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Abstract—Federated learning (FL) has emerged as a promis-
ing learning paradigm in which only local model parameters
(gradients) are shared. Private user data never leaves the local
devices thus preserving data privacy. However, recent research
has shown that even when local data is never shared by a
user, exchanging model parameters without protection can also
leak private information. Moreover, in wireless systems, the
frequent transmission of model parameters can cause tremendous
bandwidth consumption and network congestion when the model
is large. To address this problem, we propose a new FL framework
with efficient over-the-air parameter aggregation and strong
privacy protection of both user data and models. We achieve
this by introducing pairwise cancellable random artificial noises
(PCR-ANs) on end devices. As compared to existing over-the-air
computation (AirComp) based FL schemes, our design provides
stronger privacy protection. We analytically show the secrecy
capacity and the convergence rate of the proposed wireless FL
aggregation algorithm.

Index Terms—Over-the-air computation (AirComp), wireless
multiple-access channel, federated learning

I. INTRODUCTION

In machine learning, especially deep learning, large-scale
collection of sensitive data entails both high bandwidth con-
sumption and privacy-related risks. To mitigate these limita-
tions and leverage the power of proliferating edge devices,
federated learning (FL) [1] has emerged as a promising new
learning paradigm. In FL each edge device trains a local ML
model using its private data and uploads only model parameters
to a central server. The server then aggregates local models
received from the distributed edge devices to obtain a global
model that is expected to outperform the individual local
models. While FL is promising as compared to centralized
learning, the frequent transmission of model parameters can
still cause significant bandwidth consumption and latency in
wireless and mobile systems. Moreover, recent research has
discovered vulnerabilities of FL under membership inference
attacks [2, 3, 4, 5]. Specifically, it has been demonstrated that
models implicitly memorize certain details about the underlying
training data and can inadvertently reveal sensitive information
to attackers. To strike a balance between efficiency and privacy
in FL, existing research has resorted to various techniques,
including Secure Aggregation (SA) [6] and Differential Privacy
(DP) [7]. The former obfuscates parameters to the aggregator
but needs pairwise key exchange which incurs non-trivial com-
munication costs in edge computing environments. The latter
on the other hand injects random noises into local training data
so that it is computationally indistinguishable from that of other

individuals. For FL, local differential privacy (LDP) which is a
mode of DP, is more suitable because of its distributed nature
and users can add noises to model parameters locally before
disclosing them to the untrusted model aggregator. While LDP
has the advantage of lower computational and communication
overheads, it poses its own challenges. Specifically, an LDP
model needs to introduce noises at a significantly higher level
than what is required in a DP model. Moreover, since each user
perturbs its parameters individually, the aggregated variance
highly depends on the number of participating users [8].

Recently, the feasibility of over-the-air computation (Air-
Comp) [9] coupled with LDP is being explored within the
context of FL, to overcome communication bottlenecks and
provide additional protection to local model privacy. The
AirComp-based approach exploits the broadcast and the natural
superposition property of wireless multiple access channels
(MAC) for fast, free, and more efficient global model ag-
gregation. The key idea is the simultaneous synchronized
transmission of linear-analog modulated local gradients. With
appropriate pre-channel coefficient equalization, superposed RF
signals over the air can be demodulated as the additive result at
the receiver without actually performing the addition operation.
Together with local pre-processing, complex functions such
as scalar products can be implemented via AirComp, which
saves both local computation and latency for wireless devices.
Despite of the challenges, existing research [10, 11, 12, 13]
has demonstrated promising progresses both theoretically and
through practical implementation.

Along this direction, this paper aims to explore the full
potential of AirComp-based FL by providing enhanced privacy
protection. Specifically, while protecting model privacy, exist-
ing research [10, 11, 12, 13, 14] mainly relies on obfuscation
via aggregation (OVA) of parameters from multiple users with
local adjustment of signal to noise ratio (SNR). Although
this approach protects model privacy against the parameter
aggregation server (PAS), it is vulnerable to stronger attacks
in which an external attacker is equipped with a directional
antenna to overhear RF signals from individual transmitters and
bypass the aggregation. Moreover, the OVA approach requires
a higher noise level for model privacy when the number of
users is less, which adversely impacts the global model quality.
To address this limitation, in this paper we introduce pairwise
cancellable random artificial noises (PCR-ANs) to obfuscate
individual private model parameters. By adjusting the PCR-
AN level, our design is able to thwart external eavesdroppers



equipped with directional antennas. Because the PCR-ANs
are pairwise cancellable, only residue noises remain in the
aggregated model1. Our design can be considered as a novel
integration of SA and DP at the physical layer. Analytical
results provide both secrecy capacity and the FL convergence
rate of our design. Our contributions can be summarized as
follows:

• We introduce a new AirComp-based privacy-preserving
FL scheme considering the presence of powerful eaves-
droppers. The pairwise cancellable random artificial noise
(PCR-AN) design leverages the properties of both secure
aggregation and differential privacy and provides a better
trade-off between privacy and model utility as compared
to the state-of-the-art.

• We theoretically analyze the feasibility of the PCR-AN
design and formulate the secrecy capacity of our proposed
privacy-preserving FL scheme in the presence of powerful
eavesdroppers. We analytically show the convergence rate
of our proposed FL scheme.

• With the adjustable power parameters of artificial noises,
our design is also able to preserve model privacy at the
PAS based on the differential privacy constraints.

The rest of the paper is structured as follows. Section II de-
scribes the system and threat model for FL. Section III presents
our design and elaborates on PCR-AN-aided privacy-preserving
FL. Section IV presents an analytical privacy analysis, the
secrecy capacity, and the convergence rate of our proposed
scheme. Section V presents the simulation, and evaluation
results, and Section VI concludes the paper.

II. SYSTEM MODEL AND ASSUMPTIONS

A. System Model and Federated Learning

We consider a wireless federated learning system consisting
of a parameter aggregation server (PAS) and multiple end
users. The PAS is a single-antenna receiver and aggregates the
distributed local model parameters from total K (K = |K|)
users, where K = {1, 2, 3, ..., 2i}, i ∈ Z+. Each user participant
k (k ∈ K) is a spatially distributed single-antenna device
and without loss of generality, it is assumed that all devices
are identical to each other and within one-hop distance to
PAS. Each user k has a private local data set Dk and we
assume that all users have the same data size of |Dk|. Data
points are denoted as Dk = {(u(k)

j , v
(k)
j )|j ∈ Dk}, where

u
(k)
j ∈ Rd is the j-th data point and v(k)j is the corresponding

label for each data point. Each user individually trains an
ML model using their private data Dk and then uploads a d-
dimensional model parameter vector w wirelessly to the PAS.
For efficiency, the participants use Gaussian multiple access
channels (MAC) to simultaneously transmit their respective
parameters. PAS receives aggregated parameters because of the
over-the-air superposition of wireless signals. This process is
called the over-the-air computation (AirComp) [9] which can
implement complex functions if users are well synchronized

1In a parallel work Liao et al. [15] also proposed a secure FL scheme based
on pairwise cancellable noises.

and equalized. The global aggregated model is obtained by
minimizing the loss function F (w) as follows:

w∗ = argmin
w

F (w) ≜
1

|D|

K∑
k=1

Dk∑
j=1

fk((u
(k)
j , v

(k)
j );w) (1)

where D =
K⋃

k=1

Dk denotes the entire dataset used for training,

and fk(•) is the loss function for user k. The minimization of
F (w) in eq. (1) is carried out iteratively through a gradient
descent (GD) algorithm. At iteration t, the PAS broadcasts the
global model parameter vector wt and each user then updates
its local gradient vector over the local dataset Dk as:

gk(wt) =
1

|Dk|

Dk∑
j=1

∇fk((u(k)
j , v

(k)
j );w) (2)

Next, the locally computed gradient is sent back to the PAS
and the global model wt is updated according to:

wt+1 = wt − ηt
1

K

(
K∑

k=1

gk(wt)

)
(3)

wt+1 is the updated global model and ηt is the learning rate of
the GD algorithm at iteration t. The PAS will broadcast wt+1

and the above process continues until convergence with total
T iterations.

B. Threat Model

Our threat model considers honest-but-curious attackers, i.e.,
we assume the attacker passively eavesdrops on exchanged
messages (e.g., gradients) between the client and the PAS.
However, the attacker does not interfere with the training pro-
cess. For instance, due to the broadcast nature of the wireless
medium, the eavesdropper easily wiretaps the local parameter-
modulated transmitted signal by pointing a directional antenna
toward the transmitting victim device. After the adversary has
the wiretapped model at its disposal, it can violate privacy by
recovering the underlying sensitive data on which the model
was trained by launching sophisticated model inversion attacks
or may gain leaked private information when the wiretapped
model is used for inference. We show that our design defends
against such passive attackers and achieves both data and model
privacy. More sophisticated active attackers will be explored in
our future work.

III. OUR DESIGN

A. Preliminaries of AirComp for Ultrafast Aggregation

AirComp shows great promise to support ultrafast aggre-
gation of local FL model parameters from distributed mo-
bile users. The principle idea of AirComp is to exploit the
analog-wave superposition property of wireless multiple access
channels (MAC). As illustrated in Fig. 1, we consider a
simplified baseline single-antenna AirComp system with non-
zero receiver noise and unequal channel coefficients. Let sk
denote the analog modulated local model parameters symbols



Figure 1: The data aggregation over the MAC via over-the-air
computation.

calculated by client k. The aggregated function at the PAS then
can be written as:

f = ψ(r) (4)

r =
K∑

k=1

hkbkφk(sk) + zk (5)

where in eq. (4), r is the received superimposed signal and ψ(•)
is the post-processing function at the PAS. φk(•) is the pre-
processing function at each transmitting device. The selection
of pre-processing and post-processing functions depends on the
desired function f . The variable hk is the channel coefficient,
bk is the transmitter scaling factor to achieve channel inversion
(CI) and zk is the Additive White Gaussian Noise (AWGN) at
user k. It is assumed that the channel is time-invariant and the
transmitting mobile devices including the PAS have the channel
state information (CSI) to achieve channel inversion.

B. Pairwise Cancellable Random Artificial Noise (PCR-AN)

We present a general gradient aggregation scheme for wire-
less FL based on AirComp, as shown in Fig. 2. Each user k
synchronously transmits a linear combination of local gradients
and pairwise cancellable random artificial noise (PCR-AN)
over a wireless channel for total T training iterations. At
each iteration t, all participating K users transmit their local
computed gradient vector sk,t := gk(wt) ∈ Rd masked with
PCR-AN to preserve modal privacy. More specifically, the
transmitted signal of user k with added artificial noise nk,t

at iteration t is given as:

xk,t = bkφk (sk,t + nk,t) + zk,t (6)

The terms used in eq. (6) are explained below:
• nk,t ∈ Rd is the PCR-AN (Gaussian noise) with mean
µk,t , and variance σ2

k,t (nk,t ∼ N (µk,t, σ
2
k,t)) to mask

the gradient vector, sk,t. Two pairwise devices secretly
share the mean and variance value, then add artificial noise
with opposite mean values to the gradients. For example,
users a and b pre-share a secret (µ, σ2) and then this secret
will be used by user a to add noise of N (+µ, σ2

a) and
noise of N (−µ, σ2

b ) is added by user b.
• zk,t ∈ Rd is the additive zero-mean unit-variance Gaus-

sian noise over the wireless channel ( N (0, σ2
z), σ

2
z = 1).

• φk(•) is the pre-processing at each user. Since, the desired
function at the PAS in the context of FL is the arithmetic
mean, φk(•) = 1.

Figure 2: Federated learning with artificial noises based on AirComp
in the presence of an eavesdropper.

• bk is the Tx-scaling factor for each user to ensure the
analog modulated waves add constructively in the air
and a non-zero signal is received. Typically, the signal
is multiplied by e−jϕk for local phase correction.

Also, in the above eq. (6), it is assumed that the gradient
vectors have a bounded norm to bound the maximum changing
rate, i.e., ∥sk,t∥2 ≤ Ls, ∀k. Let αk ∈ [0, 1] denote the
coefficient of power dedicated to the gradient vector sk,t. The
remaining power of βk ∈ [0, 1 − αk] (βk ≥ αk) is dedicated
to the artificial noise to satisfy the maximum transmit power
constraint needs of Pk. Using eq. (3) to (6), the received signal
at the PAS can be written as:

rt =
K∑

k=1

|hk|
(√

αkPk

Ls
sk,t +

√
βkPknk,t

)
+ zk,t (7)

To represent eq. (7) in compact form, we introduce m as
follows:

m := |hk|
√
αkPk

Ls
, ∀k (8)

Herein, m is a constant, and the upper bound of m can be
computed by utilizing αk ≤ 1, ∀k in eq. (8). To maximize the

power of aligned gradients, m is chosen as m =

√
min
q

|hq|2Pq

Ls

resulting in αk as follows:

αk =
min
q

|hq|2Pq

|hk|2Pk

q is the user with worst effective SNR. Thus, above choice of
αk shows that the alignment of gradients is effectively limited
by the user q with the worst effective SNR. Substituting m in
eq. (7), we get the compact representation as follows:

rt = m
K∑

k=1

sk,t +

K∑
k=1

|hk|
√
βkPknk,t + zt (9)

As seen in eq. (4), the PAS performs post-processing on
received signal rt and for the aggregation scheme, the post-



processing function is ψ(•) = 1
mK . Thus, the estimated

function at PAS is as follows:

ŝt =
1

mK
(rt)

=
1

K

K∑
k=1

sk,t︸ ︷︷ ︸
∇F (wt)

+
1

mK

K∑
k=1

|hk|
√
βkPknk,t︸ ︷︷ ︸

At

+
1

mK
zt

(10)

where At +
1

mK zt is the effective noise at the PAS. Since
the pairwise devices add artificial noise of opposite mean, the
summed artificial noise and channel noise will have a mean of 0

and variance of 1
mK

K∑
k=1

|hk|
√
βkPknk,t +

1

mK
zt. Therefore,

the PAS receives an unbiased estimate of the average gradient
∇F (wt).

IV. ANALYSIS

In this section, we first evaluate the privacy protection
provided when local wireless devices participating in the same
learning task obfuscate local parameters through PCR-ANs. We
show that the additive artificial noise protects individual users’
privacy without interfering with the global model aggregation
at PAS. Next, we discuss the secrecy capacity of our design
in the presence of an eavesdropper who is listening to the
user’s communication with the PAS. Lastly, we prove the
proposed FL scheme is convergent and show the optimization
of convergence, which can also meet the differential privacy
requirement to preserve privacy at PAS.
A. PCR-AN Aided Privacy

As mentioned in Section III, we allocate higher power to
PCR-ANs such that SNR is low and the sensitive data is below
the noise floor. This means any malicious device eavesdropping
over the air can only acquire noise instead of sensitive data.
However, in prior literature, low SNR would mean difficulty
reconstructing the original data at PAS. Herein, we expatiate
the feasibility of our design despite low SNR; we present a
detailed analysis showing the added PCR-AN will not interfere
with the reconstruction at PAS.

Let i represent the i-th pair of wireless devices (+i,−i),
where +i ∈ +K

2 denotes the device adding a positive mean
value of artificial noise, and −i ∈ −K

2 denotes the de-
vice adding a negative mean value of artificial noise. Note,(
+K
2

)
∪
(−K

2

)
= K and

(
+K
2

)
∩
(−K

2

)
= 0. The mean values

of added artificial noises at user +i and user −i are also
pairwise, i.e., user +i and −i adds n+i,t = N (µ+i,t, σ

2
+i,t)

and n−i,t = N (µ−i,t, σ
2
−i,t), respectively. The PCR-ANs are

randomly selected by users to mask the uploading gradient
vector. Thus, summed PCR-ANs, denoted as At in eq. (10)
can be written as:

At :=
1

mK
(

K/2∑
i=1

|hi|
√
βiPini,t +

−K/2∑
i=−1

|hi|
√
βiPini,t) (11)

At :=
1

mK
(

K/2∑
i=1

|hi|
√
βiPi)(

K/2∑
i=1

ni,t +

−K/2∑
i=−1

ni,t︸ ︷︷ ︸
Cancellable Noise (CN)

) (12)

CN :=

K/2∑
i=1

N (µ+i,t, σ
2
+i,t) +N (µ−i,t, σ

2
−i,t) (13)

CN :=

K/2∑
i=1

N
(
0, (σ2

+i,t + σ2
−i,t)

)
(14)

Above eq. (13) to eq. (14) is based on the the property of
PCR-ANs i.e., (µ+i,t+µ−i,t) = 0. Therefore, aggregated PCR-
ANs at PAS will follow the distribution N (0, σ2

A), where σ2
A =

K/2∑
k=1

(σ2
+k,t+σ

2
−k,t). The aggregated variance σ2

A is bounded by

the Central Limit Theorem (CLT). The uploading gradient for
each user includes numerous parameters, which indicates the
convergence in aggregated variance σ2

A from Corollary 1.

Corollary 1. All added artificial noises are independent but not
identically distributed. The µk and σ2

k for each user k satisfy
the Lyapunov’s Condition. Therefore, according to Lyapunov’s
Central Limit Theorem, the distribution of aggregated vari-
ances σ2

A of all artificial noises is convergent.

The proof of Lyapunov’s central limit theorem is out of the
scope of this paper and interested readers in the proof and
Lyapunov’s condition are referred to [16, 17]. The high-power
PCR-AN added to each user with different distributions will
not interfere with the PAS to reconstruct the aggregation of
locally trained model signals. The estimated function from eq.
(10) can be written as:

ŝt =
1

K

K∑
k=1

sk,t︸ ︷︷ ︸
∇F (wT )

+
1

mK

(
K∑

k=1

|hk|
√
βkPknk,t + zt

)
︸ ︷︷ ︸

z
′
t

(15)

We denote 1
mK (

∑K/2
i=1 |hi|

√
βiPi) in eq. (12) as M , and

z
′

t ∼ N (0, σ2
z
′
t

) is the residual noise of aggregated PCR-ANs
and channel noise at PAS, where σ2

z
′
t

= M2 · σA2 + σz
2. As

z
′

t is zero mean, ŝt is an unbiased estimate of ∇F (wT ).

B. Secrecy Capacity
To estimate the secrecy capacity, we select a two-user

scenario. Herein, we consider two pairwise users a and b. User
a transmits its signal with added PCR-AN with N (µa,t, σ

2
a,t),

and user b transmits the parameters with added PCR-AN with
N (µb,t, σ

2
b,t). The signals of both users are superposed in

the air and the server receives the sum of the user signals.
According to the above analysis, the residual noise of PCR-
ANs after the aggregation at the server is σ2

z
′
t

. The signal-to-
noise ratio of the received sum signal (SNRs) at the PAS is
given by

SNRs =

√
αaPa

Ls
|ha|2

σ2
z
′
t

(16)

The capacity at the server for user a can be represented as

Cs = log2 (1 + SNRs)

= log2

(√
αaPa

Ls
|ha|2 + σ2

z
′
t

)
− log2

(
σ2
z
′
t

) (17)



We assume the eavesdropper wiretaps the data of user a. As
the eavesdropper receives the PCR-AN with the actual signal
from user a with variance σ2

a, the SNR at the eavesdropper is
given by,

SNRev =

√
αaPa

Ls

∣∣∣h(e)a

∣∣∣2
σ2
z + σ2

a

(18)

where
∣∣∣h(e)a

∣∣∣2 is the channel power gain corresponding to the

channel coefficient h(e)a . The capacity at the eavesdropper is
estimated as follows:

Cev = log2

(√
αaPa

Ls

∣∣∣h(e)a

∣∣∣2 + σ2
z + σ2

a

)
− log2

(
σ2
z + σ2

a

)
(19)

Now, we can estimate the secrecy capacity as follows.

C =

log2


√
αaPa

Ls
|ha|2 + σ2

z
′
t

√
αaPa

Ls

∣∣∣h(e)a

∣∣∣2 + σ2
z + σ2

a

− log2

(
σ2
z
′
t

σ2
z + σ2

a

)
+

(20)
where [x]

+
= max {x, 0}. The main objective is to enhance the

secrecy capacity so that the privacy of user a is improved. It can
be realized from eq. (20) that there is a direct influence of σ2

a

on C, which means that more PCR-AN at the sender decreases
the capacity at the eavesdropper, in other words, increases the
privacy of user a. Also, it is evident in eq. (20) that if σ2

A

increases, C decreases.

C. Convergence Rate of Private AirComp-based FL

Theorem 1. Suppose the loss function F is λ-strongly convex
and µ-smooth with respect to w∗ over a convex set W , and
E[∥ŝt∥2] ≤ G2. Then if we pick ηt = 1/λt, the convergence
rate for iteration T is

E [F (wT )− F (w∗)]

≤ 2µ

λ2T

(
L2
s +

d

m2K2

[
K∑

k=1

|hk|2βkPk + σ2
z

])
(21)

The detailed proof of Theorem 1 is given by [18] and [14].
The convergence rate can also be maximized by optimizing
the artificial noise parameter βk, which can also meet the
differential privacy requirement to preserve the privacy at PAS
in [14]. The βk can be written as:

βk =
Zk

|hk|2Pk

, ∀k (22)

where Zk = min

[
λk, (Ψ−

k−1∑
p=1

Up)
+

]
, ∀k, Ψ =

max
p

min
q

|hq|2Pq

ϵp
log 1.25

δ − σ2
z , and Up = |hp|2βpPp. The

(ϵ, δ) is the local differential privacy level.

Figure 3: Secrecy capacity with respect to different transmitted
signal’s coefficient αk.

V. EVALUATION

In this section, we first provide simulation results of secrecy
capacity to show the performance of our AirComp-based
privacy-preserving FL model. The Rayleigh fading wireless
channels for the simulation results are randomly generated over
106 realization samples in Matlab. The channel coefficients are
drawn from N (0, 1), and the channel noise variance is set to
σ2
z = 1. We set the variance σ2

k of the user k’s PCR-AN to
25dB. The Lipschitz constant Ls is considered as 1. We define
∆h = |hk|2 − |h(e)k |2 as the capability of an eavesdropper to
obtain the parameters from the victim compared with PAS.
∆h = 0 means the eavesdropper has high capability as PAS,
∆h > 0 means low capacity at eavesdropper, relatively. Based
on the assumption of two coefficients αk and βk, we show the
secrecy capacity with the respect to different transmit signal’s
coefficient αk ∈ [0, 0.5] in Fig. 3. With the increase of transmit
power coefficient αk, the secrecy capacity increases for all
scenarios. For both transmit power Pk = 25 dB and Pk = 30
dB, the secrecy capacity increases for the scenario that the
eavesdropper has a worse channel gain (∆h > 0) than PAS.

We then consider the ∆h > 0 scenario here, which is a
general assumption in wireless communication. We set the

Figure 4: Secrecy capacity with respect to different transmit power.



Figure 5: Convergence rate of private AirComp-based FL.

αk = 0.5 in the simulation. In Fig. 4, we show the impact of
transmit signal power on the secrecy capacity of an individual
user. For aggregated PCR-ANs variance σ2

A = 0 dB, which
means the power of PCR-ANs is cancelled perfectly at PAS.
With the convergence of aggregated PCR-ANs’ variance σ2

A,
the secrecy capacity increase. The trend of secrecy capacity
also increases with the increase of transmit power.

Fig. 5 shows the impact of the total number of users K
and iteration T on the convergence rate based on eq. (21). For
the GD algorithm, the regularization parameter λ is 10−3 and
T = 1000 training iterations. We assume the transmit power
Pk = 30 dB for each user k based on the analysis from Fig. 3
which can reach a higher secrecy capacity. We also assume the
data points d = 30. From the enlarged detail for the beginning
of the iteration, as we increase the number of users, the training
loss decays with T . We also show the impact of PCR-AN’s
power coefficient βk for each user k. The loss decreases with
the decrease of PCR-AN’s power. We compare different pair of
coefficients of transmitting signal and PAC-AN, which is αk =
0.3, βk = 0.7 and αk = 0.5, βk = 0.5. From simulation results,
the lower βk performs a faster convergence rate. Therefore, we
chose to set βk = 0.5. This means only necessary PCR-AN
power can help the FL model reach good convergence. We can
easily figure out that the trend of training loss converges as the
number of the iteration T increases.

VI. CONCLUSION

In this paper, we propose a new privacy-preserving FL
framework with efficient over-the-air parameter aggregation
and random pairwise cancellable artificial noises (PCR-ANs) to
obfuscate individual private model parameters. We demonstrate
the use of PCR-ANs by users provides strong privacy protection
for both user data and models. By adjusting the PCR-AN
power level, our design is able to thwart external eavesdroppers
equipped with directional antennas. Also, because the PCR-
ANs are pairwise cancellable, it does not cause a large error
in the estimation of the global model at the aggregator. Some
residual noise due to different variances remains in the ag-
gregated model which aids in providing additional protection
against malicious servers. Theoretical analysis of the secrecy

capacity and convergence rate shows the feasibility of our
design and the stronger privacy protection provided by the
proposed FL.
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