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1. Introduction

Given s ∈ (0, 1), we consider the integral fractional Laplacian of order s,

(−Δ)sv(x) = C(d, s) p.v.
ˆ

Rd

v(x) − v(y)
|x − y|d+2s

dy, C(d, s) =
22ssΓ(s + d

2 )
πd/2Γ(1 − s)

. (1.1)

In this work, we study the regularity of the solution to the homogeneous Dirichlet prob-
lem

{
(−Δ)su = f in Ω,

u = 0 in Ωc = R
d \ Ω,

(1.2)

where Ω ⊂ R
d is a bounded Lipschitz domain. Our method follows ideas from Savaré 

[30], who adapted the classical difference quotient technique of Nirenberg [28] to develop 

a clever, L2-based variational argument to deal with regularity of integer-order problems 
on Lipschitz domains. This led to an elementary approach to the regularity theory de-
veloped by Jerison and Kenig [24] for the Laplace equation in Lipschitz domains, and 

extends to other linear and nonlinear elliptic PDEs. Our technique differs from [30] in 

two fundamental aspects: it uses second-order differences in the characterization of Besov 

spaces, and a bootstrap argument to obtain optimal regularity estimates.
Regularity of solutions of the homogeneous fractional Dirichlet problem (1.2) on 

bounded domains has been analyzed, for example, in [1,2,22,29,34]. We briefly comment 
on the results in those references. Techniques based on Fourier analysis, such as the 

ones employed by Višik and Èskin [17,34] or Grubb [22], allow for a full characterization 

of mapping properties of the integral fractional Laplacian of functions supported in Ω. 
However, such arguments typically require the domain Ω to be smooth; the recent work 

by Abels and Grubb [2] introduces a method to handle nonsmooth coordinate changes 
that leads to regularity results for domains with C1+β boundary with β > 2s. References 
[1,29] deal with integral operators with translation-invariant kernels. Ros-Oton and Serra 

[29], by developing an analog of the Krylov boundary Harnack method for (1.2), derived 

Hölder regularity estimates on bounded Lipschitz domains satisfying an exterior ball 
condition; these, in turn, can be reinterpreted as (weighted) Sobolev estimates for u in 

terms of Hölder norms of f [3]. Abatangelo and Ros-Oton [1] improved upon the results 
from [29] in the case the domain Ω is of class C1+β with β > s. Finally, let us also point 
out interior regularity estimates in [7,14,18].

A major difference between problem (1.2) and its local second-order counterpart is the 

lack of explicit solutions. Nevertheless, if the domain under consideration is a ball, there 

is a vast number of examples based on expansions with respect to Meijer G-functions, 
cf. [16] (see also [4] for related results in one-dimensional domains). A striking example 

with right hand side f = 1 corresponds to a 2s-stable Lévy process in Ω, in which case 
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the solution u is the first exit time. Concretely, if Ω = Dr(0) is a ball of radius r centered 

at the origin, then it holds that [19]

u(x) =
2−2sΓ

(
d
2

)

Γ
(

d+2s
2

)
Γ(1 + s)

(
r2 − |x|2

)s

+
⇒ (−Δ)su ≡ 1 in Ω. (1.3)

This explicit solution is important for a number of reasons. First, it serves as a guide for 
boundary regularity. In fact, both the domain and the right hand side are smooth, yet 
the solution u satisfies

u ∈
⋂

ǫ>0

H̃s+1/2−ǫ(Ω), u /∈ H̃s+1/2(Ω); (1.4)

moreover u ∈ Ḃ
s+1/2
2,∞ (Ω). We refer to Section 2 for definitions of spaces and fractional-

order norms. Second, the function u in (1.3) exhibits the boundary behavior

u(x) ≃ dist(x, ∂Ω)s,

that is typical of solutions to fractional-order elliptic problems. This algebraic singularity 

arises regardless of the smoothness of the domain. In particular, it seems plausible that 
such a weak singularity distributed along ∂Ω has a stronger effect on the integrability of 
the difference quotients on the domain than the presence of a reentrant corner could have. 
This observation is supported by the recent work [20], where problem (1.2) is studied in 

polygons and asymptotic expansions of its solutions near edges and vertices are given.
To the best of our knowledge, there are no regularity estimates for (1.2) up to the 

boundary valid for arbitrary Lipschitz domains. We point out, however, to references 
providing representation formulas for s-harmonic functions [8], and estimates on Green 

functions in [23] –following ideas from [9]–. Numerical evidence indicates that the high 

regularity of ∂Ω assumed in [22] can be drastically weakened. In [13], through the study of 
eigenvalue problems for the integral fractional Laplacian using the finite element method 

on uniform meshes, similar experimental orders of convergence were obtained on an L-
shaped domain and in smooth domains. Additionally, in [10] some experiments on a 

family of domains with reentrant corners with angle θ ∈ (π, 2π) are carried out. The re-
sults in that paper indicate that the orders of convergence in H1-norm do not deteriorate 

as θ → 2π. These phenomena are in striking contrast with the classical (local) Dirich-
let problem, in which reentrant corners affect the regularity of solutions. For problems 
posed on cones, there is a high sensitivity to the opening solid angle in the behavior of 
s-harmonic functions as s → 1 [32].

An important missing information about the regularity of (1.2) is a shift theorem that 
accounts for the pick-up of 2s derivatives associated with operators of order 2s such as 
the fractional Laplacian (−Δ)s. Unfortunately, the estimate

‖u‖H2s(Ω) ≤ C‖f‖L2(Ω) (1.5)
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with C = C(Ω) is false on bounded domains if s ∈ [1/2, 1) according to (1.4); we refer 
to Section 2 for definitions and some characterizations of Sobolev and Besov spaces. 
Estimates of this type are critical in the analysis of discretization schemes, such as 
the finite element method, in domains Ω without smooth boundary. Moreover, duality 

arguments such as the Aubin-Nitsche trick rely on shift estimates; they yield convergence 

rates in norms weaker than the energy norm. In this paper we derive shift theorems with 

L2(Ω) or weaker regularity of the forcing function f and valid on Lipschitz domains Ω
in Rd. Therefore, our results are relevant in applications on polytopal domains.

The unique weak solution u to (1.2) is the minimum of the functional F : H̃s(Ω) → R,

F(v) =
1
2

|v|2Hs(Rd) − 〈f, v〉, (1.6)

where 〈f, v〉 denotes the duality pairing for f ∈ H−s(Ω). For clarity, we shall adopt the 

following notation for the quadratic and linear components of F

F2(v) :=
1
2

|v|2Hs(Rd), F1(v) := 〈f, v〉. (1.7)

It is clear that if f ∈ H−s(Ω), then the solution to (1.2) verifies u ∈ H̃s(Ω) and

|u|Hs(Rd) ≤ ‖f‖H−s(Ω). (1.8)

The main goal of this manuscript is to prove the following two shift theorems.

Theorem 1.1 (Besov regularity for L2-data). Let Ω be a bounded Lipschitz domain and 

f ∈ L2(Ω). If s �= 1/2, then the solution u to (1.2) satisfies u ∈ Ḃs+r
2,∞(Ω) with r =

min{s, 1/2}, and

‖u‖Ḃs+r
2,∞(Ω) ≤ C(Ω, d)√

|1 − 2s|
‖f‖L2(Ω). (1.9)

On the other hand, the solution for s = 1/2 satisfies u ∈ Ḃ1−ǫ
2,∞(Ω) for every 0 < ǫ < 1

and

‖u‖Ḃ1−ǫ
2,∞(Ω) ≤ C(Ω, d)√

ǫ
‖f‖L2(Ω). (1.10)

It is worth noticing that (1.10) for s = 1/2 is consistent with (1.9) for s = r = (1 −ǫ)/2. 
Moreover, (1.9) for s = r ∈ (0, 1/2) is of the form (1.5) but with H2s(Ω) replaced 

by Ḃ2s
2,∞(Ω) � H̃2s−ǫ(Ω) for any 0 < ǫ < 2s, whereas (1.9) for s ∈ (1/2, 1) matches 

(1.4). Our technique exploits the variational structure of (1.2) and uses the difference 

quotient technique of Nirenberg [28]; it is thus conceptually elementary. It hinges on 

an approach introduced by Savaré [30] for the classical Laplace operator in Lipschitz 

domains, but it has two important differences. First, we need to deal with Besov spaces 
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with differentiability order σ ∈ (0, 2), instead of σ ∈ (0, 1), and corresponding second-
order difference quotients in cones. Second, the full regularity pick-up in (1.9) and (1.10)
requires a boostrap argument. Our technique does not extend to data f more regular 
than L2, but it does lead Theorem 1.2 for more singular data. We refer to the recent 
papers [11,12] which prove the following optimal shift property with a novel technique 

that extends to quasi-linear problems:

‖u‖
Ḃ

s+1/2
2,∞ (Ω)

≤ C(Ω, d)‖f‖
B

−s+1/2
2,1 (Ω)

∀ s ∈ (0, 1). (1.11)

Theorem 1.2 (Besov regularity for rough data). Let Ω be a bounded Lipschitz domain. If 

s ∈ (1/2, 1) and f ∈ B
−s+1/2
2,1 (Ω), then the solution u to (1.2) satisfies u ∈ Ḃ

s+1/2
2,∞ (Ω)

with

‖u‖
Ḃ

s+1/2
2,∞ (Ω)

≤ C(Ω, d)‖f‖
B

−s+1/2
2,1 (Ω)

. (1.12)

The following result then follows by an interpolation argument.

Corollary 1.1 (intermediate Besov regularity). If s ∈ (0, 1) \ {1/2} and f ∈ B−s+θ
2,q (Ω)

for 0 < θ < min{s, 1/2} and q ∈ [1, ∞], then there holds

‖u‖Ḃs+θ
2,q (Ω)≤ C(Ω, d, q, s)‖f‖B−s+θ

2,q (Ω), (1.13)

where C(Ω, d, q, s) = C(1 − 2s)θ/2s for s ∈ (0, 1/2) and C(Ω, d, q, s) = C for s ∈ (1/2, 1)
and C depends on (Ω, d, q). If s = 1/2 then, for all θ, ǫ ∈ (0, 1/2) and q ∈ [1, ∞], there 

holds

‖u‖
Ḃ

1/2+θ(1−2ǫ)
2,q (Ω)

≤ C(Ω, d, q)
ǫθ

‖f‖
B

−1/2+θ
2,q (Ω)

. (1.14)

We first observe the distinct role of the third index q in (1.12) and (1.13)/(1.14). The 

proof of (1.12) is constructive, in fact a modification of that of Theorem 1.1, and yields 
the conjugate values q = ∞ and q = 1 that arise by duality. In contrast, (1.13) and 

(1.14) contain the same index q ∈ [1, ∞] on both sides of the estimates because they 

are a consequence of operator interpolation theory; thus C depends on q. In particular, 
setting q = 2 in (1.13) yields the Sobolev regularity

f ∈ H−s+θ(Ω), 0 < θ < min{s, 1/2} ⇒ u ∈ H̃s+θ(Ω), |u|
H̃s+θ(Ω)

≤ C‖f‖H−s+θ(Ω).

We point out that the constant above blows up as θ → min{s, 1/2}. This is consistent 
with either (1.9) (for s ∈ (0, 1/2)) or (1.12) (for s ∈ (1/2, 1)): writing ‖f‖∗ = ‖f‖L2(Ω)

if s ∈ (0, 1/2] and ‖f‖∗ = ‖f‖
B

−s+1/2
2,1 (Ω)

if s ∈ (1/2, 1), and using the continuity of the 

embedding Ḃ
s+min{s,1/2}
2,∞ (Ω) ⊂ H̃s+min{s,1/2}−ǫ(Ω) for all ǫ > 0 (cf. Lemma 2.2 (embed-

dings between Besov and Sobolev spaces) below), we improve upon [3, Propositions 3.6 

and 3.11]
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‖u‖
H̃s+min{s,1/2}−ǫ(Ω)

�
1√
ǫ
‖u‖

Ḃ
s+min{s,1/2}
2,∞ (Ω)

�
1√
ǫ
‖f‖∗ if s �= 1/2,

‖u‖
H̃1−2ǫ(Ω)

�
1√
ǫ
‖u‖Ḃ1−ǫ

2,∞(Ω) �
1
ǫ

‖f‖∗ if s = 1/2.

A comparison between Theorems 1.1 and 1.2 is in order as well. The gain of 2s

derivatives in (1.9) for f ∈ L2(Ω) and s ∈ (0, 1/2) extends to f in the negative Besov 

space B−s+θ
2,q (Ω) and any s �= 1/2 in (1.13), provided θ < min{s, 1/2}. We regard (1.13)

as an adequate replacement for the shift estimate (1.5). On the other hand, if s ∈
(1/2, 1) then the differentiability limit s + 1/2 of (1.9) can be achieved with rough data 

f ∈ B
−s+1/2
2,1 (Ω) instead of f ∈ L2(Ω). The case s = 1/2 is somewhat special: from our 

technique, we can prove the suboptimal estimate (1.10). In subsequent work [11,12], we 

improve upon (1.10) and show (1.11), which is actually valid for s = 1/2.
Regularity estimates for Dirichlet problems with non-zero exterior data can be derived 

immediately upon combining the regularity results for the homogeneous problem with 

mapping properties of the integral fractional Laplacian. As an illustration of such results, 
we have the following.

Corollary 1.2 (Besov regularity for non-homogeneous problem). Let Ω be a bounded Lip-

schitz domain and data (f, g) satisfy the following assumptions:

• If s ∈ (0, 1/2], let f ∈ L2(Ω) and g ∈ H2s(Rd).
• If s ∈ (1/2, 1), let f ∈ B

−s+1/2
2,1 (Ω) and g ∈ Hs+1/2(Rd).

Then, the unique weak solution u of the non-homogeneous problem

{
(−Δ)su = f in Ω,

u = g in Ωc,

satisfies u ∈ B
s+min{s,1/2}
2,∞ (Rd) if s �= 1/2, while u ∈ B1−ǫ

2,∞(Rd) for every ǫ ∈ (0, 1/2) if 

s = 1/2.

The simplicity of Corollary 1.2 comes at the expense of its sharpness. In fact, we 

only need that either (−Δ)sg ∈ L2(Ω) for s ∈ (0, 1/2] or (−Δ)sg ∈ B
−s+1/2
2,1 (Ω) for 

s ∈ (1/2, 1). This property does not require much regularity of g in Ωc according to 

(1.1).
As shown by Savaré [30] for the classical p-Laplacian, the regularity technique of 

this paper also applies to quasilinear fractional operators such as the (p, s)-Laplacian 

(s ∈ (0, 1), p ∈ (1, ∞)),

(−Δ)s
pv(x) := p.v.

ˆ

Rd

|v(x) − v(y)|p−2(v(x) − v(y))
|x − y|d+ps

dy,
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for which we are not aware of any Sobolev regularity estimates up to the boundary of 
the domain. In [12], we derive regularity estimates for the associated Dirichlet problem 

and provide a priori error estimates for its finite element discretization; we also refer to 

the survey [11].

Outline of the paper

Let us briefly describe the organization of the paper. Section 2 collects preliminary 

material regarding function spaces, the crucial notion of regularity of functionals, and in-
cludes some additional definitions useful for the remainder of the manuscript. In Section 3
we discuss regularity of the functionals F1 and F2, which are essential for proving our 
main results. We conclude with the proofs of Theorem 1.1 in Section 4 and Theorem 1.2
and Corollary 1.1 in Section 5.

2. Preliminaries and definitions

This section collects some preliminary results we shall need. We define the function 

spaces that we shall use in the sequel, provide some characterizations by means of trans-
lation operators and discuss the relation between these translations and the regularity 

of solutions of our model problem.

2.1. Function spaces

Here we set the notation about fractional-order Sobolev spaces and Besov spaces and 

list some of their basic properties that we shall use.

Definition 2.1 (fractional Sobolev spaces). Let Ω ⊂ R
d and σ ∈ (0, 1) be given. The 

fractional Sobolev space Hσ(Ω) is defined by

Hσ(Ω) :=
{

v ∈ L2(Ω): |v|Hσ(Ω) < ∞
}

,

where | · |Hσ(Ω) is the Aronszajn-Gagliardo-Slobodeckij seminorm

|v|Hσ(Ω) :=

⎛
⎝C(d, σ)

2

ˆˆ

Ω×Ω

|v(x) − v(y)|2
|x − y|d+2σ

dx dy

⎞
⎠

1/2

, (2.1)

and C(d, σ) is the constant from (1.1). We furnish this space with the norm

‖ · ‖Hσ(Ω) :=
(

‖ · ‖2
L2(Ω) + | · |2Hσ(Ω)

)1/2

,

and denote (·, ·)Hσ(Ω) the bilinear form



8 J.P. Borthagaray, R.H. Nochetto / Journal of Functional Analysis 284 (2023) 109829

(u, v)Hσ(Ω) :=
C(d, σ)

2

ˆˆ

Ω×Ω

(u(x) − u(y))(v(x) − v(y))
|x − y|d+2σ

dx dy, u, v ∈ Hσ(Ω).

Moreover, if σ ∈ (1, 2) we set Hσ(Ω) :=
{

v ∈ H1(Ω) : |v|Hσ−1(Ω) < ∞
}

.

Remark 1 (integrability p). One could also define seminorms (2.1) with differentiability 

0 < σ < 2 but integrability p ∈ [1, ∞], in which case such spaces are denoted W σ
p (Ω). 

In turn, the letter H is often used to denote Bessel potential spaces Hσ
p (Ω); in case 

p = 2 the spaces W σ
2 (Ω) and Hσ

2 (Ω) coincide, and thus the notation Hσ(Ω) is typically 

employed.

Of special interest to us are spaces consisting of zero-extension functions, namely for 
σ ∈ (0, 1]

H̃σ(Ω) :=
{

v ∈ Hσ(Rd) : supp v ⊂ Ω
}

;

we define similarly W̃ σ
p (Ω) and set W̊ 1

p (Ω) := W̃ 1
p (Ω) for p ∈ [1, ∞]. For these spaces, 

fractional seminorms are in turn norms. This is a consequence of the following well-known 

result.

Lemma 2.1 (Poincaré inequality). Let σ ∈ (0, 1), p ∈ [1, ∞], and Ω be a bounded mea-

surable domain. There is a constant c = c(Ω, d, σ, p) such that

‖v‖Lp(Ω) ≤ c|v|W σ
p (Rd) ∀v ∈ W̃ σ

p (Ω).

Therefore, in the case of our interest p = 2,

‖v‖
H̃σ(Ω)

:= |v|Hσ(Rd)

defines a norm equivalent to ‖ · ‖Hσ(Rd) in H̃σ(Ω).
We define Besov spaces through real interpolation, following [25]. Given a compatible 

pair of Banach spaces (X0, X1), u ∈ X0 + X1, and t > 0, we set the K-functional

K(t, u) = inf
{(

‖u0‖2
X0

+ t2‖u1‖2
X1

)1/2
: u = u0 + u1, u0 ∈ X0, u1 ∈ X1

}
. (2.2)

For θ ∈ (0, 1) and q ∈ [1, ∞], let us define interpolation spaces

(X0, X1)θ,q := {u ∈ X0 + X1 : ‖u‖(X0,X1)θ,q
< ∞},

where
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‖u‖(X0,X1)θ,q
=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎣qθ(1 − θ)

∞̂

0

t−(1+θq)|K(t, u)|q dt

⎤
⎦

1/q

if 1 ≤ q < ∞,

sup
t>0

t−θ|K(t, u)| if q = ∞.

(2.3)

The normalization factor qθ(1 − θ) in the norm (2.3) guarantees the correct scalings in 

the limits θ → 0, θ → 1 and q → ∞ for norm continuity.

Definition 2.2 (Besov spaces). Given σ ∈ (0, 2), p, q ∈ [1, ∞], we define the spaces

Bσ
p,q(Ω) :=

(
Lp(Ω), W 2

p (Ω)
)

σ/2,q
,

Ḃσ
p,q(Ω) :=

{
v ∈ Bσ

p,q(Rd) : supp v ⊂ Ω
}

.

For σ ∈ (0, 1), the equivalent definition Ḃσ
p,q(Ω) =

(
Lp(Ω), W̊ 1

p (Ω)
)

σ,q
is valid. Moreover, 

we define

B−σ
p,q (Ω) :=

(
Lp(Ω), W −1

p (Ω)
)

σ,q
. (2.4)

Importantly, whenever p = q, Besov spaces reduce to Sobolev spaces [31, §§35–36]:

Bσ
p,p(Ω) = W σ

p (Ω), Ḃσ
p,p(Ω) = W̃ σ

p (Ω).

There are two basic properties of Besov spaces on Lipschitz domains that will be useful 
in the sequel (cf. [33, §3.2.4, §3.3.1]:

Bσ
p,q0

(Ω) ⊂ Bσ
p,q1

(Ω), if σ > 0, 1 ≤ p ≤ ∞, 1 ≤ q0 ≤ q1 ≤ ∞;
Bσ1

p,q1
(Ω) ⊂ Bσ0

p,q0
(Ω) if 0 < σ0 < σ1, 1 ≤ p ≤ ∞, 1 ≤ q0, q1 ≤ ∞.

In particular, for all 0 < σ0 < σ1 it holds that

Bσ1
2,∞(Ω) ⊂ Bσ0

2,2(Ω) = Hσ0(Ω).

We also have the following result regarding interpolation of Besov spaces (cf. [6, The-
orem 6.4.5]): given σ0 �= σ1, 1 ≤ p, q0, q1, r ≤ ∞ and 0 < θ < 1,

(
Bσ0

p,q0
(Ω), Bσ1

p,q1
(Ω)

)
θ,r

= Bσ
p,r(Ω), where σ = (1 − θ)σ0 + θσ1. (2.5)

In particular, Besov spaces Bσ
p,q(Ω) with σ ∈ (0, 1) could be defined by interpolation 

either between Lp(Ω) and W 2
p (Ω) with index θ = σ/2 or between Lp(Ω) and W 1

p (Ω) with 

index θ = σ. Even though the spaces coincide, their norms defined in (2.3) are scaled 

differently. The corresponding factors 
(
qσ(1 − σ/2)

)1/q
and 

(
qσ(1 − σ)

)1/q
tend to zero 

as σ → 2 and σ → 1, respectively. Moreover, one can characterize spaces Bσ
p,q(Ω) with 
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differentiability order |σ| < 1/2 through interpolation between negative and positive-
order Sobolev spaces,

Ḃσ
p,q(Ω) =

(
W̊ 1

p (Ω), W −1
p (Ω)

)
θ,q

, with θ =
1 − σ

2
∈ (1/4, 3/4). (2.6)

This characterization yields robust norms with respect to σ, and will be useful in 

Lemma 2.2.
The positive-order Besov spaces Ḃσ

p,q can be regarded as duals of negative-order Besov 

spaces. In fact, if σ ∈ (0, 1) and p, q ∈ (1, ∞], by combining the property 
(
(X0, X1)σ,q′

)′
=

(X ′
0, X ′

1)σ,q (cf. [31, Lemma 41.3]) with definition (2.4) and the duality 
(
W −1

p′ (Ω)
)′

=

W̊ 1
p (Ω), we deduce

Ḃσ
p,q(Ω) =

(
B−σ

p′,q′(Ω)
)′

. (2.7)

We will need to relate Besov and Sobolev spaces. The following embedding is well 
known, but we include a simple proof to exhibit the explicit blow up of the continuity 

constant.

Lemma 2.2 (embeddings between Besov and Sobolev spaces). Let r > 0 and 0 < ǫ < 1/4. 

Then, Br
2,∞(Ω) ⊂ Hr−ǫ(Ω) and

‖v‖Hr−ǫ(Ω) �
1√
ǫ
‖v‖Br

2,∞(Ω) ∀v ∈ Br
2,∞(Ω). (2.8)

In addition, if r ∈ (0, 1/2), then

‖v‖B−r
2,1(Ω) �

1√
r

‖v‖L2(Ω) ∀v ∈ L2(Ω). (2.9)

Proof. We employ the K-functional (2.2). To prove (2.8), we let k ≥ 0 be the integer 
such that r ∈ (k−1/2, k+1/2]. We regard Hr−ǫ(Ω) and Br

2,∞(Ω) as interpolation spaces 
between X0 = Hk−1(Ω) and X1 = Hk+1(Ω) with

Hr−ǫ(Ω) =
[
Hk−1(Ω), Hk+1(Ω)

]
σ,2

, Br
2,∞(Ω) =

[
Hk−1(Ω), Hk+1(Ω)

]
θ,∞,

where θ = r−k+1
2 and σ = r−ǫ−k+1

2 = θ − ǫ
2 . This choice of spaces (X0, X1) guarantees 

that θ ∈ [1/4, 3/4] and σ ∈ [1/8, 3/4], if ǫ ∈ (0, 1/4), are uniformly far from 0, 1 and the 

norms in (2.3) are robust. Given v ∈ Br
2,∞(Ω), using (2.3) for q = 2 we deduce that for 

any N ≥ 1 to be found

‖v‖2
Hr−ǫ(Ω) �

N̂

0

t−(1+2σ)
∣∣K(t, v)

∣∣2dt +

∞̂

N

t−(1+2σ)
∣∣K(t, v)

∣∣2dt.
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Moreover, exploiting again (2.3) but now for q = ∞ yields

N̂

0

t−(1+2σ)
∣∣K(t, v)

∣∣2dt ≤ sup
t>0

(
t−2θ

∣∣K(t, v)
∣∣2
) N̂

0

t−1+ǫdt =
N ǫ

ǫ
‖v‖2

Br
2,∞(Ω).

On the other hand, we clearly have 
∣∣K(t, v)

∣∣ ≤ ‖v‖Hk−1(Ω) ≤ C(Ω)‖v‖Hr−ǫ(Ω) and

∞̂

N

t−(1+2σ)
∣∣K(t, v)

∣∣2dt ≤ C(Ω)2‖v‖2
Hr−ǫ(Ω)

∞̂

N

t−(1+2σ)dt =
C(Ω)2

2σN2σ
‖v‖2

Hr−ǫ(Ω).

Recalling that 2σ ∈ [1/2, 3/2] and choosing N sufficiently large so that C(Ω)2

2σN2σ ≤ 1
2 leads 

to the desired estimate (2.8).
To prove (2.9), we use a very similar technique; indeed, we exploit (2.6) to write

B−r
2,1(Ω) = (H−1(Ω), H1(Ω))θ,1 L2(Ω) = (H−1(Ω), H1(Ω))1/2,2,

with θ = 1−r
2 ∈ (1/4, 1/2). Given v ∈ L2(Ω), an application of Hölder’s inequality gives

1
ˆ

0

t−(1+θ)|K(t, v)|dt≤

⎛
⎝

1
ˆ

0

t−2|K(t, v)|2dt

⎞
⎠

1
2
⎛
⎝

1
ˆ

0

t−1+rdt

⎞
⎠

1
2

≤ 1√
r

‖v‖L2(Ω),

while the bound K(t, v) ≤ ‖u‖H−1(Ω) ≤ C(Ω)‖v‖L2(Ω) leads to

∞̂

1

t−(1+θ)|K(t, v)|dt ≤ C(Ω)
θ

‖v‖L2(Ω).

Estimate (2.9) follows immediately from these two bounds. This concludes the proof. �

2.2. Difference quotients in balls

We now characterize Besov spaces by means of first and second differences on balls. 
Given λ > 0, we define the auxiliary domains

Ωλ = {x ∈ Ω: d(x, ∂Ω) > λ}, Ωλ = {x ∈ R
d : d(x, ∂Ω) < λ}.

Let D = Dρ(0) be the ball of radius ρ centered at 0. Given a function v ∈ Lp(Ω) and 

direction h ∈ D, we consider the translation τ(h)v(x) = vh(x) := v(x +h) and first-order 
and second-order difference operators δ1(h) and δ2(h) defined by

δ1(h)v(x) = vh(x) − v(x), δ2(h)v(x) = vh(x) − 2v(x) + v−h(x) (2.10)
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for all x ∈ Ωρ.
Besov semi-norms may be equivalently defined through difference quotients. Since 

we are interested in fractional differentiability order 0 < σ < 2, we use second order 
differences to define the seminorms. For p, q ∈ [1, ∞) we set

[v]Bσ
p,q(Ω) :=

⎛
⎝qσ(2 − σ)

ˆ

D

‖δ2(h)v‖q
Lp(Ω|h|)

|h|d+qσ
dh

⎞
⎠

1/q

, (2.11)

while if q = ∞,

[v]Bσ
p,∞(Ω) := sup

h∈D

‖δ2(h)v‖Lp(Ω|h|)

|h|σ . (2.12)

The scaling factor in (2.11) agrees with that in (2.3) for θ = σ/2. We emphasize that, 
even though in both (2.11) and (2.12) the norms depend on the radius ρ of the ball D, 
the resulting seminorms are all equivalent.

The following result is classical in Rd [5, Theorem 7.47], and for Lipschitz domains one 

can argue by using extension operators on Besov spaces (see [27, Theorem 1, p. 381]).

Lemma 2.3 (equivalence of Besov seminorms). Let Ω be a bounded Lipschitz domain, 

σ ∈ (0, 2), p ∈ [1, ∞), q ∈ [1, ∞] and v ∈ Lp(Ω). Then, the seminorm equivalence

|v|Bσ
p,q(Ω) ≃ [v]Bσ

p,q(Ω)

is valid with constants that do not depend on σ, p, q.

We state an auxiliary result whose proof follows by interpolation between the trivial 
case σ = 0 (i.e. Lp(Ω)) and the standard case σ = 1 (i.e. W 1

p (Ω)).

Lemma 2.4 (error estimate). Let p ∈ [1, ∞], σ ∈ [0, 1], and h ∈ D. There exists C > 0
such that for any Lipschitz domain ω ⊂ R

d, the translation operator δ1(h) defined in 

(2.10) satisfies

‖v − vh‖Lp(ω) ≤ C|h|σ|v|W σ
p (ω|h|) ∀v ∈ W σ

p (ω|h|).

Taking into account Lemma 2.3 and Lemma 2.4, it seems plausible to bound Besov 

seminorms by considering differences of fractional-order seminorms. This is the goal of 
the next proposition.

Proposition 2.1 (reiteration of Besov seminorms). If s ∈ (0, 1), p ∈ [1, ∞], σ ∈ [0, 1], 
and ω ⊂ R

d is a Lipschitz domain, then
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|v|Bs+σ
p,q (ω) �

⎛
⎝q(s + σ)(2 − s − σ)

ˆ

D

|v − vh|qW s
p (ω)

|h|d+qσ
dh

⎞
⎠

1/q

, q ∈ [1, ∞),

|v|Bs+σ
p,∞(ω) � sup

h∈D

|v − vh|W s
p (ω)

|h|σ , q = ∞.

Proof. In view of Lemma 2.3 and definitions (2.11) or (2.12), if t := σ + s < 2 we infer 
that

|v|Bt
p,q(ω) ≃ [v]Bt

p,q(ω) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎝qt(2 − t)

ˆ

D

‖vh − 2v + v−h‖q
Lp(ω|h|)

|h|d+qt
dh

⎞
⎠

1/q

if q ∈ [1, ∞),

sup
D

‖vh − 2v + v−h‖Lp(ω|h|)

|h|t if q = ∞.

Letting w = vh − v, we write

‖vh − 2v + v−h‖Lp(ω|h|) = ‖w − w−h‖Lp(ω|h|)

whence applying Lemma 2.4 (error estimate) to w and observing that (ω|h|)|h| ⊂ ω we 

obtain

‖vh − 2v + v−h‖Lp(ω|h|) � |h|s|v − vh|qW s
p (ω).

This yields the asserted estimates. �

The following estimate quantifies the precise blow-up of first differences δ1(h) relative 

to second differences δ2(h) in the definition of ‖ · ‖Bσ
p,q(Ω) as σ → 1−. We state it now 

in the particular case p = 2 and q = ∞, which is of interest later, but refer to [15] for a 

general statement and proof.

Lemma 2.5 (Marchaud inequality). For all σ ∈ (0, 1) and v ∈ Bσ
2,∞(Ω), there holds

sup
h∈D

‖δ1(h)v‖L2(Ω|h|)

|h|σ � ‖v‖L2(Ω) +
1√

1 − σ
sup
h∈D

‖δ2(h)v‖L2(Ω|h|)

|h|σ . (2.13)

2.3. Localization of Besov norms

We next show that Besov seminorms can be equivalently written as sums of norms 
over partitions, as long as the partitions have some overlap.

Lemma 2.6 (localization). Let p, q ∈ [1, ∞] and σ ∈ (0, 2). Let {Dj}M
j=1 be a finite cover-

ing of Ω by balls Dj = Dρ(xj) of radius ρ and center xj. If v ∈ Lp(Ω), then v ∈ Bσ
p,q(Ω)

if and only if v
∣∣
Ω∩Dj

∈ Bσ
p,q(Ω ∩ Dj) for all j = 1, . . . , M , and
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|v|pBσ
p,q(Ω) ≃

M∑

j=1

|v|pBσ
p,q(Ω∩Dj). (2.14)

Moreover, fix δ ≥ ρ, consider a finite cover as above of Ωδ, and let v : R
d → R satisfy 

supp v ⊂ Ω. If v ∈ Lp(Ω), then v ∈ Ḃσ
p,q(Ω) if and only if v

∣∣
Dj

∈ Bσ
p,q(Dj) for all 

j = 1, . . . , M , and

|v|p
Ḃs

p,q(Ω)
≃

M∑

j=1

|v|pBs
p,q(Dj). (2.15)

The equivalence constants above depend on s, p, q, Ω and the cover chosen.

Proof. The first assertion is a consequence of the equivalence

‖w‖p
Lp(Ω) ≃

M∑

j=1

‖w‖p
Lp(Ω∩Dj)

applied to w = vh−2v+v−h and the equivalence of ℓq norms in RM . For the second state-
ment it suffices to realize that, since δ ≥ ρ, ‖v‖Ḃs

p,q(Ω) = ‖v‖Bs
p,q(Rd) = ‖v‖Bs

p,q(Ωδ). �

It is worth stressing the dependence of the equivalence constants in (2.14) and (2.15)
on the covering {Bj}M

j=1. For integer-order Sobolev spaces W k
p (Ω) these constants only 

depend on the covering overlap but not on its cardinality M . For fractional Sobolev and 

Besov spaces the constants also depend on M [26]. However, in the arguments below M

is fixed.

2.4. Difference quotients in cones

Since translations vh of any v ∈ Ḃσ
p,q(Ω) must belong to Ḃσ

p,q(Ω) in the subsequent 
developments, we need to cope with three crucial questions. First, we must localize such 

translations, an issue we take over in Section 2.5. Second, we must restrict the admissible 

set of directions h from a ball Dρ(0) to cones to deal with the Lipschitz character of Ω. 
Third, we must deal with second order differences within cones because σ ∈ (0, 2). We 

tackle the last two issues next.

Definition 2.3 (generating set). We say that a bounded set D star-shaped with respect 
to the origin generates Rd if there exists ρ0(D) > 0 such that for every ρ ≤ ρ0(D) and 

every h ∈ Dρ(0), there exists {hj}d
j=1 ⊂ D ∪ (−D) satisfying

h =
d∑

j=1

hj ,
d∑

j=1

|hj | ≤ c|h|

with a constant c > 0 only dependent on D.
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An immediate property of generating sets is the following scaling invariance: if D

generates Rd, ρ0(D) is as in the definition above, and λ > 0, then λD also generates Rd

and ρ0(λD) = λρ0(D).
Given v ∈ Lp(Rd), consider the translation τ(h)v = vh and the first-order modulus of 

regularity

ω1(h) = ω1(v, h) := ‖τ(h)v − v‖Lp(Rd) = ‖δ1(h)v‖Lp(Rd).

The following elementary properties are valid:

• Symmetry: ω1(−h) = ω1(h) (simply change variables x �→ x + h);
• Subadditivity: ω1(h1 + h2) ≤ ω1(h1) + ω1(h2) (simply apply the triangle inequality 

‖τ(h1 + h2)v − v‖Lp(Ω) ≤ ‖τ(h1 + h2)v − τ(h2)v‖Lp(Ω) + ‖τ(h2)v − v‖Lp(Ω).

Symmetry enables us to disregard the set −D in Definition 2.3 and consider only h ∈ D

when computing ω1(h). Subadditivity yields the following important relation.

Lemma 2.7 (first-order difference quotient). Let D be a set that generates Rd. Then, for 

v ∈ Lp(Rd) and h ∈ Dρ(0) with h =
∑d

j=1 hj as in Definition 2.3,

ω1(h)
|h|σ ≤ cσ

d∑

j=1

ω1(hj)
|hj |σ .

Proof. Simply apply subadditivity of ω1 in conjunction with Definition 2.3. �

Lemma 2.7 reveals that we can restrict the set of directions h from the ball Dρ(0) to 

a generating set D of Rd in the definition of Besov spaces of order 0 < σ < 1 by using 

first-order difference quotients. However, we need to extend this property to second-
order difference quotients in light of our definitions (2.11) and (2.12) and corresponding 

modulus of regularity ω2 for v ∈ Lp(Rd):

ω2(h) = ω2(v, h) := ‖τ(h)v − 2v + τ(−h)v‖Lp(Rd) = ‖δ2(h)v‖Lp(Rd).

In the same spirit of Lemma 2.7, we have to express ω2(h) for any h ∈ Dρ(0) in terms 
of ω2(h) for h ∈ D, but we cannot longer ignore the orientation of h allowed by the 

symmetry of ω1. Let h =
∑d

j=1 hj ∈ Dρ(0) be arbitrary and decompose the set {hj}d
j=1 ⊂

D of Definition 2.3 as follows:

hj ∈ D 1 ≤ j ≤ m, hj ∈ −D m < j ≤ d.

We further assume that D is a convex cone to deduce 
∑m

j=1 hj ∈ D and 
∑d

j=m+1 hj ∈
−D. Therefore, we have to be able to express ω2(h1 −h2) for arbitrary directions h1, h2 ∈
D in terms of admissible directions h ∈ D. We tackle this next.
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Lemma 2.8 (second-order difference quotients). Let D be a convex cone generating Rd. 

If h1, h2 ∈ D/2, then 2h1, 2h2, h1 + h2 ∈ D and

ω2(h1 − h2) ≤ 1
2

(
ω2(2h1) + 2ω2(h1 + h2) + ω2(2h2)

)
.

Proof. The assertion is a trivial consequence of the elementary relation

2δ2(h1 − h2)v = δ2(2h1)v + δ2(2h2)v − δ2(h1 + h2)
(

τ(h1 − h2)v + τ(h2 − h1)v
)

,

the definition of ω2 and the property ‖τ(h)v‖Lp(Rd) = ‖v‖Lp(Rd). �

Given a set Λ ⊂ R
d, p ∈ [1, ∞), q = ∞, and σ ∈ (0, 2), let [·]Bσ

p,∞(Rd;Λ) denote the 

Besov seminorm in (2.12), computed by taking second-order differences over Λ. We next 
compare Besov seminorms for Λ being either a ball or a cone.

Proposition 2.2 (Besov seminorms using cones). Let D be a convex cone generating Rd

so that D ⊂ Dρ1
= Dρ1

(0) and let ρ0 = ρ0(D) be as in Definition 2.3. Then, every 

function v satisfies

1
cσ(2σ + 1)

[v]Bσ
p,∞(Rd;Dρ0/2) ≤ [v]Bσ

p,∞(Rd;D) ≤ [v]Bσ
p,∞(Rd;Dρ1 ), (2.16)

where c is the constant from Definition 2.3. Consequently, we have [v]Bσ
p,∞(Rd;D) ≃

|v|Bσ
p,∞(Rd).

Proof. The fact that [v]Bσ
p,∞(Rd;D) ≤ [v]Bσ

p,∞(Rd;Dρ1 ) is an obvious consequence of the 

set inclusion D ⊂ Dρ1
. Next, let us fix h ∈ Dρ0/2, and decompose it according to Defi-

nition 2.3. Specifically, by the discussion preceding Lemma 2.8 (second-order difference 

quotients), we write h = h1 − h2, with h1, h2 ∈ D/2 and |h1| + |h2| ≤ c|h|. We have

ω2(h)
|h|σ ≤ 1

2|h|σ
(

ω2(2h1) + 2ω2(h1 + h2) + ω2(2h2)
)

≤ cσ

2

(ω2(2h1)
|h1|σ +

2ω2(h1 + h2)
|h1 + h2|σ +

ω2(2h2)
|h2|σ

)
.

Because 2h1, h1 + h2, h2 ∈ D, we immediately obtain the upper bound

ω2(h)
|h|σ ≤ cσ

2
(2σ+1 + 2) sup

h̃∈D

ω2(h̃)

|h̃|σ
= cσ(2σ + 1) [v]Bσ

p,∞(Rd;D).

The first inequality in (2.16) follows upon taking supremum over h ∈ Dρ0/2.
The second statement in the proposition is a consequence of Lemma 2.3 and (2.16). �
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2.5. Localized translations and admissible directions

Global translations such as (2.10) are not appropriate to capture the local behavior of 
solutions of (1.2). Instead, we shall operate by localizing the translations and restricting 

the admissible directions h, as proposed by Savaré in [30]. Importantly, the former can 

be achieved by means of a convex combination between the identity operator and a 

translation, where the factor is related to a given cut-off function.

Definition 2.4 (localized translation operator). For every function v : Ω → R we denote 

by ṽ its extension by zero outside Ω and, according to (2.10), use the notation

vh(x) = ṽ(x + h) x, h ∈ R
d.

Given x0 and ρ, let Dρ(x0) be the ball of radius ρ and center x0. We fix a cut-off function 

φ such that 0 ≤ φ ≤ 1, φ ≡ 1 on Dρ(x0), supp φ ⊂ D2ρ(x0). For those x0 and ρ, given 

h ∈ R
d, we define the localized translation operator

Thv = φvh + (1 − φ)v. (2.17)

We now consider some variants of Lemma 2.4 by using this localized translation 

operator.

Lemma 2.9 (error estimate for Th). Let Th be given according to Definition 2.4. Then, 

for every h ∈ R
d, σ ∈ [0, 1], q ∈ [1, ∞], and γ ∈ (−1, 1) we have

‖v − Thv‖Bγ
2,q(D2ρ(x0)) � |h|σ‖v‖Bγ+σ

2,q (D3ρ(x0)) ∀ v ∈ Bγ+σ
2,q (D3ρ(x0)). (2.18)

The hidden constant above is independent of σ and q, but may blow up as γ → ±1.

Additionally, for every σ ∈ (0, 1) we have the estimate

‖v − Thv‖L2(D2ρ(x0)) �
|h|σ√
1 − σ

‖v‖Bσ
2,∞(D3ρ(x0)) ∀v ∈ Bσ

2,∞(D3ρ(x0)). (2.19)

Proof. Because Thv − v = φ δ1(h)v and supp φ ⊂ D2ρ(x0), we have the following esti-
mates:

‖v − Thv‖H−1(D2ρ(x0)) � |h|‖v‖L2(D3ρ(x0)),

‖v − Thv‖H1(D2ρ(x0)) � |h|‖v‖H2(D3ρ(x0)).

Let γ ∈ (−1, 1) and q ∈ [1, ∞]. By interpolation (cf. (2.5)), we obtain

‖v − Thv‖Bγ
2,q(D2ρ(x0)) � |h|‖v‖B1+γ

2,q (D3ρ(x0)),

while
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‖v − Thv‖Bγ
2,q(D2ρ(x0)) � ‖v‖Bγ

2,q(D3ρ(x0)),

is trivial. Thus, (2.18) follows by interpolating between the latter two estimates.
To prove (2.19), we again exploit the fact that Thv − v = φ δ1(h)v and combine (2.12)

with the Marchaud inequality (2.13). �

Having localized the translation, a missing key ingredient to handle the Lipchitz char-
acter of Ω is to determine a convex cone D of admissible directions. For the operator Th

in (2.17), this boils down to determining the vectors h with respect to which translate 

and yet remain in Ω.

Definition 2.5 (admissible outward vectors). For every x0 ∈ R
d and ρ ∈ (0, 1], we define 

the set of admissible outward vectors

Oρ(x0) = {h ∈ R
d : |h| ≤ ρ, (D3ρ(x0) \ Ω) + th ⊂ Ωc, ∀t ∈ [0, 1]}.

The set Oρ(x0) gives the admissible translations in the sense that, if, given x0 ∈ Ω and 

ρ ∈ (0, 1], we fix φ and define Th according to (2.17) for some h ∈ Oρ(x0), then Thv ∈
Ḃσ

p,q(Ω) for all v ∈ Ḃσ
p,q(Ω). Indeed, it is clear from its definition that if v ∈ Bσ

p,q(Rd)
then Thv ∈ Bσ

p,q(Rd) for all h ∈ R
d; moreover, if h ∈ Oρ(x0), for a.e. x ∈ Ωc we have

x ∈ Ωc ∩ D3ρ(x0) ⇒ x + h ∈ Ωc ⇒ Thv(x) = φ(x)v(x + h) + (1 − φ(x))v(x) = 0,

x ∈ Ωc \ D3ρ(x0) ⇒ φ(x) = 0 ⇒ Thv(x) = v(x) = 0.

We now define the admissible convex cone C(x0) for each x0 ∈ R
d. We rely on the 

following uniform cone property satisfied by bounded Lipschitz domains; we refer the 

reader to [21, §1.2.2].

Proposition 2.3 (uniform cone property). If Ω is a bounded Lipschitz domain, then there 

exist ρ ∈ (0, 1], θ ∈ (0, π] and a map n : R
d → Sd−1 such that, for every x0 ∈ R

d,

Cρ(n(x0), θ) := {h ∈ R
d : |h| ≤ ρ, h · n(x0) ≥ |h| cos θ} ⊂ Oρ(x0).

An obvious consequence of Proposition 2.3 for bounded Lipschitz domains is that all 
directions within Cρ(n(x0), θ) are admissible outward vectors starting from any point 
x0 ∈ R

d. Moreover, Cρ(n(x0), θ) is symmetric with respect to its axis n(x0) and with 

fixed opening θ, whence

C(x0) = Cρ(x0) := Cρ(n(x0), θ)

is a convex cone generating Rd according to Definition 2.3. In view of the discussion in 

Section 2.4, we can replace the ball D = Dρ(0) by Cρ(x0) in the definition of Besov 

seminorms (2.11) or (2.12) thereby retaining equivalent quantities. We exploit the cone 

Cρ(x0) in Section 3 to construct suitable test functions.
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2.6. Regularity of functionals

Inspired by [30, Formula (13)], we introduce a notion of regularity of functionals that 
measures their sensitivity with respect to a family of perturbations.

Definition 2.6 (modulus of (T, D, γ)-regularity). Let V be a Banach space, K ⊂ V and 

γ > 0. Given a family of maps Th : K → K, with h varying on a given set D ⊂ R
d, we 

say that a functional F : V → R is (T, D, γ)-regular on K if, for all v ∈ K,

ω(v) = ω(v; F , T, D, γ) := sup
h∈D

∣∣F(Thv) − F(v)
∣∣

|h|γ < ∞.

Remark 2 (subadditivity). The modulus of (T, D, γ)-regularity is subadditive with respect 
to the F-argument. Indeed, we have that

ω(v; F1 + F2, T, D, γ) ≤ ω(v; F1, T, D, γ) + ω(v; F2, T, D, γ). (2.20)

Thus, in order to prove the (T, D, γ)-regularity of F1+F2, it suffices to show the regularity 

of each of the two functionals independently.

To prove Besov regularity estimates of solutions to (1.2), we will determine separately 

the regularity of the maps F1, F2 in (1.7) with respect to the family of local translations 
(2.4). The next lemma shows that one can derive Besov regularity estimates for mini-
mizers of (1.6) by proving that F is regular in the sense of Definition 2.6. This clever 
idea goes back to Savaré [30].

Lemma 2.10 (regularity and minimizers). Let x0 ∈ R
d, ρ > 0 and h ∈ Cρ(x0). Con-

sider translation operators Th : H̃s(Ω) → H̃s(Ω) as in (2.17). If u solves (1.2) and the 

functional F defined in (1.6) is (T, C(x0), γ)-regular on H̃s(Ω) for some γ > 0, then

|u − Thu|2Hs(Rd) ≤ 2ω(u)|h|γ .

Proof. The proof follows immediately from Definition 2.6 and the fact that the minimizer 
u verifies

F(v) − F(u) = 〈δF(u), v − u〉 +
1
2

|u − v|2Hs(Rd) =
1
2

|u − v|2Hs(Rd) ∀v ∈ H̃s(Ω),

because F is quadratic and the first variation δF(u) of F at u vanishes. �

3. Regularity of the functionals

In this section we study separately the local regularity of the functionals F1 and F2

in the sense of Definition 2.6. To this end, we choose an arbitrary point x0 ∈ R
d and 

denote
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Cρ = Cρ(x0), Dρ = Dρ(x0)

cones and balls centered at x0, respectively. We exploit the key property that Thv ∈
H̃s(Ω) for any v ∈ H̃s(Ω) and h ∈ Cρ. This enables us to evaluate F(Thv) and compare 

it with F(v).

3.1. Regularity of F1

We start with the linear functional F1 defined in (1.7). As expected, the smoothness 
of the right hand side f plays a key role in the regularity of F1.

Proposition 3.1 (regularity of F1). Let σ ∈ (0, 1) and f ∈ L2(Ω). Let Th be the translation 

operator given in (2.17). Then, F1 is (T, Cρ, σ)-regular in Ḃσ
2,∞(Ω) for all x0, ρ, namely,

sup
h∈Cρ

F1(Thv) − F1(v)
|h|σ �

1√
1 − σ

‖f‖L2(D2ρ∩Ω)‖v‖Bσ
2,∞(D3ρ), ∀v ∈ Ḃσ

2,∞(Ω). (3.1)

Additionally, if q ∈ (1, ∞], σ ∈ [0, 1] and f ∈ B−γ
2,q′(Ω) for some γ ∈ (0, 1), where 

q′ = q
q−1 is the Hölder conjugate of q, then F1 is (T, Cρ, σ)-regular in Ḃσ+γ

2,q (Ω) for all 

x0, ρ, and

sup
h∈Cρ

F1(Thv) − F1(v)
|h|σ � ‖f‖B−γ

2,q′ (Ω)‖v‖Bσ+γ
2,q (D3ρ), ∀v ∈ Ḃσ+γ

2,q (Ω). (3.2)

Proof. First, assume f ∈ L2(Ω). Because F1 is linear and Thv − v = φ(vh − v), we have

F1(Thv) − F1(v) =
ˆ

Ω

fφ(vh − v) ≤ ‖f‖L2(D2ρ∩Ω)‖Thv − v‖L2(D2ρ).

We point out that, although D2ρ may have nonempty intersection with Ωc, vh −v equals 
zero on Ωc because both v and vh vanish for any admissible direction h. Applying (2.19)
to v ∈ Bσ

2,∞(D3ρ) with |h| ≤ ρ, we obtain

F1(Thv) − F1(v) �
|h|σ√
1 − σ

‖f‖L2(D2ρ∩Ω)‖v‖Bσ
2,∞(D3ρ).

This establishes (3.1). To prove (3.2), we assume f ∈ B−γ
2,q′(Ω) and immediately deduce 

by the duality property (2.7)

F1(Thv) − F1(v) ≤ ‖f‖B−γ

2,q′ (Ω)‖Thv − v‖Ḃγ
2,q(Ω).

Thus, because Thv − v vanishes in Dc
2ρ, (3.2) follows by applying (2.18). �
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Remark 3 (more regular functions). In the application of (3.1) or (3.2) to problem (1.2), 
the natural choice is σ = s. Even though a priori it is not clear that the solution u to such 

a problem is any more regular than Hs, once one is able to show certain regularity, then 

one can revisit either of these estimates to deduce a higher-order regularity estimate for 
the functional F1. In principle, this process can be iterated until one hits the maximum 

value σ = 1 that translates into a regularity pickup of order 1/2. This bootstrapping 

argument is developed in Section 4.

Remark 4 (localization). We point out that we deliberately did not localize the estimate 

(3.2). This is because localizing ‖f‖B−γ

2,q′ (Ω) would require dealing with Lemma 2.6 (local-

ization) for seminorms in the Besov space Ḃγ
2,q(Ω), and specifically with (2.15). Since the 

equivalence constant in (2.15) depends on M , localizing ‖f‖B−γ

2,q′ (Ω) would not remove 

the sensitivity on M .

3.2. Regularity of F2

We next discuss the regularity of the quadratic functional F2 defined in (1.7). To this 
end, we introduce an unusual semi-local fractional seminorm for all r > 0

|v|Hs(Dr,Rd) :=
(
ˆ

Dr

ˆ

Rd

(
v(x) − v(y)

)2

|x − y|d+2s
dxdy

) 1
2

;

note the accumulation property 
∑

j |v|2Hs(Dr(xj),Rd) ≃ |v|2Hs(Rd) if the covering {Dr(xj)}j

has finite overlap. This seminorm may of course be replaced by the more elegant global 
fractional norm |v|Hs(Rd), but the accumulation property will be used in the proof of 
Theorem 4.1 below.

Proposition 3.2 (regularity of F2). Let σ ∈ [s, 1] and q ∈ [1, ∞], with the condition 

q ≤ 2 if σ = s. Let the translation operator Th and cut-off function φ obey (2.17). The 

functional F2 : H̃s(Ω) → H̃s(Ω) given by F2(v) = 1
2 |v|2Hs(Rd) is (T, Cρ, σ)-regular in 

Ḃσ
2,q(Ω) for all x0, ρ, namely,

sup
h∈Cρ

F2(Thv) − F2(v)
|h|σ � ‖φ‖W 1

∞(Rd)|v|Bσ
2,q(D4ρ)|v|Hs(D4ρ,Rd). (3.3)

Proof. We first observe that Ḃσ
2,q(Ω) ⊂ H̃s(Ω) under the hypotheses on σ and q: for all 

q ∈ [1, ∞] if σ > s, whereas for all q ≤ 2 for σ = s. We proceed in several steps.

Step 1: Auxiliary function z. In light of the definition (2.17) of Th

Thv(x) = φ(x)vh(x) + (1 − φ(x))v(x),

we rewrite the difference Thv(x) − Thv(y) as follows
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Thv(x) − Thv(y) = z(x, y) +
(
φ(x) − φ(y)

)(
vh(y) − v(y)

)
(3.4)

in terms of the auxiliary function

z(x, y) := φ(x)
(
vh(x) − vh(y)

)
+ (1 − φ(x))

(
v(x) − v(y)

)
.

Step 2: Decomposition of F2(Thv) − F2(v). Since supp φ ⊂ D2ρ, we deduce

Thv(x) = v(x) ∀ x /∈ D2ρ. (3.5)

Let 0 ≤ ψ ≤ 1 be a cut-off function such that

ψ = 1 in D2ρ, ψ = 0 in Dc
3ρ.

We decompose F2(Thv) − F2(v) =
∑4

i=1 Fi as follows:

F1 :=
ˆ

Rd

ˆ

Rd

ψ(x)ψ(y)

(
Thv(x) − Thv(y)

)2 −
(
v(x) − v(y)

)2

|x − y|d+2s
dydx,

F2 :=
ˆ

Rd

ˆ

Rd

(
1 − ψ(x)

)
ψ(y)

(
Thv(x) − Thv(y)

)2 −
(
v(x) − v(y)

)2

|x − y|d+2s
dydx,

F3 :=
ˆ

Rd

ˆ

Rd

ψ(x)
(
1 − ψ(y)

)(Thv(x) − Thv(y)
)2 −

(
v(x) − v(y)

)2

|x − y|d+2s
dydx,

F4 :=
ˆ

Rd

ˆ

Rd

(
1 − ψ(x)

)(
1 − ψ(y)

)(Thv(x) − Thv(y)
)2 −

(
v(x) − v(y)

)2

|x − y|d+2s
dydx.

We observe that (3.5) implies

Thv(x) − Thv(y) = v(x) − v(y) ∀ x, y /∈ D2ρ,

whence F4 = 0. We also realize that F3 = F2 upon exchanging the variables x and y in 

F3. We next estimate the remaining two terms F2 and F1.

Step 3: Estimate of F2. We resort to (3.4) to split F2 = F21 + F22 with

F21 =
ˆ

Rd

ˆ

Rd

(
1 − ψ(x)

)
ψ(y)

(
Thv(x) − Thv(y)

)2 − z(x, y)2

|x − y|d+2s
dydx,

F22 =
ˆ

Rd

ˆ

Rd

(
1 − ψ(x)

)
ψ(y)

z(x, y)2 −
(
v(x) − v(y)

)2

|x − y|d+2s
dydx,
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and observe that

(
Thv(x) − Thv(y)

)2 − z(x, y)2 =
(
φ(x) − φ(y)

)2(
vh(y) − v(y)

)2

+ 2
(
φ(x) − φ(y)

)(
vh(y) − v(y)

)
z(x, y).

This yields F21 = F211 + F212 with

F211 =
ˆ

Rd

ˆ

Rd

(
1 − ψ(x)

)
ψ(y)

(
φ(x) − φ(y)

)2(
vh(y) − v(y)

)2

|x − y|d+2s
dydx,

F212 = 2
ˆ

Rd

ˆ

Rd

(
1 − ψ(x)

)
ψ(y)

(
φ(x) − φ(y)

)(
vh(y) − v(y)

)
z(x, y)

|x. − y|d+2s
dydx.

To estimate F211 we reorder the integral

F211 =
ˆ

Rd

ψ(y)
(
vh(y) − v(y)

)2
(
ˆ

Rd

(
1 − ψ(x)

)(φ(x) − φ(y)
)2

|x − y|d+2s
dx

)
dy

and note that the inner integral is bounded by

ˆ

Rd

(
φ(x) − φ(y)

)2

|x − y|d+2s
dx =

ˆ

D1(y)

(
φ(x) − φ(y)

)2

|x − y|d+2s
dx +

ˆ

D1(y)c

(
φ(x) − φ(y)

)2

|x − y|d+2s
dx

≤ |φ|2W 1
∞(Rd)

ˆ

D1(y)

dx

|x − y|d+2s−2
+
ˆ

D1(y)c

dx

|x − y|d+2s
� ‖φ‖2

W 1
∞(Rd)

for all y ∈ D3ρ. Therefore

F211 � ‖φ‖2
W 1

∞(Rd)

ˆ

D3ρ

(
vh(y) − v(y)

)2
� |h|2σ‖φ‖2

W 1
∞(Rd)|v|2Bσ

2,q(D4ρ).

For the other term, we employ the Cauchy-Schwarz inequality to get

F212 ≤ 2
√

F211

(
ˆ

Rd

ˆ

Rd

(1 − ψ(x)
)
ψ(y)

z(x, y)2

|x − y|d+2s
dydx

) 1
2

.

Using the convexity of t �→ t2 we infer that

z(x, y)2 ≤ φ(x)
(
vh(x) − vh(y)

)2
+
(
1 − φ(x)

)(
v(x) − v(y)

)2
(3.6)

and



24 J.P. Borthagaray, R.H. Nochetto / Journal of Functional Analysis 284 (2023) 109829

ˆ

Rd

ˆ

Rd

(
1 − ψ(x)

)
ψ(y)

z(x, y)2

|x − y|d+2s
dydx ≤

ˆ

Rd

ˆ

Rd

(
1 − ψ(x)

)
φ(x)ψ(y)

(
vh(x) − vh(y)

)2

|x − y|d+2s
dydx

+
ˆ

Rd

ˆ

Rd

(
1 − ψ(x)

)(
1 − φ(x)

)
ψ(y)

(
v(x) − v(y)

)2

|x − y|d+2s
dydx.

We see that this the first term vanishes because 
(
1 − ψ(x)

)
φ(x) = 0 for all x ∈ R

d. For 
the second term we use that 

(
1 − ψ(x)

)(
1 − φ(x)

)
≤ 1 for all x ∈ R

d and supp ψ ⊂ D3ρ

to obtain

ˆ

Rd

ˆ

Rd

(
1 − ψ(x)

)(
1 − φ(x)

)
ψ(y)

(
v(x) − v(y)

)2

|x − y|d+2s
dydx

≤
ˆ

D3ρ

ˆ

Rd

(
v(x) − v(y)

)2

|x − y|d+2s
dxdy = |v|2Hs(D3ρ,Rd).

Collecting the previous estimates, we arrive at

F21 � |h|σ‖φ‖W 1
∞(Rd)|v|Bσ

2,q(D4ρ)|v|Hs(D3ρ,Rd). (3.7)

We now turn to term F22. In light of (3.6), we see that

z(x, y)2 −
(
v(x) − v(y)

)2 ≤ φ(x)
((

vh(x) − vh(y)
)2 −

(
v(x) − v(y)

)2
)

,

whence

F22 ≤
ˆ

Rd

ˆ

Rd

(
1 − ψ(x)

)
φ(x)ψ(y)

(
vh(x) − vh(y)

)2 −
(
v(x) − v(y)

)2

|x − y|d+2s
dydx.

We point out that the localization occurs because of the presence of φ(x) and ψ(y) in 

the integrand. Upon changing variables to convert vh into v we obtain the equivalent 
expression of F22

F22 =
ˆ

Rd

ˆ

Rd

((
1 − ψ−h(x)

)
φ−h(x)ψ−h(y) −

(
1 − ψ(x)

)
φ(x)ψ(y)

)

︸ ︷︷ ︸
=K(x,y)

(
v(x) − v(y)

)2

|x − y|d+2s
dydx.

We now observe that the kernel K(x, y) is local and

∣∣K(x, y)
∣∣ ≤

∣∣ψ−h(x) − ψ(x)
∣∣φ−h(x)ψ−h(x)

+
(
1 − ψ(x)

)∣∣φ−h(x) − φ(x)
∣∣ψ−h(y)
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+
(
1 − ψ(x)

)∣∣φ(x)
∣∣ψ−h(y) − ψ(y)

∣∣

� |h|
(
‖ψ‖W 1

∞(Rd) + ‖φ‖W 1
∞(Rd)

)
χD4ρ

(x)χD4ρ
(y).

Consequently,

F22 � |h|
(
‖ψ‖W 1

∞(Rd) + ‖φ‖W 1
∞(Rd)

)
|v|2Hs(D4ρ). (3.8)

Since |v|Hs(D4ρ) ≤ |v|Bσ
2,q(D4ρ) under the assumptions on σ and q, (3.7) and (3.8) together 

yield

F2 �
(

|h|σ|v|Bσ
2,q(D4ρ) + |h||v|Hs(D4ρ)

)
|v|Hs(D4ρ,Rd) � |h|σ|v|Bσ

2,q(D4ρ)|v|Hs(D4ρ,R
d),

(3.9)

where we have not written the dependence on ‖φ‖W 1
∞(Rd) and ‖ψ‖W 1

∞(Rd) to simplify 

the notation.

Step 4: Estimate of F1. This term is already localized because of the factor ψ(x)ψ(y). 
In any event, a similar argument to Step 3 yields F1 = F11 + F12 with

F11 =
ˆ

Rd

ˆ

Rd

ψ(x)ψ(y)

(
Thv(x) − Thv(y)

)2 − z1(x, y)2

|x − y|d+2s
dydx

F12 =
ˆ

Rd

ˆ

Rd

ψ(x)ψ(y)
z1(x, y)2 −

(
v(x) − v(y)

)2

|x − y|d+2s
dydx.

Repeating Step 3 with 1 −ψ(x) replaced by ψ(x) we arrive at the following local estimate:

F1 � |h|σ|v|Bσ
2,q(D4ρ)|v|Hs(D4ρ). (3.10)

Step 5: Final estimate. Combining (3.10) with (3.9) and recalling that F4 = 0 and 

F2 = F3, yields the final estimate

∣∣F2(Thv) − F2(v)
∣∣ � |h|σ|v|Bσ

2,q(D4ρ)|v|Hs(D4ρ,Rd),

which is the desired localized estimate (3.3). �

Remark 5 (maximal regularity gain). Heuristically, proving σ-regularity of the functionals 
translates into a σ/2 regularity pickup in the solutions of our problem. We emphasize 

that the proof of Proposition 3.2 does not yield σ-regularity of the functional F2 for 
any σ > 1. This indicates that we should not expect solutions to (1.2) to pick up more 

than 1/2 derivative, independently of the smoothness of f . This is consistent with (1.3), 
where the problem is posed in a ball and f is constant, but u /∈ H̃s+1/2(Ω). Evidently, if 
f possesses limited regularity then the functional F1 may become the bottleneck in the 

regularity of F (cf. (3.2)).
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4. Besov regularity for L2 data: proof of Theorem 1.1

We now establish Besov regularity of solutions to (1.2) in case f ∈ L2(Ω) and Ω is 
Lipschitz, namely, we give a proof of Theorem 1.1. We first point out that the desired 

estimate (1.9) for s ∈ (1/2, 1) follows from Theorem 1.2 (Besov regularity for rough data) 
upon using estimate (2.9) with r = s − 1/2 ∈ (0, 1/2). Therefore, we now focus on the 

following reduced form of Theorem 1.1.

Theorem 4.1 (Besov regularity with L2-data and s ∈ (0, 1/2]). Let Ω be a bounded Lip-

schitz domain and f ∈ L2(Ω). If s ∈ (0, 1/2), then the solution u to (1.2) satisfies 

u ∈ Ḃ2s
2,∞(Ω) and

‖u‖Ḃ2s
2,∞(Ω) ≤ C(Ω, d)√

1 − 2s
‖f‖L2(Ω). (4.1)

On the other hand, the solution for s = 1/2 satisfies u ∈ Ḃ1−ǫ
2,∞(Ω) for every 0 < ǫ < 1

and

‖u‖Ḃ1−ǫ
2,∞(Ω) ≤ C(Ω, d)√

ǫ
‖f‖L2(Ω). (4.2)

Proof. Since f ∈ L2(Ω) ⊂ H−s(Ω), problem (1.2) is well-posed; according to (1.8), it 
holds that

|u|Hs(Rd) ≤ ‖f‖H−s(Ω) ≤ C‖f‖L2(Ω), (4.3)

where C depends on Ω. Because Ω is a Lipschitz domain, by Proposition 2.3 (uniform 

cone property) there exist ρ, θ such that the cone Cρ(x) = Cρ(n(x), θ) of height ρ, opening 

θ and axis n(x) is made of admissible directions h for all x ∈ R
d, namely Cρ(x) ⊂ Oρ(x); 

see Definition 2.5.
We consider a finite covering of the domain Ωρ = {x ∈ R

d : dist(x, Ω) < ρ} by 

balls Dρ(xj) = D(xj , ρ) of radius ρ and center xj ∈ Ωρ, and fix the cone Cj = Cρ(xj)
of admissible directions, for each j = 1, . . . , M . By the localization estimate (2.15), it 
suffices to bound Besov seminorms over each of the balls Dj using Cj . We split the 

argument into several steps.

Step 1: Regularity improvement. We consider one of the balls Dρ(xj) in the covering 

and corresponding cone Cj = Cρ(n(xj), θ). Importantly, if h ∈ Cj we can guarantee that 
Thu ∈ H̃s(Ω) and because Thu = uh in Dρ(xj), we combine Proposition 2.1 (bounds 
on Besov seminorms) and Lemma 2.10 (regularity and minimizers) to deduce that, for 
σ ∈ [s, 1],

|u|2
B

s+σ/2
2,∞ (Dρ(xj))

� sup
h∈Cj

|u − Thu|2Hs(Dρ(xj))

|h|σ � ω(u; F , T, Cj , σ).
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To bound the (T, Cj , σ)-regularity modulus ω of F = F2 − F1, we now assume σ ∈
[s, 1), exploit the subadditivity (2.20) of ω, and combine either (3.1) if σ > s or (3.2)
(with q = 2 and γ = 0) if σ = s with (3.3) to obtain:

ω(u; F , T, Cj , σ) ≤ ω(u; F1, T, Cj , σ) + ω(u; F2, T, Cj , σ)

� ‖u‖Bσ
2,q(D4ρ(xj))

(‖f‖L2(D2ρ(xj)∩Ω)√
1 − σ

+ |u|Hs(D4ρ(xj),Rd)

)
.

(4.4)

Note that q in (4.4) is q = 2 if σ = s and q = ∞ if σ > s. Using the localization estimate 

(2.15), and applying Cauchy-Schwarz in conjunction with stability estimate (4.3), we 

end up with

‖u‖2

Ḃ
s+σ/2
2,∞ (Ω)

�

M∑

j=1

‖u‖2

B
s+σ/2
2,∞ (Dρ(xj))

� ‖u‖Ḃσ
2,q(Ω)

(‖f‖L2(Ω)√
1 − σ

+ |u|Hs(Rd)

)
�

1√
1 − σ

‖u‖Ḃσ
2,q(Ω)‖f‖L2(Ω),

(4.5)

with a hidden constant Λ = Λ(M) depending on the cardinality M of the covering. 
Therefore, increasing Λ further to make it as large as the constant C in (4.3), (4.5) reads 
equivalently

‖u‖2

Ḃ
s+σ/2
2,∞ (Ω)

≤ Λ√
1 − σ

‖u‖Ḃσ
2,q(Ω)‖f‖L2(Ω). (4.6)

Making the stability constant Λ explicit is crucial for the bootstrap argument below.
To utilize this estimate, we must know that u ∈ Ḃσ

2,q(Ω) for some σ ∈ [s, 1), q ∈ [1, ∞]
(with q ≤ 2 if σ = s). At the beginning of our argument, we know this to hold only for 
σ = s, q = 2 with the stability bound (4.3). This implies the first improved estimate 

with C depending on Ω and s

‖u‖2

Ḃ
3s/2
2,∞ (Ω)

≤ Λ‖f‖H−s(Ω)‖f‖L2(Ω) ≤ CΛ‖f‖2
L2(Ω),

whence u ∈ Ḃ
3s/2
2,∞ (Ω). We shall iterate (4.6) to improve further the regularity of u.

Step 2: Regularity for s ∈ (0, 1/2). We let s ∈ (0, 1/2) and consider the sequence

σj = 2s

(
1 − 1

2j

)
, j ≥ 0,

which is monotone increasing and satisfies σj → 2s− and the recursion relation

s +
σj

2
= σj+1 ∀j ≥ 0.
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To prove that u ∈ Ḃ2s
2,∞(Ω), we claim that

u ∈ Ḃ
σj

2,q(Ω), ‖u‖
Ḃ

σj
2,q(Ω)

≤ Λ√
1 − σj−1

‖f‖L2(Ω) ∀j ≥ 1, (4.7)

where q = 2 if j = 1 and q = ∞ otherwise, and Λ is the constant in (4.6). We argue by 

induction. The claim is true for j = 1 in view of (4.3), because σ0 = s, q = 2 and Λ ≥ C

the constant in (4.3). Let j ≥ 1 and assume (4.7) holds. We apply (4.6) and exploit the 

fact that 1 − σj < 1 − σj−1 to get

‖u‖
Ḃ

σj+1
2,∞ (Ω)

≤ Λ1/2

(1 − σj)1/4
‖u‖1/2

Ḃ
σj
2,q(Ω)

‖f‖1/2
L2(Ω) ≤ Λ√

1 − σj

‖f‖L2(Ω),

which shows the validity of (4.7) for j + 1. This implies that u ∈ Ḃ2s−ǫ
2,∞ (Ω) for all ǫ > 0

and

‖u‖Ḃ2s−ǫ
2,∞ (Ω) ≤ Λ√

1 − 2s
‖f‖L2(Ω).

It remains to prove (4.1). To this end, we resort to Lemma 2.3 (equivalence of Besov 

seminorms) which expresses the Besov seminorms in terms of second-order difference 

quotients without weights:

sup
|h|≤ρ

ˆ

Rd

|δ2(h)u(x)|2
|h|4s−2ǫ

dx ≃ |u|2
Ḃ2s−ǫ

2,∞ (Ω)
≤ Λ2

1 − 2s
‖f‖2

L2(Ω).

Consider the pointwise non-decreasing sequence of functions

wǫ(x) :=
|δ2(h)u(x)|2

|h|4s−2ǫ
↑ w0(x) :=

|δ2(h)u(x)|2
|h|4s

as ǫ → 0

for every |h| ≤ ρ ≤ 1, whence the Monotone Convergence Theorem yields

ˆ

Rd

w0(x)dx = lim
ǫ→0

ˆ

Rd

wǫ(x)dx ≤ Λ2

1 − 2s
‖f‖2

L2(Ω).

This is the desired estimate (4.1) in disguise, namely ‖u‖Ḃ2s
2,∞(Ω) ≤ Λ√

1−2s
‖f‖L2(Ω).

Step 3: Regularity for s = 1/2. We take the same sequence {σj} as in Step 2, which 

now reads σj = 1 − 1
2j . The expression (4.7) for q = ∞ becomes

‖u‖
Ḃ1−2−j

2,∞ (Ω)
≤ Λ2(j−1)/2‖f‖L2(Ω) ∀j ≥ 1.
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Given any ǫ ∈ (0, 1), we let j be the integer number such that ǫ ∈ [2−j , 2−(j−1)) and 

observe that 2(j−1)/2 ≤ ǫ−1/2. Thus, we deduce

‖u‖Ḃ1−ǫ
2,∞(Ω) ≤ Λ√

ǫ
‖f‖L2(Ω)

and this finishes the proof. �

Remark 6 (Sobolev regularity). We now invoke the embedding (2.8) between Besov and 

Sobolev spaces to derive more familiar estimates. If s �= 1/2 and r = min{2s, s + 1/2}, 
then (1.9) implies

|u|Hr−ǫ(Rd) ≤ C√
ǫ |1 − 2s|

‖f‖L2(Ω) (4.8)

for any ǫ < max{r, 1/4}. Similarly, if s = 1/2 then (1.10) yields

|u|H1−ǫ(Rd) ≤ C

ǫ
‖f‖L2(Ω). (4.9)

Estimates of this type have been derived by Grubb [22] for bounded domains with C∞

boundary. In contrast to the integer case s = 1, (4.8) and (4.9) confirm that the presence 

of reentrant corners does not reduce the regularity of u for f ∈ L2(Ω).

Remark 7 (gap for smooth data). Grubb [22] showed that the solution u of (1.2) belongs 
to Hs+1/2−ǫ(Ω) \ Hs+1/2(Ω) for any ǫ > 0 even for data f smoother than L2(Ω) on C∞

domains Ω. More recently, Abels and Grubb [2] reduced the domain regularity to C1,β

with β > 2s. This is consistent with (4.8) for s > 1/2. The proof of Theorem 4.1 reveals 
a different type of regularity obstruction for s ≤ 1/2. Since our bootstrapping argument 
pivots on H̃s(Ω), a limitation emerges from the asymptotics of the regularity parameter 
σj ≥ s, which satisfies the recursion

σj+1 = s +
σj

2
⇒ σj → 2s+

as j → ∞. Therefore, for s ≤ 1/2 the regularity enhancement is s rather than 1/2 even 

for data f smoother than L2(Ω). This gap between s and 1/2 remains out of reach for 
our technique, but it has been bridged by a novel argument in [11,12] that leads to the 

optimal shift property (1.11).

5. Besov regularity for rough data: proofs of Theorem 1.2 and Corollary 1.1

We now consider rough data, namely data in negative-order Besov spaces.
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Proof of Theorem 1.2. We prove the ideal shift inequality (1.12) for s ∈ (1/2, 1), namely

‖u‖
Ḃ

s+1/2
2,∞ (Ω)

� ‖f‖
B

−s+1/2
2,1 (Ω)

, (5.1)

with conjugate indices q = ∞ and q = 1. To this end, we perform a bootstrapping 

argument similar to the proof of Theorem 4.1 (Besov regularity with L2-data and s ∈
(0, 1/2]); the main difference is that we can now take σ = 1 in the bound (3.2) of F1, 
the most delicate functional.

Step 1: Regularity improvement. We consider a covering {Dρ(xj)} of Ω with balls like 

in Step 1 of that proof, use the subadditivity (2.20) of F = F2 − F1 together with (3.2), 
(3.3) and (1.8) to obtain

ω(u; F , T, Cj , σ) � ‖u‖Bσ+γ
2,q (D3ρ(xj))‖f‖B−γ

2,q′ (Ω) + ‖u‖Bσ
2,q(D4ρ(xj))‖f‖H−s(Ω),

on an arbitrary ball Dρ(xj) with γ ∈ (0, s) and σ ∈ [0, 1]. Since ‖u‖2

B
s+σ/2
2,∞ (Dρ(xj))

�

ω(u; F , T, Cj , σ) and f ∈ B−γ
2,q′(Ω) ⊂ H−s(Ω), we deduce

‖u‖2

B
s+σ/2
2,∞ (Dρ(xj))

� ‖u‖Bσ+γ
2,q (D4ρ(xj))‖f‖B−γ

2,q′ (Ω).

We observe that, in contrast to (4.4), we do not localize either ‖f‖B−γ

2,q′ (Ω) or |u|
H̃s(Ω)

, 

the latter giving rise to ‖f‖H−s(Ω). This is because doing so would require dealing with 

localization of positive Besov norms, as stated in Lemma 2.6 (localization), but the equiv-
alence constants are sensitive to the cardinality M of the covering. Therefore, instead of 
(4.5), adding over 1 ≤ j ≤ M and using that B−γ

2,1 (Ω) ⊂ B−γ
2,q′(Ω) we obtain the bound

‖u‖2

Ḃ
s+σ/2
2,∞ (Ω)

≤ Λ‖u‖Ḃσ+γ
2,q (Ω)‖f‖B−γ

2,1 (Ω) (5.2)

with Λ > 0 depending on M . We further assume that Λ is as large as the constant 
C in the estimate ‖f‖H−s(Ω) ≤ C‖f‖B−γ

2,1 (Ω). The maximal regularity we may expect 
corresponds to σ = 1

‖u‖2

Ḃ
s+1/2
2,∞ (Ω)

≤ Λ‖u‖Ḃ1+γ
2,q (Ω)‖f‖B−γ

2,1 (Ω),

which coincides with (5.1) with q = ∞ provided γ := s − 1/2 > 0.

Step 2: Bootstrap argument. To exploit (5.2), we define the sequence {σj} by recursion, 
namely

s +
σj

2
= σj+1 + γ = σj+1 + s − 1

2
⇒ σj+1 =

σj + 1
2

,

with initial value σ0 = 1/2; the latter is a consequence of setting the starting value 

σ0 + γ = s in (5.2) with γ = s − 1/2 and q = 2. Using an induction argument, we readily 

see that
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• 1
2 ≤ σj ≤ 1: σj+1 = σj

2 + 1
2 ≤ 1;

• σj is monotone increasing: σj+1 = σj

2 + 1
2 ≥ σj

2 + σj

2 = σj .

This implies that σj converges and limj→∞ σj = 1. We claim that u ∈ Ḃ
s+σj/2
2,∞ (Ω) and

‖u‖
Ḃ

s+σj /2

2,∞ (Ω)
≤ Λ‖f‖

B
−s+1/2
2,1 (Ω)

∀ j ≥ 0, (5.3)

provided Λ is as in (5.2). We prove (5.3) by induction. For j = 0, (5.2) with q = 2 and 

(1.8) yield

‖u‖2

Ḃ
s+σ0/2
2,∞ (Ω)

≤ Λ‖u‖
H̃s(Ω)

‖f‖
B

−s+1/2
2,1 (Ω)

≤ Λ‖f‖H−s(Ω)‖f‖
B

−s+1/2
2,1 (Ω)

≤ Λ2‖f‖2

B
−s+1/2
2,1 (Ω)

.

Moreover, if we assume (5.3) valid for j − 1 ≥ 0, then (5.2) gives (5.3) for j

‖u‖2

Ḃ
s+σj /2

2,∞ (Ω)
≤ Λ‖u‖

Ḃ
s+σj−1/2

2,∞ (Ω)
‖f‖

B
−s+1/2
2,1 (Ω)

≤ Λ2‖f‖2

B
−s+1/2
2,1 (Ω)

,

as well as (5.1) upon letting j → ∞ and arguing as in Step 2 of the proof of Theo-
rem 4.1. �

Proof of Corollary 1.1. We resort to the interpolation properties (2.4) and (2.5). We 

consider first the case s ∈ (0, 1/2) and interpolate between the regularity bound (4.1)
and the stability estimate (1.8), to immediately deduce that (1.13) holds for θ ∈ (0, s), q ∈
[1, ∞], namely,

‖u‖Ḃs+θ
2,q (Ω)≤

C

(1 − 2s)θ/2s
‖f‖B−s+θ

2,q (Ω),

where C depends on Ω, d and q. Instead, if s = 1/2 we interpolate between (4.2) and 

(1.8) in a similar fashion to derive (1.14). Finally, if s ∈ (1/2, 1) we interpolate between 

(5.1) and (1.8) to obtain again the estimate (1.13), except that this time θ ∈ (0, 1/2), 
q ∈ [1, ∞]. This concludes the proof of Corollary 1.1. �
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