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ROBUST BPX PRECONDITIONER FOR FRACTIONAL

LAPLACIANS ON BOUNDED LIPSCHITZ DOMAINS

JUAN PABLO BORTHAGARAY, RICARDO H. NOCHETTO, SHUONAN WU,
AND JINCHAO XU

Abstract. We propose and analyze a robust Bramble-Pasciak-Xu (BPX) pre-
conditioner for the integral fractional Laplacian of order s ∈ (0, 1) on bounded
Lipschitz domains. Compared with the standard BPX preconditioner, an ad-
ditional scaling factor 1− γ̃s, for some fixed γ̃ ∈ (0, 1), is incorporated to the
coarse levels. For either quasi-uniform grids or graded bisection grids, we show
that the condition numbers of the resulting systems remain uniformly bounded
with respect to both the number of levels and the fractional power.

1. Introduction

Given s ∈ (0, 1), the fractional Laplacian of order s in R
d is the pseudodifferential

operator with symbol |ξ|2s. That is, denoting the Fourier transform by F , for every
function v : Rd → R in the Schwartz class S it holds that

F ((−∆)sv) (ξ) = |ξ|2sF(v)(ξ).

Upon inverting the Fourier transform, one obtains the following equivalent expres-
sion:

(1.1) (−∆)sv(x) = C(d, s) p.v.

∫

Rd

v(x)− v(y)

|x− y|d+2s
dy, C(d, s) =

22ssΓ(s+ d
2 )

πd/2Γ(1− s)
.

The constant C(d, s) ≃ s(1− s) compensates the singular behavior of the integrals
for s → 0 (as |y| → ∞) and for s → 1 (as y → x), and yields [26, Proposition 4.4]

(1.2) lim
s→0

(−∆)sv(x) = v(x), lim
s→1

(−∆)sv(x) = −∆v(x), ∀v ∈ C∞
0 (Rd).

From a probabilistic point of view, the fractional Laplacian is related to a simple
random walk with arbitrarily long jumps [51], and is the infinitesimal generator
of a 2s-stable Lévy-process [8]. Thus, the fractional Laplacian has been widely
utilized to model jump processes arising in social and physical environments, such
as finance [24], predator search patterns [48], or ground-water solute transport [7].

There exist several nonequivalent definitions of a fractional Laplace operator
(−∆)s on a bounded domain Ω ⊂ R

d (see [10, 11]). Our emphasis in this paper

Received by the editor June 2, 2021, and, in revised form, July 15, 2022, December 28, 2022,
and March 7, 2023.

2020 Mathematics Subject Classification. Primary 65F08, 65N30, 65M50, 35R11.
The first author was supported in part by NSF grant DMS-1411808 and Fondo Vaz Ferreira

grant 2019-068. The second author was supported in part by NSF grant DMS-1411808. The
third author was supported in part by the National Natural Science Foundation of China grant
No. 12222101 and No. 11901016. The fourth author was supported in part by NSF grant DMS-
1819157.

c©2023 American Mathematical Society

2439

Licensed to Univ of Maryland, College Park. Prepared on Tue Aug 22 19:55:31 EDT 2023 for download from IP 129.2.19.102.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2440 J. P. BORTHAGARAY ET AL.

is on the homogeneous Dirichlet problem for the integral (or restricted) fractional
Laplacian: given f : Ω → R, one seeks u : Rd → R such that

(1.3)

{
(−∆)su = f in Ω,

u = 0 in Ωc,

where the pointwise definition of (−∆)su(x) is given by (1.1) for x ∈ Ω. Conse-
quently, the integral fractional Laplacian on Ω maintains the probabilistic inter-
pretation and corresponds to a killed Lévy process [8, 22]. It is noteworthy that,
as the underlying stochastic process admits jumps of arbitrary length, for the in-
tegral fractional Laplacian the standard Dirichlet conditions need to be replaced
by suitable volume constraints on the complement of the domain Ω, e.g. u = 0 in
Ωc. In contrast, the spectral Laplacian for s ∈ (0, 1) and the censored (or regional)
Laplacian for s ∈ ( 12 , 1) admit Dirichlet boundary conditions on ∂Ω. Despite their
strikingly different boundary behavior, we show in Section 9 that the three opera-
tors are spectrally equivalent in bounded Lipschitz domains, an interesting property
already known for the integral and spectral operators [22].

Weak solutions to (1.3) are the minima of the functional v �→ 1
2 |v|2Hs(Rd) −

∫
Ω
fv

on the zero-extension space H̃s(Ω) (see Section 2.2). In accordance with (1.2)

restricted to any v ∈ C∞
0 (Ω), it holds that if v ∈ H̃σ(Ω) for some σ > 0, then [39]

(1.4) lim
s→0+

|v|Hs(Rd) = ‖v‖L2(Ω),

while if v ∈ L2(Rd) is such that supp v ⊂ Ω and lims→1− |v|Hs(Rd) exists and is

finite, then v ∈ H1
0 (Ω) and [17]

(1.5) lim
s→1−

|v|Hs(Rd) = |v|H1(Ω).

We emphasize that the presence of a scaling factor C(d, s) ≃ s(1 − s) in the
fractional-order seminorm |v|Hs(Rd) is fundamental for (1.4) and (1.5) to hold. Con-
sider a discretization of (1.3) using standard linear Lagrangian finite element space
on a mesh T (denoted by V(T ), see details in Section 2.2) whose elements have
maximum and minimum size hmax and hmin respectively, and denote by A the
corresponding stiffness matrix. Then, as shown in [4], the condition number of A
obeys the relation

(1.6) cond(A) � (dimV(T ))2s/d
(
hmax

hmin

)d−2s

for 0 < s < 1 with 2s < d, and one can remove the factor involving hmax

hmin
by

preconditioning A by a diagonal scaling. On non-quasi-uniform grids, the hidden
constant in the critical case 2s = d is worse by a logarithmic factor.

We point out that solutions to (1.3) generically exhibit the boundary behavior
u ≃ d(·, ∂Ω)s, and thus graded meshes towards ∂Ω are required to recover optimal
convergence rates. The relation (1.6) shows that even in the limit s → 0, in which
the fractional Laplacian approaches the identity (cf. (1.2)), the use of graded grids
may give rise to ill-conditioned matrices; this could be cured though by diagonal
scaling (see Section 8.2).

In recent years, efficient finite element discretizations of (1.3) have been examined
in several papers. Adaptive algorithms have been considered in [2, 28, 32], and a
posteriori error analysis has been addressed in [30, 44]. Standard finite element
discretizations of the fractional Laplacian give rise to full stiffness matrices; matrix
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compression techniques have been proposed and studied in [3, 37, 61]. For the
efficient resolution of the discrete problems, operator preconditioners have been
considered in [33].

In this work, we propose a multilevel BPX preconditioner (cf. [6, 18, 31, 49, 53])
B for the solution of (1.3) that yields cond(BA) � 1. In general, our result follows
from the general theory for multigrid preconditioners (cf. [34, 54, 55, 58]). An
important consequence of (1.4) and (1.5) is that, on any given grid, the stiffness
matrices associated with integral fractional Laplacians of order s approach either
the standard mass matrix (as s → 0) or the stiffness matrix corresponding to the
Laplacian (as s → 1), the latter because the canonical basis functions of V(T ) are

Lipschitz and W 1,∞
0 (Ω) ⊂ H̃s(Ω). This is consistent with (1.6): for example, on

quasi-uniform grids of size h, such a formula yields cond(A) ≃ h−2s.
Based on the above observations, one of our main goals is to obtain a precon-

ditioner that is uniform with respect to s as well as with respect to the number of

levels J̄ . For such a purpose, we need to weigh the contributions of the coarser
levels differently to the finest level. On a family of quasi-uniform grids {T k}J̄k=0

with size h̄k, we shall consider a preconditioner in the operator form (cf. (4.2))

(1.7) B = I J̄ h̄
2s
J̄ QJ̄ + (1− γ̃s)

J̄−1∑

k=0

Ikh̄
2s
k Qk,

with an arbitrary parameter γ̃ ∈ (0, 1). Above, Qk and Ik are suitable L2-projection
and inclusion operators, respectively. Clearly, if s ∈ (0, 1) is fixed, then the factor
1− γ̃s is equivalent to a constant. However, such a factor tends to 0 as s → 0, and
this correction is fundamental for the resulting condition number to be uniformly
bounded with respect to s.

We now present a simple numerical example to illustrate this point. Let Ω =
(−1, 1)2, f = 1, s = 10−1, 10−2, and choose either γ̃ = 0 (i.e., no correction) or
γ̃ = 1

2 in the preconditioner above to compute finite element solutions to (1.3) on
a sequence of nested grids. The left panel in Table 1 shows the condition numbers
of the preconditioned linear systems. It is apparent that setting γ̃ = 1

2 gives rise to

a more robust behavior with respect to both s and the number of levels J̄ .
Another aspect to take into account in (1.3) is the low regularity of solutions

[14,36,46], which calls for graded grids in numerical computation [1,13]. However,
graded grids give rise to worse-conditioned matrices, as described by (1.6). This
work also addresses preconditioning on graded bisection grids that can be employed
to obtain the refinement as needed. Our algorithm on graded bisection grids builds
on the subspace decomposition introduced in [21], which leads to optimal multilevel
methods for classical (s = 1) problems. Our theory on graded bisection grids,
however, differs from the existing ones [21,31,52] to account for the uniformity with
respect to s. As illustrated by the right panel in Table 1, including a correction
factor on the coarser scales leads to a more robust preconditioner. This confirms
the practical value of the modification in addition to its theoretical value.

We now briefly discuss the main difficulty of our analysis for graded bisection
grids. We rely on the theory of subspace correction [54], but the presence of the
scaling factor 1− γ̃s on coarse meshes complicates the stable decomposition. Since
the subspaces generated by bisection are local and non-nested, the decomposition
in [21, 31, 52] directly applies to the difference of some local operators (called slic-
ing operators in [21]), but the technique used in [21] yields a stability constant
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2442 J. P. BORTHAGARAY ET AL.

Table 1. Condition numbers with BPX preconditioner without
(γ̃ = 0) and with (γ̃ = 1

2 ) a correction factor. We display results on
a family of uniformly refined grids (top panel), and on a sequence
of suitably graded bisection grids (bottom panel).

Uniform grids

DOFs
s = 10−1 s = 10−2

γ̃ = 0 γ̃ = 1
2 γ̃ = 0 γ̃ = 1

2

225 8.66 2.92 12.11 3.70
961 10.81 3.00 15.97 3.80
3969 12.66 3.03 19.66 3.83
16129 14.28 3.03 23.27 3.84

Graded bisection grids

DOFs
s = 10−1 s = 10−2

γ̃ = 0 γ̃ = 1
2 γ̃ = 0 γ̃ = 1

2

161 8.06 3.85 11.48 5.06
853 10.80 4.21 15.86 5.14
2265 13.43 4.55 20.72 5.38
9397 15.53 4.74 24.71 5.55

depending on (1 − γ̃s)−1 that blows up as s → 0. Instead, we develop in Section
3.2 a new tool called s-uniform decomposition on nested spaces. Invoking this tool,
we construct in Section 7 a stable decomposition on a sequence of auxiliary nested
subspaces for bisection grids that leads to the desired L2-stable decomposition to
the local subspaces. The resulting BPX counterpart of (1.7) is robust with respect
to the number J of levels and the fractional order s, and applies as well to the spec-
tral and censored Laplacians in view of their spectral equivalence to the integral
Laplacian alluded to earlier.

This paper is organized as follows. Section 2 collects preliminary material about
the interpolation spaces and the finite element discretization of (1.3). Next, in
Section 3 we discuss general aspects of the method of subspace corrections and
introduce an s-uniform decomposition that plays a central role in our analysis.
As an application, we introduce a BPX preconditioner for quasi-uniform grids in
Section 4, and prove that it leads to condition numbers uniformly bounded with
respect to the number of refinements J̄ and the fractional power s. Afterwards,
we delve into the preconditioning of systems arising from graded bisection grids.
For that purpose, Section 5 offers a review of the bisection method with novel
twists and proposes a BPX preconditioner on graded bisection grids. Sections 6
and 7 provide the technical analysis of the s-uniform decomposition for graded
bisection grids. Section 8 presents some numerical experiments that illustrate the
uniform performance of the BPX preconditioners with respect to s and the number
of levels. Finally, Section 9 discusses BPX preconditioners for the spectral and
censored fractional Laplacians.

2. Preliminaries

In this section, we set the notation used in the rest of the paper regarding
Sobolev spaces and recall some preliminary results about their interpolation. We
refer to [13] for the basic definitions we use here. We are particularly concerned
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with the zero-extension Sobolev space H̃σ(Ω) := C∞
0 (Ω)

‖·‖
Hσ(Rd) , which is the set

of functions in Hσ(Rd) whose support is contained in Ω. Given u, v ∈ H̃σ(Ω), we

define the (scaled) inner product (·, ·)σ : H̃σ(Ω)× H̃σ(Ω) → R to be

(2.1) (u, v)σ := (u, v)Hσ(Rd) =
C(d, σ)

2

∫∫

Rd×Rd

(u(x)− u(y))(v(x)− v(y))

|x− y|d+2σ
dx dy,

where C(d, σ) is the constant from (1.1). We point out that the integration in (2.1)

takes place in
(
Ω× R

d
)
∪
(
R

d × Ω
)
because functions in H̃σ(Ω) vanish in Ωc. We

further write the scaled Gagliardo seminorm |u|σ = (u, u)
1/2
σ = |u|Hσ(Rd), and let

‖u‖0 := ‖u‖L2(Ω).
For convenience, we write X � Y (resp. X � Y ) to indicate X ≤ CY (resp.

CX ≥ Y ), where C denotes, if not specified, a generic positive constant that may
stand for different values at its different occurrences but is independent of the
fractional power s or the number of levels; this implies the independence of the
mesh-size for quasi-uniform grids or the dimension of the FEM-space for graded
bisection grids. The notation X ≃ Y means both X � Y and X � Y hold.

2.1. Interpolation and fractional Sobolev spaces. An important feature of
the fractional Sobolev scale is that it can be equivalently defined by interpolation

of integer-order spaces. This, along with the observation that the norm equiva-
lence constants are uniform with respect to s, is fundamental for our work. In
view of the applications below, we now recall the abstract setting for two separable
Hilbert spaces X1 ⊂ X0 with X1 continuously embedded and dense in X0. Follow-
ing [38, Section 2.1], the inner product in X1 can be represented by a self-adjoint
and coercive operator S : D(S) → X0 with domain D(S) ⊂ X1 dense in X0, i.e.
(v, w)X1 = (Sv,w)X0 for all v ∈ D(S), w ∈ X1. Invoking the spectral decompo-
sition of self-adjoint operators [59], we let Λ : X1 → X0 be the square root of S,
which in turn is self-adjoint, coercive, and satisfies

(2.2) (v, w)X1 = (Λv,Λw)X0 ∀v, w ∈ X1.

Suppose further that the spectrum {λk}∞k=1 of Λ is discrete and the corresponding
eigenfunctions {ϕk}∞k=1 form a complete orthonormal basis for X0; hence Λv =∑∞

k=1 λkvkϕk for all v =
∑∞

k=1 vkϕk ∈ X1. Then, we can define a fractional power
s ∈ (0, 1) of Λ as follows:

(2.3) Λsv :=

∞∑

k=1

λs
kvkϕk if ‖Λsv‖2X0

:=

∞∑

k=1

λ2s
k v2k < ∞.

On the other hand, we can construct intermediate spaces by the K-method.
Given s ∈ (0, 1), we consider the interpolation space (X0, X1)s,2 with norm

(2.4) ‖v‖(X0,X1)s,2 :=

(
2 sin(πs)

π

∫ ∞

0

t−1−2sK2(v, t)
2dt

) 1
2

,

where K2(t, v) := infv=v0+v1

(
‖v0‖2X0 + t2‖v1‖2X1

) 1
2 . The following result [38, The-

orem 15.1] gives an intrinsic spectral equivalence between the interpolation by K-
method and spectral theory.

Theorem 2.1 (Intrinsic spectral equivalence). Let X1 ⊂ X0 be two Hilbert spaces

with X1 continuously embedded and dense in X0. Let the self-adjoint and coercive
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2444 J. P. BORTHAGARAY ET AL.

operator Λ : X1 → X0 satisfy (2.2) and have a discrete, complete and orthonor-

mal set of eigenpairs (λk, ϕk)
∞
k=1 in X0. Given s ∈ (0, 1), for any v ∈ X0 with

‖Λsv‖X0 < ∞ we have

‖Λsv‖X0
= ‖v‖(X0,X1)s,2 .

We now apply Theorem 2.1 (intrinsic spectral equivalence) to L2-based Sobolev

spaces. Let X0 = L̃2(Ω) and X1 = H̃1(Ω) denote the spaces of functions in L2(Ω)
and H1

0 (Ω) extended by zero to Ωc, respectively, and let the inner product in X1

be given by (v, w)X1 =
∫
Rd ∇v · ∇w =

∫
Ω
∇v · ∇w. The corresponding operator S

equals the Laplacian −∆ with zero Dirichlet condition on the bounded Lipschitz

domain Ω; S thus admits a set of eigenpairs {λ̂k, ϕ̂k}∞k=1 where the eigenfunctions

{ϕk}∞k=1 are extended by zero to Ωc and form a complete orthonormal set in L̃2(Ω)
[29, Section 6.5.1 and Appendix D.5]. Therefore, the corresponding eigenpairs

{λk, ϕk}∞k=1 of Λ = (−∆)
1
2 satisfy λk = λ̂

1/2
k and ϕk = ϕ̂k, whence

(2.5) ‖Λsv‖20 = ‖(−∆)
s
2 v‖20 =

∞∑

k=1

λ2s
k v2k =

∞∑

k=1

λ̂s
kv

2
k

is the norm square of the interpolation space H̃s(Ω) =
(
L̃2(Ω), H̃1(Ω)

)
s,2

. Since

this norm is uniformly equivalent to the scaled Gagliardo norm

(2.6) |v|s ≃ ‖Λsv‖0 ∀v ∈ H̃s(Ω)

(cf. [40, Theorem B.8, Theorem B.9] and [20]), (2.5) yields the following equiva-
lence.

Proposition 2.1 (Norm equivalence). The following equivalence is uniform in

s ∈ (0, 1),

(2.7) |v|2s ≃
∞∑

k=1

λ̂s
kv

2
k ∀v ∈ H̃s(Ω).

2.2. Variational formulation and finite element discretization. Since a
Poincaré inequality is valid in H̃s(Ω) (cf. [1, Prop. 2.4], for example), the map

u �→ (u, u)s is an inner product on H̃s(Ω). Given f ∈ H−s(Ω), the dual of

H̃s(Ω), the weak formulation of the homogeneous Dirichlet problem (1.3) reads:

find u ∈ H̃s(Ω) such that

(2.8) a(u, v) := (u, v)s = 〈f, v〉s,Ω ∀v ∈ H̃s(Ω),

where 〈·, ·〉s,Ω stands for the duality pairing between H−s(Ω) and H̃s(Ω). Existence
and uniqueness of solutions of (2.8) is a consequence of the Riesz representation
theorem.

Given a conforming and shape-regular triangulation T of Ω, we consider discrete
spaces consisting of continuous piecewise linear functions that vanish on ∂Ω,

(2.9) V(T ) = {vh ∈ C(Ω): vh|T ∈ P1(T ) ∀T ∈ T , vh|∂Ω = 0}.

It is clear that V(T ) ⊂ H̃s(Ω), independently of the value of s. Therefore, we can
pose a conforming discretization of (2.8): we seek uh ∈ V(T ) such that

(2.10) a(uh, vh) = 〈f, vh〉s,Ω ∀vh ∈ V(T ).
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Remark 1 (Necessity of graded grids). Convergence rates in the energy norm are
derived by using suitable interpolation estimates [1, 23] and regularity results [11,
Theorem 3.7]. As shown in [1], conforming finite element approximations over
quasi-uniform grids converge at most with order 1

2 in the energy norm, due to the
boundary behavior (9.3) [10, 36, 46]. To mitigate such a low convergence rate one
can incorporate a mesh grading towards ∂Ω. This idea was exploited in [1] (see also
[11, 16]), where the regularity of the solution is characterized in weighted Sobolev
spaces, with the weight being a power of d(·, ∂Ω). In fact, let us define the patch of
a closed element τ ∈ T

Sτ :=
⋃

{τ ′ ∈ T : τ ′ ∩ τ �= ∅}.

Given a grading parameter μ ≥ 1 and a mesh size parameter h, we assume that,
for all τ ∈ T , the element size hτ = |τ |1/d satisfies

(2.11) hτ ≃
{

hμ if Sτ ∩ ∂Ω �= ∅,
h d(τ, ∂Ω)(μ−1)/μ otherwise.

If the right-hand side f is sufficiently smooth, it turns out that the optimal choice
for μ is d

d−1 . We refer to [1, 11, 16] for details.

We conclude this section with a fractional local inverse estimate valid on arbi-
trary, shape-regular grids T . The proof hinges on localization of fractional norms
to element patches. Because the Gagliardo seminorm | · |σ involves integration on
Ωc, we introduce the extended patch of a closed element τ ∈ T ,

(2.12) S̃τ :=

{
Sτ if τ ∩ ∂Ω = ∅,
Bτ otherwise,

where Bτ = B(xτ , Chτ ) is the ball of center xτ and radius Chτ , with xτ being
the barycenter of τ , and C = C(σ) a shape regularity dependent constant such

that Sτ ⊂ Bτ . We assume S̃τ is a Lipschitz set, so that the space Hβ(S̃τ ) defined

by interpolation between H1(S̃τ ) and L2(S̃τ ) is well-defined and has a seminorm
equivalent to the (scaled) Gagliardo seminorm

v �→ |v|Hβ(S̃τ )
:=

(
C(d, β)

2

∫∫

S̃τ×S̃τ

|v(x)− v(y)|2
|x− y|d+2β

dy dx

)1/2

.

Lemma 2.1 (Local inverse inequality). Let σ ∈ [0, 1] and β ∈ [0, σ], and assume

S̃τ is Lipschitz for every τ ∈ T . Then,

(2.13) |v|σ �

(
∑

τ∈T

h2(β−σ)
τ |v|2

Hβ(S̃τ )

) 1
2

∀v ∈ V(T ),

where the hidden constant depends on the spatial dimension, shape-regularity con-

stant and Lipschitz constant of S̃τ , but is uniformly bounded with respect to σ and

β.

Proof. We decompose the scaled seminorm |v|σ locally according to [15, Lemma
4.1] for σ < 1,

|v|2σ ≤ C(d, σ)

2

∑

τ∈T

(∫∫

τ×S̃τ

|v(x)− v(y)|2
|x− y|d+2σ

dy dx+
C

σh2σ
τ

‖v‖2L2(τ)

)
∀v ∈ V(T ),
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2446 J. P. BORTHAGARAY ET AL.

where C(d, σ) is taken as in (2.1) and the constant C depends only on d and the
shape-regularity constant of T . We next exploit the local quasi-uniformity of T and
operator interpolation theory (cf. [50, Chapter 34 & 36]) applied to the estimates

|v|H1(S̃τ )
� h−1

τ ‖v‖L2(S̃τ )
, ‖v‖L2(S̃τ )

≤ ‖v‖L2(S̃τ )
,

to deduce the local inverse estimate with hidden constant insensitive to σ

|v|Hσ(S̃τ )
� h−σ

τ ‖v‖L2(S̃τ )
,

because S̃τ is Lipschitz. Applying again operator interpolation theory to this esti-
mate and |v|Hσ(S̃τ )

≤ |v|Hσ(S̃τ )
gives

|v|Hσ(S̃τ )
� hβ−σ

τ |v|Hβ(S̃τ )
, β ∈ [0, σ]

and leads to the desired estimate (2.13) for σ < 1. The case σ = 1 is simpler
because the seminorm |v|1 is local. In fact, it hinges on the local inverse estimate
|v|H1(S̃τ )

� hβ−1
τ |v|Hβ(S̃τ )

, which in turn results from operator interpolation applied

to the estimates |v|H1(S̃τ )
� h−1

τ ‖v‖L2(S̃τ )
and |v|H1(S̃τ )

≤ |v|H1(S̃τ )
. �

3. s-Uniform additive multilevel preconditioning

Let (·, ·) be the L2-inner product in Ω and V := V(T ) denote the discrete space.
Let A : V → V be the symmetric positive definite (SPD) operator defined by

(Au, v) := a(u, v) for any u, v ∈ V , and let f̃ ∈ V be given by (f̃ , v) = 〈f, v〉s,Ω
for any v ∈ V . With this notation at hand, the discretization (2.10) leads to the
following linear equation in V

(3.1) Au = f̃ .

In this section, we give some general and basic results that will be used to
construct and analyze the s-uniform additive multilevel preconditioners for (3.1).

3.1. Space decomposition. We now invoke the method of subspace corrections

[27, 54, 55, 58, 60]. We first decompose the space V as the sum V =
∑J

j=0 Vj of
subspaces Vj ⊂ V . For j = 0, 1, . . . , J , we consider the following operators:

• Qj : V → Vj is the L2-projection operator defined by (Qjv, vj) = (v, vj) for
all v ∈ V, vj ∈ Vj ;

• Ij : Vj → V is the natural inclusion operator given by Ijvj = vj for all
vj ∈ Vj ;

• Rj : Vj → Vj is an approximate inverse of the restriction of A to Vj (often

known as smoother); we set ‖vj‖2R−1
j

:= (R−1
j vj , vj) for all vj ∈ Vj provided

that Rj is SPD on Vj .

A straightforward calculation shows that Qj = Itj because (Qjv, vj) = (v, Ijvj) =

(Itjv, vj) for all v ∈ V, vj ∈ Vj . Let the fictitious space be
˜
V = V0 × V1 × . . . × VJ .

Then, the Parallel Subspace Correction (PSC) preconditioner B : V → V is defined
by

(3.2) B :=

J∑

j=0

IjRjQj =

J∑

j=0

IjRjI
t
j .

Lemmas 3.1 and 3.2 follow from the general theory of preconditioning techniques
based on fictitious or auxiliary spaces [34, 41, 54–56,58].
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Lemma 3.1 (Identity for PSC). If Rj is SPD on Vj for j = 0, 1, . . . , J , then B
defined in (3.2) is also SPD under the inner product (·, ·). Furthermore,

(3.3) (B−1v, v) = inf∑
J
j=0 vj=v

J∑

j=0

(R−1
j vj , vj) ∀v ∈ V.

Lemma 3.2 (Estimate on cond(BA)). If the operator B in (3.2) satisfies

(A1) Stable decomposition: for every v ∈ V , there exists (vj)
J
j=0 ∈

˜
V such that∑J

j=0 vj = v and

(3.4)
J∑

j=0

‖vj‖2R−1
j

≤ c0‖v‖2A,

where ‖v‖2A = (Av, v), then λmin(BA) ≥ c−1
0 ;

(A2) Boundedness: For every (vj)
J
j=0 ∈

˜
V there holds

(3.5)

∥∥∥∥∥∥

J∑

j=0

vj

∥∥∥∥∥∥

2

A

≤ c1

J∑

j=0

‖vj‖2R−1
j

,

then λmax(BA) ≤ c1. Consequently, if B satisfies (A1) and (A2), then cond(BA) ≤
c0c1.

3.2. Instrumental tools for s-uniform preconditioner. We assume that the
spaces {Vj}Jj=0 are nested, i.e.

Vj−1 ⊂ Vj ∀1 ≤ j ≤ J.

With the convention that Q−1 = 0, we consider the L2-slicing operators

Q̃j : V → Vj : Q̃j := Qj −Qj−1 (j = 0, 1, . . . , J).

Clearly, the L2-orthogonality implies that QkQj = Qk∧j , where k ∧ j := min{k, j}.
Hence,

(3.6) Q̃jQk = QkQ̃j =

{
Q̃j j ≤ k,

0 j > k,
Q̃kQ̃j = δkjQ̃k.

Lemma 3.3 plays a key role in the analysis of an s-uniform preconditioner, which
is obtained by using the identity of PSC (3.3) and reordering the BPX precondi-
tioner [18, 53].

Lemma 3.3 (s-Uniform decomposition). Given γ ∈ (0, 1), s ∈ (0, 1], it holds that,
for every v ∈ V ,

J∑

j=0

γ−2sj‖(Qj −Qj−1)v‖20 = inf
vj∈Vj∑J
j=0 vj=v

⎡
⎣γ−2sJ‖vJ‖20 +

J−1∑

j=0

γ−2sj

1− γ2s
‖vj‖20

⎤
⎦ .

Proof. This proof is an application of Lemma 3.1 (Identity for PSC). Taking

B =
J∑

j=0

γ2sj(Qj −Qj−1),
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by the L2-orthogonality (3.6), we easily see that B−1 =
∑J

j=0 γ
−2sj(Qj − Qj−1)

and

(B−1v, v) =
J∑

j=0

γ−2sj‖(Qj −Qj−1)v‖20.

On the other hand, to identify Rj we reorder the sum in the definition of B

B =

J∑

j=0

γ2sj(Qj −Qj−1) = γ2sJQJ +

J−1∑

j=0

(1− γ2s)γ2sjQj =

J∑

j=0

IjRjQj ,

where

Rjvj :=

{
(1− γ2s)γ2sjvj j = 0, . . . , J − 1,

γ2sjvj j = J,

for all vj ∈ Vj . Finally, the identity (3.3) of PSC gives the desired result. �

Lemma 3.4 is useful to obtain stable decompositions in fractional-order norms.
The proof is a direct application of space interpolation theory and is therefore
omitted here.

Lemma 3.4 (s-Uniform interpolation). Assume that the spaces {Vj}Jj=0 are nested,

and

(3.7)

J∑

j=0

γ−2j‖(Qj −Qj−1)v‖20 � |v|21 ∀v ∈ V.

Then, the following inequality holds for s ∈ [0, 1], with the hidden constant inde-

pendent of s and J ,

J∑

j=0

γ−2sj‖(Qj −Qj−1)v‖20 � |v|2s ∀v ∈ V.

4. s-Uniform BPX preconditioner for quasi-uniform grids

We propose and study a BPX preconditioner [6,18,31,49,53] for the solution of
the systems arising from the finite element discretizations (2.10) on quasi-uniform
grids. We emphasize that, in contrast to [6, 18, 31], the proposed preconditioner is
uniform with respect to both the number of levels and the order s. To this end,
we introduce a new factor for coarse spaces which differs from the original BPX
preconditioners.

Consider a family of uniformly refined grids {T k}J̄k=0 on Ω, where T 0 = T0 is
a quasi-uniform initial triangulation. On each of these grids we define the space
V k := V(T k) according to (2.9). Let V = V J̄ and A be the SPD operator on
V associated with a(·, ·): (Av,w) = a(v, w) for all v, w ∈ V . Let the grid size
be h̄k ≃ γk, where γ ∈ (0, 1) is a fixed constant. For instance, we have γ = 1

2 for

uniform refinement, in which each simplex is refined into 2d children, and γ = ( 12 )
1/d

for uniform bisection, in which each simplex is refined into 2 children.
Let Qk : V → V k and Ik : V k → V be the L2-projection and inclusion operators

defined in Section 3.1, and let Q−1 := 0. Let γ̃ ∈ (0, 1) be a fixed constant; it can
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be taken equal to γ but this is not needed. For every vk ∈ V k, k = 0, . . . , J̄ , we
define Rk : V k → V k to be

(4.1) Rkvk :=

{
(1− γ̃s)h̄2s

k vk k = 0, . . . , J̄ − 1,

h̄2s
k vk k = J̄ .

We now introduce the BPX preconditioner and study its properties in the sequel

(4.2) B :=
J̄∑

k=0

IkRkI
t

k = I J̄ h̄
2s
J̄ QJ̄ + (1− γ̃s)

J̄−1∑

k=0

Ikh̄
2s
k Qk.

Our next goal is to prove Theorem 4.1, namely that B satisfies the two necessary
conditions (3.4) and (3.5) of Lemma 3.2 (estimate of cond(BA)) uniformly in J̄ and
s over quasi-uniform grids. We observe that the scaling (1 − γ̃s)−1 > 1 makes it
easier to prove the boundedness (3.5) but complicates the stable decomposition
(3.4).

Theorem 4.1 (Uniform preconditioning on quasi-uniform grids). Let Ω be a

bounded Lipschitz domain and s ∈ (0, 1). Consider discretizations to (1.3) us-

ing piecewise linear Lagrangian finite elements on quasi-uniform grids. Then, the

preconditioner (4.2) satisfies cond(BA) � 1, where the hidden constant is uniform

with respect to both J̄ and s.

We start with a norm equivalence for discrete functions. We rely on operator
interpolation and the decomposition for s = 1 [12, 25, 45, 54], which was proposed
earlier in [18, 53] with a removable logarithmic factor. A similar result, for the
interpolation norm of (L2(Ω), H1

0 (Ω))s,2, was given in [56, Theorem 10.5].

Theorem 4.2 (Norm equivalence). Let Ω be a bounded Lipschitz domain and s ∈
[0, 1]. If V = V J and Qk : V → V k denotes the L2-projection operators onto

discrete spaces V k, and Q−1 := 0, then for any v ∈ V the decomposition v =
∑J̄

k=0(Qk −Qk−1)v satisfies

(4.3) |v|2s ≃
J̄∑

k=0

h̄−2s
k ‖(Qk −Qk−1)v‖20.

The equivalence constant hidden in (4.3) is independent of s and J̄ .

Proof. We show (4.3) in the entire space H̃s(Ω), namely J = ∞. We consider the

self-adjoint operator Λ =
∑∞

k=0 h̄
−1
k (Qk −Qk−1) : H̃

1
0 (Ω) → L̃2(Ω), which induces

a norm in H̃1
0 (Ω) equivalent to the standard H1-norm according to [12, 45, 54]

‖Λv‖20 =

∞∑

k=0

h̄−2
k ‖(Qk −Qk−1)v‖20 ≃ ‖v‖21 ∀v ∈ H̃1

0 (Ω).

Therefore, Theorem 2.1 (intrinsic spectral equivalence) implies that ‖Λsv‖0 defines

a norm on the interpolation space H̃s(Ω) that is uniformly equivalent to the inter-
polation norm, whence |v|s ≃ ‖Λsv‖0 by virtue of (2.6). It remains to characterize
‖Λsv‖0.

We notice that Ṽk := (Qk − Qk−1)H̃
1
0 (Ω) is an eigenspace of Λ with eigenvalue

λk = h̄−1
k and H̃1

0 (Ω) = ⊕∞
k=0Ṽk is an L2-orthogonal decomposition. Consequently,

(2.3) yields ‖Λsv‖20 =
∑∞

k=0 h̄
−2s
k ‖(Qk −Qk−1)v‖20 and thus (4.3), as asserted. �
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Corollary 4.1 (Stable decomposition). Let γ̃ ∈ (0, 1) be a fixed constant. For every

v ∈ V = V J̄ and s ∈ (0, 1], there exists a decomposition (v0, . . . , vJ̄ ) ∈ V 0×. . .×V J̄ ,

such that
∑J̄

k=0 vk = v and

h̄−2s
J̄

‖vJ̄‖20 +
1

1− γ̃s

J̄−1∑

k=0

h̄−2s
k ‖vk‖20 ≃ |v|2s.

Proof. This is a direct consequence of Lemma 3.3 (s-uniform decomposition) and
Theorem 4.2 (norm equivalence) because h̄k ≃ γk and 1− γs ≃ 1− γ̃s uniformly in
s ∈ [0, 1]. �

We now prove the boundedness estimate in Lemma 3.2 (estimate on cond(BA))
with a constant independent of both J̄ and s.

Proposition 4.1 (Boundedness). Let γ̃ ∈ (0, 1) be a fixed constant, s ∈ (0, 1]. The

preconditioner B in (4.2) satisfies (3.5), namely

∣∣∣
J̄∑

k=0

vk

∣∣∣
2

s
≤ c1

(
h̄−2s
J̄

‖vJ̄‖20 +
1

1− γ̃s

J̄−1∑

k=0

h̄−2s
k ‖vk‖20

)
,

where γ̃ ∈ (0, 1) can be taken arbitrarily and the constant c1 is independent of J̄
and s.

Proof. Let v :=
∑J̄

k=0 vk. Then, we use Theorem 4.2 (norm equivalence), the fact
that h̄k ≃ γk and Lemma 3.3 (s-uniform decomposition) to write

∣∣∣
J̄∑

k=0

vk

∣∣∣
2

s
= |v|2s ≃

J̄∑

k=0

h̄−2s
k ‖(Qk −Qk−1)v‖20

≃
J̄∑

k=0

γ−2sk‖(Qk −Qk−1)v‖20

= inf
wk∈V k∑
J̄
k=0 wk=v

⎡
⎣γ−2sJ̄‖wJ̄‖20 +

J̄−1∑

k=0

γ−2sk

1− γ2s
‖wk‖20

⎤
⎦ .

Therefore, upon setting wk = vk for k = 0, . . . J̄ above, we deduce that

∣∣∣
J̄∑

k=0

vk

∣∣∣
2

s
� γ−2sJ̄‖vJ̄‖20 +

J̄−1∑

k=0

γ−2sk

1− γ2s
‖vk‖20

≤ c1

(
h̄−2s
J̄

‖vJ̄‖20 +
1

1− γ̃s

J̄−1∑

k=0

h̄−2s
k ‖vk‖20

)
.

The proof is thus complete. �

Remark 2 (Dependence on s). The standard BPX preconditioner reads [6, 18, 31]

(4.4) Bstd =
J̄∑

k=0

Ikh̄
2s
k Qk : V → V .

To explore sensitivity with respect to s, we consider the limiting case s = 0 and
express A as the identity matrix and Rk : V k → V k as the identity operator for all
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k = 0, . . . J̄ . In view of Lemma 3.2, by decomposing any v ∈ V as v =
∑J̄

k=0 Q̃kv

it follows that λmin(BstdA) = 1. Additionally, for any v ∈ V 0 at the coarsest level
we have BstdAv = (J̄ + 1)v and thus λmax(BstdA) ≥ J̄ + 1. This implies that the
condition number cond(BstdA) blows up as s → 0 and J̄ → ∞; this is observed in
the experimental results reported in Table 1.

5. s-Uniform BPX preconditioner for graded bisection grids

In this section, we briefly review the bisection method with emphasis on graded
grids following [21], and present new notions. We also refer to [42, 43, 57] for addi-
tional details.

We then design a BPX preconditioner for the integral fractional Laplacian (1.1)
on graded bisection grids that is uniform with respect to both the number of levels
J and fractional order s. The boundedness can be proved by combining the BPX
preconditioner on quasi-uniform grids with the theory for graded bisection grids
from [21, 31, 42, 43, 52].

5.1. Bisection rules and compatible bisections. For each closed simplex τ ∈ T
and a refinement edge e, the pair (τ, e) is called labeled simplex, and (T ,L) :=
{(τ, e) : τ ∈ T } is called a labeled triangulation. For a labeled triangulation (T ,L),
and τ ∈ T , a bisection bτ : {(τ, e)} �→ {(τ1, e1), (τ2, e2)} is a map that encodes the
refinement procedure. The formal addition is defined as follows:

T + bτ := (T ,L) \ {(τ, e)} ∪ {(τ1, e1), (τ2, e2)}.
For an ordered sequence of bisections B = (bτ1 , bτ2 , . . . , bτN ), we set

T + B := ((T + bτ1) + bτ2) + · · ·+ bτN .

Given an initial grid T0, the set of conforming grids obtained from T0 using the
bisection method is defined as

T(T0) := {T = T0 + B : B is a bisection sequence and T is conforming}.
The bisection method considered in this paper is assumed to satisfy the following
two properties, which are valid for a variety of bisection grids [21].

(A1) Shape regularity: T(T0) is shape regular.
(A2) Conformity of uniform refinement: T k := T k−1 + {bτ : τ ∈ T k−1} ∈

T(T0) ∀k ≥ 1.

We denote by N (T ) the set of vertices of the mesh T , and define the first ring

of either a vertex p ∈ N (T ) or an edge e ∈ E(T ) as

Rp = {τ ∈ T | p ∈ τ}, Re = {τ ∈ T | e ⊂ τ},
and the local patch of either p or e as ωp = ∪τ∈Rp

τ , and ωe = ∪τ∈Re
τ . An edge

e is called compatible if e is the refinement edge of τ for all τ ∈ Re. Let p be the
midpoint of a compatible edge e and Rp be the ring of p in T + {bτ : τ ∈ Re}.
Given a compatible edge e, a compatible bisection is a mapping be : Re → Rp. The
addition is thus defined by

T + be := T + {bτ : τ ∈ Re} = T \ Re ∪Rp,

which preserves the conformity of triangulations. Figure 5.1 depicts the two possible
configurations of a compatible bisection bej in 2D.

We now introduce the concepts of generation and level. The generation g(τ ) of
any element τ ∈ T0 is set to be 0, and the generation of any subsequent element τ
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ej pj

p−j

p+j

bej

(a) Interior edge

ej pj

p−j

p+j

bej

(b) Boundary edge

Figure 5.1. Two possible configurations of a compatible bisection
bej in 2D. The edge with boldface is the compatible refinement
edge, and the dash-line represents the bisection.

is 1 plus the generation of its father. For any vertex p, the generation g(p) of p is
defined as the minimal integer k such that p ∈ N (T k). Therefore, g(τ ) and g(p)
are the minimal number of compatible bisections required to create τ and p from
T0. Once p belongs to a bisection mesh, it will belong to all successive refinements;
hence g(p) is a static quantity insensitive to the level of resolution around p. To
account for this issue, we define the level ℓ(p) of a vertex p to be the maximal
generation of elements in the first ring Rp; this is then a dynamic quantity that
characterizes the level of resolution around p.

We then have the decomposition of bisection grids in terms of compatible bisec-
tions; see [21, Theorem 3.1].

Theorem 5.1 (Decomposition of bisection grids). Let T0 be a conforming mesh

with initial labeling that enforces the bisection method to satisfy assumption (A2),
i.e. for all k ≥ 0 all uniform refinements T k of T0 are conforming. Then for every

T ∈ T(T0), there exists a compatible bisection sequence B = (b1, b2, . . . , bJ ) with

J = #N (T )−#N (T0) such that

(5.1) T = T0 + B.

pj

p−j

p+j

ωj

• ej : the refinement edge;
• pj : the midpoint of ej ;
• p−j , p

+
j : two end points of ej ;

• ωj : the patch of pj (or ωpj
);

• ω̃j = ωpj
∪ ωp−

j
∪ ωp+

j
;

• hj : the local mesh size of ωj ;
• Tj = T0 + (b1, . . . , bj);
• Rj : the first ring of pj in Tj .

Figure 5.2. Plot of local patch ωj associated to a bisection node
pj , enlarged local patch ω̃j and definition of related quantities

For a compatible bisection bj with refinement edge ej , we introduce the bisection
triplet

(5.2) Tj := {pj , p+j , p−j },
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where p−j and p+j are the end points of ej and pj is its middle point; see Figure
5.2. A vertex can be a middle point of a bisection solely once, when it is created,
but instead it can be an end point of a refinement edge repeatedly; in fact this is
the mechanism for the level to increment by 1. In addition, since p±j already exist
when pj is created, it follows that

gj := g(pj) ≥ g(p±j ).

The notion of generation of the bisection is well-defined due to Lemma 5.1, see
[21, Lemma 3.3].

Lemma 5.1 (Compatibility and generation). If bj ∈ B is a compatible bisection,

then all elements in Rj := Rpj
have the same generation gj.

In light of the Lemma 5.1, we say that gj is the generation of the compatible
bisection bj : Rej → Rpj

. Because by assumption h(τ ) ≃ 1 for τ ∈ T0, we have the
following important relation between generation and mesh size:

hj ≃ γgj , with γ =

(
1

2

)1/d

∈ (0, 1).

Moreover, there exists a constant k∗ depending on the shape regularity of T(T0)
such that for every vertex p ∈ N (Tj)

(5.3) max
τ∈Rp

g(τ )− min
τ∈Rp

g(τ ) ≤ k∗, #Rp ≤ k∗.

Combining this geometric property with Lemma 5.1 (compatibility and generation),
we deduce that

(5.4) gj − k∗ ≤ g(τ ) ≤ gj + k∗ ∀τ ∈ R̃j := Rpj
∪Rp−

j
∪Rp+

j
.

Another ingredient for our analysis is the relation between the generation of
compatible bisections and their local or enlarged patches [21, Lemmas 3.4 and 3.5].

Lemma 5.2 (Generation and patches). Let TJ = T0 + B ∈ T(T0) with compatible

bisection sequence B = (b1, . . . , bJ ). Then the following properties are valid:

• Nonoverlapping patches: For any j �= k and gj = gk, we have

ω̊j ∩ ω̊k = ∅.

• Quasi-monotonicity: For any j > i and ˚̃ωj ∩ ˚̃ωi �= ∅, we have

gj ≥ gi − 2k∗,

where k∗ is the integer defined in (5.3).

We now investigate the evolution of the level ℓ(p) of a generic vertex p of T .

Lemma 5.3 (Levels of a vertex). If q ∈ Tj ∩Tk, where Tj is a bisection triplet and

Tk is the next one to contain q after Tj, and ℓj(q) and ℓk(q) are the corresponding

levels, then

ℓk(q)− ℓj(q) ≤ k∗,

where k∗ is the integer given in (5.3).
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q

(a) Rq

q

e

(b)
Case
1:
q �∈ e

q

e

(c)
Case
2:
q ∈ e

Figure 5.3. Two cases of bisection in Rq: The bisection edge
e is on the boundary of the patch and q does not belong to the
bisection triplet (B); the node q is an endpoint of e and belongs to
the bisection triplet (C). The former can happen a fixed number
k∗ of times before the second takes place, where k∗ depends on the
shape regularity of T(T0).

Proof. Every time a bisection changes the ring Rq, the level of q may increase at
most by 1. If the refinement edge e of the bisection is on the boundary of the patch
ωq, then q does not belong to the bisection triplet; see Figure 5.3(middle). The
number of such edges is smaller than a fixed integer k∗ that only depends on the
shape regularity of T(T0). Therefore, after at most k∗ bisections the vertex q is
an endpoint of a bisection triplet Tk; see Figure 5.3(right). This implies ℓk(q) ≤
ℓj(q) + k∗ as asserted. �

We conclude this section with the following sequence of auxiliary meshes

(5.5) T̂j := T̂j−1 + {bi ∈ B : gi = j} j ≥ 1, T̂0 := T0,
where B is the set of compatible bisections (5.1). Note that each bisection bi in
(5.1) does not require additional refinement beyond the refinement patch ωi when
incorporated in the order of the subscript i according to (5.1). This is not obvious in

(5.5) because the bisections are now ordered by generation. The mesh T̂j contains
all elements τ of generation g(τ ) ≤ j leading to the finest graded mesh T = TJ .
The sequence {T̂j}J̄j=1 is never constructed but is useful for theoretical purposes in
Section 7.

Lemma 5.4 (Conformity of T̂j). The meshes T̂j are conforming for all j ≥ 0.

Proof. We argue by induction. The starting mesh T̂0 is conforming by construction.

Suppose that T̂j−1 is conforming. We observe that the bisections bi with gi = j are
disjoint according to Lemma 5.2 (generation and patches). Suppose that adding bi
does lead to further refinement beyond the refinement patch ωi. If this were the
case, then recursive bisection refinement would end up adding compatible bisections
of generation strictly less than j that belong to the refinement chains emanating

from ωi [42, 43]. But such bisections are all included in T̂j−1 by virtue of (5.5).

This shows that all bisections bi with gi = j are compatible with T̂j−1 and yield
local refinements that keep mesh conformity. �
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5.2. Space decomposition and BPX preconditioner. Let Tj=T0+{b1, · · · , bj}
∈ T(T0) be a conforming bisection grid obtained from T0 after j ≤ J compatible

bisections {bi}ji=1 and let Nj = N̊ (Tj) denote the set of interior vertices of Tj . Let
V(Tj) be the finite element space of C0 piecewise linear functions over Tj that vanish
on ∂Ω and its nodal basis functions be φj,p, namely V(Tj) = span{φj,p : p ∈ Nj}.
We define the local spaces

(5.6) Vj = span{φj,q : q ∈ Tj ∩ Nj}, j = 1, . . . , J

associated with each bisection triplet Tj . We observe that dimVj ≤ 3 and suppφ ⊂
ω̃j for φ ∈ Vj and 1 ≤ j ≤ J ; see Figure 5.2. We indicate by V := V(TJ ) the finite
element space over the finest graded grid TJ , with interior nodes P = NJ and nodal
basis functions φp,

(5.7) V = span{φp : p ∈ P}, Vp = span{φp};

hence dim Vp = 1. Let hp be the local grid size around p, which can be defined by

(|ωq|/#Rq)
1/d due to the shape regularity. Adding the spaces Vp and Vj yields the

space decomposition of V

(5.8) V =
∑

p∈P

Vp +
J∑

j=0

Vj .

We stress that the spaces Vj appear in the order of creation and not of generation,
as is typical of adaptive procedures. Remarkably, the functions φj,q with q = p±j
depend on the order of creation of Vj (see Figure 5.2). Consequently, reordering of
Vj by generation, which is convenient for analysis, must be performed with caution;
see Sections 6 and 7.

Let Qp (resp. Qj) and Ip (resp. Ij) be the L
2-projection and inclusion operators

to and from the discrete spaces Vp (resp. Vj), defined in Section 3.1. Inspired by
the definition (4.1), we now define the subspace smoothers to be

Rjvj := (1− γ̃s)h2s
j vj ∀vj ∈ Vj ,

Rpvp := h2s
p vp ∀vp ∈ Vp,

where Rp plays the role of the finest scale whereas Rj represents the intermediate
scales. That is, the intermediate spaces Vj are viewed as “coarse spaces” and are
scaled by an additional factor 1 − γ̃s. This in turn induces the following BPX
preconditioner on graded bisection grids

(5.9) B =
∑

p∈P

IpRpI
t
p +

J∑

j=0

IjRjI
t
j =

∑

p∈P

Iph
2s
p Qp + (1− γ̃s)

J∑

j=0

Ijh
2s
j Qj .

6. Boundedness: Proof of (3.5) for graded bisection grids

Let J̄ = maxτ∈TJ
gτ denote the maximal generation of elements in TJ . This

quantity is useful next to reorder the spaces Vj by generation because gj ≤ J̄ .

Proposition 6.1 (Boundedness). Assume the extended patch S̃τ defined in (2.12)
is Lipschitz for every τ ∈ Tj with a uniform Lipschitz constant. Let v =

∑
p∈P vp+
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∑J
j=0 vj be a decomposition of v ∈ V according to (5.8). Then, there exists a

constant c1 > 0 independent of J and s such that

(6.1) |v|2s ≤ c1

⎛
⎝∑

p∈P

h−2s
p ‖vp‖20 +

1

1− γ̃s

J∑

j=0

h−2s
j ‖vj‖20

⎞
⎠ ,

whence the preconditioner B in (5.9) satisfies λmax(BA) ≤ c1.

Proof. We resort to Lemma 2.1 (local inverse inequality) with σ = s and β = 0,
which is valid on the graded grid TJ , to write

(6.2) |v|2s =

∣∣∣∣
∑

p∈P

vp+

J∑

j=0

vj

∣∣∣∣
2

s

�

∣∣∣∣
∑

p∈P

vp

∣∣∣∣
2

s

+

∣∣∣∣
J∑

j=0

vj

∣∣∣∣
2

s

�
∑

p∈P

h−2s
p ‖vp‖20+

∣∣∣∣
J∑

j=0

vj

∣∣∣∣
2

s

.

In order to deal with the last term, we reorder the functions vj by generation and
observe that supp vj ⊂ ω̃j . We thus define wk =

∑
gj=k vj and use (5.4) to infer

that wk ∈ V k+k∗
= V(T k+k∗

). Similar to the proof of Proposition 4.1, using
Theorem 4.2 (norm equivalence), the fact that h̄k ≃ γk and Lemma 3.3 (s-uniform
decomposition), we have

∣∣∣∣
J∑

j=0

vj

∣∣∣∣
2

s

=

∣∣∣∣
J̄∑

k=0

∑

gj=k

vj

∣∣∣∣
2

s

=

∣∣∣∣
J̄∑

k=0

wk

∣∣∣∣
2

s

≃
J̄+k∗∑

ℓ=0

γ−2sℓ

∥∥∥∥(Qℓ −Qℓ−1)

J̄∑

k=0

wk

∥∥∥∥
2

0

= inf
zℓ∈V ℓ∑J̄+k∗

ℓ=0 zℓ=
∑J̄

k=0 wk

⎡
⎣γ−2s(J̄+k∗)‖zJ̄+k∗

‖20 +
J̄+k∗−1∑

ℓ=0

γ−2sℓ

1− γ2s
‖zℓ‖20

⎤
⎦ .

Choosing zℓ = 0 for ℓ ≤ k∗ − 1 and zℓ = wℓ−k∗
∈ V ℓ for ℓ ≥ k∗ we get

∣∣∣∣
J∑

j=0

vj

∣∣∣∣
2

s

�
γ−2sk∗

1− γs

J̄∑

k=0

γ−2sk‖wk‖20.

In view of Lemma 5.2, we see that the enlarged patches ω̃j and ω̃i have finite overlap
depending only on shape regularity of T(T0) provided gj = gi, whence

‖wk‖20 �
∑

gj=k

‖vj‖20.

This in conjunction with 1−γ̃s

1−γs ≃ 1 and the fact that k∗ is uniformly bounded yields

(6.3)

∣∣∣∣
J∑

j=0

vj

∣∣∣∣
2

s

�
1

1− γ̃s

J̄∑

k=0

γ−2sk
∑

gj=k

‖vj‖20 ≃ 1

1− γ̃s

J∑

j=0

h−2s
j ‖vj‖20.

Combining (6.2) and (6.3) leads to (6.1) as asserted. Finally, the estimate λmax(BA)
≤ c1 follows directly from Lemma 3.2 (estimate on cond(BA)). �
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7. Stable decomposition: proof of (3.4) for graded bisection grids

We start with a review of the case of quasi-uniform grids in Corollary 4.1 (stable
decomposition) and a roadmap of our approach. We point out that robustness
with respect to both J and s, most notably the handling of the factor (1− γ̃s)−1 on
coarse levels, is due to the combination of Lemma 3.3 (s-uniform decomposition)
and Theorem 4.2 (norm equivalence), which in turn relies on Lemma 3.4 (s-uniform
interpolation). Since Lemma 3.4 fails on graded bisection grids, applying Lemma
3.3 to such grids faces two main difficulties:

(a) Theorem 4.2 does not hold even for s = 1;
(b) the spaces Vj in (5.6) and Vp in (5.7) are locally supported, while the s-

uniform interpolation requires nested spaces (see Lemma 3.4). To overcome

these difficulties, we create a family of nested spaces {Wk}J̄k=0 withWJ̄ = V
upon grouping indices according to generation and level around k: if

(7.1) Jk := {0 ≤ j ≤ J : gj ≤ k}, Pk := {p ∈ P : ℓ(p) ≤ k},
then we define Wk to be

(7.2) Wk :=
∑

j∈Jk

Vj +
∑

p∈Pk

Vp.

Our approach consists of three steps. The first step, developed in Section
7.1, is to derive a global decomposition based on Wk. Since the levels
within Wk are only bounded above, to account for coarse levels we invoke
a localization argument based on a slicing Scott-Zhang operator as in [21]

(or [31, 52]), which gives the stability result (3.7) on {Wk}J̄k=0 via Lemma
3.3 (s-uniform decomposition) for s = 1; we bridge the gap to 0 < s < 1
via Lemma 3.4 (s-uniform interpolation). The space Wk is created for
theoretical convenience, but never constructed in practice, because there
is no obvious underlying graded bisection grid on which the functions of
Wk are piecewise linear. This complicates the stable decomposition of Wk

into local spaces and requires a characterization of Wk in terms of the space

V̂k = V(T̂k) of piecewise linear functions over T̂k. The second step in Section
7.2 consists of proving

V̂k ⊂ Wk ⊂ V̂k+k∗
,

where k∗ is constant. Therefore, the space Wk of unordered bisections of

generation and level ≤ k is equivalent, up to level k∗, to the space V̂k of
ordered bisections of generation ≤ k; note that the individual spaces Vj

might not coincide though. In the last step, performed in Section 7.3, we
construct a stable decomposition for graded bisection grids and associated

BPX preconditioner B̂. We also show that B̂ is equivalent to B in (5.9).

7.1. Global L2-orthogonal decomposition of Wk. We recall that the Scott-
Zhang quasi-interpolation operator Sj : V → V(Tj) can be defined at a node
p ∈ P through the dual basis function on arbitrary elements τ ⊂ Rp [21, 47]. We
exploit this flexibility to define a suitable quasi-interpolation operator Sj as follows
provided Sj−1 : V → V(Tj−1) is already known. Since Tj = Tj−1 + bj and the
compatible bisection bj changes Tj−1 locally in the bisection patch ωpj

associated
with the new vertex pj , we set Sjv(p) := Sj−1v(p) for all p ∈ Nj \ Tj , where Tj is
the bisection triplet (5.2). We next define Sjv(pj) using a simplex τ ∈ Rj newly
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created by the bisection bj . If p = p±j ∈ Tj and τ ∈ Tj−1 is the simplex used to

define Sj−1v(p), then we define Sjv(p) according to the following rules:

(1) if τ ⊂ ωp(Tj) we keep the nodal value of Sj−1v, i.e. Sjv(p) = Sj−1v(p);
(2) otherwise we choose a new τ ⊂ ωp(Tj) ∩ ωp(Tj−1) to define Sjv(p);

note that τ ∈ Rj in case (2). Once τ ∈ Tj has been chosen, the definition of Sjv(p)
for p ∈ Tj is the same as in [19,47]. This construction guarantees the local stability
bound [47]

(7.3) hd/2
p |Sjv(p)| � ‖v‖0,ωp

∀p ∈ Nj ,

where the index 0 stands for the L2 norm, and that the slicing operator Sj − Sj−1

is supported in the enlarged patch ω̃j , namely

(7.4) (Sj − Sj−1)v ∈ Vj ∀1 ≤ j ≤ J.

We note that (7.3) and (7.4) are the only desired properties in Lemma 7.1. Other
constructions of Sj (c.f. [31, 52]) can also be applied.

Lemma 7.1 (Stable L2-orthogonal decomposition). Let Q̂k : V → Wk be the L2-

orthogonal projection operator onto Wk and Q̂−1 = 0. For any v ∈ V , the global

L2-orthogonal decomposition v =
∑J̄

k=0(Q̂k − Q̂k−1)v satisfies

(7.5)

J̄∑

k=0

γ−2sk‖(Q̂k − Q̂k−1)v‖20 � |v|2s,

where the hidden constant is independent of 0 ≤ s ≤ 1 and J̄ .

Proof. We rely on the auxiliary spaces V k = V(T k) defined over uniformly refined
meshes T k of T0 for 0 ≤ k ≤ J̄ . Let Qk : V J̄ → V k denote the L2-orthogonal
projection operator onto V k and consider the global L2-orthogonal decomposition
v =

∑
k=0 v̄k of any v ∈ V ⊂ V J̄ , where v̄k := (Qk −Qk−1)v. This decomposition

is stable in H1 [12, 45, 54]
J̄∑

k=0

γ−2k‖v̄k‖20 � |v|21.

If gj is the generation of bisection bj and gj > k, then v̄k is piecewise linear in
ωej (the patch of the refinement edge ej), whence (Sj −Sj−1)v̄k = 0 and the slicing

operator detects frequencies k ≥ gj . Consider now the decomposition v =
∑J̄

k=0 vk
of v ∈ V where

(7.6) vk :=
∑

gj=k

(Sj − Sj−1)v =
∑

gj=k

(Sj − Sj−1)
J̄∑

ℓ=k

v̄ℓ ∈ Wk.

In view of Lemma 5.2 (generation and patches) and the shape regularity of T(T0),
enlarged patches ω̃j with the same generation gj = k have a finite overlapping
property. This, in conjunction with (7.3) and (7.4) as well as the L2-orthogonality

of {v̄ℓ}J̄ℓ=k, yields

‖vk‖20 �
∑

gj=k

∥∥∥(Sj − Sj−1)
J̄∑

ℓ=k

v̄ℓ

∥∥∥
2

0,w̃j

�
∑

gj=k

∥∥∥
J̄∑

ℓ=k

v̄ℓ

∥∥∥
2

0,w̃j

�
∥∥∥

J̄∑

ℓ=k

v̄ℓ

∥∥∥
2

0
=

J̄∑

ℓ=k

‖v̄ℓ‖20.
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We use Lemma 3.3 (s-uniform decomposition) with s = 1, together with (7.6), to
obtain

J̄∑

k=0

γ−2k‖(Q̂k − Q̂k−1)v‖20 = inf
wk∈Wk∑J̄
k=0 wk=v

[
γ−2J̄‖wJ̄‖20 +

J̄−1∑

k=0

γ−2k

1− γ2
‖wk‖20

]

≤ γ−2J̄‖vJ̄‖20 +
J̄−1∑

k=0

γ−2k

1− γ2
‖vk‖20.

Employing the preceding estimate of ‖vk‖20 and reordering the sum implies

J̄∑

k=0

γ−2k‖(Q̂k − Q̂k−1)v‖20 � γ−2J̄‖v̄J̄‖20 +
J̄−1∑

k=0

γ−2k

1− γ2

J̄∑

ℓ=k

‖v̄ℓ‖20

≤ γ−2J̄‖v̄J̄‖20 +
J̄∑

ℓ=0

ℓ∑

k=0

γ−2k

1− γ2
‖v̄ℓ‖20

= γ−2J̄‖v̄J̄‖20 +
J̄∑

ℓ=0

γ−2ℓ − γ2

(1− γ2)2
‖v̄ℓ‖20

�

J̄∑

ℓ=0

γ−2ℓ‖v̄ℓ‖20 � |v|21.

Hence, we have shown that (7.5) holds for s = 1. The desired estimate for arbitrary
0 ≤ s ≤ 1 follows by Lemma 3.4 (s-uniform interpolation). �

As a consequence of Lemma 3.3 (s-uniform decomposition) and Lemma 7.1 (sta-
ble L2-orthogonal decomposition), we deduce the following property.

Corollary 7.1 (s-Uniform decomposition on Wk). For every v ∈ V , there exists a

decomposition v =
∑J̄

k=0wk with wk ∈ Wk for all k = 0, 1, . . . , J̄ and

γ−2sJ̄‖wJ̄‖20 +
J̄−1∑

k=0

γ−2sk

1− γ2s
‖wk‖20 � |v|2s.

7.2. Characterization of Wk. We now study the geometric structure of the spaces
Wk, defined in (7.2), which is useful in the construction of a stable decomposition

of V . Recalling the definition of T̂k in (5.5), our first goal is to compare Wk with
the space

V̂k := V(T̂k)
of C0 piecewise linear functions over T̂k that have vanishing trace. We will show
below

(7.7) V̂k ⊂ Wk;

see Lemmas 7.3 and 7.4. We start with the set of interior vertices of Wk,

Vk := Bk ∪ Pk, Bk :=
⋃{

Tj : j ∈ Jk

}
, Pk =

{
p ∈ P : ℓ(p) ≤ k

}
.

Lemma 7.2 (Geometric structure of Wk). Functions in Wk are C0 piecewise linear

on the auxiliary mesh T̂k+k∗
, where k∗ is given in (5.3). Equivalently, Wk ⊂ V̂k+k∗

.

Licensed to Univ of Maryland, College Park. Prepared on Tue Aug 22 19:55:31 EDT 2023 for download from IP 129.2.19.102.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2460 J. P. BORTHAGARAY ET AL.

Proof. We examine separately each vertex q ∈ Vk. If q ∈ Pk, then ℓ(q) ≤ k and all

elements τ ∈ R(q) have generation g(τ ) ≤ k by definition of level; hence τ ∈ T̂k for
all τ ∈ R(q). If q ∈ Bk \ Pk instead, then the patch of q shares elements with that
of the bisection node pj

min
τ∈Rj(q)

g(τ ) ≤ g(pj) = gj ≤ k,

where Rj(q) is the ring of elements containing q in the mesh Tj . Property (5.3)
yields

max
τ∈Rj(q)

g(τ ) ≤ min
τ∈Rj(q)

g(τ ) + k∗ ≤ k + k∗.

It turns out that all elements τ ∈ R̃j , the enlarged ring around pj , have generation

g(τ ) ≤ k+ k∗, whence τ ∈ T̂k+k∗
. It remains to realize that any function w ∈ Vj is

thus piecewise linear over T̂k+k∗
and vanishes outside ω̃j . �

We next exploit the L2-stability of the nodal basis {φ̂q}q∈V̂ of V̂k+k∗
, where

V̂ = V̂k+k∗
is the set of interior vertices of T̂ = T̂k+k∗

. In fact, if w =
∑

q∈V̂ w(q)φ̂q,

then
(7.8)

‖w‖20 =
∑

τ∈T̂

‖w‖20,τ ≃
∑

τ∈T̂

|τ |
∑

q∈τ

w(q)2 =
∑

q∈V̂

w(q)2
∑

τ∋q

|τ | ≃
∑

q∈V̂

w(q)2‖φ̂q‖20.

Our goal now is to represent each function φ̂q ∈ V̂k+k∗
in terms of functions of

Wk+k∗
, which in turn shows V̂k+k∗

⊂ Wk+k∗
and thus (7.7). We start with a

partition of V̂k+k∗
,

P̂k+k∗
:= {q ∈ V̂k+k∗

: ℓ̂(q) ≤ k + k∗ − 1}, P̂c
k+k∗

:= V̂k+k∗
\ P̂k+k∗

,

where ℓ̂(q) ≤ k + k∗ is the level of q on T̂k+k∗
. Consequently, ℓ̂(q) = k + k∗ for

all q ∈ P̂c
k+k∗

and the corresponding functions φ̂q have all the same scaling due to

shape regularity of T(T0). In Lemmas 7.3 and 7.4 we represent the functions φ̂q in
terms of Wk+k∗

.

Lemma 7.3 (Nodal basis φ̂q with q ∈ P̂k+k∗
). For any q ∈ P̂k+k∗

, there holds

φ̂q = φq q ∈ Pk+k∗−1,

where Pk is defined in (7.1); hence, φ̂q ∈ Wk+k∗−1.

Proof. Since ℓ̂(q) ≤ k+k∗−1, all elements τ ∈ R(q) have generation g(τ ) ≤ k+k∗−
1. This implies that no further bisection is allowed in τ because all the bisections

with generation less than or equal to k + k∗ have been incorporated in T̂k+k∗
by

definition. Therefore, R(q) belongs to the finest grid T and ℓ(q) = ℓ̂(q) ≤ k+k∗−1,

whence φ̂q ∈ Wk+k∗−1. �

Next, we consider a nodal basis function φ̂q corresponding to q ∈ P̂c
k+k∗

. There
exists a bisection triplet Tjq that contains q and k ≤ ℓjq (q) ≤ k + k∗, for otherwise
ℓjq (q) < k would violate Lemma 5.3 (levels of a vertex). We thus deduce

(7.9) k − k∗ ≤ ℓjq (q)− k∗ ≤ gjq ≤ ℓjq (q) ≤ k + k∗.
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In accordance with (5.6), we denote by φjq,q the nodal basis function of Vjq centered

at q. We next show that φ̂q can be obtained by a suitable modification of φjq,q

within Wk+k∗
.

Lemma 7.4 (Nodal basis φ̂q with q ∈ P̂c
k+k∗

). For any q ∈ P̂c
k+k∗

, let

Sq := {j ∈ Jk+k∗
: j > jq, ωj ∩ suppφjq,q �= ∅}

be the set of bisection indices j > jq such that gj ≤ k + k∗, φj,pj
be the function of

Vj centered at the bisection vertex pj and ωj = supp pj. Then there exist numbers

cj,q ∈ (−1, 0] for j ∈ Sq such that the nodal basis function φ̂q ∈ Vk+k∗
associated

with q can be written as

(7.10) φ̂q = φjq,q +
∑

j∈Sq

cj,qφj,pj
,

and the representation is L2-stable, i.e.,

(7.11) ‖φ̂q‖20 ≃ ‖φjq,q‖20 +
∑

j∈Sq

c2j,q‖φj,pj
‖20.

Proof. The discussion leading to (7.9) yields k ≤ ℓjq (q) ≤ k + k∗ which, combined
with (5.3), implies that all elements τ ∈ Rjq (q) have generation between k−k∗ and
k+ k∗. The idea now is to start from the patch Rjq (q), the local conforming mesh
associated with φjq,q, and successively refine it with compatible bisections in the

spirit of the construction of T̂j in (5.5) until we reach the level k + k∗; see Figure

7.1. To this end, let T̂k−k∗
(q) := Rjq (q) and consider the sequence of local auxiliary

meshes

T̂j(q) := T̂j−1(q) + {bi ∈ B : i ∈ Sq, gi = j} k − k∗ + 1 ≤ j ≤ k + k∗,

which are conforming according to Lemma 5.4 (conformity of T̂j).

q

(a)

T̂k−2,q

q pi1

(b)

T̂k−1,q

q

pi4

pi3pi2

(c)

T̂k,q

q

pi5

pi6

pi
7

(d)

T̂k+1,q

q
p
i8

pi9

(e)

T̂k+2,q

Figure 7.1. Local auxiliary meshes T̂j,q with |j − k| ≤ k∗ = 2.
Index sets Sk−1,q = {i1}, Sk,q = {i2, i3, i4}, Sk+1,q = {i5, i6, i7},
Sk+2,q = {i8, i9} of compatible bisections to transition from φ̂j−1,q

to φ̂j,q. The support of φ̂j,q is monotone decreasing as j increases
and is plotted in grey.

We now consider the following recursive procedure: let φ̂k−k∗,q := φjq,q and

(7.12) φ̂j,q := φ̂j−1,q −
∑

i∈Sj,q

φ̂j−1,q(pi)φi,pi
k − k∗ + 1 ≤ j ≤ k + k∗,
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where pi is the bisection node of bi ∈ B and

Sj,q :=
{
i ∈ Jk+k∗

: gi = j, ωi ∩ supp φ̂j−1,q �= ∅

}
.

Unless pi belongs to the boundary of supp φ̂j−1,q, the construction (7.12) always

modifies φ̂j−1,q; compare Figure 7.1(b) with Figure 7.1(c)–7.1(e). In view of Lemma

5.2 (generation and patches), the sets ω̊i for i ∈ Sj,q are disjoint, whence φ̂j,q(p) =

δpq for all nodes p of T̂j(q) and φ̂j,q is the nodal basis function centered at q on

T̂j(q). Moreover,

φ̂j,q = φ̂j−1,q +
∑

i∈Sj,q

ci,qφi,pi

with coefficients ci,q ∈ (−1, 0]. Notice that ‖φ̂j,q‖0 ≃ ‖φ̂j−1,q‖0 ≃ ‖φi,pi
‖0 due to

the shape regularity, the scales of these functions being comparable yields

‖φ̂j,q‖20 ≃ ‖φ̂j−1,q‖20 +
∑

i∈Sj,q

c2i,q‖φi,pi
‖20.

Since k∗ is uniformly bounded depending on shape regularity of T(T0), iterating
these two expressions at most 2k∗ times leads to (7.10) and (7.11), and concludes
the proof. �

We are now in a position to exploit the representation of the nodal basis of V̂k+k∗
,

given in Lemmas 7.3 and 7.4, to decompose functions in Wk. We do this next.

Corollary 7.2 (L2-stable decomposition of Wk). Given any 0 ≤ k ≤ J̄ consider

the sets

(7.13)
Pk+k∗

= {q ∈ P : ℓ(q) ≤ k + k∗}, Ik+k∗
= {0 ≤ i ≤ J : k − k∗ ≤ gi ≤ k + k∗}.

Then, every function w ∈ Wk admits an L2-stable decomposition

(7.14) w =
∑

q∈Pk+k∗

wq +
∑

j∈Ik+k∗

wj , ‖w‖20 ≃
∑

q∈Pk+k∗

‖wq‖20 +
∑

j∈Ik+k∗

‖wj‖20,

where wq ∈ Vq for all q ∈ Pk+k∗
and wj ∈ Vj for all j ∈ Ik+k∗

.

Proof. Invoking Lemma 7.2 (geometric structure of Wk), we infer that w ∈ V̂k+k∗
,

which yields the L2-stable decomposition of w in terms of nodal basis of V̂k+k∗

w =
∑

q∈V̂k+k∗

w(q)φ̂q =
∑

q∈P̂k+k∗

w(q)φ̂q +
∑

q∈P̂c
k+k∗

w(q)φ̂q.

On the one hand, Lemma 7.3 (nodal basis φ̂q with q ∈ P̂k+k∗
) implies that φ̂q = φq

and P̂k+k∗
⊂ Pk+k∗

; hence we simply take wq := w(q)φq. On the other hand, using

the representation (7.10) of φ̂q from Lemma 7.4 (nodal basis φ̂q with q ∈ P̂c
k+k∗

)
and reordering, we arrive at

∑

q∈P̂c
k+k∗

w(q)φ̂q =
∑

q∈P̂c
k+k∗

w(q)

(
φjq,q +

∑

j∈Sq

cj,qφj,pj

)
=

∑

j∈Ik+k∗

wj ,

where

wj :=
∑

q:jq=j

w(q)φj,q +
∑

q:Sq∋j

w(q) cj,qφj,pj
∈ Vj .
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This gives the decomposition (7.14). The L2-stability (7.8) of {φ̂q}q∈V̂k+k∗

‖w‖20 ≃
∑

q∈P̂k+k∗

w(q)2‖φ̂q‖20 +
∑

q∈P̂c
k+k∗

w(q)2‖φ̂q‖20,

in conjunction with (7.11), gives

‖w‖20 ≃
∑

q∈P̂k+k∗

‖w(q)φ̂q‖20 +
∑

q∈P̂c
k+k∗

w2(q)

(
‖φjq,q‖20 +

∑

j∈Sq

c2j,q‖φj,pj
‖20
)

=
∑

q∈Pk+k∗

‖wq‖20 +
∑

j∈Ik+k∗

( ∑

jq=j

w2(q)‖φj,q‖20 +
∑

Sq∋j

w2(q)c2j,q‖φj,pj
‖20
)
.

To prove the L2-stability in (7.14), it remains to show that the term in parentheses is
equivalent to ‖wj‖20 for any j ∈ Ik+k∗

, which in turn is a consequence of the number
of summands being bounded uniformly. We first observe that the cardinality of
{q : jq = j} is at most three because this corresponds to q ∈ Tj , the j-th bisection

triplet. Finally, the cardinality of the set {q ∈ P̂c
k+k∗

: j ∈ Sq ∩ Ik+k∗
} is bounded

uniformly by a constant that depends solely on shape regularity of T(T0). To see

this, note that ℓ̂(q) = k + k∗ yields k ≤ g(τ ) ≤ k + k∗ for all elements τ within
suppφjq,q and k − k∗ ≤ gj ≤ k + k∗, whence the number of vertices q such that
suppφjq,q ∩ ωj �= ∅ is uniformly bounded as asserted. Hence

‖wj‖20 ≃
∑

jq=j

w2(q)‖φj,q‖20 +
∑

Sq∋j

w2(q)c2j,q‖φj,pj
‖20

yields the norm equivalence in (7.14) and finishes the proof. �

7.3. Construction of stable decomposition. We first construct a BPX precon-
ditioner that hinges on the space decomposition of Section 7.1 and the nodal basis
functions just discussed in Section 7.2. We next show that this preconditioner is
equivalent to (5.9).

Theorem 7.1 (Stable decomposition on graded bisection grids). For every v ∈ V ,

there exist vp ∈ Vp with p ∈ P, vp,k ∈ Vp with p ∈ Pk+k∗
, and vj,k ∈ Vj with

j ∈ Ik+k∗
, such that

(7.15) v =
∑

p∈P

vp +
J̄∑

k=0

⎛
⎝ ∑

q∈Pk+k∗

vq,k +
∑

j∈Ik+k∗

vj,k

⎞
⎠ ,

where Pk+k∗
and Ik+k∗

are given in (7.13), and there exists a constant c0 indepen-

dent of s ∈ (0, 1] and J such that

(7.16)

γ−2sJ̄
∑

p∈P

‖vp‖20 +
J̄∑

k=0

γ−2sk

1− γ2s

⎛
⎝ ∑

p∈Pk+k∗

‖vp,k‖20 +
∑

j∈Ik+k∗

‖vj,k‖20

⎞
⎠ ≤ c0|v|2s.

Proof. We construct the decomposition (7.15) in three steps.

Step 1 (Decomposition on Wk). Applying Corollary 7.1 (s-uniform decomposition
on Wk), we observe that there exist wk ∈ Wk, k = 0, 1, · · · , J̄ such that v =
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∑J̄
k=0wk and

(7.17) γ−2sJ̄‖wJ̄‖20 +
J̄−1∑

k=0

γ−2sk

1− γ2s
‖wk‖20 � |v|2s.

Step 2 (Finest scale). We let {φp}p∈P be the nodal basis of V and set vp := wJ̄ (p)φp;
hence wJ̄ =

∑
p∈P vp. Applying the L2-stability (7.8) to {φp}p∈P gives

(7.18) ‖wJ̄‖20 ≃
∑

p∈P

‖vp‖20.

We also choose the finest scale of vp,k and vj,k to be vq,J̄ = 0 and vj,J̄ = 0.

Step 3 (Intermediate scales). By Corollary 7.2 (L2-stable decomposition of Wk),
we have the L2-stable decomposition (7.14) of wk ∈ Wk for every k = 0, . . . , J̄ − 1.
Combining the stability bound (7.17) with (7.18) and (7.14), we deduce the stable
decomposition (7.16).

�

In view of Theorem 7.1, we consider the BPX preconditioner

(7.19) B̂ := γ2sJ̄
∑

p∈P

IpQp + (1− γ2s)

J̄∑

k=0

γ2sk

⎛
⎝ ∑

p∈Pk+k∗

IpQp +
∑

j∈Ik+k∗

IjQj

⎞
⎠ .

Corollary 7.3 is a direct consequence of (7.16) and (3.4).

Corollary 7.3 (Uniform bound for λmin(B̂A)). The preconditioner B̂ in (7.19)
satisfies

λmin(B̂A) ≥ c−1
0 .

We are now ready to prove the main result of this section, namely that B in
(5.9) is a robust preconditioner for A on graded bisection grids. To this end, we

need to show that B̂ in (7.19) is spectrally equivalent to B.

Theorem 7.2 (Uniform preconditioning on graded bisection grids). Let Ω be a

bounded Lipschitz domain and s ∈ [0, 1]. Assume the extended patch S̃τ defined in

(2.12) is Lipschitz for every τ ∈ Tj with a uniform Lipschitz constant. Let V be the

space of continuous piecewise linear finite elements over a graded bisection grid T ,

and consider the space decomposition (5.8). The corresponding BPX preconditioner

B in (5.9), namely

B =
∑

p∈P

Iph
2s
p Qp + (1− γ̃s)

J∑

j=0

Ijh
2s
j Qj ,

is spectrally equivalent to B̂ in (7.19), whence λmin(BA) � c−1
0 . Therefore, the

condition number of BA satisfies

cond(BA) � c0c1,

where the constants c0 and c1, given in (7.16) and (6.1), are independent of s and

mesh-parameters except for the shape-regularity constant.
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Proof. We show that the ratio (Bv,v)

(B̂v,v)
is bounded below and above by constants

independent of s and J for all v ∈ V . We first observe that for p ∈ P with level
ℓ(p), we have hp ≃ γℓ(p). Then,

h2s
p ≃ γ2sℓ(p) = γ2s(J̄+1) + (1− γ2s)

J̄∑

k=ℓ(p)

γ2sk,

whence B1 :=
∑

p∈P Iph
2s
p Qp and vp = Qpv satisfy

(B1v, v) ≃ γ2sJ̄
∑

p∈P

‖vp‖20 + (1− γ2s)
∑

p∈P

J̄∑

k=ℓ(p)

γ2sk‖vp‖20.

The rightmost sum can be further decomposed as follows:

∑

p∈P

J̄∑

k=ℓ(p)

γ2sk‖vp‖20 =

J̄∑

j=0

∑

ℓ(p)=j

J̄∑

k=j

γ2sk‖vp‖20

=
J̄∑

k=0

γ2sk
∑

ℓ(p)≤k

‖vp‖20 ≤
J̄∑

k=0

γ2sk
∑

ℓ(p)≤k+k∗

‖vp‖20

= γ−2sk∗

J̄∑

k=0

γ2s(k+k∗)
∑

ℓ(p)≤k+k∗

‖vp‖20

≤ γ−2sk∗

J̄∑

k=0

γ2sk
∑

ℓ(p)≤k

‖vp‖20.

Since γ−2sk∗ ≃ 1, there exist equivalence constants independent of s and J such
that

(7.20) (B1v, v) ≃ γ2sJ̄
∑

p∈P

‖vp‖20 + (1− γ2s)

J̄∑

k=0

γ2sk
∑

p∈Pk+k∗

‖vp‖20.

We now consider the bisection triplets Tj and 3-dimensional spaces Vj , for which

hj ≃ γgj . We let B̂2 :=
∑J̄

k=0 γ
2sk

∑
j∈Ik+k∗

IjQj , B2 :=
∑J

j=0 Ijh
2s
j Qj and

vj := Qjv, to write

(7.21)

(B̂2v, v) =
J̄∑

k=0

γ2sk
∑

k−k∗≤gj≤k+k∗

‖vj‖20

=

J̄∑

k=0

γ2sk
i=k∗∑

i=−k∗

γ2si
∑

gj=k

‖vj‖20

≃
J̄∑

k=0

γ2sk
∑

gj=k

‖vj‖20 =

J∑

j=1

γ2sgj‖vj‖20 ≃ (B2v, v),

because
∑i=k∗

i=−k∗

γ2si ≃ 1 due to the fact that k∗ is a fixed integer depending solely
on shape regularity of T(T0). Combining (7.20) and (7.21) we obtain

(Bv, v) = (B1v, v) + (1− γ̃s)(B2v, v) ≃ (B̂v, v) ∀v ∈ V,
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whence the operators B and B̂ are spectrally equivalent. Invoking Corollary 7.3

(uniform bound for λmin(B̂A)), we readily deduce λmin(BA) � c−1
0 . We finally

recall that λmax(BA) � c1, according to Proposition 6.1 (boundedness), to infer
the desired uniform bound cond(BA) = λmax(BA)λmin(BA)−1 � c0c1. �

8. Numerical experiments

This section presents some experiments with conjugate gradient and BPX pre-
conditioners (4.2) for quasi-uniform grids and (5.9) for graded bisection grids, whose
main difference with BPX for the classical Laplacian is the scaling factor 1− γ̃s for
coarse levels. Therefore, if N = dimV denotes the number of degrees of freedom
of the finest space V = V(TJ), the computational cost for applying (4.2) and (5.9)
is CN with a modest constant C and is comparable with the classical Laplacian.
However, a key difference is that the stiffness matrix A is dense and a matrix-vector
product requires N2 operations. The effect of BPX is thus to limit such matrix-
vector products to a fixed number regardless of s and J . However, to reduce the
total computational cost to log-linear in N requires further sparsification of A.

In the sequel, we consider the Dirichlet integral fractional Laplacian (1.1) in
Ω = (−1, 1)2 with various fractional powers and examine robustness of the BPX
preconditioners.

8.1. Uniform grids. We first perform computations on a family of nested, uni-
formly refined meshes. Table 2 lists the condition numbers obtained upon applying
the standard BPX preconditioner (4.4) (i.e. γ̃ = 0) and the s-uniform BPX pre-
conditioner (4.2) (i.e. γ̃ > 0). Limited by computational capacity, the largest J̄ we
take in our computations is 6, which corresponds to number of degrees of freedom
N = 16129. In Figure 8.1(a), we plot the condition numbers vs. s for both standard
and s-uniform BPX preconditioners for quasi-uniform grids. Even though this is a
small-scale problem, the s-uniform BPX preconditioner (4.2) performs better than
the standard one, especially when the fractional power s is small.

Table 2. Condition numbers cond(BA): Non-preconditioned sys-
tem (κ(A)), standard BPX preconditioner (γ̃ = 0), and s-uniform
BPX preconditioner (γ̃ = 1

2 )

J̄ hJ̄ N
s = 0.9 s = 0.5 s = 0.1

κ(A) γ̃ = 0 γ̃ = 1
2 κ(A) γ̃ = 0 γ̃ = 1

2 κ(A) γ̃ = 0 γ̃ = 1
2

1 2−1 9 4.68 2.95 2.98 1.83 2.22 1.63 1.90 3.25 1.99

2 2−2 49 17.07 5.21 4.90 3.49 3.20 2.35 2.44 6.10 2.62

3 2−3 225 59.94 7.69 7.26 6.96 4.10 2.90 2.68 8.66 2.92

4 2−4 961 209.12 10.74 9.97 13.94 4.92 3.40 2.75 10.81 3.00

5 2−5 3969 728.66 14.78 13.42 27.93 5.61 3.89 2.77 12.66 3.03
6 2−6 16129 2538.1 20.44 18.04 55.93 6.22 4.37 2.78 14.28 3.03

8.2. Graded bisection grids. We next consider graded bisection grids. As de-
scribed in Remark 1, the graded grids are required to obtain better convergence
rates. In order to obtain the mesh grading (2.11) of [1] when using bisection grids,
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(b) graded bisection grids

Figure 8.1. Condition numbers vs. s for the standard BPX
preconditioner (γ̃ = 0) and the s-uniform BPX preconditioners

(γ̃ = 1/2 and γ̃ =
√
2/2)

we consider the following strategy. Given an element τ ∈ T , let xτ be its barycen-
ter. Our strategy is based on choosing a number θ > 1 and marking those elements
τ such that

(8.1) |τ | > θN−1 logN · d(xτ , ∂Ω)
2(μ−1)/μ.

We use the newest vertex bisection algorithm. Figure 8.2 displays graded bisection
grids obtained with (8.1) and θ = 4, μ = 2, the latter being optimal for d = 2 [1].

(a) J̄ = 6 (b) J̄ = 9 (c) J̄ = 12

(d) J̄ = 15

Figure 8.2. Graded bisection grids on (−1, 1)2, using strategy
(8.1) with θ = 4 and μ = 2

We report condition numbers cond(BA) over graded bisection grids in Table 3.
Note that the condition number κ(A) of A could be relatively large for small s
due to the factor hmaxh

−1
min in (1.6); this could be cured by diagonal scaling B as
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documented in Table 3. The latter also shows that the s-uniform BPX precondi-
tioner (5.9) performs well for a wide range of s. This is further confirmed by Figure
8.1(b). We also observe that diagonal scaling outperforms the preconditioner (5.9)
for s = 0.1 and gives rise to condition numbers that seem to be independent of N .
Such a phenomenon is not expected from (1.6), probably due to the grids not being
refined enough since N2s/d ≈ 2.496 for the finest test (J̄ = 18). Another possibility
is that formula (1.6) is not sharp for these special graded bisection grids. Note that
(1.6) would also suggest that κ(A) � N−1 for all s, because hmin ≈ h2

max ≈ N and
d = 2, but Table 3 shows sensitivity of κ(A) with respect to s.

Table 3. Condition numbers cond(BA): Non-preconditioned sys-
tem (κ(A)), diagonal scaling (diag), standard BPX preconditioner

(γ̃ = 0), and s-uniform BPX preconditioner (5.9) with γ̃ =
√
2/2

J̄ N
s = 0.9 s = 0.5 s = 0.1

κ(A) diag γ̃ = 0
√

2
2

κ(A) diag γ̃ = 0
√

2
2

κ(A) diag γ̃ = 0
√

2
2

7 61 9.14 8.38 4.64 4.55 6.21 2.55 2.88 2.42 15.87 2.76 5.54 3.20

8 153 14.22 12.83 5.95 5.67 9.15 3.21 3.76 2.94 31.52 2.81 7.13 3.75

9 161 15.63 14.90 6.89 6.27 9.29 3.44 4.21 3.18 29.82 2.74 8.06 3.67

10 369 24.69 22.84 8.06 7.03 13.75 4.36 5.03 3.51 60.72 2.78 9.09 3.78

11 405 31.30 30.42 8.69 7.61 13.56 4.91 5.41 3.65 55.66 2.71 10.18 3.83

12 853 40.48 37.52 10.12 8.72 26.53 5.88 6.31 4.14 193.58 2.77 10.80 3.86

13 973 60.90 54.95 11.45 9.71 20.59 6.77 6.68 4.33 114.42 2.71 12.12 3.91

14 1921 74.38 69.93 12.31 10.58 37.76 7.00 7.12 4.72 361.86 2.77 12.52 4.07

15 2265 111.31 100.94 13.34 11.50 30.13 9.44 7.18 4.70 213.77 2.72 13.43 4.03

16 4269 140.96 133.64 14.65 12.50 53.59 11.19 7.70 5.10 675.54 2.75 14.14 4.16

17 5157 206.53 187.62 16.13 13.76 43.56 13.33 7.69 5.04 407.64 2.72 14.79 4.10

18 9397 274.17 250.31 18.04 15.19 79.67 15.79 8.29 5.42 1390.3 2.75 15.53 4.17

9. Spectral and censored Laplacians

The spectral and censored Laplacians are useful variants of (1.3) in practice.
We finally show that our preconditioners (4.2) and (5.9) are effective for these two
operators as well because of their spectral equivalence to the integral fractional
Laplacian.

We recall that the eigenpairs of the Laplacian −∆ with homogeneous Dirichlet

condition on ∂Ω are denoted by {λ̂k, ϕ̂k}∞k=1 and consider the space

Ĥs(Ω) :=
{
v =

∞∑

k=1

vkϕ̂k ∈ L2(Ω) : |v|2
Ĥs(Ω)

=

∞∑

k=1

λ̂s
kv

2
k < ∞

}
,

which coincides with H̃s(Ω) and has equivalent norms according to (2.7). However,
these norms induce different fractional operators. Minima of the functional v �→
1
2 |v|2Ĥs(Ω)

−
∫
Ω
fv are weak solutions of the spectral fractional Laplacian in Ω with

homogeneous Dirichlet condition for 0 < s < 1, whose eigenpairs are (λ̂s
k, ϕ̂k)

∞
k=1.

In contrast, let us consider the eigenvalue problem for the integral fractional
Laplacian (1.1) with homogeneous Dirichlet condition,

{
(−∆)su

(s)
k = μ

(s)
k u

(s)
k in Ω,

u
(s)
k = 0 in Ωc.
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It is well-known that there exists an infinite sequence of eigenvalues 0 < μ
(s)
1 <

μ
(s)
2 ≤ . . . with μ

(s)
k → ∞, and the following equivalence is derived in [22]

C(Ω)λ̂s
k ≤ μ

(s)
k ≤ λ̂s

k, k ∈ N.

There is yet a third family of fractional Sobolev spaces, namely Hs
0(Ω), which are

the completion of C∞
0 (Ω) with the L2-norm plus the usual Gagliardo Hs-seminorm

(9.1) |v|2Hs(Ω) = C(d, s)

∫

Ω

∫

Ω

|v(x)− v(y)|2
|x− y|d+2s

dxdy.

If Ω is Lipschitz, it turns out that Hs
0(Ω) = H̃s(Ω) for all 0 < s < 1 such that s �= 1

2 ;

in the latter case H̃
1
2 (Ω) = H

1
2
00(Ω) is the so-called Lions-Magenes space [38]. The

seminorm (9.1) is a norm equivalent to | · |s for s ∈ ( 12 , 1) but not for s ∈ (0, 1
2 ];

note that 1 ∈ Hs
0(Ω) and |1|Hs(Ω) = 0 for s ∈ (0, 12 ]. Functions in Hs

0(Ω) for

s ∈ ( 12 , 1) admit a trace on ∂Ω and minima of the functional v �→ 1
2 |v|2Hs(Ω)−

∫
Ω
fv

are weak solutions of the censored fractional Laplacian, which reads as (1.1) but
with integration over Ω instead of Rd. In addition,

(9.2) |v|Hs(Ω) ≤ |v|H̃s(Ω) ≤ C|v|Hs(Ω), v ∈ H̃s(Ω) = Hs
0(Ω), s > 1/2,

holds with a constant C that scales as (s−1/2)−1. Indeed, splitting the integration

to compute H̃s(Ω) above, one readily finds that

|v|2
H̃s(Ω)

= |v|2Hs(Ω) + 2C(d, s)

∫

Ω

∫

Ωc

|u(x)|2
|x− y|d+2s

dydx

≃ |v|2Hs(Ω) +
C(d, s)

s

∫

Ω

|u(x)|2
d(x, ∂Ω)2s

dx,

and it is therefore necessary to bound the last integral in the right hand side in
terms of the Hs(Ω)-seminorm. Such is the purpose of the Hardy inequality (cf.
[35, Theorem 1.4.4.4]), for which the optimal constant is of order (s− 1/2)−1 [9].

In spite of their spectral equivalence, the inner products that give rise to the inte-
gral, spectral and censored fractional Laplacians are different and yield a strikingly
different boundary behavior [10]. For a right-hand side f ∈ L∞(Ω), the bound-
ary behavior of solutions u of the three operators is as follows: for the integral
Laplacian, u is roughly like

(9.3) u ≃ d(·, ∂Ω)s,
whereas for the spectral Laplacian u behaves like

u ≃ d(·, ∂Ω)min{2s,1},

except for s = 1
2 that requires an additional factor | log d(·, ∂Ω)|, and for the cen-

sored Laplacian with s ∈ ( 12 , 1) the function u is quite singular at the boundary
[5]

u ≃ d(·, ∂Ω)2s−1.

We finally conclude that, in view of (2.7), the BPX preconditioners (4.2) for
quasi-uniform meshes and (5.9) for graded bisection meshes are effective for the
spectral and censored Laplacians, but the performance for the latter deteriorates
as s → 1

2 .
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