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ABSTRACT 

 
Alcohol is known to impair fine articulatory control 
and movements. In drunken speech, incomplete 
closure of the vocal tract can result in deaffrication of 
the English affricate sounds /tʃ/ and /ʤ/, 
spirantization (fricative-like production) of the stop 
consonants and palatalization (retraction of place of 
articulation) of the alveolar fricative /s/ (produced as 
/ʃ/). Such categorical segmental errors have been 
well-reported. This study employs a phonologically-
informed neural network approach to estimate 
degrees of deaffrication of /tʃ/ and /ʤ/, spirantization 
of /t/ and /d/ and place retraction for /s/ in a corpus of 
intoxicated English speech. Recurrent neural 
networks were trained to recognize relevant 
phonological features [anterior], [continuant] and 
[strident] in a control speech corpus. Their posterior 
probabilities were computed over the segments 
produced under intoxication. The results obtained 
revealed both categorical and gradient errors and, 
thus, suggested that this new approach could reliably 
quantify fine-grained errors in intoxicated speech. 
Keywords: alcohol, deaffrication, palatalization, 
retraction, neural network. 

1. INTRODUCTION 

Alcohol intoxication has been shown to impair 
cognitive function and production of both 
suprasegmental and segmental properties of speech 
[1, 2, 3, 4, 5, 6, 7].  In English, the segmental errors 
encompass deaffrication of the affricate sounds /tʃ/ 
and /ʤ/ [5, 7], spirantization (fricative-like 
production) of the stop consonants [5, 7] and 
palatalization (retraction of place of articulation) of 
the alveolar fricative /s/ (produced as /ʃ/) [5, 9]. These 
errors occur due to impaired ability to control timing 
and movement of the active articulators, resulting in 
failure to form a complete closure (deaffrication and 
spirantization) or to achieve and/or maintain an 
appropriate degree of opening, at an intended location 
in the vocal tract (place retraction). Crucially, these 
errors have been described as categorical through 
such coarse-grained measures as perceptual judgment 
[e.g., 8] and phonetic transcription of the affected 
speech segments [e.g., 2]. However, sub-contrastive 

or gradient errors, below the level of a segment or 
feature are likely missed by such techniques due to 
the listeners’ perceptual bias [10]. Further, while 
acoustic measurements could circumvent perceptual 
bias, describing categorical rather than gradient 
phonetic errors have largely been the focus of most 
acoustic-phonetic studies of intoxicated speech. 

The goal of this study is to examine the nature, 
gradient and categorical errors, at the feature level in 
intoxicated speech in an English corpus using a neural 
network model known as Phonet. Inspired by 
computational approaches using forced alignment to 
measure surface, gradient phonetic variations, this 
approach quantifies gradient phonetic variation of 
deaffrication, spirantization and place retraction from 
the posterior probability of relevant phonological 
features, computed directly from the input signals by 
bidirectional recurrent neural networks. In this study, 
the relevant phonological features are [anterior], 
[continuant] and [strident]. These features capture 
relative location of the oral constriction, amount of 
airflow impedance and intensity of frication noise, 
respectively. A categorical error is operationalized as 
a sign shift of the phonological features (e.g., from 
[+anterior] to [-anterior]), while gradiency of an error 
is reflected in the posterior probability values of a 
phonological feature. A brief description of Phonet is 
present in § 2 below.   

2. PHONET 

Phonet [11] is a bi-directional recurrent neural 
network model, trained to recognize input phones as 
belonging to different phonological classes defined 
by phonological features (e.g., anterior, continuant 
and strident). It is semi-automatic and only requires a 
segmentally-aligned acoustic corpus (using forced 
alignment). Input to Phonet is log-energy distributed 
across triangular Mel filters computed from 25-ms 
windowed frames of each 0.5 second chunk of the 
input signal (see [11] for details). Once trained, 
posterior probabilities for different phonological 
features of the target segments can be computed by 
the model. Phonet has been found to be highly 
accurate in quantifying degree of lenition in Spanish 
[7, 15, 21, 22] and modelling the speech impairments 
of patients diagnosed with Parkinson’s disease [11]. 
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The architecture of Phonet is described in detail in 
[11]. 
Phonet can be customized with different sets of 
phonological features and acoustic representations. In 
this study, we focus on the probability of the 
phonological features [anterior], [strident] and 
[continuant] to capture retraction of place of 
articulation, deaffrication, and spirantization of 
English voiceless and voiced stops /t, d/, voiced and 
voiceless affricates /tʃ, dʒ/, and fricatives /s, ʃ/. A 
fricative-like realization due to an incomplete closure 
of the oral constriction would be associated with a 
relatively higher [continuant] and [strident] 
probability while a relatively low [anterior] 
probability would indicate a more retracted place of 
articulation.  

3. METHODS 

3.1. Materials 

The target consonants for this study are English stops 
/t, d/ (Ns = 2,237 and 1,085), affricates /tʃ, dʒ/ (Ns = 
144 and 160), and fricatives /s, ʃ/ (Ns = 1,430 and 96) 
from a corpus of intoxicated speech [7]. 

3.2. Stimulus recording procedure 

The corpus contains recordings of four female, native 
speakers of British English reading a dialogue 
naturally (i.e., not in an animate, acting voice). The 
original text of the dialogue (based on [17]) was 
edited to ensure that it is gender- and emotionally 
neutral, void of overly long turns, and representative 
of the English phonemic inventory (available at [18]). 
Two separate readings (sober then drunk) across 
participants, on different days (1-2 months apart) 
were recorded in a sound-attenuated room at 44.1 kHz 
sampling rate and 16-bit amplitude resolution in 
stereo and were then converted to mono using 
Audacity. The speakers were told not to eat, drink, or 
use mouthwash 2 hours before each session and not 
to smoke half hour before each session.  

The participants’ blood alcohol concentration 
(BAC) was measured using a breathalyzer [AlcoMate 
(Macomb Township. MI) Premium AL-7000] at the 
beginning of the sober session to ensure absence of 
alcohol in their system. Intoxicated recording session 
began when BAC reached 0.12% after consumption 
of vodka or rum, mixed with juices. 

3.2. Stimulus pre-processing 

The recordings were divided up into utterances which 
were then manually annotated for any disfluencies. 
The disfluent utterances (8.5%) were not discarded 
since their exclusion did not qualitatively change our 

findings. The utterances were forced aligned using 
the Montreal Forced Aligner (version: 2.0) [12] with 
its released pretrained English model. 

3.3. Phonet training procedure 

Librispeech [16], a large corpus of English 
audiobooks was used as a representative English 
speech sample. A subset of the cleaned portion of 360 
hours was selected. The corpus was then forced 
aligned using the Montreal Forced Aligner (version: 
2.0) [12]. The phone set was set to IPA. For other 
parameters default values were used. 

Model training with Phonet was performed on an 
NVIDIA GeForce RTX 3090 GPU using the Keras 
[19] library. The corpus was randomly split into a 
train subset (80%) and a test subset (20%) using the 
Python (Version 3.9) scikit-learn library [14]. 
Twenty-one Phonet models were trained for 20 
phonological classes (consonantal, syllabic, voicing, 
labial, coronal, dorsal, lateral, nasal, rhotic, anterior, 
continuant, sonorant, strident, diphthong, high, low, 
back, round, stress, tense), and pause. 

The model was highly accurate showing 
unweighted average recall (UAR) ranges from 91% 
(coronal)-98% (pause). Critically, the UARs for the 
anterior, continuant and strident features are 93%, 
92% and 97%, respectively. The model was then 
applied to our selected word tokens from our forced-
aligned intoxicated speech corpus with /t, d, tʃ, dʒ, s, 
ʃ/. The predictions were computed for 10-ms frames. 
For a token containing multiple frames, the average 
prediction from the middle frame(s) was taken as its 
prediction. Anterior, continuant and strident posterior 
probabilities obtained for each target consonant are 
then used for statistical analyses. 

3.4. Statistical analyses 

All statistical analyses were performed using the lme4 
package [13] in R [13]. Contrast coding (-0.5, 0.5) 
was used for binary categorical variable. Random 
variables included speaker and word. Two 
complementary analyses were performed. First, to 
examine if posterior probabilities could predict 
drinking status, for each target consonant, a binary 
logistic regression analysis was performed with the 
three posterior probabilities (anterior, continuant and 
strident) as predictors and drinking status (sober and 
intoxicated) as dependent variable using the glmer 
function. A contrastive or categorical error was 
inferred when a feature emerged as the significant 
predictor. Second, to evaluate gradiency of an error, 
drinking status was entered as predictors in linear 
regression models (lmer) performed to investigate its 
predictions on the three posterior probability values 
for each target consonant. Increase or decrease in 
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posterior probability of a feature indicate degrees of 
error gradiency. For both analyses, “drunk” was the 
reference level. Based on previous literature [5, 7], a 
higher continuant and strident posterior probability is 
expected for /t, d/ and /tʃ, dʒ/ while a lower anterior 
probability is expected for the fricative /s/ in the 
intoxicated relative to the sober condition [5, 9].  

4. RESULTS 

Results of the binary logistic regressions analyses 
with anterior, continuant and strident posterior 
probabilities as predictors and drinking status as the 
categorical, binary dependent variable are 
summarized in Table 1.  
 

Cons. Predictor Odds Ratios P value 
/t/ Anterior 1.11 0.615 
 Continuant 0.43 <.001 
 Strident 0.88 0.353 
/d/ Anterior 2.14 0.046 
 Continuant 0.46 0.009 
 Strident 1.07 0.760 
/tʃ/ Anterior 1.88 0.437 
 Continuant 0.18 0.023 
 Strident 1.98 0.641 
/dʒ/ Anterior 1.17 0.866 
 Continuant 0.01 0.015 
 Strident 1.77 0.706 
/s/ Anterior 2.97 0.471 
 Continuant 0.62 0.473 
 Strident 14.35 0.153 
/ʃ/ Anterior 0.80 0.784 
 Continuant 0.82 0.847 
 Strident 1.51 0.954 

Table 1: Results of the binary logistic analyses. 
 
From this table, we can see that continuant posterior 
probability emerged as the only significant predictor 
of drinking status for /t/, /tʃ/ and /dʒ/. Specifically, as 
the continuant probability increases, the likelihood 
that the speakers were sober decreases (odds ratios 
<0.5). For /d/, both continuant and anterior 
probabilities are the significant predictors. However, 
as expected, as the anterior probability increases, the 
likelihood of the sober status increases (odds ratios 
>0.5). No significant predictor was found for /s/ [odds 
ratios = 0.62-14.35, p>.005] and /ʃ/ [odds ratios = 
0.80-1.51, p>0.05]. However, the >0.5 odd ratios 
indicated that as the anterior, continuant and strident 
probabilities increase, the likelihood of the sober 
status also increases. These results suggested that 
categorical errors (i.e., [-continuant] > [+continuant]) 
occurred under intoxication for /t/, /d/, /tʃ/ and /dʒ/. 
Additionally, for /d/, a categorical shift from 

[+anterior] > [-anterior] also occurred. On the other 
hand, no categorical error was detected for /s/ or /ʃ/.  

Tables 3a, b and c summarize the results of the 
linear mixed-effect regression models with drinking 
status as predictors (reference level = drunk) and 
posterior probabilities of the three phonological 
features as the dependent variables. 

The results obtained indicated that a significantly 
higher anterior probability for /t/, /d/ and /s/ [βs= 
0.029, 0.042, 0.013; ps≤.001] is predicted for the 
sober speech relative to the drunken speech, but a 
non-significant change in anteriority between the two 
speech conditions is predicted for /tʃ/, /dʒ/, and /ʃ/ [βs 
=0.009, -0.037, -0.014; ps= >.0.05] (Table 2a). β 
values suggested that sober /tʃ/ is more anterior than 
drunk /tʃ/ while sober /dʒ/ and /ʃ/ are less anterior than 
drunk /dʒ/ and /ʃ/. In other words, a shift in place of 
articulation is significantly greater for /t/, /d/ and /s/ 
than for /tʃ/, /dʒ/, and /ʃ/ under intoxication. 

 
Predictor Consonant β P value 
 
 
Anterior 

/t/ 0.03 0.001 
/d / 0.04 <0.001 
/tʃ/ 0.009 0.830 
/dʒ/ -0.037 0.399 
/s/ 0.01 0.001 
/ʃ/ -0.014 0.746 

Table 2a: Summary of the linear regression 
models for anterior probability. 

 
For continuant probability (Table 2b), a significantly 
lower value is predicted for /t/, /d/, /tʃ/ and /dʒ/ [βs=-
0.098, -0.061, -0.102, -0.068; ps≤.01], but not for /s/ 
[β = 0.009, p=0.098] or /ʃ/ [β = -0.005, p = 0.88] under 
the sober condition compared to the drunk condition. 
β value is positive for /s/, but negative for /ʃ/, 
indicating that /s/ is more continuant when sober 
while the opposite is true for /ʃ/. These results suggest 
that oral constriction for stops, and affricates became 
significantly less complete under intoxication. In 
contrast, oral constriction size was not significantly 
altered for the two [+continuant] consonant, /s/ and 
/ʃ/, when the speakers became inebriated. 

 
Predictor Consonant β P value 
 
 
 
Continuant 

/t/ -0.098 <0.001 
/d / -0.061 <0.001 
/tʃ/ -0.103 0.013 
/dʒ/ -0.068 0.003 
/s/ 0.009 0.098 
/ʃ/ -0.005 0.880 

Table 2b: Summary of the linear regression models 
for continuant probability. 
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Finally, Table 2c shows that strident probability for 
/t/ was predicted to be significantly lower under the 
sober condition while the opposite is true for /s/. No 
significant difference [p>.05] was predicted for the 
remaining consonants. Although statistically non-
significant, β values for /d/ [-0.022] and /tʃ/ [-0.017] 
are negative suggesting less stridency in their 
production when sober than when drunk while that of 
/dʒ/ [0.022] is positive and that of /ʃ/ [0.000] equals 
to 0, suggesting more stridency for /dʒ/ but no change 
in stridency for /ʃ/ when sober. These results suggest 
that /t/ is significantly less strident (less turbulent 
noise) when produced under the sober condition. On 
the contrary, drunk /s/ is less strident than its sober 
version. Furthermore, minimal change in degrees of 
stridency is observed for /d/, /tʃ/ and /dʒ/ while no 
change is predicted for /ʃ/.  

 
Predictor Consonant β P value 
 
 
 
Strident 

/t/ -0.064 <0.001 
/d / -0.022 0.175 
/tʃ/ -0.017 0.492 
/dʒ/ 0.022 0.451 
/s/ 0.014 0.001 
/ʃ/ 0.000 0.943 

Table 2c: Summary of the linear regression 
models for strident probability. 

5. DISCUSSION AND CONCLUSION 

To detect categorical and gradient errors in 
intoxicated speech, a new computational approach, 
Phonet, was applied to a corpus of intoxicated English 
speech. Target error types are deaffrication, 
spirantization and retraction of place of articulation 
whose degrees of variation are estimated from 
posterior probabilities of three phonological features, 
[anterior], [continuant], [strident].  

Binary logistic regression models yielded 
[continuant] as the significant predictor of drinking 
state for /t/, /tʃ/ and /dʒ/ while both [continuant] and 
[anterior] emerged as the significant predictors for 
/d/. If a binary, categorical shift of a feature is 
responsible for its significant predictive power, then, 
these results suggested that categorical errors ([-
continuant] > [+continuant]) occurred for /t/, /d/, /tʃ/ 
and /dʒ/ under intoxication, suggesting that the size of 
the oral constriction contrastively shifts from a sober 
to a drunk state. For /d/, a categorical shift from 
[+anterior] > [-anterior] also occurred in drunken 
state, indicating that a concurrent and significant 
amount of place retraction also took place. The fact 
that /tʃ/ and /dʒ/ are [-anterior] may account for why 
further place retraction did not occur. In turns, 
neutralization (loss of contrastivity) in anteriority 
between /t/ and /tʃ/ could account for why /t/ did not 

undergo place retraction since they would both be [-
anterior] if /t/ retracted. This suggest that articulatory 
planning may be intact, but the fine-grained motor 
control is partially lost when intoxicated.  

Surprisingly, no categorical error was committed 
for /s/ or /ʃ/ under intoxication, at least not at the BAC 
level tested. Previous literature led to an expectation 
that a categorical shift in place of articulation would 
occur for /s/ (i.e., [+anterior] > [-anterior]) [5, 9]. It is 
possible that this error is only attested at a higher 
BAC level. However, it is worth noting that /s/ and /ʃ/ 
are both [+continuant, + strident]. It is possible that 
these shared and redundant features “add additional 
motoric instructions to enhance the saliency of the 
jeopardized features” [20, p. 33], namely [anterior] in 
this case. Nonetheless, the fact that this error has been 
previously reported suggested a limit of this 
enhancement effect.  

Gradient errors are revealed by linear regression 
analyses. For instance, a shift in place of articulation 
was found to be significantly greater for /t/, /d/ and /s/ 
than for /tʃ/, /dʒ/, and /ʃ/ under intoxication. These 
results suggest that degree of place retraction in 
intoxicated speech is constrained by the existing place 
feature of the affected consonants: [+anterior] 
consonants will sustain a greater degree of place shift 
than [-anterior] consonants. 

A similar constraint is observed for [continuant] 
leading to gradiency in continuant error. Continuant 
posterior probability significantly increased for [-
continuant] consonants, /t/, /d/, /tʃ/, and /dʒ/, but not 
for [+continuant] consonant, /s/ and /ʃ/. This is due, 
perhaps, to a higher degree of continuance (greater 
oral aperture) which would lead to reduction of 
intensity of frication noise (i.e., stridency). 

Finally, gradient errors involving [strident] was 
also found. Sober /t/ is significantly less strident than 
drunk /t/, suggesting an incomplete closure resulting 
in stridency. In contrast, a change in stridency was 
relatively small for /d/, /tʃ/ and /dʒ/. These results 
suggest that size of oral opening of [-continuant] 
consonants could increase.  In addition, drunk /s/ is 
significantly less strident than its sober variant, 
suggesting a further widening of the oral aperture 
leading to a loss in stridency. However, no change 
was observed for /ʃ/. This result suggests that oral 
aperture could further widen for [-anterior, 
+continuant, +strident], /s/, but not for [+anterior, 
+continuant, +strident], /ʃ/.   

Both categorical and gradient errors are revealed 
by Phonet, suggesting that it could reliably quantify 
fine-grained errors in intoxicated speech. Our 
findings need to be confirmed with more subjects, and 
can be extended to languages with different 
contrastive phonological features [7], and compared 
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with speech by clinical populations, such as 
Parkinson’s disease. 
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