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Abstract

This paper proposes a learning-based distributed optimization framework to en-
hance the resilience of distributed power system algorithms against communi-
cation failures. The autoregressive–moving-average (ARMA) model is used to
estimate the missing states and control actions of neighboring agents during com-
munication contingencies. The proposed framework allows agents to predict the
future control actions of neighbors. Thus, even during complete loss of com-
munication, agents can efficiently perform distributed optimization. We use the
Distributed Optimal Frequency Control (DOFC) algorithm, which includes op-
timal power sharing to achieve frequency stability, as a benchmark application
platform to show the effectiveness of the proposed framework. The theoretical
findings are evaluated on two practical power systems. The results show that the
ARMA-based DOFC algorithm can asymptotically reach the same convergence
rate as the power system without communication interruptions.

Keywords: ARMA model, resilient distributed optimal frequency control,
multi-agent network, prediction-based distributed optimization

1. Introduction

Power grids are moving toward a distributed architecture for decision making
and control [1, 2]. Several factors are contributing to this move such as vulner-
ability of centralized power grid to single point of failure, insufficient flexibility
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of centralized architecture for large penetration of distributed energy resources
(DERs), etc. [3].

Distributed power system algorithms have been proposed as a scalable solu-
tion for real-time coordination of emerging DERs and producer-consumer (pro-
sumers) agents [4, 5, 6, 7, 8, 9]. Reference [10] presents a comprehensive survey
of distributed optimization and control algorithms for electric power systems un-
til late 2017. The communication network performance and reliability are key
elements in the overall success of distributed algorithms [11, 12]. Failures in the
communication network, caused by disconnection of communication links, cyber-
attacks, delay and other channel imperfections, can jeopardize the performance of
distributed algorithms and lead to system-level efficiency, reliability and security
problems [13]. In other words, distributed algorithms require convergence in the
cyber network before the solutions can be implemented on the physical grid and
the intermittent iterations are not satisfying power flow and other system con-
straints [14, 15, 16]. On the other hand, fully decentralized methods provide sub-
optimality and can lead to inter-area oscillations among agents and sub-systems
[17, 18, 19, 20, 21]

Most of the recent efforts to improve the resilience of distributed algorithms
against communication failures are limited to architecture solutions [22, 23, 24].
For instance, in our previous work [25] we introduced multiple-input multiple-
output (MIMO) architecture to increase the reliability of communication networks
and improve the convergence rate of distributed algorithms against communica-
tion delays. Also, in [26, 27] we introduced an enhanced communication network
architecture, which allows for multiple-hop communication among agents to in-
crease the resilience of distributed algorithms. The proposed solutions require
hardware improvement in the cyber layer, which can be a costly approach particu-
larly for large-scale power systems. On the other hand, the state-of-the-art resilient
distributed algorithms do not provide a systematic approach to guarantee the con-
vergence of distributed algorithms under communication failures [28, 29, 30].

This paper addresses the gap by introducing a learning-based approach based
on the autoregressive–moving-average (ARMA) model to estimate the missing
data and bypass convergence in the cyber network during communication fail-
ures. The ARMA model has less computational efforts compared with deep learn-
ing methods. Thus, it can be a computationally effective approach for linearized
power system models in real-time operation. The ARMA model estimates the
states and control actions of neighboring agents, when there is loss of commu-
nication. Also, it can predict the future control action of neighbors, thus it can
expedite the convergence of distributed algorithms. We use Distributed Optimal
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Frequency Control (DOFC) algorithms based on the linearized model of the power
system to showcase the effectiveness of the ARMA-based model. We show that
the ARMA-based DOFC can asymptotically reach the same convergence rate as
the power system without communication interruptions.

The main contributions of this paper are:

1. Developing the distributed ARMA model to estimate the states and control
actions of neighboring agents during peer-to-peer communication interrup-
tions.

2. Embedding the ARMA model into the DOFC algorithm, and laying a foun-
dation for learning-based DOFC to mitigate the impact of communication
failures.

3. Quantitatively characterizing the fundamental relationship between the esti-
mation errors and convergence rates of the ARMA-based DOFC to develop
a practical criterion for securing reliability of optimal frequency control un-
der communication uncertainties.

4. Illustrating that the convergence rate of the ARMA-based DOFC under
communication failures can asymptotically reach the Cramer–Rao (CR)
lower bound. Note that the CR bound represents the lower bound on the
variance of error between the optimal control actions and estimated control
solutions of the algorithm [31].

The rest of the paper is organized as follows. Section 2 presents an overview of
realistic communication performance and its impact on distributed power system
algorithms. Section 3 proposes a distributed prediction framework based on the
ARMA model to mitigate the impact of disrupted communication channels on
distributed algorithms such as DOFC. The main results are established in this
section, where error bounds, strong convergence, and asymptotic optimality errors
are derived. The technical findings are illustrated on two realistic power systems in
Sections 4 to validate the performance of the ARMA-based DOFC under different
scenarios. The paper concludes with discussions of overall findings in Section 5.

2. Realistic Communication Performance

Algorithmic convergence in a distributed setting depends on the characteristics
of the control network, such as its topology, but also on the quality of the commu-
nication network that serves peer-to-peer interactions, as well as on the nature of
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the distributed algorithm logic. The major modes of communication failures in-
clude: Delayed, Disrupted, and Malicious Agents. Various use cases can manifest
as one or more of the three fault conditions. In this paper, we develop algorithmic
solutions for Delayed and Disrupted use cases.

2.1. Communication Delays
Timing is critical for supporting the functionalities of distributed algorithms

[32, 33]. IEEE and the International Electrotechnical Commission (IEC) have
defined rigorous standards for communication delay requirements in smart grids
[34]. However, in reality the communication networks are not always able to
meet the strict communication delay requirements of IEEE and IEC. For instance,
experimental results on communication delays between substations, reported in
[34, 33], show that in many scenarios the packet delays exceed the maximum
required limit for the most critical messages.

DOFC is one of the time critical power system algorithms. NERC A1 criterion
requires that frequency regulators bring area control error (ACE) to zero once
every 10 minutes [35] and NERC B2 criterion requires that frequency regulators
begin to return ACE to zero within 1 minute after a disturbance [36]. Prolonged
communication delays slow down the distributed algorithms (iterations take more
time) and increase the risk of violating the NERC reliability criteria.

2.2. Disrupted Communication Network
When all communication links connecting a sub-system (e.g. DERs, pro-

sumers, etc) to the rest of the grid are disconnected, information isolation, denoted
as “muteness”, occurs. During this abnormal condition, other sub-systems need to
take an algorithmic contingency-based action. Due to physical coupling, the con-
trol actions of each sub-system depend on the action of its neighbors. An isolated
sub-system cannot control power flow and reroute power according to Kirchhoff’s
and Ohm’s laws [37]. This lack of controllability can lead to system-level stability
problems.

In [38, 39], we developed topological conditions under which the power sys-
tem can maintain controllability under single or multiple communication failures.
But the proposed solution requires communication architecture upgrade. Figure 1
illustrates the schematics of an N−1 communication-failure-resilient architecture
for a loop power grid with eight prosumers [38].

As discussed in Section 1, this is a costly approach and may not be scalable
for large-scale power grids. In this paper, we propose an algorithmic solution
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Figure 1: Architecture of a communication network resilient to a single communication failure.
(a) Loop power grid with 8 prosumers (b) Communication network with two-hop information
exchange capability [26]. This architecture may not be scalable for large-scale power systems.

to mitigate the impact of communication delays and disrupted communication
channels without needs for upgrading the cyber infrastructure.

2.3. Modeling Communication Uncertainty
The basic assumption behind most distributed algorithms is that the communi-

cation network should follow the power grid topology. This is a strong assumption
and may not be practical. In this paper, we limit the communication interaction
between sub-systems (prosumers). Thus, as long as the prosumer-based commu-
nication network is connected, prosumers can perform distributed optimization.
During the algorithm implementation, packet loss or channel interruption may
cause the cyber link to be randomly disconnected. The connectivity of each com-
munication line is represented by a stochastic variable

λij(k) =

{
1, if the link (i, j) is connected at step k,
0, if the link (i, j) is broken at step k,

where λij is an indicator function. If the communication link between prosumer
i and prosumer j is connected, λij = 1; otherwise λij = 0. The mathematical
expression is provided above.

We assume that each channel’s packet loss is an independent and identically
distributed (i.i.d) sequence of random variables with probability Prk to be linked
and 1 − Prk to be disconnected. This assumption is practical, because in reality
most communication nodes use battery-based power supplies, providing some as-
surance that power outages will not result in communication outages [37]. Thus,
communication nodes can independently operate and their failure rates are mutu-
ally independent. Therefore, when block erasure channels are mutually indepen-
dent, λij(k) is an independent random variable.
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3. Distributed Prediction Framework

Without loss of generality, suppose that prosumer j must receive the control
action of its adjacent prosumer i (Uij). Since information exchange among pro-
sumers is subject to data loss and channel interruption λij(k), it is possible that
at time k, Uij(k) is not received. How should prosumers find a remedy for this
situation?

1. Solution 1: Ignore the link between prosumers i and j. For example, sup-
pose prosumer 1 has two neighbors, prosumers 2 and 3. If the data from
prosumer 2 is lost at k, only data from prosumer 3 will be used in updating
the optimization iteration variable.

2. Solution 2: Use the previously received value until the next value is re-
ceived. This is a zero-order-hold method. For instance, if Uij(k) is not
available, then prosumers use:

Ûij(k) = Uij(k − 1)

3. Solution 3: Estimate Uij(k) by using previously received or estimated val-
ues. This is the focus of this paper.

Note that Solutions 1 and 2 do not require any additional models. But in
these solutions, either the information on Uij(k) is totally lost (Solution 1) or
the estimation may be subject to large errors (Solution 2). This can impact the
convergence of distributed algorithms and lead to sub-optimal power sharing, or in
the worst-case scenario can cause system-wide instability. The central hypothesis
of this paper is that using suitable models to predict Uij(k) can reduce the error

Ûij(k)− Uij(k).

We will show that if the prediction error is small, Solution 3 can asymptotically
converge to the optimal solution under communication failures. To prove this
hypothesis, we first use the ARMA model to relate the dynamics of each prosumer
to the past values. This allows predicting the current value of Uij(k) based on
the historical data. Next, we develop the prediction algorithm and establish the
convergence rate of the algorithm.

Solution 3 will be implemented on Delayed and Disrupted use cases. When
delay at each iteration exceeds the threshold, the missing data is considered as lost
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data. In practice, 30 ms is the threshold for communication delays. Prosumers can
estimate the lost data using the ARMA model.

3.1. Dynamic Model Estimation Methods
There are different types of linear dynamic model estimation methods. We

first use simple examples, and then extend them to general expressions.

1. AR (Auto-regression) Model. This model involves Uij(k) (self recursive
expression) without input. Thus, the current control action of the neighbor-
ing agents is correlated with their historical control values. For this model,
we can define

Ûij(k) =

{
Uij(k) Uij(k) received∑q

l=1 ϕlÛij(k − l) Otherwise,
(1)

where q is the time horizon of the historical data (e.g. q steps in the past),
and ϕl is the coefficient of the AR model at time step k − l. If there is
communication noise, the AR model takes the form:

Ûij(k) =

q∑
l=1

ϕlÛij(k − l) + d(k), (2)

where d(k) is the noise at time k.

2. FIR (Finite Impulse Response) Model. The FIR model involves only a finite
number of the past input values

Ûij(k) =

q∑
l=1

θlpj(k − l). (3)

In other words, the control action of prosumers Uij is only correlated with
their historical power deviations pj , and θl is the coefficient of the FIR
model at time step k − l. If there is noise, this model becomes

Ûij(k) =

q∑
l=1

θlpj(k − l) + d(k).
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3. ARMA Model with noise. This model uses both self recursive expression
and past input values to estimate Uij , that is

Ûij(k) =

q∑
l=1

ϕlÛij(k − l) +

q∑
l=1

θlpj(k − l) + d(k), (4)

where ϕ and θ are matrix-valued coefficients of the ARMA model. The
control actions of the neighboring agents are correlated with both their his-
torical control values and their power deviations. ϕ and θ can be obtained
by the least mean squares regression, which will be discussed in Section
3.3.

The ARMA model has the advantages of both AR and FIR models. It has less
computational efforts compared with deep learning methods, such as long short-
term memory (LSTM). Therefore, in this paper it is used for model estimation
and prediction. In the distributed framework, prosumer i has sensing of its tie-
line power flows and can measure pj . Also, under normal conditions prosumer
i receives the control actions of its neighbors (Uij). The ARMA model allows
prosumer i to estimate Uij , when the communication link between prosumers i
and j is disconnected.

3.2. Prediction-based Distributed Optimal Frequency Control
In this section, we discuss how the ARMA model can be integrated with the

DOFC algorithm to mitigate the impact of communication failures. DOFC in-
volves bringing the quasi-steady state frequency deviations to zero with optimal
power sharing among prosumers. The optimization aspect of the DOFC makes it
different from conventional decentralized frequency control methods, such as a PI
controller. Optimal power sharing will ensure that the frequency control is done
in an efficient way.

As frequency deviations has linear relation with power deviations at the pro-
sumer level [40], we can define the following performance index for the DOFC
algorithm for systems with n prosumers:

min
u
J (u) = min

u

1

2
(p(k + 1)⊤Qp(k + 1) + u(k)⊤Ru(k)), (5a)

s.t. p(k + 1)− Ap(k)− Bu(k) = 0, (5b)

where p = [p1, · · · , pn]⊤ is the vector of power deviations and u = [u1, · · · , un]
⊤

is the vector of control variables. Matrices Q = diag(Q1, Q2, · · · , Qn) and R =
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diag(R1, R2, · · · , Rn) are positive definite diagonal matrices, where Qi represents
the cost of power deviation and Ri represents the cost of frequency control for
prosumer i. Also, (5b) represents the linearized quasi-steady state dynamics of
the power system, where A is the system matrix and B is the control matrix. Note
that matrices A and B preserve the topology of the prosumer-based power grid.
The A and B matrices can be obtained as

A = I − TsJpδS,

B = TsJpδΓ.

where S is a diagonal matrix including the droop constant of prosumers (σi) and
Γ is a diagonal matrix where γi represents the internal dynamics of prosumer i.
Also, Jpδ is the reduced Jacobean matrix and Ts is the sampling time for frequency
regulation [40].

Under normal condition, several distributed optimization methods can be used
to solve the DOFC problem [41, 42]. In this paper, we use the alternating direction
method of multipliers (ADMM). Thus, (5) can be decomposed as follows [27, 40]:

min
U1·,··· ,Un·

n∑
i=1

(
Qi

[
A⊤

i·P
i(k) + B⊤

i· Ui·(k)
]2

+RiU
2
ii(k)

)
,

s.t. Uij(k) = Ujj(k), ∀i ∈ N, j ∈ Ni,

(6)

where Ai· and Bi· are the ith rows of A and B respectively, and Ni is the set of
prosumer i’s neighbors. Also, Ui· is the ith rows of the matrix of decision vari-
ables U = [Uij], which include the control action of prosumers Uii = ui and the
perception of prosumers from the control actions of their neighbors Uij ∀j ∈ Ni.
In addition, P i is a column vector, which includes pj , j ∈ Ni ∪ {i}. Constraints
in (6) guarantee that prosumer i has a correct perception of the control strategies
of its neighbors. At each iteration h, the average control strategy of prosumer j is
computed using (7) and this information is shard with neighboring prosumers to
ensure that the control actions and perceptions of the control actions converge to
the same values:

Ūh
jj(k) :=

∑
i∈Nj∪{j}

Uh
ij(k)

|Nj|+ 1
. (7)

To ensure that the solution is optimal, prosumer i solves the following aug-
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mented Lagrangian function at each iteration:

Lρ,i(Ui·, Ū
h
i· , λ

h
i·) = Qi

[
A⊤

i·P
i +B⊤

i· Ui·
]2

+RiU
2
ii

+ λh⊤

i· (Ui· − Ūh
i· ) +

ρ

2
∥Ui· − Ūh

i·∥22,
(8)

where ρ > 0 is a given penalty factor, and Ūh
i· is a column vector, which includes

the average control strategy of prosumer i and that of its neighbors.
Prosumer i updates the primal and dual residuals αh

i· and βh
i· as follows:

αh
i· = Uh

i· − Ūh
i· , and βh

i· = ρ(Ūh
i· − Ūh−1

i· ), ∀i ∈ N. (9)

The dual variables are also updated as:

λh
i· = λh−1

i· + ραh
i·, ∀i ∈ N. (10)

Note that at each iteration only the computed control variables will be shared.
The matrices A and B remain the same and the knowledge about these matrices
will be shared during the planning phase. This facilitates the distributed frame-
work and minimizes information exchange among prosumers at each iteration.

When communication channels between prosumer i and its neighbor j is dis-
rupted, prosumer i needs to predict the control action of prosumer j using the
following equation

Ûij(k) =

{
Uij(k) Uij(k) received∑q

i=1 ϕiÛi·(k − i) +
∑q

i=1 θiPi·(k − i) + d(k) Otherwise
(11)

In other words, prosumer i uses the previous states and control variables of
prosumer j and applies the ARMA model to predict its control action at time k.
As discussed in Sub-section 3.3, coefficients θ and ϕ will be learned from the
historical data and will be updated frequently to keep the ARMA model up to
date.

Algorithm for implementing ARMA-based DOFC
Step 0. Prosumer i initializes its control variable (U0

ii), shares its power devi-
ations (pi) with neighbors, and set h = 0.

Step 1. Prosumer i sends Uh
ij to its neighboring prosumers j.

Step 2. Prosumer j computes Ūh
jj using (7) and sends it back to its neighbors.

Step 3. If prosumer i does not receive Ūh
ij , i.e., λij(k) = 0, it estimates ̂̄Uh

ij
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from (12):

̂̄Uh

ij(k) =

q∑
l=1

ϕl
̂̄U ij(k − l) +

q∑
l=1

θlpj(k − l) + d(k). (12)

Step 4. Prosumer i updates its primal and dual residuals from (9), and dual
variable from (10).

Step 5. For given primal and dual tolerances ϵPri > 0 and ϵDual > 0, if h > 0,∑
i∈N
∥αh

i·∥22 ≤ ϵPri and
∑
i∈N
∥βh

i·∥22 ≤ ϵDual STOP and output Ūh
jj as optimal control

strategy; otherwise go to Step 5.
Step 6. Prosumer i updates Uh+1

i· by solving its cost minimization problem
(13). Set h← h+ 1 and go to step 1.

Uh+1
i = (2QiBi·B

⊤
i· + Ei)−1(ρ ˆ̄Uh

i· − λh
i· − 2QiBi·A

⊤
i·P

i) (13)

where Ei is a diagonal matrix of size |Ni| + 1, Ei
ii = 2Ri + ρ and Ei

jj = ρ,
∀j ∈ Ni.

Note that control actions and power deviations have historical patterns. Thus,
when there is delay in communication (missing data) or disruption in peer-to-peer
communication (channel disconnection), prosumers can estimate the lost data us-
ing the ARMA model. Therefore, prosumers can still continue regulating fre-
quency even during communication failures.

The ARMA model is more effective when the power system represents a lin-
ear behavior. When the power deviations are large, the system has a nonlinear
behavior and therefore deep machine learning methods, such as LSTM, may be
more effective. This will be the topic of our future research endeavor.

3.3. Least Mean Square System Identification
The Least Mean Square (LMS) algorithm is used to identify the coefficients

of the ARMA model (θ and ϕ) based on the historical power flow and frequency
control data of prosumers. This model allows estimating the missing data due to
communication failures. Also, prosumers can predict the next control action of
neighboring prosumers.

The LMS algorithm [43] is a stochastic gradient algorithm that uses a fixed
step-size parameter to control the correction applied to each weight as the itera-
tions proceed. In this paper, LMS uses a filtering process, which applies an input
vector to calculate the error. The error is the difference between desired response
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and the output of the filter. Denote

Y (k + 1) =Uij(k + 1),

U(k) =[Uij(k), Uij(k − 1), . . . , Uij(k − q + 1),

pj(k), pj(k − 1), . . . , pj(k − q + 1)]⊤,

W =[ϕ1, . . . , ϕq, θ1, . . . , θq]
⊤. (14)

Algorithm for LMS ARMA
Step 0. Initialization: Select e0 > 0 as the threshold error, given the initial

values for W (0) and U(0), and let k = 0.
Step 1. Actual data: Y (k + 1) = U(k)⊤W (k).
Step 2. Output prediction: Ŷ (k + 1) = U(k)⊤W (k).
Step 3. Calculating the error: e(k + 1) = Y (k + 1)− Ŷ (k + 1).
Step 4. Calculating the updated weight: W (k+1) = W (k)+ηU(k)e(k+1).
Step 5. Termination condition: If |e(k + 1)|≤ e0, end the loop. Otherwise, let

k = k + 1 and go to Step 1.
The step size parameter is η, which should be selected appropriately to guar-

antee fast convergence with reasonable steady-state error. Typically, a larger step
size η can generate faster rate of initial convergence when the estimation error is
large. But it will result in a larger persistent estimation due to observation noise.
In addition, if the underlying system dynamics of the power grid changes with
time, a large step size can have better tracking capability. When a constant step
size is used, this tradeoff is fundamental and must be resolved in practical usage of
LMS algorithms. In this paper, the step size is tuned in our case studies to achieve
a reasonable tradeoff in the specific system.

3.4. Convergence Analysis
Next, we prove that under some mild assumptions, the ARMA-based DOFC

algorithm can improve the convergence rate under communication failures. In this
sub-section, we consider the gradient-based algorithm, which is easier to be an-
alyzed. In a certain sense, ADMM algorithm is also a gradient-based algorithm.
Using the performance index in (5), the distributed gradient of the performance
index can be defined as∇uJ (u) = Gu+B⊤QAp, where G = R+B⊤QB. Thus,
the optimal solution can be obtained in a closed form as u∗ = −G−1B⊤QAp. This
solution cannot be obtained in a distributed framework, since it requires calculat-
ing the inverse of matrix R +B⊤QB.
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In order to find a distributed solution, we denote that for prosumer i the fol-
lowing performance index can be obtained:

Ji(u) =
1

2
(riu

2
i + qi(Ai·p+Bi·u)

2)

=
1

2

riu2
i + qi

 ∑
j∈Ni∪{i}

Aijpj +
∑

j∈Ni∪{i}

Bijuj

2 (15)

Then, we have J (u) =
∑n

i=1 Ji(u). Note that

∇uJ (u) =


∇u1J (u)
∇u2J (u)

...
∇unJ (u)

 ∈ Rn, (16)

where

∇ui
J (u) =

∑
ℓ∈Ni∪{i}

∇ui
Jℓ(u), (17)

and

∇ui
Jℓ(u) =


rℓuℓ + qℓBℓℓ

( ∑
j∈Nℓ∪{ℓ}

Aℓjpj +
∑

j∈Nℓ∪{ℓ}
Bℓjuj

)
if ℓ = i,

qℓBℓi

( ∑
j∈Nℓ∪{ℓ}

Aℓjpj +
∑

j∈Nℓ∪{ℓ}
Bℓjuj

)
if ℓ ∈ i.

Thus, prosumer i can adopt the following gradient algorithm to track the opti-
mal solution:

ui(k + 1) = ui(k)− µ(k)∇ui
J (u(k))

= ui(k)− µ(k)
∑

ℓ∈Ni∪{i}

∇ui
Jℓ(u(k)), (18)

where the step size µ(k) = 1/kγ , 1/2 < γ < 1. This algorithm is strictly dis-
tributed, since for prosumer i it only requires the gradient information from its
neighbors, i.e., ∇ui

Jℓ(u(k)) where ℓ ∈ Ni ∪ {i}. Since pj can be measured via
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tie-line flows and is the physical power imbalance, only uj needs to be shared with
neighbors. If prosumer i does not receive uj(k), then the ARMA-based estimate
ûji(k) will be used.

Thus, the update algorithm with the prediction error and gradient error can be
written in the following vector form:

u(k + 1) =u(k)− µ(k)(Gu(k) + B⊤QAp+ d1(k) + d2(k)), (19)

where d1(k) ∈ Rn denotes the prediction error and d2(k) ∈ Rn denotes the gra-
dient error. Next, we make the following basic assumptions for the theoretical
analysis.

Assumption 3.1. 1. power graph is connected.

2. The prediction error {d1(k) ∈ Rn×1} and the gradient error {d2(k) ∈
Rn×1} are two mutually independent sequences of i.i.d. random variables
such that E[d1(k)] = E[d2(k)] = 0n×1 ∈ Rn×1, E[d1(k)d⊤1 (k)] = Σd1 ∈
Rn×n, E[d2(k)d⊤2 (k)] = Σd2 ∈ Rn×n, where Σd1 and Σd2 are symmetric
positive definite.

Using the ordinary differential equation (ODE) method in stochastic approxi-
mation [44], the following strong convergence result can be obtained for (19).

Theorem 3.1. Under Assumption 3.1, the iterates {u(k)} generated by the DOFC
algorithm (19) converge to the optimal solution u(k) → u∗ with probability one
(w.p.1) as k →∞.

For simplicity, we omit the verbatim proof and refer the reader to [44, Chapters
5 and 6]. While the actual proof of Theorem 3.1 will be skipped, the main ideas
can be summarized as follows. Define ξ(k) =

∑k−1
j=0 µ(j), ϖ

ξ = max{k : ξ(k) ≤
ξ}, the piecewise constant interpolation uξ

0 = u(k) for ξ ∈ [ξ(k), ξ(k + 1)), and
the shift sequence uξ

k = u
ξ+ξ(k)
0 . Since the step size µ(k) = 1/kγ (1/2 < γ < 1),

the interpolated sequence {u(·)
t } is uniformly bounded and equicontinuous. By

Ascoli-Arzéla’s theorem, we can extract a subsequence {u(·)
tℓ
}, which converges

to u(·) on any compact intervals w.p.1 such that u(·) is a solution. The ODE
has a unique equilibrium point, which is the optimal solution. Now, by using
the Lyapunov method, the equilibrium point u∗ is an asymptotically stable point,
since −G is stable. This theoretical result leads to the desired property for (19).
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Next, we demonstrate the convergence rate of the DOFC algorithm. Here, we
consider the following averaging form:

ū(k) =
k−1∑
j=0

uj/k.

Theorem 3.2. Under Assumption 3.1,
√
k(ū(k)−u∗) converges weakly to a nor-

mal random variable with zero mean and asymptotic covariance

Σ∗ = G−1(Σd1 + Σd2)G
−1. (20)

Remark 3.1. For a coverage on the CR lower bound, we refer the reader to [45]
(pp. 300-302). Since the proof of Theorem 3.2 is similar to Chapter 11 of [44],
here we omit it. Note that ū(k) − u∗ is asymptotically normal (Gaussian dis-
tributed) with zero mean and covariance Σ∗/k. Thus, ū(k) will converge to its
limit at a convergence rate that approaches asymptotically the corresponding CR
lower bound [46]. As a result, we use the error covariance matrix Σ∗ to evaluate
how fast convergence to the optimal solution can be achieved. It can be observed
that by increasing the accuracy of the estimate ûji(k), the prediction error vari-
ance Σd1 decreases, thus the algorithm converges faster to the optimal solution.

By [47], if all the nodes have a uniform packet delivery probability ρ ∈ (0, 1],
the asymptotic covariance will be Σ∗

ρ = ρ−1G−1Σd2G
−1. Note that Σ∗

ρ − Σ∗ =
G−1[(ρ−1−1)Σd2−Σd1 ]G

−1. If (1−ρ)Σd2 ≥ ρΣd1 , we know that Σ∗
ρ ≥ Σ∗ holds,

i.e. if ρ or Σd1 is small enough, the ARMA-based DOFC algorithm will converge
to the optimal solution faster than the DOFC algorithm with packet loss.

4. Simulation Results

In this section, we evaluate the performance of the ARMA-based DOFC on
two practical power systems. The first system is the electric power grid on Flores
Island and the second system is the electric power grid on Sao Miguel Island.

4.1. Flores Island
Flores Island is one of the smaller islands of the Azores Archipelago. Figure

2 shows the electrical network of Flores, which consists of a 15 kV radial distri-
bution network with 45 nodes and 44 branches. The total demand of the island is
around 2MW. Three small power plants supply the electrical demand. More than
50% of the electricity is provided by four diesel generators whose total capacity
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is 2.5MW. Around 35% of the demand is supplied by four hydro power plants
with an overall capacity of 1.65MW. Two wind power plants with a total capac-
ity of 0.65MW provide the rest of demand (15%) [48]. We cluster the island into
three prosumers, where each prosumer has power generation units and local loads.
Figure 3 illustrates the equivalent prosumer-based structure of Flores Island. We
assume that the physical communication network is the same as the topology of
the prosumer grid.

Figure 2: The electrical power grid on Flores Island.

We use the one-month historical power flow data of the island, which consists
of 4464 data points, to train and test the LMS model and identify the coefficients
of the ARMA model (θ and ϕ). 80% of the data was used for training and 20% was
used to test the LMS model. Table IV shows the estimated ARMA coefficients of
Flores Island. Also, Fig. 8 shows the accuracy of the LMS prediction model.
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Figure 3: The equivalent prosumer-based power grid on Flores Island.

Figure 4: Comparing the actual data and prediction data of Diesel Prosumer for Flores Island.
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Figure 5: Frequency deviation of prosumers when there is no communication failures. Note that
the ARMA-based DOFC performance (third scenario) is almost identical to this scenario.

Table 1: ARMA coefficients for Prosumers on Flores Island.
Number Type ϕ1 ϕ2 θ1 θ2
Prosumer 1 Diesel −0.1760 −0.1581 +0.4340 +0.8952
Prosumer 2 Hydro −0.2389 −0.3480 +0.4721 +1.0978
Prosumer 3 Wind −0.2218 −0.2794 +0.4609 +1.0350

Next, we compare the performance of DOFC after a disturbance in three sce-
narios. The first scenario is the normal condition, in which there is no communi-
cation disconnection. In the second scenario, one communication node is discon-
nected (prosumer 3) and prosumers use the zero-order-hold method (Solution 2).
In the third scenario, the communication links to prosumer 3 is disconnected, but
the ARMA model is applied to predict the states of prosumer 3 (Solution 3).
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Figure 6: Frequency deviation of prosumers when prosumer 3 is disconnected (second scenario).

Fig. 5 shows the frequency dynamics of prosumers for the first scenario (no
communication loss), and Fig. 6 presents the frequency dynamics of prosumers
for the second scenario. Also, the third scenario has a similar frequency response
to the normal condition (first scenario).

Fig. 7 compares the dynamic response of the center of inertia COI for all three
scenarios. As shown in the figure, the zero-order-hold method has poor perfor-
mance. On the other hand, the ARMA-based DOFC is effective in overcoming
the negative impact of communication packet loss and achieving enhanced per-
formance that is very close to the ideal condition of no communication loss.
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Figure 7: Frequency deviation of COI when prosumer 3 is disconnected (second scenario).

4.2. Sao Miguel Island
The next case study is Sao Miguel Island, which consists of a 60-kV transmis-

sion network connecting the large power plants to large loads. The average de-
mand of the island is 70 MW and fifteen generators are serving the island. There
are two large diesel generators located in the middle of the island. Also, there are
two large geothermal plants and seven hydro plants. The schematics of the elec-
trical method on Sao Miguel Island is provided in [25]. We assume that the island
is clustered into fifteen prosumers, where each prosumer is a balancing area for
frequency control. The equivalent prosumer-based network of Sao Miguel Island
is shown in Figure 8. Similar to the previous case study, one-month historical
power flow data of the island is used for the training and testing the LMS model.
Table III shows the coefficients of the LMS model for prosumers on Sao Miguel
Island.
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Figure 8: The equivalent prosumer-based power grid on Sao Miguel Island.

Figure 9: Comparing the actual data and LMS-based prediction data for Sao Miguel Island.
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Table 2: Prediction Results of ARMA for Sao Miguel Island.
Prosumer
type

ϕ1 ϕ2 θ1 θ2

Hydro1 +0.2056 +0.1732 −0.2524 −0.2110
Hydro2 +0.0666 +0.0468 −0.1765 −0.1019
Hydro3 +0.0507 +0.0463 −0.1424 −0.1186
Hydro4 +0.0545 +0.1290 −0.3256 −0.2825
Hydro5 +0.2025 +0.2473 +0.3846 +0.3552
Hydro6 −0.0591 −0.0174 −0.0280 +0.0062
Hydro7 +0.1062 +0.1108 +0.3056 +0.2893
Hydro8 +0.0727 +0.0673 +0.2067 +0.1933
Hydro9 −0.0246 +0.0744 +0.1333 +0.1705
Hydro10 +0.1265 +0.3655 +0.3166 +0.3168
Geothermal1 +0.2056 +0.1732 −0.2524 −0.2110
Geothermal2 +0.0666 +0.0468 −0.1765 −0.1019
Diesel1 +0.0507 +0.0463 −0.1424 −0.1186
Diesel2 +0.0545 +0.1290 −0.3256 −0.2825
Wind +0.2025 +0.2473 +0.3846 +0.3552

Figure 10: Performance of the LMS prediction under different time-step prediction horizons.

Fig. 9 also shows the performance of the LMS prediction model for one of the
prosumers. As shown in the figure, the LMS model accurately predicts the next-
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step power deviation (k + 1). By increasing the prediction horizon, the accuracy
of the LMS model decreases. This is shown in Fig. 10 for two-step (k + 2) and
three-step (k + 3) prediction horizons.

Figure 11: ARMA frequency deviation for Sao Miguel Island Island.

Next, we simulate the performance of DOFC after a power imbalance under
three scenarios:

• Normal communication system.

• Communication disconnection at node 15 (prosumer 15). Prosumers use
zero-order-hold method to mitigate the communication loss.

• Communication disconnection at node 15, but using ARMA model to pre-
dict the states of neighbors of prosumer 15.

Fig. 11 shows the performance of COI for the ARMA-based DOFC scenario.
Also, Fig. 12 compares the quasi-steady state dynamics of COI for the three
scenarios. As shown in the figure, the ARMA-based DOFC has very similar per-
formance to the normal condition. In other words, the ARMA model allows the
disconnected prosumer to accurately predict the states of its neighbors and con-
tinue performing DOFC.
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Figure 12: Frequency deviation of COI on Sao Miguel Island when three scenarios.

5. Conclusions

This paper proposed a learning framework based on the ARMA model to in-
crease the resilience of distributed power algorithms, such as DOFC, against com-
munication failures. The ARMA model estimates the missing states and control
actions of neighboring agents, when there is loss of communication. Also, the
ARMA model allows prosumers to predict the future control action of neighbors.
Thus, even during communication failures, affected prosumers could continue
distributed optimization and contribute to the system-level performance, such as
optimal power sharing for frequency control. The performance of the proposed
method was evaluated on two practical power systems. The results showed that
the ARMA-based DOFC algorithm could asymptotically reach the same conver-
gence rate of the power systems without communication interruptions.

The future research endeavored is to extend the model to more general non-
linear models, such as AC Optimal Power Flow. To this end, machine learning
methods, such as neural network can be used to handle system non-linearities.
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