition probabilities play
the role of a target sparse signal of Fourier coefficients. CS
enables us to restrict the necessary computations to a much
smaller sample of PGF evaluations, which play the role of
measurements used to recover the sparse signal.

In this setup, let u 2 CN be an unknown sparse signal and
let = [1, 2, . . . , N] 2 CN⇥N denote an orthonormal
basis of CN . Then there exists a unique s 2 CN such that

u =
NX

i=1

 isi = s. (5)

If the number of non-zeros in s, or ||s||0, is less than K,
then u is said to be K-sparse under . We are interested in
cases where K << N or u is highly compressible.

Let an integer M satisfy K < M << N , and u be observed
through a measurement

b = �u = As 2 CM
, (6)

where � 2 CM⇥M denotes a nonadaptive sensing matrix
and A = � . Here nonadaptiveness means that � does
not depend on u. As M << N , this system is underdeter-
mined and the space of solutions is an infinite affine space.
However, in certain sparse settings, Candès [2006] proves
that reconstruction can be accurately achieved by finding
the most sparse solution among all solutions of Equation 6,
i.e.,

ŝ = {argmin
s

||s||0 : As = b}. (7)

Due to the combinatorial intractability of the non-convex
problem, it is impractical to solve this `0 formulation di-
rectly. Instead we use the `1-relaxation as a proxy which
results in an easier convex optimization problem, where we
optimize the following unconstrained penalized objective

ŝ = argmin
s

1

2
||As� b||22 + �||s||1, (8)

with � serving as the regularization parameter to enforce the
sparsity of s.

Past works indicate that when A satisfies the Restricted
Isometry Property (RIP) [Candès and Tao, 2005], Candès
et al. [2006], the K-sparse signal u or equivalently s can be
reconstructed using only M = CK logN measurements
for some constant C. The result assumes that the columns
of � and are not just incoherent pairwise, but K-wise
incoherent. The coherence between � and is defined as
µ(�,) =

p
n max

1i,jn

|
⌦
�

i
,

j

↵
|.

In practice, verifying RIP can be a demanding task; Candès
et al. [2006] and Donoho [2006] show that RIP holds with
high probability in some Gaussian random matrix settings.
In the focus of this paper, A is comprised of a random
“spike” basis playing the role of � together with a Fourier
domain representation [Rudelson and Vershynin, 2008,
Candès et al., 2006], which form a maximally incoherent
pair [Candès and Romberg, 2007]. We see how these com-
ponents enter the derivation below, and later confirm the
success this theory suggests via a thorough empirical study.

3.1 Higher Dimensions

We can easily extend this exposition focused on the vector
valued case to higher-dimensional signals [Candès, 2006].
To illustrate this, consider the 2D case where the sparse
solution S 2 CN⇥N and the measurement

B = ASAT 2 CM⇥M (9)

are matrices instead of vectors. We may solve an equivalent
problem

Ŝ = argmin
S

1

2
||ASAT �B||22 + �||S||1. (10)

Equivalently, this can also be represented in a vectorized
framework with

vec(S) = s̃ 2 CN
2

, vec(B) = b̃ 2 CM
2

,

and we now pursue b̃ = Ãs̃, with Ã = A
N

A being the
Kronecker product of A with itself. It can be preferable to
solve Equation 10 rather than the vectorized problem explic-
itly, as the number of entries in Ã grows rapidly. However,
we will show how working with vectorized forms together
with clever implementations of the Fast Fourier Transform
will provide the best of both worlds, avoiding matrix multi-
plication and inversion entirely.

4 TRANSITION PROBABILITIES VIA
ADMM

Recall that we wish to compute the transition probabilities
p(jk),(lm)(t) for any t > 0 and initial X(0) = (j, k). Within
the CS framework described in the previous section, S 2
CN⇥N is the matrix of transition probabilities with entries

{S}l,m = pjk,lm(t).

Without the CS framework, one can directly obtain the tran-
sition probabilities using Equation 4 by first computing an
equally sized matrix of PGF solutions

B̃ = {�jk(t, e2⇡iu/N , e
2⇡iv/N)}N�1

u,v=0 2 CN⇥N
. (11)

Obtaining B̃ becomes computationally expensive for large
N values, especially when each PGF must be solved, for

Fast Computation of Branching Process Transition Probabilities via ADMM

instance via numerically evaluating a differential equation.
Given a way to compute B̃, one recovers the transition prob-
abilities by taking the Fast Fourier Transform (FFT). We
can better understand how we will avoid this computation
within the CS framework with the help of matrix notation.
We have S = FB̃FT, where F 2 CN⇥N denotes the Dis-
crete Fourier Transform (DFT) matrix. Thus, the Inverse
Discrete Fourier Transform (IDFT) matrix F�1 becomes
the sparsifying basis mentioned in Equation 5, and we
have B̃ = S T.

If we expect S to have a sparse representation in this ba-
sis, we can employ a method to reconstruct S using a
much smaller set of PGF evaluations arranged in the matrix
B 2 CM⇥M , corresponding to a subset of entries from B̃
selected uniformly at random. This much smaller matrix
is a projection B = ASAT 2 CM⇥M in accordance with
Equation 9, where A 2 CM⇥N is obtained by selecting a
subset of rows of that correspond to J , the randomly sam-
pled indices. This uniform sampling of rows is equivalent
to multiplication by measurement matrix encoding the spike
(or standard) basis. Mathematically, we have A = � ,
with the rows of the measurement matrix �j(l) = �(j � l).
Thus, uniformly sampling the indices J is optimal in our
setting because the spike and Fourier bases are maximally
incoherent in any dimension [Candès and Wakin, 2008].

In the compressed sensing framework, we now require only
computing this reduced matrix B, which entails only a log-
arithmic proportion |B| / K log |B̃| of PGF evaluations
compared to the original problem. Thus, the problem of
computing the transition probabilities S has been reduced
to a signal recovery problem that can be solved by solving
the optimization problem in Equation 10.

4.1 Solving the Convex Problem Using ADMM

We use the Alternating Direction Method of Multipliers
(ADMM) algorithm [Everett III, 1963, Boyd et al., 2011]
to solve this problem efficiently. ADMM is useful for op-
timization problems where the objective function is of the
form {f(x)+g(y) : x = y} with both f(.) and g(.) convex
but not necessarily differentiable.

We first introduce some notations before detailing the op-
timization routine. Recall that for our application, U is
a two-dimensional unknown sparse signal being observed
through a measurement matrix B, and FP = PF 2 CM⇥N

denotes the sensing matrix, where P 2 RM⇥N is a selection
matrix containing M rows of the identity matrix of order N .
Similarly, we will denote F�1

P
= PF�1 2 CM⇥N where

F�1 is the IDFT matrix.

To solve this problem efficiently using ADMM, we first split
the optimization variable by introducing a new variable Z

under an equality constraint with the variable of interest:

min
U,Z

1

2
||F�1

P
U(F�1

P
)H �B||22 + �||Z||1 (12)

subject to U = Z.

Next, we consider the Augmented Lagrangian

L�(U,Z,Y) =
1

2
||F�1

P
U(F�1

P
)
H �B||22 + �||Z||1

+YT (U� Z) +
�

2
||U� Z||22, (13)

where Y serves as the dual variable enforcing U = Z. Now,
the ADMM algorithm entails the following iteration:

U(k+1) := argmin
U

L�(U,Z(k)
,Y(k))

Z(k+1) := argmin
Z

L�(U
(k+1)

,Z,Y(k))

Y(k+1) := Y(k) + �(U(k+1) � Z(k+1))

(14)

Deriving the explicit update for the subproblem in Z here is
straightforward, given by the soft-thresholding operator

Z(k+1) = SoftThresh
⇣
U(k+1) +

Y(k)

�
,
�

�

⌘
,

where SoftThresh(✏,�/�) = max{|✏| � �/�, 0} · sign(✏)
for a constant ✏ 2 R. To minimize U, we set
rU

h
L�(U,Z,Y)

i
equal to 0,

rU

h1
2
||F�1

P
U(F�1

P
)
H �B||22

i
+rU (�||Z||1)

+rU (Y
T (U� Z)) +rU

h
�

2
||U� Z||22

i
= 0,

(F�1

P
)
H

(F�1

P
)U(F�1

P
)
H

(F�1

P
)� (F�1

P
)
H

B(F�1

P
)

+Y + �(U� Z) = 0,

(F�1

P
)
H

(F�1

P
)U(F�1

P
)
H

(F�1

P
) + �U

= (F�1

P
)
H

B(F�1

P
) + �Z�Y. (15)

Notice that Equation 15 cannot be used to obtain a closed
form update for U. However, we can make progress by
vectorizing, allowing us to rewrite Equation 15 as

(F̃�1

P
)HF̃�1

P
ũ(k+1) + �ũ(k+1)

= (F̃�1

P
)H b̃+ �

⇣
z̃(k) � ỹ(k)

�

⌘
,

where F̃�1

P
= (F�1

P
)
N

(F�1

P
) 2 CM

2⇥N
2

and Ĩ =

I
N

I 2 RN
2⇥N

2

. This yields the update for ũ

ũ(k+1) =
h
(F̃�1

P
)HF̃�1

P
+ �Ĩ

i�1

h
(F̃�1

P
)H b̃+ �

⇣
z̃(k) � ỹ(k)

�

⌘i
. (16)

Achal Awasthi, Jason Xu

Avoiding matrix operations: Updating ũ naïvely according
to Equation 16 requires dense matrix multiplication and
inversion, steps that would significantly add to the runtime
of our algorithm in large-scale settings.

To circumvent this, we may instead think of Equation 16 as
the solution to the linear system

Mũ(k+1) = a, where

M =
⇣
(F̃�1

P
)HF̃�1

P
+ �Ĩ

⌘
2 CN

2⇥N
2

and

a =
⇣
(F̃�1

P
)H b̃+ �

⇣
z̃(k) � ỹ(k)

�

⌘⌘
2 CN

2

.

Multiplying F̃�1 = F�1
N

F�1 2 CN
2⇥N

2

to both sides
of the above equation, we obtain

M̂F̃�1

P
ũ(k+1) = â, where

M̂ = �Ĩ+ P̃TP̃ and â = F̃�1
�z̃(k) + P̃Tb̃. (17)

The complete details of these derivations appear step-by-
step in the Supplement. Note that M̂ is a diagonal matrix of
order N2 because both �Ĩ and P̃TP̃ are diagonal matrices
of order N2. Of course in practice we only compute and
store the vector m̂ containing the N

2 diagonal elements of
M̂. For exposition, let N = 4,M = 2,� = 0.1 and the
uniformly sampled indices J = [1, 2], then we can compute
m̂ as,

m̂1 = �

2

64
1
...
1

3

75 =

2

64
0.1

...
0.1

3

75

16⇥1

p̃ =

2

664

1
1
0
0

3

775

4⇥1

p̃
O

p̃ =
h
1, 1, 0, 0, 1, 1, (0)10

iT
1⇥16

,

m̂ = m̂1 + p̃
O

p̃

=
h
1.1, 1.1, 0.1, 0.1, 1.1, 1.1, (0.1)10

iT
1⇥16

.

On the other hand, since â = vec(Â) = vec(F�1
�Z(k) +

PTBP), computing â is equivalent to first computing Â
and then vectorizing it. Thus, we can compute m̂, compute
â and then efficiently solve the linear system

F�1U(k+1) = vec�1(â↵ m̂), (18)

where ↵ is the Hadamard (elementwise) division operator
and vec�1 is the inverse of the vectorization operator, i.e.
reshaping â↵ m̂ back into a N ⇥N matrix. Thereafter, to
isolate the optimization variable, we may recover U(k+1)

by “cancelling out” F�1 through applying the FFT on both
sides. Doing so avoids explicitly multiplying matrices im-
plied by 16; details are mentioned in line 8 of Algorithm
1.

Computational complexity: We now we analyze the per-
iteration computational complexity of the subproblems in
minimizing Z and U. First, note the minimization of Z
requires evaluating the soft-thresholding operator elemen-
twise, and thus has a complexity of O(kN2), where k is
the number of ADMM iterations and N is the maximum
population size.

Next, we consider the complexity of naively minimizing U
if one were to use Equation 16 directly. Doing so would
involve dense matrix multiplications to calculate M and a,
as well as matrix inversion to obtain U. Calculating M has
a complexity of O(N4

M
2) as it involves matrix multiplica-

tion of F̃�1

P
2 CM

2⇥N
2

with its complex conjugate. Calcu-
lating a has a complexity of O(max{(N2

M
2
, kN

2}) while
inverting M has O(N6) cost, thus incurring a total computa-
tional complexity of O(max{N6

,max{N2
M

2
, kN

2}}) =
O(N6) for the U update.

Our discussion on reducing this complexity by avoiding
matrix operations reduces this significantly, making use of
m̂ and Â instead of M and a as described above. Form-
ing m̂ has O(N2) cost as it involves the calculation of N2

non-zero diagonal elements of M̂. Then, computing Â re-
quires the calculation of PTBP, �Z(k) and its IDFT, which
have complexities O(M2), O(kM), and O(kN2 log2 N)
respectively. Therefore, the calculation of Â has a complex-
ity of O(max{M2

, kM, kN
2 log2 N}) = O(kN2 log2 N)

which matches the cost of computing two-dimensional FFT
required to obtain U(k+1). Since this is the dominant com-
plexity in solving the linear system described by Equation
18, the overall complexity of the U update (and in turn the
Z update) becomes O(kN2 log2 N), a dramatic reduction
from O(N6).

It is worth mentioning that the total complexity of the al-
gorithm can be further improved by leveraging the sparsity
of the transition probability matrix and using sparse FFT
(sFFT) techniques [Hassanieh et al., 2012], which can re-
duce the complexity of the two-dimensional IDFT from
O(kN2 log2 N) to O(kM2 log2 M). However, for our ap-
plication, we use the Fastest Fourier Transform in the West
(FFTW) [Frigo and Johnson, 1998] to implement FFT as the
differences in execution times between implementing FFT
using FFTW and sFFT are only appreciable for N > 217

[Hassanieh et al., 2012], which is beyond the maximum
population sizes considered in this paper.

Execution time of ADMM: We further improve the wall-
clock execution time of our algorithm by vectorizing inter-
mediate steps (lines 2, 3, and 8 of Algorithm 1) whenever
possible, and making use of optimized Numpy libraries
Harris et al., 2020 and parallelized FFT in FFTW [Frigo and
Johnson, 1998].

Fast Computation of Branching Process Transition Probabilities via ADMM

4.2 ADMM Convergence and Stopping Criteria

Having detailed the algorithm and having emphasized care-
ful diagonalization tricks in the Fourier domain to signif-
icantly reduce runtime, we now discuss aspects related to
convergence. We establish the convergence guarantees and
stopping criteria of our ADMM algorithm. It is not difficult
to show that our formulation inherits powerful standard con-
vergence results. We begin by verifying assumptions behind
one of the classical convergence theorems.

Proposition 4.1. The functions f(U) and g(Z) are closed,
convex and proper.

The functions f(U) = 1
2 ||F

�1

P
U(F�1

P
)H � B||22 and

g(Z) = �||Z||1 are closed, convex and proper by virtue
of being the square of the L2 norm and L1 norm, respec-
tively [Rudin et al., 1976, Folland, 1999].

Proposition 4.2. For � = 0, L0 = �||Z||1 +
1
2 ||F

�1

P
U(F�1

P
)H�B||22+YT (U�Z), the unaugmented

Lagrangian has a saddle point for all U,Z,Y.

Proposition 4.3. Under propositions 4.1 and 4.2, the
ADMM algorithm achieves:

1. Primal residual convergence: R(k+1) = U(k+1) �
Z(k+1) ! 0 as k ! 1.

2. Dual residual convergence: S(k+1) = �(Z(k+1) �
Z(k)) ! 0 as k ! 1.

The proofs of Propositions 4.2 and 4.3 are given in the
Supplement.

4.2.1 Optimality Conditions and Stopping Criteria

The necessary and sufficient optimality conditions for the
optimization problem described in Equation 12 are defined
by primal feasibility,

U⇤ + Z⇤ = 0, (19)

and dual feasibility,

0 = r
h1
2
||F�1

P
U⇤(F�1

P
)H �B||22

i
+Y⇤ (20)

0 2 @(�||Z⇤||1)�Y⇤
, (21)

where (U⇤
,Z⇤

,Y⇤) is the saddle point of L0, @ denotes
the subdifferential operator [Rockafellar, 1970, Borwein
and Lewis, 2006] due to �||Z⇤||1 being non-differentiable.
Thus, Equations 19-21 constitute the three optimality
conditions for the optimization problem described in
Equation 12. The last condition (21) always holds for
(U(k+1)

,Z(k+1)
,Y(k+1)) whereas the other conditions

give rise to the primal R(k+1) and dual S(k+1) residuals
with proof in the Supplement; these residuals converge to
zero as ADMM iterates according to Proposition 4.3.

Algorithm 1: Fast sparse reconstruction using ADMM
1 function ADMM (B,�,�, ✏abs, ✏rel, Niter,P,J);

Input :Measurements B 2 CM⇥M , list of uniformly
sampled indices J , stepsize �, regularization
parameter �, error thresholds ✏abs and ✏rel,
iteration max Niter, matrix P 2 RM⇥N .

Output :A real-valued 2D matrix Ŝ
2 Initialize m̂1 with 1N2⇥1, p̃ with 0N⇥1; p̃[J] = 1;
3 set m̂ = m̂1 + p̃

N
p̃;

4 Initialize U, Z Â with 0N⇥N;
5 Â[J ,J] = B;
6 while k < Niter do
7 â = vec(Â+ IFFT2D(�Z(k)));
8 U(k+1) = FFT2D[vec�1(â↵ m̂)];
9 Z(k+1) = SoftThresh(U(k+1) +Y(k)

/�,�/�);
10 Y(k+1) = Y(k) + �(U(k+1) � Z(k+1));

// Stopping criteria using primal and
dual tolerances

11 ✏pri = N✏abs + ✏rel max(||U(k)||2, ||Z(k)||2);
12 ✏dual = N✏abs + ✏rel||Y(k)||2;
13 if ||R(k)||2 < ✏pri and ||S(k)||2 < ✏dual then
14 return Ŝ = U(k)

/N
2;

15 end
16 end
17 return Ŝ = U(k)

/N
2;

We can thus use these residuals to put a bound
on the objective suboptimality of the current point,
1
2 ||F

�1

P
U(k)(F�1

P
)H �B||22 +�||Z(k)||1 � q

⇤, where q⇤ is
the optimal value that the objective function given in Equa-
tion 12 will converge to for k ! 1. The following equation
appearing in the proof of convergence in the Supplement,

1

2
||F̃�1

P
ũ(k) � b̃||22 + �||z̃(k)||1 � q

⇤

� (ỹ(k))T r̃(k) + (ũ(k) � ũ⇤)T s̃(k),

suggests that when the primal and dual residuals are small,
the objective suboptimality must also be small, thereby mo-
tivating the use of the following stopping criterion:

||R(k)||2  ✏pri and ||S(k)||2  ✏dual.

Here ✏pri > 0 and ✏dual > 0 are the tolerances for the
primal (19) and dual feasibility (20) conditions respectively.
We choose the following tolerances for robustness analysis,

✏pri = N✏abs + ✏rel max(||U(k)||2, ||Z(k)||2), (22)

✏dual = N✏abs + ✏rel, ||Y(k)||2, (23)

where ✏abs and ✏rel are the absolute and relative tolerances
respectively, typically chosen between 10�2 to 10�4 de-
pending on the application.

Achal Awasthi, Jason Xu

5 APPLICATION AND EMPIRICAL
STUDY

We implement the framework described in the previous sec-
tion to recover the transition probabilities for a two-type
branching process; the idea and the framework can be easily
extended to multi-type branching processes as well. As an
outline, we calculate the full transition probability matrix
S for a two-type branching process with known rates, ran-
domly select a subset of the PGF evaluations B, and use
ADMM along with CS to recover the transition probabilities
Ŝ while also exploring the robustness of the ADMM algo-
rithm with respect to the stepsize �, and the regularization
parameter �. Once satisfied with the robustness, we then
proceed to compare the runtimes of recovering the transition
probabilities using ADMM algorithm with the runtimes of
PGD algorithm for similar errors.

We describe the two model applications used to generate
data in our study, following Xu and Minin [2015].

5.1 Two-Compartment Hematopoiesis Model

Hematopoiesis is a process of continuous formation and
turnover of blood cells in order to fulfill the everyday de-
mands of the body. At the origin of hematopoiesis is
hematopoietic stem cell (HSC) which has two fundamental
features: the first being the ability to self-renew, a divisional
event which results in the formation of two HSCs from
one HSC and the second being the ability for multipotent
differentiation into all mature blood lineages.

We can stochastically model this biological phenomenon as
a two type branching process [Catlin et al., 2001]. Under
such representation, X1 and X2, the type one and type two
particle populations correspond to HSCs and progenitor
cells respectively. With the same parameters as denoted in
Figure 4a of the Supplement, the non-zero instantaneous
rates that define the process are,

a1(2, 0) = ⇢, a1(0, 1) = ⌫, a1(1, 0) = �(⇢+ ⌫),

a2(0, 0) = µ, a2(0, 1) = �µ. (24)

Now that we have the instantaneous rates, we can derive
the solutions for its PGF, defined in Equation 2 and subse-
quently obtain the transition probabilities using Equation 4
with the details included in the Supplement. Note that the
cell population in this application can reach to the order of
tens of thousands, thereby motivating the splitting methods
approach to compute transition probabilities in an efficient
manner.

5.2 Birth-Death-Shift Model for Transposons

For our second application, we look at the birth-death-shift
(BDS) process proposed by Rosenberg et al. [2003] to model

evolutionary dynamics of the genomic mobile sequence el-
ements known as transposons. Each transposon can either
produce a new copy which can move to a new genomic
location, shift to a different genomic location, or be com-
pletely removed from the genome, independently of all other
transposons with per-particle instantaneous rates �,�, � and
overall rates proportional to the total number of transposons.
The IS6110 transposon in the Mycobacterium tuberculo-
sis genome from a San Francisco community study dataset
[Cattamanchi et al., 2006] was used to estimate these evo-
lutionary rates by Rosenberg et al. [2003]. A two-type
branching process can be used to model the BDS process
over a finite observation interval, where X1 and X2 repre-
sent the numbers of initially occupied genomic locations
and newly occupied genomic locations respectively, thereby
capturing the full dynamics of the BDS process.

The two-type branching process representation of the BDS
model has the following non-zero rates

a1(1, 1) = �, a1(0, 1) = �, a1(0, 0) = �,

a1(1, 0) = �(� + � + �), a2(0, 2) = �,

a2(0, 1) = �(� + �), a2(0, 0) = �. (25)

In our application, we calculate the transition probabili-
ties S for maximum population sizes N = 26, 27, . . . , 210,
given the time intervals t, branching process’ rate param-
eters ✓ and initial population size X(0). Based on bio-
logically sensible rates and observation times scales of
data from previous hematopoiesis studies [Catlin et al.,
2001, Golinelli et al., 2006, Fong et al., 2009], we set
per-week branching rates and the observation time as
✓HSC = [⇢, ⌫, µ] = [0.125, 0.104, 0.147] and t = 1
week respectively. Similarly for the BDS application,
based on previously estimated rates in Xu et al. [2015]
and the average length between observations in the tuber-
culosis dataset from San Francisco [Cattamanchi et al.,
2006], we set the per year event rates and the observa-
tion time as ✓BDS = [�,�, �] = [0.016, 0.004, 0.019] and
t = 0.35 years respectively. In each case, we computed
M

2 = (min(b
p
logNK10c, b

p
N �

p
N/5c)2 total ran-

dom measurements to obtain B, which will be used to re-
cover the transition probabilities.

5.3 Robustness of ADMM Algorithm

We begin by investigating the robustness of our ADMM
algorithm under a broad range of parameter settings. We
consider varying the stepsize � and the regularization pa-
rameter � for each N , and repeat this procedure across all
N values for the HSC model while examining the effects of
these variations on the relative L2 errors ✏L2

rel
defined

✏
L2
rel

= ||Ŝ� S||2/||S||2,

where ||.|| indicates the L2 norm, S and Ŝ represent the
“true” and recovered transition probabilities respectively.

Fast Computation of Branching Process Transition Probabilities via ADMM

0.00

0.25

0.50

0.75

1.00

1e−03 1e−01 1e+01 1e+03

Stepsize β (log−scale)

R
e

la
tiv

e
 L

2
 n

o
rm

 e
rr

o
r N−Value

64
128
256
512
1024

Convergence Status

Met stop criteria
Reached max iteration

(a)

0.00

0.25

0.50

0.75

1.00

1 10 100 1000

Regularization parameter λ (log−scale)

R
e

la
tiv

e
 L

2
 n

o
rm

 e
rr

o
r

(b)

0 10 20 30 40 50 60

(A) N=64

0

10

20

30

40

50

60

"True" (S)

0 10 20 30 40 50 60

(B) N=64

0

10

20

30

40

50

60

"Recovered" (�S)

0 200 400 600 800 1000

(C) N=1024

0

200

400

600

800

1000

"True" (S)

0 200 400 600 800 1000

(D) N=1024

0

200

400

600

800

1000

"Recovered" (�S)

0.000

0.005

0.010

0.015

0.020

0.025

(c)

Figure 1: Relative L2 norm error, ✏L2
rel

for (a) varying stepsizes � and (b) varying regularization parameter � under varying
settings of N , HSC model. The successful convergence of ADMM algorithm is observed over a large range of stepsizes
and �. c) The sparse “true” transition probability matrix (S) along with the recovered transition probability matrix (Ŝ) for
N = 64 and N = 1024 for the HSC model using ADMM, with red circles highlighting non-zero transition probabilities.

In more detail, we start by fixing � = 0.5(logM) and vary
� in equal intervals from 10�4 to 9 ⇥ 102 while record-
ing and subsequently plotting ✏L2

rel
corresponding to each

�. Thereafter, we fix � = 0.08, vary � from 1 to 103 and
plot ✏L2

rel
corresponding to each �. The primal ✏pri and dual

✏dual feasibility tolerances are given by Equations 22 and
23 respectively with ✏abs = ✏rel = 10�3.

Figure 1 displays these results. The algorithm is fairly
inelastic to both the tuning of the stepsize � as well as
the penalty parameter �: it achieves low errors conveying
successful signal recovery for a wide range of values, which
is visually evident even on the log scale. This is promising
as our method may enter as a subroutine in optimization
frameworks when the scale of these parameters is unknown,
and must be learned throughout an iterative scheme.

5.4 Comparing the Performance of PGD and ADMM

Having confirmed that the method is not too sensitive to
tuning, we compare its performance to the PGD algorithm
proposed in Xu and Minin [2015]. In order to compare the
performance we first compute sets of transition probabilities
S of both HSC and BDS models using the full set of PGF
solution measurements B̃ as described in Equation 11.

Following Xu and Minin [2015] we set the regularization
parameters as �PGD

HSC
=

p
logM and �PGD

BDS
= logM for

the PGD algorithm while keeping � = 0.5(logM) for the
ADMM algorithm for both the applications. It is promising
that this simple heuristic for choosing the parameters leads
to successful performance across all settings we consider,
further validating our empirical validation of robustness to
tuning. Figure 1c illustrates the sparse solution and provides
a visual demonstration of the accuracy of reconstructed
solutions using our ADMM approach, with the estimated
matrix Ŝ essentially identical to the ground truth.

For each value of N, we repeat this procedure five times un-
der randomly sampled indices J , and recover the transition
probabilities Ŝ using only a subset of PGF solution measure-
ments B for both PGD and ADMM algorithms. We report
median runtimes over the five trials in a fair conservative
comparison, in that we ensure the measure of accuracy ✏L2

rel

under our proposed method is at least as good as PGD. To
match errors across the algorithms, we choose

✏pri = D1✏abs + ✏rel max(||U(k)||2, ||Z(k)||2),

✏dual = D2✏abs + ✏rel||Y(k)||2,

where D1, D2 are {N2
, N

5} and {N2
, N

2} for the HSC
and BDS models respectively, complete details summarized
in Table S1 of the Supplement. Since our ADMM algorithm
largely depends on the FFT, a GPU based algorithm was
also implemented to show that the algorithm can be acceler-
ated drastically through straightforward parallelization, thus
making it highly scalable for large data. Further details on
the GPU version are included in the Supplement.

The median runtimes of PGD, ADMM (Vanilla), and
ADMM (GPU) for both HSC and BDS models are reported
in Figure 2 while the median relative L2 norm errors, ✏L2

rel

are reported in the Supplement. As evident from Figure 2,
the ADMM algorithm consistently outperforms the PGD
algorithm across all N values for both the HSC and BDS
models. For instance, with N = 1024, there is a 97.65%
and 71.12% reduction in the runtimes of ADMM (Vanilla)
algorithm for the HSC model and BDS models respectively
while the GPU implementation of ADMM is about 21 times
faster than ADMM (vanilla) and about 885 times faster
than PGD algorithm for the HSC model. Similarly, for
N = 1024 the ADMM (GPU) algorithm is about 40 times
faster than ADMM (vanilla) and about 140 times faster than
PGD algorithm for the BDS model.

Achal Awasthi, Jason Xu

Computing Infrastructure The experiment is conducted
on Google Colaboratory1 platform that claimed to have a
RAM of 12.6 GB, a single-core Xeon CPU of 2.20 Ghz
(No Turbo Boost) and a Tesla K80 with 2496 CUDA cores
and 12GB GPU memory as well. The GPU version of FFT
was implemented in CuPy [Okuta et al., 2017], a Numpy-
like API library for CUDA with matched parameters in
both the vanilla and GPU implementations of ADMM. The
code and data used to implement the ADMM algorithm
can be accessed from https://github.com/awasthi-12/
Transition_Prob_via_ADMM/.

4.662

29.34

869.49

1.951

4.721

20.44

0.179

0.911

0.009

0.376

0.016

0.141
0.176

0.227

0.983

N=64 N=128 N=256 N=512 N=1024

Maximum population size

R
u

n
ti

m
e

 H
S

C
 m

o
d

e
l

(l
o

g
-s

c
a

le
)

Algorithm ADMM (GPU) ADMM (Vanilla) PGD

1.5

13.02

113.04

459.93

1.08

3.5

20.23

132.85

3.303

0.495

0.195

0.104

0.196 0.216

0.524

N=64 N=128 N=256 N=512 N=1024

Maximum population size

R
u

n
ti

m
e

 B
D

S
 M

o
d

e
l

(l
o

g
-s

c
a

le
)

Figure 2: A comparison of median running times for differ-
ent algorithms and maximum population sizes for the HSC
model and BDS model respectively. For all population sizes
N considered under each model, ADMM algorithm out-
paces PGD algorithm under comparable or lower errors at
convergence. This discrepancy becomes more pronounced
as the size of the problem grows; note results are plotted on
the log-scale.

1https://colab.research.google.com/

6 DISCUSSION

We revisit the computational challenge of computing tran-
sition probabilities of large-scale multi-type branching pro-
cesses. Focusing on the two-type setting, we derive a novel
application of ADMM, showing how variable splitting can
significantly accelerate methods to compute transition prob-
abilities within a compressed sensing paradigm. Through a
suite of experiments, we validate not only the robustness of
ADMM with respect to the stepsize � and the regularization
parameter �, but also its superior performance over previous
attempts utilizing proximal gradient descent. The advan-
tages of the proposed method become especially pronounced
as the population size N increases. We also show through
thoughtful algorithmic considerations that the primal vari-
able “U”-update in ADMM can be carried out without ma-
trix inversions. In particular, mathematically manipulating
the expressions to leverage the FFT, the dominant complex-
ity requires O(N2 log2 N) flops, dramatically increasing
the scale of problems the method can consider. Lastly, a
GPU-based parallel implementation further reduces the run-
times over the standard version.

In many realistic data settings where these stochastic pop-
ulation models apply, it is natural to expect sparsity in the
support of transition probabilities at finite time-scales of
interest. We have been able to achieve precise results in
two such relevant examples under realistic parameter set-
tings from scientific literature. Importantly, not only can
the relevant quantities be computed efficiently, but in a way
that succeeds over a wide range of tuning parameters. This
robustness to tuning will be crucial when embedding these
methods as subroutines within inferential schemes such as
maximum likelihood estimation [Doss et al., 2013, Xu et al.,
2015]. Recall that for a Markov process X(t) observed at
discrete times {t1, . . . tT }, the likelihood function of ob-
served data is a product of its transition probabilities

L(X;✓) =
T�1Y

i=1

pX(ti),X(ti+1)(ti+1 � ti;✓).

Optimizing this likelihood numerically often entails iterative
schemes, and similar bottlenecks arise under other estima-
tors as well as Bayesian approaches where the likelihood
appears in routines such as Metropolis-Hastings ratios [Gut-
torp, 2018, Stutz et al., 2022]. The robustness, efficiency,
and accuracy of the proposed method make it well-suited
to aid or enable likelihood-based inference in challenging
missing data settings.

Acknowledgements

This work was partially supported by NSF grants DMS-
2230074 and PIPP-2200047. We thank Galen Reeves for
helpful discussions and Yiwen Wang for early contributions
to the code.

https://github.com/awasthi-12/Transition_Prob_via_ADMM/
https://github.com/awasthi-12/Transition_Prob_via_ADMM/

Fast Computation of Branching Process Transition Probabilities via ADMM

References

Linda JS Allen. An introduction to stochastic processes
with applications to biology. CRC press, 2010.

Norman TJ Bailey. The Elements of Stochastic Processes
with Applications to the Natural Sciences, volume 25. New
York: John Wiley & Sons, 1991.

Jonathan Borwein and Adrian Lewis. Convex Analysis.
Springer, 2006.

Stephen Boyd and Lieven Vandenberghe. Convex optimiza-
tion. Cambridge university press, 2004.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato,
Jonathan Eckstein, et al. Distributed optimization and
statistical learning via the Alternating Direction Method of
Multipliers. Foundations and Trends® in Machine learn-
ing, 3(1):1–122, 2011.

Emmanuel J Candès. Compressive sampling. In Pro-
ceedings of the international congress of mathematicians,
volume 3, pages 1433–1452. Citeseer, 2006.

Emmanuel J Candès and Justin Romberg. Sparsity and
incoherence in compressive sampling. Inverse problems,
23(3):969, 2007.

Emmanuel J Candès and Terence Tao. Decoding by linear
programming. IEEE transactions on information theory,
51(12):4203–4215, 2005.

Emmanuel J Candès and Michael B Wakin. An introduc-
tion to compressive sampling. IEEE signal processing
magazine, 25(2):21–30, 2008.

Emmanuel J Candès, Justin Romberg, and Terence Tao.
Robust uncertainty principles: Exact signal reconstruc-
tion from highly incomplete frequency information. IEEE
Transactions on information theory, 52(2):489–509, 2006.

Sandra N Catlin, Janis L Abkowitz, and Peter Guttorp.
Statistical inference in a two-compartment model for
hematopoiesis. Biometrics, 57(2):546–553, 2001.

A Cattamanchi, PC Hopewell, LC Gonzalez, DH Osmond,
L Masae Kawamura, CL Daley, and RM Jasmer. A 13-year
molecular epidemiological analysis of tuberculosis in San
Francisco. The International Journal of Tuberculosis and
Lung Disease, 10(3):297–304, 2006.

Forrest W Crawford, Vladimir N Minin, and Marc A
Suchard. Estimation for general birth-death processes.
Journal of the American Statistical Association, 109(506):
730–747, 2014.

David L Donoho. Compressed sensing. IEEE Transactions
on information theory, 52(4):1289–1306, 2006.

Charles R Doss, Marc A Suchard, Ian Holmes, Midori
Kato-Maeda, and Vladimir N Minin. Fitting birth-death
processes to panel data with applications to bacterial DNA
fingerprinting. The annals of applied statistics, 7(4):2315,
2013.

Jonathan Eckstein and Dimitri P Bertsekas. On the Dou-
glas—Rachford splitting method and the proximal point
algorithm for maximal monotone operators. Mathematical
Programming, 55(1):293–318, 1992.

Jonathan Eckstein and Masao Fukushima. Some refor-
mulations and applications of the Alternating Direction
Method of Multipliers. In Large scale optimization, pages
115–134. Springer, 1994.

Hugh Everett III. Generalized Lagrange multiplier method
for solving problems of optimum allocation of resources.
Operations research, 11(3):399–417, 1963.

Gerald B Folland. Real analysis: modern techniques and
their applications, volume 40. John Wiley & Sons, 1999.

Youyi Fong, Peter Guttorp, and Janis Abkowitz. Bayesian
inference and model choice in a hidden stochastic two-
compartment model of hematopoietic stem cell fate deci-
sions. The annals of applied statistics, 3(4):1696, 2009.

Matteo Frigo and Steven G Johnson. Fftw: An adaptive
software architecture for the FFT. In Proceedings of the
1998 IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP’98 (Cat. No. 98CH36181),
volume 3, pages 1381–1384. IEEE, 1998.

Daniel Gabay. Applications of the method of multipliers to
variational inequalities. In Augmented Lagrangian Meth-
ods: Applications to the Numerical Solution of Boundary-
Value Problems, volume 15, pages 299–331. Elsevier,
1983.

D Golinelli, P Guttorp, and JA Abkowitz. Bayesian infer-
ence in a hidden stochastic two-compartment model for
feline hematopoiesis. Mathematical Medicine and Biology,
23(3):153–172, 2006.

Winfried K Grassmann. Transient solutions in Markovian
queueing systems. Computers & Operations Research, 4
(1):47–53, 1977.

Peter Guttorp. Stochastic modeling of scientific data. Chap-
man and Hall/CRC, 2018.

Monir Hajiaghayi, Bonnie Kirkpatrick, Liangliang Wang,
and Alexandre Bouchard-Côté. Efficient continuous-time
markov chain estimation. In International Conference on
Machine Learning, pages 638–646. PMLR, 2014.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der
Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau,
Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.

Achal Awasthi, Jason Xu

Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H.
van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fer-
nández del Río, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, War-
ren Weckesser, Hameer Abbasi, Christoph Gohlke, and
Travis E. Oliphant. Array programming with NumPy. Na-
ture, 585(7825):357–362, September 2020. doi: 10.1038/
s41586-020-2649-2. URL https://doi.org/10.1038/
s41586-020-2649-2.

Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric
Price. Simple and practical algorithm for sparse Fourier
transform. In Proceedings of the twenty-third annual ACM-
SIAM symposium on Discrete Algorithms, pages 1183–
1194. SIAM, 2012.

Asger Hobolth and Eric A Stone. Simulation from
endpoint-conditioned, continuous-time Markov chains on a
finite state space, with applications to molecular evolution.
The annals of applied statistics, 3(3):1204, 2009.

JD Kalbfleisch and Jerald Franklin Lawless. The analysis
of panel data under a markov assumption. Journal of the
american statistical association, 80(392):863–871, 1985.

Samuel Karlin and Howard M. Taylor. A First Course in
Stochastic Processes (Second Edition). Academic Press,
second edition edition, 1975.

Kenneth Lange. Calculation of the equilibrium distribu-
tion for a deleterious gene by the finite Fourier transform.
Biometrics, 38:79–86, 1982.

Kenneth Lange. Applied Probability. Springer, New York,
NY, second edition edition, 2010.

Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei
Hido, and Crissman Loomis. CuPy: A NumPy-compatible
library for NVIDIA GPU calculations. In Proceedings of
Workshop on Machine Learning Systems (LearningSys) in
The Thirty-first Annual Conference on Neural Information
Processing Systems (NIPS), 2017.

Wolfgang Paul and Jörg Baschnagel. Stochastic processes:
From Physics to Finance. Springer Cham, 2013.

V Rao and YW Teh. Fast MCMC sampling for Markov
jump processes and continuous time Bayesian networks.
In Proceedings of the 27th Conference on Uncertainty in
Artificial Intelligence, UAI 2011, 2011.

Eric Renshaw. Stochastic population processes: analysis,
approximations, simulations. OUP Oxford, 2015.

R Tyrrell Rockafellar. Convex analysis, volume 18. Prince-
ton university press, 1970.

Noah A Rosenberg, Anthony G Tsolaki, and Mark M
Tanaka. Estimating change rates of genetic markers us-
ing serial samples: applications to the transposon IS6110

in Mycobacterium tuberculosis. Theoretical Population
Biology, 63(4):347–363, 2003.

Sheldon M Ross. Approximating transition probabilities
and mean occupation times in continuous-time Markov
chains. Probability in the Engineering and Informational
Sciences, 1(3):251–264, 1987.

Mark Rudelson and Roman Vershynin. On sparse recon-
struction from Fourier and Gaussian measurements. Com-
munications on Pure and Applied Mathematics: A Journal
Issued by the Courant Institute of Mathematical Sciences,
61(8):1025–1045, 2008.

Walter Rudin et al. Principles of Mathematical Analysis,
volume 3. McGraw-hill New York, 1976.

Timothy C Stutz, Janet S Sinsheimer, Mary Sehl, and
Jason Xu. Computational tools for assessing gene therapy
under branching process models of mutation. Bulletin of
Mathematical Biology, 84(1):1–17, 2022.

Simon Tavaré. The linear birth–death process: an inferen-
tial retrospective. Advances in Applied Probability, 50(A):
253–269, 2018.

Jason Xu and Vladimir N Minin. Efficient transition prob-
ability computation for continuous-time branching pro-
cesses via compressed sensing. In Uncertainty in Artificial
Intelligence, volume 2015, page 952, 2015.

Jason Xu, Peter Guttorp, Midori Kato-Maeda, and
Vladimir N Minin. Likelihood-based inference for dis-
cretely observed birth–death-shift processes, with applica-
tions to evolution of mobile genetic elements. Biometrics,
71(4):1009–1021, 2015.

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

Fast Computation of Branching Process Transition Probabilities via ADMM

Supplementary Materials

A DERIVATIONS AND PROOFS

A.1 Discrete Fourier Transform Matrix

The N ⇥ N discrete Fourier transform (DFT) matrix F has entries {F}j,k = 1p
N
(!)jk, where ! = e

2⇡i/N and j, k =

0, 1, . . . N � 1. As mentioned in the main text, recall that the Hermitian is given by its conjugate transpose: FH =
�
FFF
�T .

Now let x be a vector with x̂̂x̂x = Fx and x = FH
x̂̂x̂x. Applying both FH and F we get

FHFx = FH
x̂̂x̂x = x =) FHF = III.

Thus, the DFT matrix F is unitary.

A.2 Extended Derivations

Here we provide details on obtaining M̂ and â as described by Equation 17 of the main text. This enables us to update u
efficiently, as mentioned in Section 4.2 of the main text.

We begin with the following equation
Mũ(k+1) = a, (S1)

where M =
⇣
(F̃�1

P
)HF̃�1

P
+ �Ĩ

⌘
2 CN

2⇥N
2

and a =
⇣
(F̃�1

P
)H b̃ + �

⇣
z̃(k) � ỹ

(k)

�

⌘⌘
2 CN

2

. Multiplying both sides

of Equation S1 by F̃�1 = F�1
N

F�1 2 CN
2⇥N

2

and simplifying using the properties of the discrete Fourier transform
matrix, the left-hand side of the equation becomes:

F̃�1Mũ(k+1) = F̃�1

⇣
(F̃�1

P
)HF̃�1

P
+ �Ĩ

⌘
ũ(k+1)

= F̃�1((P̃F̃�1)HP̃F̃�1 + �Ĩ)ũ(k+1) [F̃�1 = F̃H because DFT matrix is unitary]

= F̃�1((F̃H)HP̃HP̃F̃�1 + �Ĩ)ũ(k+1) [P̃H = P̃T because entries of P̃ are real by construction]

= F̃�1F̃P̃
T

P̃F̃�1ũ(k+1) + �F̃�1ũ(k+1) [� 2 R is a constant]

= P̃T P̃F̃�1ũ(k+1) + �F̃�1ũ(k+1)

= (P̃T P̃+ �Ĩ)F̃�1ũ(k+1)

= M̂F̃�1ũ(k+1)

Similarly, the right-hand side of Equation S1 becomes:

F̃�1a = F̃�1

h
(F̃�1

P
)H b̃F̃�1

P
+ �

⇣
z̃(k) � ỹ(k)

�

⌘i

= F̃�1

h
(P̃F̃�1)H b̃P̃F̃�1 + �

⇣
z̃(k) � ỹ(k)

�

⌘i

= F̃�1(F̃H)HP̃H b̃P̃F̃�1 + �F̃�1z̃(k) � F̃�1ỹ(k)

= F̃�1F̃P̃
T

b̃+ �F̃�1z̃(k)

= P̃T b̃+ �F̃�1z̃(k)

= â

Achal Awasthi, Jason Xu

A.3 Proofs of Propositions

We present the proofs of propositions 4.2 and 4.3 described in Section 4.2 of the main text, first recalling the statement of
results:

Proposition A.1. 4.1 The functions f(U) = 1
2 ||F

�1

P
U(F�1

P
)H �B||22 and g(Z) = �||Z||1 are closed, convex, and proper.

The proof of Proposition 4.1 has been provided in the main text. Proposition 4.1 implies that there exist U and Z, not
necessarily unique, that minimize the augmented Lagrangian, thereby making the U and Z updates

U(k+1) := argmin
U

L�(U,Z(k)
,Y(k)),

Z(k+1) := argmin
Z

L�(U
(k+1)

,Z,Y(k)),
(S2)

solvable.

Proposition A.2. 4.2 For � = 0, L0 = 1
2 ||F

�1

P
U(F�1

P
)H �B||22 + �||Z||1 +YT (U� Z), the unaugmented Lagrangian

has a saddle point for all U,Z,Y.

Proof. A Lagrangian L0 is said to have a saddle point when there exist (U⇤
,Z⇤

,Y⇤) not necessarily unique such that,

L0(U
⇤
,Z⇤

,Y)  L0(U
⇤
,Z⇤

,Y⇤)  L0(U,Z,Y⇤).

From Proposition 4.1 it follows that L0(U⇤
,Z⇤

,Y⇤) is finite for any saddle point (U⇤
,Z⇤

,Y⇤). This implies not only
that (U⇤

,Z⇤) is a solution to the primal objective function 1
2 ||F

�1

P
U(F�1

P
)H � B||22 + �||Z||1, thus U⇤ = Z⇤ and

1
2 ||F

�1

P
U⇤(F�1

P
)H � B||22 < 1 and �||Z⇤||1 < 1, but also that strong duality holds and Y⇤ is a dual optimal, i.e. it

maximizes the dual function YT (U� Z) [Boyd and Vandenberghe, 2004].

We can easily verify that

1

2
||F�1

P
U⇤(F�1

P
)H �B||22 + �||U⇤||1 =

1

2
||F�1

P
U⇤(F�1

P
)H �B||22 + �||U⇤||1

<
1

2
||F�1

P
U(F�1

P
)H �B||22 + �||Z||1 + (Y⇤)T (U� Z),

where the last inequality follows from (U⇤
,Z⇤) minimizing 1

2 ||F
�1

P
U(F�1

P
)H �B||22 + �||Z||1 among all (U,Z) and Y⇤

maximizing the dual objective function among all Y.

Proposition A.3. 4.3 Under propositions 4.1 and 4.2, the ADMM algorithm achieves the following:

1. Primal residual convergence: R(k+1) = U(k+1) � Z(k+1) ! 0 as k ! 1.

2. Dual residual convergence: S(k+1) = �(Z(k+1) � Z(k)) ! 0 as k ! 1.

Proof. The proof of proposition 4.3 [Gabay, 1983, Eckstein and Bertsekas, 1992, Boyd et al., 2011] is divided into three
parts based on three central inequalities, all of which we prove as part of this proof.

Let (U⇤
,Z⇤

,Y⇤) be a saddle point for the unaugmented Lagrangian L0 = 1
2 ||F

�1

P
U(F�1

P
)H�B||22+�||Z||1+YT (U�Z).

Equivalently let (ũ⇤
, z̃⇤, ỹ⇤) be the saddle point for the unaugmented Lagrangian L0 = 1

2 ||F̃
�1

P
ũ�b̃||22+�||z̃||1+ỹT (ũ�z̃)

and consider the first inequality

q
⇤ � q

(k+1)  (ỹ⇤)T r̃(k+1)
, (S3)

where q
⇤ is the optimal value to which the objective function converges as k ! 1.

Fast Computation of Branching Process Transition Probabilities via ADMM

A.3.1 Proof of Inequality S3

The following inequality holds
L0(ũ

⇤
, z̃⇤, ỹ⇤)  L0(ũ

(k+1)
, z̃(k+1)

, ỹ⇤) (S4)

because (ũ⇤
, z̃⇤, ỹ⇤) is a saddle point for L0. Using the constraint of the optimization problem ũ⇤ = z̃⇤, the left-hand side

of inequality S4 reduces to q
⇤. The right-hand side of inequality S4 can be simplified as

L0(ũ
(k+1)

, z̃(k+1)
, ỹ⇤) =

1

2
||F̃�1

P
ũ(k+1) � b̃||22 + �||z̃(k+1)||1 + (ỹ⇤)T (ũ(k+1) � z̃(k+1))

= q
(k+1) + (ỹ⇤)T r̃(k+1)

h
r̃(k+1) = ũ(k+1) � z̃(k+1)

i

h
q
(k+1) =

1

2
||F̃�1

P
ũ(k+1) � b̃||22 + �||z̃(k+1)||1

i
.

Thus, we have

q
⇤  q

(k+1) + (ỹ⇤)T r̃(k+1)

q
⇤ � q

(k+1)  (ỹ⇤)T r̃(k+1)
.

Next, we consider the second inequality

q
(k+1) � q

⇤  �(ỹ(k+1))T r̃(k+1) � �(z̃(k+1) � z̃(k))T (r̃(k+1) + (z̃(k+1) � z̃⇤)). (S5)

A.3.2 Proof of Inequality S5

We know that, by definition, ũ(k+1) minimizes L�(ũ, z̃(k), ỹ(k)). Since f(ũ) = 1
2 ||F̃

�1

P
ũ � b̃||22 is closed, proper, and

convex by Proposition 4.1, it is differentiable, implying that L� is subdifferentiable. The necessary and sufficient optimality
condition is

0 2 @L�(ũ
(k+1)

, z̃(k), ỹ(k)) = @

⇣1
2
||F̃�1

P
ũ(k+1) � b̃||22 + �||z̃(k)||1 + (ỹ(k))T (ũ(k+1) � z̃(k)) +

�

2
||ũ(k+1) � z̃(k)||22

⌘

= @

⇣1
2
||F̃�1

P
ũ(k+1) � b̃||22

⌘
+ @(�||z̃(k)||1) + @((ỹ(k))T (ũ(k+1) � z̃(k))) + @

⇣
�

2
||ũ(k+1) � z̃(k)||22

⌘

= @

⇣1
2
||F̃�1

P
ũ(k+1) � b̃||22

⌘
+ ỹ(k) + �(ũ(k+1) � z̃(k)), (S6)

where we use the fact that the subdifferential of the sum of a subdifferential function and a differentiable function with
domain RN is the sum of the subdifferential and the gradient [Rockafellar, 1970].

Since the update of ỹ is
ỹ(k+1) = ỹ(k) + �(ũ(k+1) � z̃(k+1)),

we can substitute ỹ(k) = ỹ(k+1) � �(ũ(k+1) � z̃(k+1)) in S6 and rearrange the terms to obtain

0 2 @

⇣1
2
||F̃�1

P
ũ(k+1) � b̃||22

⌘
+ ỹ(k+1) � �(ũ(k+1) � z̃(k+1)) + �ũ(k+1) � �z̃(k)

= @

⇣1
2
||F̃�1

P
ũ(k+1) � b̃||22

⌘
+ ỹ(k+1) + �(z̃(k+1) � z̃(k)).

This implies that ũ(k+1) minimizes

1

2
||F̃�1

P
ũ(k+1) � b̃||22 + (ỹ(k+1) + �(z̃(k+1) � z̃(k)))T ũ.

Analogously we can show that z̃(k+1) minimizes �||z̃||1 � (ỹ(k+1))T z̃ and it follows that,

1

2
||F̃�1

P
ũ(k+1) � b̃||22 + (ỹ(k+1) + �(z̃(k+1) � z̃(k)))T ũ(k+1)

 1

2
||F̃�1

P
ũ⇤ � b̃||22 + (ỹ(k+1) + �(z̃(k+1) � z̃(k)))T ũ⇤ (S7)

Achal Awasthi, Jason Xu

and
�||z̃(k+1)||1 � (ỹ(k+1))T z̃(k+1)  �||z̃⇤||1 � (ỹ(k+1))T z̃⇤ (S8)

Adding the inequalities S7 and S8, we obtain

1

2
||F̃�1

P
ũ(k+1) � b̃||22 + (ỹ(k+1) + �(z̃(k+1) � z̃(k)))T ũ(k+1) + �||z̃(k+1)||1 � (ỹ(k+1))T z̃(k+1)

 1

2
||F̃�1

P
ũ⇤ � b̃||22 + (ỹ(k+1) + �(z̃(k+1) � z̃(k)))T ũ⇤ + �||z̃⇤||1 � (ỹ(k+1))T z̃⇤. (S9)

We can rearrange and simplify the terms on the left-hand side of inequality S9,

1

2
||F̃�1

P
u(k+1) � b̃||22 + (ỹ(k+1) + �(z̃(k+1) � z̃(k)))T ũ(k+1) + �||z̃(k+1)||1 � (ỹ(k+1))T z̃(k+1)

=
1

2
||F̃�1

P
ũ(k+1) � b̃||22 + �||z̃(k+1)||1 + (ỹ(k+1))T (ũ(k+1) � z̃(k+1))

+ �(z̃(k+1) � z̃(k))T ũ(k+1) [Rearranging the terms]

= q
(k+1) + (ỹ(k+1))T r̃(k+1) + �(z̃(k+1) � z̃(k))T (r̃(k+1) + z̃(k+1)) [Because r̃(k+1) = ũ(k+1) � z̃(k+1)] (S10)

Similarly, we can also simplify the terms on the right-hand side of the inequality S9,

1

2
||F̃�1

P
ũ⇤ � b̃||22 + (ỹ(k+1) + �(z̃(k+1) � z̃(k)))T ũ⇤ + �||z̃⇤||1 � (ỹ(k+1))T z̃⇤

=
1

2
||F̃�1

P
ũ⇤ � b̃||22 + �||z̃⇤||1 + (ỹ(k+1))T (ũ⇤ � z̃⇤) + �(z̃(k+1) � z̃(k))T ũ⇤ [Rearranging the terms]

= q
⇤ + �(z̃(k+1) � z̃(k))T z̃⇤ [Because of the optimization constraint ũ⇤ = z̃⇤] (S11)

We can combine S10 and S11 and rearrange the terms to obtain inequality S5

q
(k+1) � q

⇤  �(ỹ(k+1))T r̃(k+1) � �(z̃(k+1) � z̃(k))T (r̃(k+1) + (z̃(k+1) � z̃⇤)).

Now that we have proved the inequalities S4 and S5), only the last inequality

V
(k) � V

(k+1) � �||̃r(k+1)||22 + �||(z̃(k+1) � z̃(k))||22, (S12)

remains to be proven.

A.3.3 Proof of Inequality S12

Recall that (ũ⇤
, z̃⇤, ỹ⇤) is a saddle point for the unaugmented Lagrangian L0 and define

V
(k) :=

1

�
||ỹ(k) � ỹ⇤||22 + �||(z̃(k) � z̃⇤)||22.

Adding inequalities S4 and S5, rearranging the terms, and multiplying by 2 on both sides gives us

2(ỹ(k+1) � ỹ⇤)T r̃(k+1) + 2�(z̃(k+1) � z̃(k))T r̃(k+1) + 2�(z̃(k+1) � z̃(k))T (z̃(k+1) � z̃⇤)  0. (S13)

The first term of inequality S13 can be rewritten as

2(ỹ(k+1) � ỹ⇤)T r̃(k+1) = 2(ỹ(k) + �r̃(k+1) � ỹ⇤)T r̃(k+1) [Because ỹ(k+1) = ỹ(k) + �r̃(k+1)]

= 2(ỹ(k) � ỹ⇤)T r̃(k+1) + 2�(r̃(k+1))T r̃(k+1) [�T = � since � 2 R]
= 2(ỹ(k) � ỹ⇤)T r̃(k+1) + �||̃r(k+1)||22 + �||̃r(k+1)||22, [(r̃(k+1))T r̃(k+1) = ||̃r(k+1)||22]

Fast Computation of Branching Process Transition Probabilities via ADMM

and plugging r̃(k+1) = 1
�
(ỹ(k+1) � ỹ(k)) in the first two terms gives

2

�
(ỹ(k) � ỹ⇤)T (ỹ(k+1) � ỹ(k)) +

1

�
||ỹ(k+1) � ỹ(k)||22 + �||̃r(k+1)||22

=
1

�

⇣
||ỹ(k+1) � ỹ⇤||22 � ||ỹ(k) � ỹ⇤||22

⌘
+ �||̃r(k+1)||22 [Adding and subtracting ỹ⇤]. (S14)

We can now rewrite the remaining terms of the inequality S13

�||̃r(k+1)||22 + 2�(z̃(k+1) � z̃(k))T r̃(k+1) + 2�(z̃(k+1) � z̃(k))T (z̃(k+1) � z̃⇤), (S15)

where the term �||̃r(k+1)||22 is extracted from Equation S14. Adding and subtracting z̃(k) from the last term of S15 gives

�||̃r(k+1) + (z̃(k+1) � z̃(k))||22 + �||(z̃(k+1) � z̃(k))||22 + 2�(z̃(k+1) � z̃(k))T (z̃(k) � z̃⇤),

and by substituting z̃(k+1) � z̃(k) = (z̃(k+1) � z̃⇤)� (z̃(k) � z̃⇤) in the last two terms, we get

�||̃r(k+1) + (z̃(k+1) � z̃(k))||22 + �

⇣
||z̃(k+1) � z̃⇤||22 � ||z̃(k) � z̃⇤||22

⌘
.

This implies that inequality S13 can be written as

1

�

⇣
||ỹ(k+1) � ỹ⇤||22 � ||ỹ(k) � ỹ⇤||22

⌘
+ �||̃r(k+1) + (z̃(k+1) � z̃(k))||22 + �

⇣
||z̃(k+1) � z̃⇤||22 � ||z̃(k) � z̃⇤||22

⌘
 0

=) V
(k) � V

(k+1) � �||̃r(k+1) + (z̃(k+1) � z̃(k))||22

We can expand �||̃r(k+1) + (z̃(k+1) � z̃(k))||22 as

�||̃r(k+1)||22 + 2�(r̃(k+1))T (z̃(k+1) � z̃(k)) + �||(z̃(k+1) � z̃(k))||22.

Thus, to prove the third inequality S12, it suffices to show that 2�(r̃(k+1))T (z̃(k+1) � z̃(k)) is positive. Recall that z̃(k+1)

minimizes �||z̃||1 � (ỹ(k+1))T z̃ and similarly, z̃(k) minimizes �||z̃||1 � (ỹ(k))T z̃ which allows us to add

�||z̃(k+1)||1 � (ỹ(k+1))T z̃k+1  �||z̃(k)||1 � (ỹ(k+1))T z̃k

and
�||z̃(k)||1 � (ỹ(k))T z̃k  �||z̃(k+1)||1 � (ỹ(k))T z̃k+1

to get

�||z̃(k+1)||1 � (ỹ(k+1))T z̃k+1 + �||z̃(k)||1 � (ỹ(k))T z̃k

 �||z̃(k)||1 � (ỹ(k+1))T z̃k + �||z̃(k+1)||1 � (ỹ(k))T z̃k+1

=) (ỹ(k+1) � ỹ(k))T (z̃(k+1) � z̃(k)) � 0.

We substitute ỹ(k+1) � ỹ(k) = �r̃(k+1) to get

�(r̃(k+1))T (z̃(k+1) � z̃(k)) � 0,

because � > 0 and subsequently

V
(k) � V

(k+1) � �||̃r(k+1) + (z̃(k+1) � z̃(k))||22
� �||̃r(k+1)||22 + �||(z̃(k+1) � z̃(k))||22,

Achal Awasthi, Jason Xu

thus proving the third inequality. The convergence of ADMM is a consequence of the three inequalities S3, S7, and S12.
Finally, the inequality S12 can be rewritten as

V
(k+1)  V

(k) � �||̃r(k+1)||22 � �||(z̃(k+1) � z̃(k))||22,

which implies that V (k) decreases in each iteration, thus bounding ỹ(k) and z̃(k) as V (k)
< V

0. In particular, note that
inductively inequality S12 leads to the following set of inequalities

V
(0) � V

(1) + �||̃r(1)||22 + �||(z̃(1) � z̃(0))||22,
V

(1) � V
(2) + �||̃r(2)||22 + �||(z̃(2) � z̃(1))||22,

...

V
(k) � V

(k+1) + �||̃r(k+1)||22 + �||(z̃(k+1) � z̃(k))||22,
...

which, upon summation reveals

1X

k=0

V
(k) �

1X

k=0

V
(k+1) + �

1X

k=0

⇣
||̃r(k+1)||22 + ||(z̃(k+1) � z̃(k))||22

⌘

1X

k=0

(V (k) � V
(k+1)) � �

1X

k=0

⇣
||̃r(k+1)||22 + ||(z̃(k+1) � z̃(k))||22

⌘

V
(0) � �

1X

k=0

⇣
||̃r(k+1)||22 + ||(z̃(k+1) � z̃(k))||22

⌘ h 1X

k=0

(V (k) � V
(k+1)) is a telescopic series

i
.

Thus the sum of non-negative terms on the right-hand side
P1

k=0

⇣
||̃r(k+1)||22 + ||(z̃(k+1) � z̃(k))||22

⌘
converges, as the

n
th partial sum is bounded above by

nX

k=0

⇣
||̃r(k+1)||22 + ||(z̃(k+1) � z̃(k))||22

⌘
 V

0

�
.

Thus, the primary residual, r̃(k+1) ! 0 and the secondary residual �(z̃(k+1) � z̃(k)) ! 0 as k ! 1 immediately from
� > 0 which is equivalent to R(k+1) ! 0 and �(Z(k+1) � Z(k)) ! 0 as k ! 1, completing the proof of Proposition
3.

B Additional FIGURES AND TABLES

HSC Model BDS Model
N=64 128 256 512 1024 N=64 128 256 512 1024

Stepsize (�) 0.08 0.005 0.08 0.005 0.005 0.005 0.005 0.005 0.0005 0.0005
D1 N

2
N

2
N

2
N

2
N

2
N

2
N

2
N

2
N

2
N

D2 N
5

N
5

N
5

N
5

N
5

N
2

N
2

N
2

N
2

N

✏abs 10�2 10�2 10�2 10�2 10�3 10�3 10�3 10�3 10�3 10�3

✏abs 10�3 10�3 10�3 10�3 10�3 10�3 10�3 10�3 10�3 10�3

Table 1: This table provides complete details of the ADMM algorithm in our proposed framework, including the step
size �, the tolerances for the primal and dual feasibility conditions, ✏pri = D1✏abs + ✏rel max(||U(k)||2, ||Z(k)||2) and
✏dual = D2✏abs + ✏rel||Y(k)||2 respectively, and ✏abs and ✏rel are the absolute and relative tolerances respectively. The
regularization parameter � was chosen to be 0.5(logM) for both models. These were chosen in a simple manner across all
trials but our framework still yielded promising performance results as compared to the PGD algorithm.

Fast Computation of Branching Process Transition Probabilities via ADMM

10.04

7.77

9.05

7.84

19.82

12.69

0.54 0.29

5.67
6.39

0

5

10

15

20

N=64 N=128 N=256 N=512 N=1024

Scale

M
e

d
ia

n
 r

e
la

ti
ve

 L
2
 n

o
rm

 e
rr

o
r

(i
n

 %
)

H
S

C

Algorithm ADMM PGD

(a)

4.5

2.83

3.4

4.14

3.28

0.59

0.8

1.2

4.03
3.88

0

1

2

3

4

N=64 N=128 N=256 N=512 N=1024

Scale

M
e

d
ia

n
 r

e
la

ti
ve

 L
2
 n

o
rm

 e
rr

o
r

(i
n

 %
)

B
D

S

(b)

Figure 3: The median relative norm errors ✏L2
rel

in recovering the transition probabilities using both the PGD and ADMM
algorithms for the a) HSC model and the b) BDS model. Note that, in contrast to runtimes, ✏L2

rel
was the same for both the

vanilla and GPU implementations of the ADMM algorithm.

ν
ρ

μ

HSC Progenitor

(a)

Death

Shift

Birth

(b)

Figure 4: a) HSCs can self-renew, producing new HSCs at rate ⇢, or differentiate into progenitor cells at rate ⌫. Further
progenitor differentiation is modeled by rate µ b) Illustration of the three types of transposition - birth, death, shift - along a
genome, represented by circles [Rosenberg et al., 2003]. Transposons are depicted by rectangles occupying locations along
the circles/genomes. On the right set of diagrams, a birth event keeps the number of type 1 particles intact and increments
the number of type 2 particles by one, a death event changes the number of type 1 particles from five to four and keeps the
number of type 2 particles at zero, and finally a shift event decreases the number of type 1 particles by one and increases the
number of type 2 particles by one.

Achal Awasthi, Jason Xu

Tables 2 and 3 show the median running times for different algorithms namely, PGD, ADMM (Vanilla), and ADMM (GPU)
and the percentage change in runtimes relative to the runtime of the PGD algorithm,

% change =
runtimeADMM � runtimePGD

runtimePGD

,

for the HSC and BDS models, respectively. The negative percent change indicates that the ADMM algorithm is faster than
the PGD algorithm for the corresponding value N .

Median runtime
Maximum population size M PGD ADMM (% change) ADMM (GPU) (% change)
N=64 51 0.179 0.009 (�94.97%) 0.016 (�91.06%)
N=128 78 0.911 0.376 (�58.73%) 0.141 (�84.52%)
N=256 83 4.662 1.951 (�58.15%) 0.176 (�96.22%)
N=512 88 29.34 4.721 (�83.91%) 0.227 (�99.23%)
N=1024 93 869.49 20.44 (�97.65%) 0.983 (�99.89%)

Table 2: A comparison of median running times (percent change relative to the runtime of the PGD algorithm) for different
algorithms and scales for the HSC model. For all maximum population sizes, our proposed framework is faster in recovering
the transition probabilities than the PGD algorithm for errors at least as good as PGD.

Median runtime
Maximum population size M PGD ADMM (% change) ADMM (GPU) (% change)
N=64 18 0.495 0.195 (�60.60%) 0.104 (�78.99%)
N=128 19 1.50 1.09 (�27.33%) 0.196 (�86.93%)
N=256 29 13.02 3.50 (�86.93%) 0.216 (�98.34%)
N=512 22 113.04 20.23 (�82.10%) 0.524 (�99.54%)
N=1024 28 459.93 132.85 (�71.12%) 3.303 (�99.28%)

Table 3: A comparison of median running times (percent change relative to the runtime of the PGD algorithm) for different
algorithms and scales for the BDS model. For all maximum population sizes, our proposed framework is faster in recovering
the transition probabilities than the PGD algorithm for errors at least as good as PGD.

C DETAILS ON GENERATING FUNCTIONS AND PGD ALGORITHM

C.1 Pseudocode for PGD

Algorithm 2 summarizes the proximal gradient descent approach proposed in Xu and Minin [2015].

C.2 Derivation of the PGF for HSC Model

The details for deriving the PGF are included here only for completeness but are standard, following the “random variable
technique” of [Bailey, 1991]. Given a two-type branching process with instantaneous rates ai(k, l), we can define the
pseudo-generating function for i = 1, 2,

ui(s1, s2) =
X

k

X

l

ai(k, l)s
k

1s
l

2.

Fast Computation of Branching Process Transition Probabilities via ADMM

Algorithm 2: PGD Algorithm
1 function PGD (B,�, ⌧, �, ✏abs, ✏rel, Niter, P);

Input : initial sizes X1 = j,X2 = k, time interval t, branching rates ✓, signal size N > j, k, measurement size M ,
penalization constant � > 0, line-search parameters L, c.

Output :A real-valued 2D matrix Ŝ̂ŜS

2 Uniformly sample M indices J ⇢ [0, . . . N]

3 Compute B = {�j,k(t, e2⇡iu/N , e
2⇡iv/N)}u,v2J

4 Define A= J , the J rows of the IDFT matrix .
5 Initialize: S1 = Y1 = 0S1 = Y1 = 0S1 = Y1 = 0
6 for k = 1, 2, . . . do
7 Choose Lk = line-search(L, c, Yk)

8 Update extrapolation parameter: !k = k

k+3

9 Update momentum: Yk+1 = Sk + !k(Sk � Sk�1)Yk+1 = Sk + !k(Sk � Sk�1)Yk+1 = Sk + !k(Sk � Sk�1)
10 Update: Sk+1 = SoftThresh(Sk � Lk)
11 end
12 return Ŝ = Sk+1

The probability generating function can be expanded as

�10(t, s1, s2) = E(sX1(t)
1 s

X2(t)
2 |X1(0) = 1, X2(0) = 0)

=
X

k

X

l

p(1,0),(k,l)(t)s
k

1s
l

2

=
X

k

X

l

(�k=1,l=0 + a1(k, l)t+ o(t))sk1s
l

2

= s1 + u1(s1, s2)t+ o(t).

Similarly, starting with one particle of type 2 instead of type 1, we can obtain an analogous expression for �01(t, s1, s2).
For brevity, we will write �10(t, s1, s2) := �1(t, s1, s2),�01(t, s1, s2) := �2(t, s1, s2).

Differentiating �1(t, s1, s2) and �2(t, s1, s2) with respect to time, we get

d�1

dt

�
t, s1, s2

�
|t=0 = u1(s1, s2)

d�2

dt

�
t, s1, s2

�
|t=0 = u2(s1, s2).

We now derive the backward and forward equations with the Chapman-Kolmogorov equations, yielding the following
symmetric relations:

�1(t+ h, s1, s2) = �1(t,�1(h, s1, s2),�2(h, s1, s2)) (S16)
= �1(h,�1(t, s1, s2),�2(t, s1, s2)). (S17)

We expand around t and apply Equation S16 to derive the backward equations:

�1(t+ h, s1, s2) = �1(t, s1, s2) +
d�1

dh

�
t+ h, s1, s2

�
|h=0h+ o(h)

= �1(t, s1, s2) +
d�1

dh

�
h,�1(t, s1, s2),�2(t, s1, s2)

�
|h=0h+ o(h)

= �1(t, s1, s2) + u1(�1(t, s1, s2),�2(t, s1, s2)) + o(h).

Achal Awasthi, Jason Xu

We can apply an analogous argument for �2(t, s1, s2) to arrive at the following system of ODEs

d�1

dt

�
t, s1, s2

�
= u1(�1(t, s1, s2) + �2(t, s1, s2)),

d�2

dt

�
t, s1, s2

�
= u2(�1(t, s1, s2) + �2(t, s1, s2)),

with initial conditions �1(0, s1, s2) = s1, �2(0, s1, s2) = s2.

Recall from the main text the rates that define the two-component HSC model are given by:

a1(2, 0) = ⇢, a1(0, 1) = ⌫, a1(1, 0) = �(⇢+ ⌫), a2(0, 0) = µ, a2(0, 1) = �µ.

Thus, the pseudo-generating functions become

u1(s1, s2) =⇢s
2
1 + ⌫s2 � (⇢+ ⌫)s1,

u2(s1, s2) =µ� µs2 = µ(1� s2).

Plugging these into the backward equations yields,

d�1

dt

�
t, s1, s2

�
= ⇢�

2
1(t, s1, s2) + ⌫�2(t, s1, s2)� (⇢+ ⌫)�1(t, s1, s2),

d�2

dt

�
t, s1, s2

�
= µ(1� �2(t, s1, s2)).

Note that the differential equation for �2(t, s1, s2) corresponds to that of a pure death process and has a closed-form solution.

d�2

dt

�
t, s1, s2

�
= µ(1� �2(t, s1, s2))

d

dt

⇣
�2

1� �2

⌘�
t, s1, s2

�
= µ

�2(t, s1, s2) = 1� e
�µt+C

Inserting �2(0, s1, s2) = s2, we obtain C = ln(1� s2), and we get

�2(t, s1, s2) = 1 + (s2 � 1)e�µt
. (S18)

When inserting equation S18 into the backward equation involving �1(t, s1, s2), we obtain

d�1

dt

�
t, s1, s2

�
= ⇢�

2
1(t, s1, s2)� (⇢+ ⌫)�1(t, s1, s2) + ⌫(1 + (s2 � 1)e�µt) (S19)

Given the rates of the process and the values of the three arguments, Equation S19 can be solved numerically, allowing the
computation of �i,j(t, s1, s2) = �

i

1(t, s1, s2)�
j

2(t, s1, s2) which holds by particle independence.

	INTRODUCTION
	MARKOV BRANCHING PROCESSES
	Generating Function

	COMPRESSED SENSING FRAMEWORK
	Higher Dimensions

	TRANSITION PROBABILITIES VIA ADMM
	Solving the Convex Problem Using ADMM
	ADMM Convergence and Stopping Criteria
	Optimality Conditions and Stopping Criteria

	APPLICATION AND EMPIRICAL STUDY
	Two-Compartment Hematopoiesis Model
	Birth-Death-Shift Model for Transposons
	Robustness of ADMM Algorithm
	Comparing the Performance of PGD and ADMM

	DISCUSSION
	DERIVATIONS AND PROOFS
	Discrete Fourier Transform Matrix
	Extended Derivations
	Proofs of Propositions
	Proof of Inequality S3
	Proof of Inequality S5
	Proof of Inequality S12

	Additional FIGURES AND TABLES
	DETAILS ON GENERATING FUNCTIONS AND PGD ALGORITHM
	Pseudocode for PGD
	Derivation of the PGF for HSC Model

