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ABSTRACT

Alcohol is known to impair fine articulatory control
and movements. In drunken speech, incomplete
closure of the vocal tract can result in deaffrication of
the English affricate sounds /tf/ and /d3/,
spirantization (fricative-like production) of the stop
consonants and palatalization (retraction of place of
articulation) of the alveolar fricative /s/ (produced as
/f7). Such categorical segmental errors have been
well-reported. This study employs a phonologically-
informed neural network approach to estimate
degrees of deaffrication of /tJ/ and /d3/, spirantization
of /t/ and /d/ and place retraction for /s/ in a corpus of
intoxicated English speech. Recurrent neural
networks were trained to recognize relevant
phonological features [anterior], [continuant] and
[strident] in a control speech corpus. Their posterior
probabilities were computed over the segments
produced under intoxication. The results obtained
revealed both categorical and gradient errors and,
thus, suggested that this new approach could reliably
quantify fine-grained errors in intoxicated speech.
Keywords: alcohol, deaffrication, palatalization,
retraction, neural network.

1. INTRODUCTION

Alcohol intoxication has been shown to impair
cognitive function and production of both
suprasegmental and segmental properties of speech
[1,2,3,4,5,6,7]. In English, the segmental errors
encompass deaffrication of the affricate sounds /tf/
and /d3z/ [5, 7], spirantization (fricative-like
production) of the stop consonants [5, 7] and
palatalization (retraction of place of articulation) of
the alveolar fricative /s/ (produced as /f7) [5, 9]. These
errors occur due to impaired ability to control timing
and movement of the active articulators, resulting in
failure to form a complete closure (deaffrication and
spirantization) or to achieve and/or maintain an
appropriate degree of opening, at an intended location
in the vocal tract (place retraction). Crucially, these
errors have been described as categorical through
such coarse-grained measures as perceptual judgment
[e.g., 8] and phonetic transcription of the affected
speech segments [e.g., 2]. However, sub-contrastive
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or gradient errors, below the level of a segment or
feature are likely missed by such techniques due to
the listeners’ perceptual bias [10]. Further, while
acoustic measurements could circumvent perceptual
bias, describing categorical rather than gradient
phonetic errors have largely been the focus of most
acoustic-phonetic studies of intoxicated speech.

The goal of this study is to examine the nature,
gradient and categorical errors, at the feature level in
intoxicated speech in an English corpus using a neural
network model known as Phonet. Inspired by
computational approaches using forced alignment to
measure surface, gradient phonetic variations, this
approach quantifies gradient phonetic variation of
deaffrication, spirantization and place retraction from
the posterior probability of relevant phonological
features, computed directly from the input signals by
bidirectional recurrent neural networks. In this study,
the relevant phonological features are [anterior],
[continuant] and [strident]. These features capture
relative location of the oral constriction, amount of
airflow impedance and intensity of frication noise,
respectively. A categorical error is operationalized as
a sign shift of the phonological features (e.g., from
[+anterior] to [-anterior]), while gradiency of an error
is reflected in the posterior probability values of a
phonological feature. A brief description of Phonet is
present in § 2 below.

2. PHONET

Phonet [11] is a bi-directional recurrent neural
network model, trained to recognize input phones as
belonging to different phonological classes defined
by phonological features (e.g., anterior, continuant
and strident). It is semi-automatic and only requires a
segmentally-aligned acoustic corpus (using forced
alignment). Input to Phonet is log-energy distributed
across triangular Mel filters computed from 25-ms
windowed frames of each 0.5 second chunk of the
input signal (see [11] for details). Once trained,
posterior probabilities for different phonological
features of the target segments can be computed by
the model. Phonet has been found to be highly
accurate in quantifying degree of lenition in Spanish
[7, 15,21, 22] and modelling the speech impairments
of patients diagnosed with Parkinson’s disease [11].
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The architecture of Phonet is described in detail in
[11].

Phonet can be customized with different sets of
phonological features and acoustic representations. In
this study, we focus on the probability of the
phonological features [anterior], [strident] and
[continuant] to capture retraction of place of
articulation, deaffrication, and spirantization of
English voiceless and voiced stops /t, d/, voiced and
voiceless affricates /tf, d3/, and fricatives /s, [/. A
fricative-like realization due to an incomplete closure
of the oral constriction would be associated with a
relatively higher [continuant] and [strident]
probability while a relatively low [anterior]
probability would indicate a more retracted place of
articulation.

3. METHODS
3.1. Materials

The target consonants for this study are English stops
/t, d/ (Ns = 2,237 and 1,085), affricates /t[, d3/ (Ns =
144 and 160), and fricatives /s, J/ (Ns = 1,430 and 96)
from a corpus of intoxicated speech [7].

3.2. Stimulus recording procedure

The corpus contains recordings of four female, native
speakers of British English reading a dialogue
naturally (i.e., not in an animate, acting voice). The
original text of the dialogue (based on [17]) was
edited to ensure that it is gender- and emotionally
neutral, void of overly long turns, and representative
of the English phonemic inventory (available at [18]).
Two separate readings (sober then drunk) across
participants, on different days (1-2 months apart)
were recorded in a sound-attenuated room at 44.1 kHz
sampling rate and 16-bit amplitude resolution in
stereo and were then converted to mono using
Audacity. The speakers were told not to eat, drink, or
use mouthwash 2 hours before each session and not
to smoke half hour before each session.

The participants’ blood alcohol concentration
(BAC) was measured using a breathalyzer [ AlcoMate
(Macomb Township. MI) Premium AL-7000] at the
beginning of the sober session to ensure absence of
alcohol in their system. Intoxicated recording session
began when BAC reached 0.12% after consumption
of vodka or rum, mixed with juices.

3.2. Stimulus pre-processing

The recordings were divided up into utterances which
were then manually annotated for any disfluencies.
The disfluent utterances (8.5%) were not discarded
since their exclusion did not qualitatively change our
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findings. The utterances were forced aligned using
the Montreal Forced Aligner (version: 2.0) [12] with
its released pretrained English model.

3.3. Phonet training procedure

Librispeech [16], a large corpus of English
audiobooks was used as a representative English
speech sample. A subset of the cleaned portion of 360
hours was selected. The corpus was then forced
aligned using the Montreal Forced Aligner (version:
2.0) [12]. The phone set was set to IPA. For other
parameters default values were used.

Model training with Phonet was performed on an
NVIDIA GeForce RTX 3090 GPU using the Keras
[19] library. The corpus was randomly split into a
train subset (80%) and a test subset (20%) using the
Python (Version 3.9) scikit-learn library [14].
Twenty-one Phonet models were trained for 20
phonological classes (consonantal, syllabic, voicing,
labial, coronal, dorsal, lateral, nasal, rhotic, anterior,
continuant, sonorant, strident, diphthong, high, low,
back, round, stress, tense), and pause.

The model was highly accurate showing
unweighted average recall (UAR) ranges from 91%
(coronal)-98% (pause). Critically, the UARs for the
anterior, continuant and strident features are 93%,
92% and 97%, respectively. The model was then
applied to our selected word tokens from our forced-
aligned intoxicated speech corpus with /t, d, tf, d3, s,
J/. The predictions were computed for 10-ms frames.
For a token containing multiple frames, the average
prediction from the middle frame(s) was taken as its
prediction. Anterior, continuant and strident posterior
probabilities obtained for each target consonant are
then used for statistical analyses.

3.4. Statistical analyses

All statistical analyses were performed using the Ime4
package [13] in R [13]. Contrast coding (-0.5, 0.5)
was used for binary categorical variable. Random
variables included speaker and word. Two
complementary analyses were performed. First, to
examine if posterior probabilities could predict
drinking status, for each target consonant, a binary
logistic regression analysis was performed with the
three posterior probabilities (anterior, continuant and
strident) as predictors and drinking status (sober and
intoxicated) as dependent variable using the glmer
function. A contrastive or categorical error was
inferred when a feature emerged as the significant
predictor. Second, to evaluate gradiency of an error,
drinking status was entered as predictors in linear
regression models (/mer) performed to investigate its
predictions on the three posterior probability values
for each target consonant. Increase or decrease in
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posterior probability of a feature indicate degrees of
error gradiency. For both analyses, “drunk” was the
reference level. Based on previous literature [5, 7], a
higher continuant and strident posterior probability is
expected for /t, d/ and /tf, d3/ while a lower anterior
probability is expected for the fricative /s/ in the
intoxicated relative to the sober condition [5, 9].

4. RESULTS

Results of the binary logistic regressions analyses
with anterior, continuant and strident posterior
probabilities as predictors and drinking status as the

categorical, binary dependent variable are
summarized in Table 1.
Cons. | Predictor Odds Ratios | P value
/t/ Anterior 1.11 0.615
Continuant | 0.43 <.001
Strident 0.88 0.353
/d/ Anterior 2.14 0.046
Continuant | 0.46 0.009
Strident 1.07 0.760
! Anterior 1.88 0.437
Continuant | 0.18 0.023
Strident 1.98 0.641
/d3/ Anterior 1.17 0.866
Continuant | 0.01 0.015
Strident 1.77 0.706
/s/ Anterior 2.97 0.471
Continuant 0.62 0.473
Strident 14.35 0.153
/f/ Anterior 0.80 0.784
Continuant | 0.82 0.847
Strident 1.51 0.954

Table 1: Results of the binary logistic analyses.

From this table, we can see that continuant posterior
probability emerged as the only significant predictor
of drinking status for /t/, /t[/ and /d3/. Specifically, as
the continuant probability increases, the likelihood
that the speakers were sober decreases (odds ratios
<0.5). For /d/, both continuant and anterior
probabilities are the significant predictors. However,
as expected, as the anterior probability increases, the
likelihood of the sober status increases (odds ratios
>(.5). No significant predictor was found for /s/ [odds
ratios = 0.62-14.35, p>.005] and /f/ [odds ratios =
0.80-1.51, p>0.05]. However, the >0.5 odd ratios
indicated that as the anterior, continuant and strident
probabilities increase, the likelihood of the sober
status also increases. These results suggested that
categorical errors (i.e., [-continuant] > [+continuant])
occurred under intoxication for /t/, /d/, /t[/ and /d3/.
Additionally, for /d/, a categorical shift from
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[+anterior] > [-anterior] also occurred. On the other
hand, no categorical error was detected for /s/ or /[/.

Tables 3a, b and ¢ summarize the results of the
linear mixed-effect regression models with drinking
status as predictors (reference level = drunk) and
posterior probabilities of the three phonological
features as the dependent variables.

The results obtained indicated that a significantly
higher anterior probability for /t/, /d/ and /s/ [fs=
0.029, 0.042, 0.013; ps<.001] is predicted for the
sober speech relative to the drunken speech, but a
non-significant change in anteriority between the two
speech conditions is predicted for /tf/, /d3/, and /[/ [fs
=0.009, -0.037, -0.014; ps= >.0.05] (Table 2a). P
values suggested that sober /t[/ is more anterior than
drunk /t[/ while sober /d3/ and /[/ are less anterior than
drunk /d3/ and /f/. In other words, a shift in place of
articulation is significantly greater for /t/, /d/ and /s/
than for /tf/, /d3/, and /f/ under intoxication.

Predictor | Consonant p P value
It/ 0.03 0.001
/d/ 0.04 <0.001

Anterior | /tf/ 0.009 0.830
/d3/ -0.037 0.399
Is/ 0.01 0.001
/f/ -0.014 0.746

Table 2a: Summary of the linear regression
models for anterior probability.

For continuant probability (Table 2b), a significantly
lower value is predicted for /t/, /d/, /tf/ and /d3/ [fs=-
0.098, -0.061, -0.102, -0.068; ps<.01], but not for /s/
[8=0.009, p=0.098] or /[/ [ =-0.005, p = 0.88] under
the sober condition compared to the drunk condition.
B value is positive for /s/, but negative for /[/,
indicating that /s/ is more continuant when sober
while the opposite is true for /[/. These results suggest
that oral constriction for stops, and affricates became
significantly less complete under intoxication. In
contrast, oral constriction size was not significantly
altered for the two [+continuant] consonant, /s/ and
/f/, when the speakers became inebriated.

Predictor Consonant p P value
It/ -0.098 <0.001
/d/ -0.061 <0.001
Itf/ -0.103 0.013

Continuant | /dz/ -0.068 0.003
/s/ 0.009 0.098
I/ -0.005 0.880

Table 2b: Summary of the linear regression models
for continuant probability.
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Finally, Table 2¢ shows that strident probability for
/t/ was predicted to be significantly lower under the
sober condition while the opposite is true for /s/. No
significant difference [p>.05] was predicted for the
remaining consonants. Although statistically non-
significant, 3 values for /d/ [-0.022] and /tf/ [-0.017]
are negative suggesting less stridency in their
production when sober than when drunk while that of
/d3/ [0.022] is positive and that of /f/ [0.000] equals
to 0, suggesting more stridency for /d3/ but no change
in stridency for /[/ when sober. These results suggest
that /t/ is significantly less strident (less turbulent
noise) when produced under the sober condition. On
the contrary, drunk /s/ is less strident than its sober
version. Furthermore, minimal change in degrees of
stridency is observed for /d/, /tJ/ and /d3/ while no
change is predicted for /f7.

Predictor | Consonant /] P value
It/ -0.064 <0.001
/d/ -0.022 0.175
itJ/ -0.017 0.492
Strident | /dz/ 0.022 0.451
/sl 0.014 0.001
/f/ 0.000 0.943

Table 2c¢: Summary of the linear regression
models for strident probability.

5. DISCUSSION AND CONCLUSION

To detect categorical and gradient errors in
intoxicated speech, a new computational approach,
Phonet, was applied to a corpus of intoxicated English
speech. Target error types are deaffrication,
spirantization and retraction of place of articulation
whose degrees of variation are estimated from
posterior probabilities of three phonological features,
[anterior], [continuant], [strident].

Binary logistic regression models yielded
[continuant] as the significant predictor of drinking
state for /t/, /t[/ and /d3/ while both [continuant] and
[anterior] emerged as the significant predictors for
/d/. If a binary, categorical shift of a feature is
responsible for its significant predictive power, then,
these results suggested that categorical errors ([-
continuant] > [+continuant]) occurred for /t/, /d/, /t[/
and /d3/ under intoxication, suggesting that the size of
the oral constriction contrastively shifts from a sober
to a drunk state. For /d/, a categorical shift from
[+anterior] > [-anterior] also occurred in drunken
state, indicating that a concurrent and significant
amount of place retraction also took place. The fact
that /tJ7 and /d3/ are [-anterior] may account for why
further place retraction did not occur. In turns,
neutralization (loss of contrastivity) in anteriority
between /t/ and /t[/ could account for why /t/ did not
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undergo place retraction since they would both be [-
anterior] if /t/ retracted. This suggest that articulatory
planning may be intact, but the fine-grained motor
control is partially lost when intoxicated.

Surprisingly, no categorical error was committed
for /s/ or /[/ under intoxication, at least not at the BAC
level tested. Previous literature led to an expectation
that a categorical shift in place of articulation would
occur for /s/ (i.e., [+anterior] > [-anterior]) [5, 9]. It is
possible that this error is only attested at a higher
BAC level. However, it is worth noting that /s/ and /[/
are both [+continuant, + strident]. It is possible that
these shared and redundant features “add additional
motoric instructions to enhance the saliency of the
jeopardized features” [20, p. 33], namely [anterior] in
this case. Nonetheless, the fact that this error has been
previously reported suggested a limit of this
enhancement effect.

Gradient errors are revealed by linear regression
analyses. For instance, a shift in place of articulation
was found to be significantly greater for /t/, /d/ and /s/
than for /tf/, /d3/, and /f/ under intoxication. These
results suggest that degree of place retraction in
intoxicated speech is constrained by the existing place
feature of the affected consonants: [+anterior]
consonants will sustain a greater degree of place shift
than [-anterior] consonants.

A similar constraint is observed for [continuant]
leading to gradiency in continuant error. Continuant
posterior probability significantly increased for [-
continuant] consonants, /t/, /d/, /tf/, and /d3/, but not
for [+continuant] consonant, /s/ and /f/. This is due,
perhaps, to a higher degree of continuance (greater
oral aperture) which would lead to reduction of
intensity of frication noise (i.e., stridency).

Finally, gradient errors involving [strident] was
also found. Sober /t/ is significantly less strident than
drunk /t/, suggesting an incomplete closure resulting
in stridency. In contrast, a change in stridency was
relatively small for /d/, /tJ/ and /d3/. These results
suggest that size of oral opening of [-continuant]
consonants could increase. In addition, drunk /s/ is
significantly less strident than its sober variant,
suggesting a further widening of the oral aperture
leading to a loss in stridency. However, no change
was observed for /[/. This result suggests that oral
aperture could further widen for [-anterior,
+continuant, +strident], /s/, but not for [+anterior,
+continuant, +strident], /J/.

Both categorical and gradient errors are revealed
by Phonet, suggesting that it could reliably quantify
fine-grained errors in intoxicated speech. Our
findings need to be confirmed with more subjects, and
can be extended to languages with different
contrastive phonological features [7], and compared
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with speech by clinical populations, such as
Parkinson’s disease.
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