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ADAPTIVE VEM: STABILIZATION-FREE A POSTERIORI ERROR
ANALYSIS AND CONTRACTION PROPERTY*

L. BEIRÃO DA VEIGA , C. CANUTO , R. H. NOCHETTO , G. VACCA ,
AND M. VERANI 

Abstract. In the present paper we initiate the challenging task of building a mathematically
sound theory for adaptive virtual element methods (AVEMs). Among the realm of polygonal meshes,
we restrict our analysis to triangular meshes with hanging nodes in two dimensions—the simplest
meshes with a systematic refinement procedure that preserves shape regularity and optimal complex-
ity. A major challenge in the a posteriori error analysis of AVEMs is the presence of the stabilization
term, which is of the same order as the residual-type error estimator but prevents the equivalence of
the latter with the energy error. Under the assumption that any chain of recursively created hanging
nodes has uniformly bounded length, we show that the stabilization term can be made arbitrarily
small relative to the error estimator provided the stabilization parameter of the scheme is sufficiently
large. This quantitative estimate leads to stabilization-free upper and lower a posteriori bounds for
the energy error. This novel and crucial property of VEMs hinges on the largest subspace of continu-
ous piecewise linear functions and the delicate interplay between its coarser scales and the finer ones
of the VEM space. An important consequence for piecewise constant data is a contraction property
between consecutive loops of AVEMs, which we also prove. Our results apply to H1-conforming
(lowest order) VEMs of any kind, including the classical and enhanced VEMs.

Key words. virtual element method, nonconforming meshes, a posteriori error analysis,
stabilization
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1. Introduction. A posteriori error estimates have become over the last four
decades an indispensable tool for realistic and intricate computations in both science
and engineering. They are computable quantities in terms of the discrete solution
and data that control the approximation error, typically in the energy norm    1,Ω,
from both above and below. Such estimators can be split into local contributions and
exploited to drive adaptive algorithms that equidistribute the approximation error
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458 BEIRÃO DA VEIGA ET AL.

and thus the computational effort. This has made simulation of complex phenomena
accessible with modest computational resources.

Practice and theory of a posteriori error analysis and ensuing adaptive algorithms
is a relatively mature research area for linear elliptic partial differential equations
(PDEs), especially with the finite element method (FEM). They give rise to the so-
called adaptive FEMs (AFEMs). We refer to the survey papers [43, 44] for an account
of the state of the art on the following two fundamental and complementary aspects
of this endeavor:

 Derivation of a posteriori error estimates: Residual estimators are the first
and simplest estimators; see Babuška and Miller [5] and Babuška and Rhein-
boldt [6]. They exhibit upper and lower bounds (up to data oscillation) with
stability constants of moderate size that depend on interpolation constants
and thus on the geometry of the underlying meshes. Other estimators have
been developed over the years with the goal of getting more precise or even
constant free estimates; examples are local problems on elements [7] and stars
[41], gradient recovery estimators [48, 45], and flux equilibration estimators
[23, 22]. It turns out that they are all equivalent to the energy error. In ad-
dition, low-order approximation [5, 6, 7] has evolved into high-order methods
such as the hp-FEM [38].

 Proof of convergence and optimatity of AFEMs: The study of adaptive loops
of the form

(1.1) SOLVE   ESTIMATE   MARK   REFINE

is an oustanding problem in numerical analysis of PDEs. The issue at stake
is that discrete solutions at different levels of resolution, typically on nested
meshes, must be compared. This, in conjunction with the upper bound and
Dörfler marking, yields a contraction property for every step of (1.1). Opti-
mality entails further understanding of how the a posteriori estimator changes
with the discrete solution and mesh refinement, as well as whether it can be
localized to the refined region and yet provide control of the error between
discrete solutions. This, combined with marking minimal sets and complexity
estimates for mesh refinement strategies, leads to optimality of AFEM in the
sense that the energy error decreases with optimal rate (up to a multiplicative
constant) in terms of degrees of freedom. Theory for fixed polynomial degree
[43, 44] extends somewhat to variable order [27, 28].

Virtual element methods. Virtual element methods (VEMs) are a relatively
new discretization paradigm which allows for general polytopal meshes, any poly-
nomial degree, and yet conforming H1-approximations for second- order problems
[11, 12]. This geometric flexibility is very useful in some applications (a few examples
being [16, 30, 4, 20, 14]) but comes at a price for the design and practical use of
adaptive VEMs (AVEMs).

Two natural, but still open, questions arise:

 Procedure: Is it possible to systematically refine general polytopes and pre-
serve shape regularity? Beirão da Veiga and Manzini [9] proposed a first
residual based error estimator and introduced a simple refinement rule for
any convex polygon. The rule is to connect the barycenter of the polygon
with midpoints of edges, where the word “edge” needs to be intended dis-
regarding the existence of hanging nodes generated during the refinement

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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VEM STABILIZATION-FREE A POSTERIORI ERROR ANALYSIS 459

procedure. It is not difficult to check that such a procedure guarantees
generating a sequence of shape regular meshes. More sophisticated practical
refinement procedures, which guarantee shape regularity, have been recently
proposed (see, e.g., [18] and [3]). Note that shape regularity is critical to
having robust interpolation estimates regardless of the resolution level.

 Complexity: Is it possible to prove that the number of elements generated
by REFINE is proportional to the number of elements marked collectively
for refinement by MARK? On the one hand, the answer is affirmative if the
refinement is completely local. This in turn comes at the expense of unlimited
growth of nodes per element, which may be hard to handle computationally
and does not add enhanced accuracy. On the other hand, restricting the num-
ber of hanging nodes per edge makes the question very delicate, and generally
false at every step of (1.1). This is altogether crucial to show that iteration
of (1.1) leads to an error decay comparable with the best approximation in
terms of degrees of freedom.

The development of a posteriori error estimates for VEMs mimics that of FEMs.
The estimator of residual type most relevant to us is that proposed by Cangiani et al.
[25]. The upper and lower bounds derived in [25] involve stabilization terms but are
valid for arbitrary polygonal elements, any polynomial degree, and general (coercive)
second-order operators with variable coefficients. Estimators for the hp-version of
VEMs are developed in [10], for anisotropic VEMs in [2], and for mixed VEMs in
[26, 42]. Gradient recovery estimators are derived in [29], whereas those based on
equilibrated fluxes are studied in [31, 32].

A key constituent of VEMs to deal with general polytopes is stabilization
(although it is possible to design VEMs that do not require any stabilization—see
[17]—the analysis is still in its infancy). Even though the role of stabilization is clear
and precise in the a priori error analysis of VEMs to make the discrete bilinear form
coercive, it remains elusive in the a posteriori counterpart. The main contribution of
this paper is to show that such a role is not vital.

Setting. Our approach to adaptivity for VEMs is twofold. In this paper, we con-
sider residual estimators, derive stabilization-free a posteriori upper and lower bounds,
and prove a contraction property for AVEMs for piecewise constant data. The removal
of the stabilization term is essential to study (1.1) for variable data and thereby design
a two-step AVEM and prove its convergence and optimal complexity, which will be
accomplished in [15]. To achieve these goals, we put ourselves in the simplest possible
but relevant setting consisting of the following four simplifying assumptions.

 Meshes: We consider partitions  of a polygonal domain Ω for d = 2 made
of elements E, which are triangles with hanging nodes and refined via the
newest-vertex bisection (NVB). In contrast to FEMs, the hanging nodes carry
degrees of freedom in the VEM philosophy. The NVB dictates a unique
infinite binary tree with roots in the initial mesh, in which every triangle
E is uniquely determined and traceable back to the roots. This geometric
rigidity is crucial to optimal complexity (see [19, 44] for d = 2 and [47, 43]
for d > 2) and plays an essential role in the study of AFEMs [43, 44] as well
as in the sequel paper [15] on AVEMs. Quadrilateral partitions with hanging
nodes are practical in the VEM context and amenable to analysis, but general
polygonal elements are currently out of reach.

 Polynomial degree: We restrict our analysis to piecewise linear elements
on the skeleton  of  . This is not just for convenience to simplify the
presentation. It enters into the notion of global index (see Definition 2.1)
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460 BEIRÃO DA VEIGA ET AL.

and the scaled Poincaré inequality (see Proposition 3.1). They lead to the
stabilization-free a posteriori error estimators discussed below. Extensions to
higher polynomial degrees appear feasible and are currently underway.

 Global index: This is a natural number  (x) that characterizes the level of a
hanging node x generated by successive NVB of an element E   . We make
the key assumption that, for all hanging nodes x of all meshes  , there exists
a universal constant Λ> 0 such that

(1.2)  (x) Λ.

This novel notion has profound geometric consequences. First, any chain of
recursively created hanging nodes has uniformly bounded length; second, a
side of a triangle E can contain at most 2Λ  1 hanging nodes; and third,
any edge e of E has a size comparable to that of E, namely he  hE . These
properties are instrumental to proving the scaled Poincaré inequality, but
they do not prevent deep refinement in the interior of E.

 Data: We consider Ω to be polygonal and the symmetric elliptic PDE

(1.3)    (A u) + cu= f in Ω

with piecewise constant data  = (A,c, f) and vanishing Dirichlet boundary
condition. This choice simplifies the presentation and avoids approximation
of Ω and data oscillation terms. We extend the efficiency and reliability
estimates to variable data  in section 9 and postpone the convergence (and
complexity) analysis for general data to the forthcoming article [15]. However,
piecewise constant data play a fundamental role in the design of AVEMs in
[15] because we approximate adaptively  to a desired level of accuracy before
we reduce the PDE error to a comparable level. Therefore, the analysis of
[15] hinges on having  piecewise constant when dealing with a posteriori
error estimators for (1.3).

Our approach is a first attempt to develop mathematically sound AVEMs. This
simplest setting serves to highlight similarities and striking differences with respect
to AFEMs.

Contributions. We now describe our main contributions. Let V be a general
H1-conforming (lowest order) VEM space over  (see, for instance, [11, 1]), which
entails a suitable continuous extension of piecewise linear functions on the skeleton  
to Ω. Let a and m be the VEM bilinear forms corresponding to the second-order
and zeroth-order terms in (1.3), and let   be the linear form corresponding to the
forcing term; we refer to section 2.3 for details. If S denotes the stabilization term,
then the discrete solution u  V satisfies

(1.4) a (u , v) +m (u , v) +  S (u , v) =  (v)  v  V .

Problem (1.4) admits a unique solution u for all values of the stabilization parameter
 > 0. Let   (u , ) be the residual a posteriori error estimator for piecewise constant
data  studied in section 4. Our global a posteriori error estimates read as follows:

(1.5) capost 
2
 (u , ) S (u , u )  u u  21,Ω  Capost

 
 2 (u , )+S (u , u )

 

for suitable constants capost <Capost; see Proposition 4.1 and Corollary 4.3. We stress
that, in contrast to [25], the stabilization term S appears without the constant  
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VEM STABILIZATION-FREE A POSTERIORI ERROR ANALYSIS 461

in (1.5). One of our main results is Proposition 4.4: there exists a constant CB > 0
depending on Λ but independent of  , u , and  such that

(1.6)  2S (u , u ) CB  2 (u , ).

Computations reveal that (1.6) is sharp provided the number of hanging nodes is large
relative to the total, and they confirm that the stabilization term S (u , u ) is of the
same asymptotic order as the estimator  2 (u , ); see details in section 10.2. The
significance of (1.6) is that it gives the quantitative condition  2 > CB/capost on  
for S (u , u ) to be absorbed within  2 (u , ) and, combined with (1.5), yields the
stabilization-free a posteriori error estimates

(1.7)
 
capost  

CB

 2

 
 2 (u , )  u u  21,Ω  Capost

 
1 +

CB

 2

 
 2 (u , ).

In contrast to a priori error estimates, this new estimate sheds light on the secondary
role played by stabilization in a posteriori error analysis. Moreover, the relation
between discrete solutions on different meshes involves the stabilization terms on
each mesh, which complicates the theory of (1.1). Applying once again (1.6), we
prove a contraction property for AVEMs of the form (1.1) for piecewise constant
data, with  chosen perhaps a bit larger than in (1.7). Precisely, we show that a
suitable combination of energy error and residual contracts at each iteration of (1.1):
for some   (0,1) and  > 0, there holds

(1.8)    u u     2 +   2  (u  , )  
 
   u u    2 +   2 (u , )

 
,

where   denotes the refinement of  produced by AVEM. We use this framework as
a building block in the construction and analysis of AVEMs for variable data in [15].

We conclude this introduction with a heuristic explanation of the idea behind
(1.6). It is inspired by the analysis of adaptive discontinuous Galerkin methods (dG)
by Karakashian and Pascal [35, 36] and Bonito and Nochetto [21]. It turns out that
to control the penalty term of dG, which is also of the same order as the estimator,
a suitable estimate involving the penalty parameter  similar to (1.6) is derived in
[36] to prove convergence and is further exploited in [21] to show convergence under
minimal regularity and optimality of (1.1). This hinges on the subspace V

0
 of all

continuous, piecewise linear functions over  . It turns out that the stabilization term
S vanishes on the subspace V

0
 , namely S (w,v) = 0 for all v  V

0
 ,w  V . The

delicate issue at stake is to relate the coarser scales of V0
 with the finer ones of V ,

which is made possible by the restriction (1.2) on the global index  . This leads to
the following two fundamental and novel estimates for VEMs.

To state these results, hereafter we will make use of the  and  symbols to denote
bounds up to a constant that is independent of  and any other critical parameter;
specifications will be given when needed. The first key estimate is the scaled Poincaré
inequality proved in section 6,

(1.9)
 

E  
h 2
E  v 20,E   v 21,Ω  v  V ,

so that v vanishes at all nodes of  0, the so-called proper nodes . The second key
estimate relates the interpolation errors in V

0
 and V due to the corresponding

piecewise linear Lagrange interpolation operators  0 and   :

(1.10)  v  0 v 1,Ω   v   v 1,  v  V ;
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462 BEIRÃO DA VEIGA ET AL.

note that in general   v is discontinuous in Ω and    1, stands for the broken
H1-seminorm. This estimate is proved in section 8 along with (1.6). The constants
hidden in both (1.9) and (1.10) depend on Λ in (1.2) and blow up as Λ  . This
extends, upon suitably modifying the VEM, to rectangular elements but not to general
polygons.

Outline. The paper is organized as follows. In section 2 we introduce the bilinear
forms associated with (1.3) and the VEM discretization with piecewise linear functions
on the skeleton  . We also discuss the notion of global index  and the main restriction
(1.2). In section 3 we present some technical estimates such as (1.9). The a posteriori
error analysis is carried out in section 4. Inequality (1.9) is instrumental to deriving
(1.5) without the parameter  , which combined with (1.6) yields (1.7) immediately.
We postpone the proof of (1.9) to section 6 and those of (1.10) and (1.6) to section 8.
Inequality (1.6) is essential to study the effect of mesh refinements in the a posteriori
error estimator   (u , ) and the error  u u  1,Ω, which altogether culminates with
a proof of the contraction property of AVEM in section 5. In section 9 we extend some
of our estimates to variable coefficients. We conclude in section 10 with two insightful
numerical experiments. The first one verifies computationally that the dependence
on  in (1.6) is generically sharp. The second test, on a highly singular problem with
checkerboard pattern, illustrates the ability of AVEM to capture the local solution
structure and compares the performance of AVEM with that of conforming AFEM.

2. The problem and its discretization. In a polygonal domain Ω  R2,
consider the second-order Dirichlet boundary value problem

(2.1)    (A u) + cu= f in Ω , u= 0 on  Ω ,

with data  = (A,c, f), where A  (L (Ω))2 2 is symmetric and uniformly positive-
definite in Ω, c  L (Ω) is nonnegative in Ω, and f  L2(Ω). The variational formu-
lation of the problem is

(2.2) u V :  (u, v) = (f, v)Ω  v  V

with V :=H1
0 (Ω) and  (u, v) := a(u, v) +m(u, v), where

a(u, v) :=

 

Ω

(A u)   v , m(u, v) :=

 

Ω

cuv

are the bilinear forms associated with problem (2.1). Let        =
 
 ( ,  ) be the energy

norm, which satisfies

(2.3) c  v 21,Ω     v   2  c  v 21,Ω  v  V

for suitable constants 0< c  c .

2.1. Triangulations. In view of the adaptive discretization of the problem, let
us fix an initial conforming partition  0 of Ω made of triangular elements. Let us
denote by  any refinement of  0 obtained by a finite number of successive newest-
vertex element bisections; the triangulation  need not be conforming, since hanging
nodes may be generated by the refinement. Let  denote the set of nodes of  , i.e.,
the collection of all vertices of the triangles in  ; a node z   is proper if it is a
vertex of all triangles containing it; otherwise, it is a hanging node. Thus,  =   
is partitioned into the union of the set  of proper nodes and the set  of hanging
nodes.
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VEM STABILIZATION-FREE A POSTERIORI ERROR ANALYSIS 463

Given an element E   , let  E be the set of nodes sitting on  E; it contains the
three vertices and, possibly, some hanging node. If the cardinality   E  = 3, E is said
to be a proper triangle of  ; if   E  > 3, then according to the VEM philosophy E is
viewed not as a triangle but as a polygon having   E  edges, some of which are placed
consecutively on the same line. Any such edge e   E is called an interface (with
the neighboring element, or with the exterior of the domain); the set of all edges of
E is denoted by  E . Note that if e  E   E , then it is an edge for both elements;
consequently, it is meaningful to define the skeleton of the triangulation  by setting
 :=

 
E   E . Throughout the paper, we will set hE =  E 1/2 for an element and

he =  e for an edge.
The concept of a global index of a hanging node will be crucial in the sequel

what follows in the current paper. To define it, let us first observe that any hanging
node x   has been obtained through NVB by halving an edge of a triangle in the
preceding triangulation; denoting by x ,x    the endpoints of such an edge, let us
set  (x) =  x ,x   .

Definition 2.1 (global index of a node). The global index  of a node x  is

recursively defined as follows:

 If x  , then set  (x) := 0.
 If x  , with x ,x    (x), then set  (x) :=max( (x ),  (x  )) + 1.

We require that the largest global index in  , defined as

Λ :=max
x  

 (x) ,

does not blow up when we take successive refinements of the initial triangulation  0.
Definition 2.2 (Λ-admissible partitions). Given a constant Λ  1, a noncon-

forming partition  is said to be Λ-admissible if

Λ  Λ.

Starting from the initial conforming partition  0 (which is trivially Λ-admissible),
all the subsequent nonconforming partitions generated by the module REFINE intro-
duced later on will remain Λ-admissible, due to the algorithm MAKE ADMISSIBLE de-
scribed in section 10.

Remark 2.3. The condition that  is Λ-admissible has the following implications
for each element E   :

(i) If L   E is one of the three sides of the triangle E, then L may contain at
most 2Λ  1 hanging nodes; consequently,   E   3  2Λ.

(ii) If e  E is any edge, then he  hE , where the hidden constants only depend
on the shape of the initial triangulation and possibly on Λ.

Figure 1 displays examples that illustrate the dynamic change of  (x) for a given
x  .

2.2. VEM spaces and projectors. In order to define a space of discrete func-
tions in Ω associated with  , for each element E   let us first introduce the space
of continuous, piecewise affine functions on  E,

(2.4) V E :=  v   0( E) : v e  P1(e)  e  E .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fig 1. Three examples of distributions of proper nodes (red) and hanging nodes (black), with
associated global indices  . The bisection added in the middle picture converts the centered node into
a proper node and induces nonlocal changes of global indices on chains associated with it. If Λ= 3,
then the leftmost mesh is not admissible and this procedure is instrumental to restore admissibility.
The right picture illustrates the creation of a proper node without nonlocal effects on global indices.

Then, one needs to introduce a finite dimensional space VE   0(E) satisfying the
three following properties:

(2.5) dimVE =   E  , P1(E) VE ,   E(VE) =V E ,

where   E is the trace operator on the boundary of E. Obviously, if E is a proper
triangle, then VE = P1(E) is the usual space of affine functions in E; otherwise, note
that a function in VE is uniquely identified by its trace on  E, but its value in the
interior of E must be defined.

The results of the present paper apply to any generic VEM space satisfying the
conditions above and a suitable stability property introduced below. The well-known
examples are the basic VEM space of [11]

(2.6) VE :=
 
v  H1(E) : v  E  V E , ∆v = 0

 

and the more advanced “enhanced” space from [1, 13]
(2.7)

VE :=
 
v  H1(E) : v  E  V E , ∆v  P1(E) ,

 

E

(v Π Ev)q1 = 0  q1  P1(E)
 
,

where the projector Π E :H1(E) P1(E) is defined by the conditions

(2.8) ( (v Π Ev), w)E = 0  w  P1(E),

 

 E

(v Π Ev) = 0 .

It is easy to check that the above spaces are well defined and satisfy conditions (2.5).
Once the local spaces VE are defined, we introduce the global discrete space

(2.9) V :=  v  V : v E  VE  E    .
Note that functions in V are piecewise affine on the skeleton  , and indeed they are
uniquely determined by their values therein and are globally continuous. Introducing
the spaces of piecewise polynomial functions on  
(2.10) Wk

 :=  w  L2(Ω) :w E  Pk(E)  E    , k= 0,1 ,

we also define the subspace of continuous, piecewise affine functions on  
(2.11) V

0
 :=V  W1

 ,

which will play a key role in the sequel what follows in the current paper.
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The discretization of problem (2.1) will involve certain projection operators, which
we are going to define locally and then globally. To this end, let Π  : V  W1

 be
the operator that restricts to Π E on each E   . Similarly, let  E : VE  P1(E)
be the Lagrange interpolation operator at the vertices of E, and let   : V  W1

 
be the Lagrange interpolation operator that restricts to  E on each E   . Note
that Π  v = v and   v = v for all v  V

0
 . Finally, let Π0

E : L2(E)  P1(E),
respectively, Π0

 : L2(Ω)  W1
 , be the local, respectively, global, L2-orthogonal

projection operator.
Using an integration by parts, it is easy to check that the Π E operator is directly

computable from the boundary values of v  VE , and the same clearly holds for  E .
On the contrary, on a general VEM space the operator Π0

E may be not computable.
A notable exception is given by the space (2.7), since by definition of the space it
easily follows the following property:

(2.12) For the local space choice (2.7) the operators Π0
E and Π E coincide.

2.3. The discrete problem. Next, we introduce the discrete bilinear forms to
be used in a Galerkin discretization of our problem. Here we make a simplifying
assumption on the coefficients of the equation, in order to arrive at the core of our
contribution without too much technical burden. In section 9 we will discuss the
general situation.

Assumption 2.4 (coefficients and right-hand side of the equation). The data  =
(A,c, f) in (2.1) are constant in each element E of  ; their values will be denoted by
(AE , cE , fE).

Under this assumption, define a ,m :V  V  R by

(2.13)

a (v,w) :=
 

E  

 

E

(AE Π Ev)   Π Ew=:
 

E  
aE(v,w) ,

m (v,w) :=
 

E  
cE

 

E

Π EvΠ Ew=:
 

E  
mE(v,w) .

Next, for any E   , we introduce the symmetric bilinear form sE :VE VE R

(2.14) sE(v,w) =

 E 

i=1

v(xi)w(xi)

with  xi  E

i=1 denoting the vertexes of E. Such a form will take the role of a stabiliza-
tion in the numerical method; other choices for the stabilizing form are available in
the literature and the results presented here easily extend to such cases. We assume
the following condition, stating that the local virtual spaces VE constitute a “stable
lifting” of the element boundary values:

(2.15) cs v 21,E  sE(v, v) Cs v 21,E  v  VE/R

for constants Cs  cs > 0 independent of E. For a proof of (2.15) for some typical
choices of VE and sE we refer to [8, 24]; in particular, the result holds for the choices
(2.6) or (2.7), and (2.14). With the local form sE at hand, we define the local
stabilizing form

(2.16) SE(v,w) := sE(v  Ev,w  Ew)  v,w  VE ,
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466 BEIRÃO DA VEIGA ET AL.

as well as the global stabilizing form

(2.17) S (v,w) :=
 

E  
SE(v,w)  v,w  V .

Note that from (2.15) we obtain

(2.18) S (v, v)  v   v 21,  v  V ,

where    1, denotes the broken H1-seminorm over the mesh  .
Finally, for all v,w  V we define the complete bilinear form

(2.19)   :V  V  R ,   (v,w) := a (v,w) +  S (v,w) +m (v,w) ,

where    0 for some fixed  0 > 0 is a stabilization constant independent of  , which
will be chosen later on.

The following properties are an easy consequence of the definitions and bounds
outlined above.

Lemma 2.5 (properties of bilinear forms). (i) For any v  V and any w  V
0
 ,

it holds that

(2.20) a (v,w) = a(v,w) , S (v,w) = 0 .

(ii) The form   satisfies

(2.21)   v 21,Ω    (v, v),    (v,w)  B v 1,Ω w 1,Ω ,  v,w  V ,

with continuity and coercivity constants B   > 0 independent of the triangulation

 . The constant  is a nondecreasing function of  ; hence, if we increase the value

of  there is no risk of getting a vanishing  .

Proof. Condition (i) follows easily by recalling Assumption 2.4 and noting that
 Π Ev corresponds to the L2(E) projection of  v on the constant vector fields (living
on E). Condition (ii) follows from (2.18) with trivial arguments.

Regarding the approximation of the loading term, we here consider

(2.22)   (v) :=
 

E  
fE

 

E

Π Ev  v  H1
0 (Ω) .

We now have all the ingredients to set the Galerkin discretization of problem
(2.1): find u  V such that

(2.23)   (u , v) =  (v)  v  V .

Lemma 2.5 guarantees existence, uniqueness, and stability of the Galerkin solution.
We now establish a useful version of Galerkin orthogonality.

Lemma 2.6 (Galerkin quasi-orthogonality). The solutions u of (2.2) and u of

(2.23) satisfy

(2.24)  (u u , v) =
 

E  
cE

 

E

 
Π  u  u 

 
v  v  V

0
 .

In particular, the choice (2.7) of enhanced VEM space further implies

(2.25)  (u u , v) = 0  v  V
0
 .
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Proof. The definitions (2.2) and (2.23) imply

 (u u , v) =
 
(f, v)Ω    (v)

 
+
 
  (u , v)  (u , v)

 
 v  V .

If v  V
0
 , then Π  v = v and   (v) = (f, v)Ω according to (2.22). On the other hand,

(2.20) yields

  (u , v)  (u , v) =m (u , v) m(u , v) =
 

E  
cE

 

E

 
Π Eu  u 

 
v  v  V

0
 ,

which in turn leads to (2.24). Finally, for the choice (2.7) the right-hand side of (2.24)
vanishes because v  P1(E) for all E   . This completes the proof.

We finally remark that Galerkin quasi-orthogonality easily implies the useful
estimate

(2.26)   (u u , v)  S (u , u )
1/2 v 1,Ω  v  V

0
 .

3. Preparatory results. In preparation for the subsequent a posteriori error
analysis, we collect here some useful results involving functions in V or in V

0
 .

The first result is a scaled Poincaré inequality in V , which will be crucial in
what follows in the current paper. We recall that  denotes the set of proper nodes
in  .

Proposition 3.1 (scaled Poincaré inequality in V ). There exists a constant

CΛ > 0 depending on Λ but independent of  such that

(3.1)
 

E  
h 2
E  v 20,E  CΛ v 21,Ω  v  V such that v(x) = 0  x  .

Due to the technical nature of the proof, we postpone it to section 6.
Next, we go back to the space V0

 introduced in (2.11). We note that functions in
this space are uniquely determined by their values at the proper nodes of  . Indeed,
a function v  V

0
 is affine in each element of  , hence, it is uniquely determined by

its values at the three vertices of the element: if the vertex x is a hanging node, with
 (x) =  x ,x   , then v(x) = 1

2

 
v(x ) + v(x  )

 
.

In particular, V0
 is spanned by the Lagrange basis

(3.2)  x  :  x  V
0
 satisfies  x(z) =

 
1 if z =x ,

0 if z     x 

(see Figure 2 for an example of such a basis function, which looks different from the
standard pyramidal basis functions on conforming meshes). Thus, it is natural to
introduce the operator

 0 :V  V
0
 

defined as the Lagrange interpolation operator at the nodes in  . The following result
will be crucial in the forthcoming analysis.

Proposition 3.2 (comparison between interpolation operators). Let  be

Λ-admissible. Then, there exists a constant CI > 0, depending on Λ but indepen-

dent of  , such that

(3.3)  v  0 v 1,Ω  CI  v   v 1,  v  V .
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468 BEIRÃO DA VEIGA ET AL.

x

x∗

Fig 2. Left: detail of a mesh T , in which red nodes x and x
∗ are proper nodes. Right: basis

function  x ∈V0
 ; notice that  x(x ) = 0 and the basis function  x ∈V0

 is the usual hat function
supported in the square centered at x (not depicted).

Note that the result is nontrivial, since the “nonconforming”   may operate at a
finer scale than the “conforming”  0 , although not too fine due to the condition of
Λ-admissibility. The proof of the result is postponed to section 7.

We will also need some Clément quasi-interpolation operators. Precisely, let us
denote by   0 :V V

0
 the classical Clément operator on the finite element space V0

 ;
that is, the value at each internal (proper) node is the average of the target function
on the support of the associated basis function. Similarly, let    : V  V be the
Clément operator on the virtual element space V , as defined in [39].

Lemma 3.3 (Clement interpolation estimate). The following inequality holds:

(3.4)
 

E  
h 2
E  v   0 v 20,E   v 21,Ω  v  V ,

where the hidden constant depends on the maximal index Λ but not on  .
Proof. Let v =    v  V . Since v   0 v = (v v )+(v    0 v )+(  0 v    0 v)

and   0 is locally stable in L2, we deduce

 

E  
h 2
E  v   0 v 20,E  

 

E  
h 2
E  v v  20,E + h 2

E  v    0 v  20,E

  v 21,Ω +
 

E  
h 2
E  v    0 v  20,E .

Thus, we need to prove

 

E  
h 2
E  v    0 v  20,E   v  21,Ω.

To show this bound, write v    0 v = (v   0 v )+   0 ( 0 v  v ) because   0 is

invariant in V
0
 , i.e.,  0 v =   0 ( 0 v ). We finally use again the stability of   0 in

L2 together with Proposition 3.1 to obtain

 

E  
h 2
E  v    0 v  20,E  

 

E  
h 2
E  v   0 v  20,E  CΛ v  21,Ω.

This concludes the proof.
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4. A posteriori error analysis. Since we are interested in building adaptive
discretizations, we rely on a posteriori error control. Following [25], we first introduce
a residual-type a posteriori estimator. To this end, recalling that  = (A,c, f) denotes
the set of piecewise constant data, for any v  V and any element E let us define
the internal residual over E,

(4.1) r (E;v, ) := fE  cE Π Ev .

Similarly, for any two elements E1,E2   sharing an edge e  E1
  E2

, let us define
the jump residual over e,

(4.2) j (e;v, ) := [[A Π  v]]e = (AE1
 Π E1

v E1
)  n1 + (AE2

 Π E2
v E2

)  n2 ,

where ni denotes the unit normal vector to e pointing outward with respect to Ei;
set j (e;v) = 0 if e  Ω. Then, taking into account Remark 2.3, we define the local
residual estimator associated with E,

(4.3)  2 (E;v, ) := h2
E r (E;v, ) 20,E + 1

2

 

e  E
hE j (e;v, ) 20,e ,

as well as the global residual estimator

(4.4)  2 (v, ) :=
 

E  
 2 (E;v, ) .

An upper bound of the energy error is provided by the following result. The
proof follows [25, Theorem 13], with the remarkable technical difference that the
stabilization term S (u , u ) is not scaled by the constant  in (4.5).

Proposition 4.1 (upper bound). There exists a constant Capost > 0 depending

on Λ and  but independent of u,  , u , and  , such that

(4.5)  u u  21,Ω  Capost

 
 2 (u , ) + S (u , u )

 
.

Proof. We let v  H1
0 (Ω) and proceed as in [25, Theorem 13] to write

 (u u , v) =
 
(f, v v )Ω   (u , v v )

 
+ (u u , v ) =: I + II,

except that we choose v =   0 v  V
0
 , where   0 is the Clément quasi-interpolation

operator on V
0
 . This choice has a remarkable impact on (4.5) compared with

[25, Theorem 13].
We start by estimating the term I: one has

I =
 

E  

 
(f, v v )E  (AE Π Eu , (v v ))E  cE(Π

 
Eu , v v )E

 

+
 

E  

 
(AE (Π Eu  u ), (v v ))E + cE((Π

 
Eu  u ), v v )E

 
=: I1 + I2.

Integrating by parts, employing Lemma 3.3, and proceeding as in [25], we get

 I1    (u , ) v 1,Ω,(4.6)

 I2  
 
 

E  
  (Π Eu  u ) 20,E + hE Π Eu  u  20,E

 1/2

 v 1,Ω(4.7)

 S (u , u )
1/2 v 1,Ω .
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470 BEIRÃO DA VEIGA ET AL.

We now deal with term II. We first apply Lemma 2.6 to obtain

 (u u , v ) =
 

E  
cE

 

E

(Π Eu  u )v ,

because v  V
0
 ; this is the key difference with [25, Theorem 13]. We next recall

the definition (2.8) of Π E , and corresponding scaled Poincaré inequality  Π Eu  
u  0,E  hE  Π Eu  u  1,E for all E   , to arrive at

 (u u , v ) hE S (u , u )
1/2 v  1,Ω.

Finally, taking v = u  u  H1
0 (Ω), employing the coercivity of  ( ,  ), and

combining the above estimates yield the assertion.

We state the following result, which is proven in [25] for the choice (2.7), but it
holds with the same proof for any other admissible choice of VE .

Proposition 4.2 (local lower bound). There holds

(4.8)  2 (E;u , ) 
 

E
   E

 
 u u  21,E + S

E
 (u , u )

 
,

where  E :=  E :   E   E   = 0 . The hidden constant is independent of  ,h,u, and
u .

Corollary 4.3 (global lower bound). There exists a constant capost > 0, de-

pending on Λ but independent of u,  , u , and  , such that

(4.9) capost  
2
 (u , )  u u  21,Ω + S (u , u ) .

We now state one of the two main results contained in this paper. Due to the
technical nature of the proof, we postpone it to section 8.

Proposition 4.4 (bound of the stabilization term by the residual). There exists

a constant CB > 0 depending on Λ but independent of  , u , and  such that

(4.10)  2S (u , u ) CB  2 (u , ) .

Combining Proposition 4.1, Corollary 4.3, and Proposition 4.4, we get the follow-
ing stabilization-free (global) upper and lower bounds.

Corollary 4.5 (stabilization-free a posteriori error estimates). Assume that the

parameter  is chosen to satisfy  2 > CB

capost
. Then it holds that

(4.11) CL 
2
 (u , )  u u  21,Ω  CU 2 (u , )

with CL = capost  CB  2 and CU =Capost (1 +CB  2).

The sharpness of (4.11) will be investigated also from the numerical standpoint
in section 10.2.

5. Adaptive VEM with contraction property. In section 5.1, we introduce
an Adaptive Virtual Element Method (AVEM), called GALERKIN, for approximating
(2.2) to a given tolerance under Assumption 2.4 (piecewise constant data). We inves-
tigate the effect of local mesh refinements on our error estimator in section 5.3 and
prove a contraction property of GALERKIN in section 5.4. The design and analysis of
an AVEM able to also handle variable data is postponed to [15].
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5.1. The module GALERKIN. Given a Λ-admissible input mesh  0, piecewise
constant input data  on  0, and a tolerance  > 0, the call

(5.1) [ , u ] = GALERKIN( 0, ,  )

produces a Λ-admissible bisection refinement  of  0 and the Galerkin approximation
u  V to the solution u of problem (2.1) with piecewise constant data  on  0 such
that

(5.2)    u u     CG  

with CG =
 

c CU , where c is defined in (2.3) and CU is the upper bound constant
in Corollary 4.5. This is obtained by iterating the classical paradigm

(5.3) SOLVE   ESTIMATE   MARK   REFINE

thereby producing a sequence of Λ-admissible meshes   k k 0 and associated Galerkin
solutions uk  V k to the problem (2.1) with data  . The iteration stops as soon as
  k(uk, )   , which is possible thanks to the convergence result stated in
Theorem 5.1 below.

The modules in (5.3) are defined as follows: given piecewise constant data  
on  0,

 [u ] = SOLVE( , ) produces the Galerkin solution on the mesh  for data
 ;

 [   (  ;u , ) ] = ESTIMATE( , u ) computes the local residual estimators
(4.3) on the mesh  , which depend on the Galerkin solution u and data  ;

 [ ] = MARK( ,   (  ;u , ) ,  ) implements the Dörfler criterion [33], namely
for a given parameter   (0,1) an almost minimal set    is found such
that

(5.4)   2 (u , ) 
 

E  
 2 (E;u , ) ;

 [  ] = REFINE( , ,Λ) produces a Λ-admissible refinement   of  , obtained
by NVB of all the elements in  and, possibly, some other elements of  .

In the procedure REFINE, nonadmissible hanging nodes, i.e., hanging nodes with
global index larger than Λ, might be created while refining elements in  . Thus, in
order to obtain a Λ-admissible partition   , REFINE possibly refines other elements
in  (completion). A practical completion procedure, called MAKE_ADMISSIBLE, is
described in section 10.1, while the complexity analysis of such a procedure is discussed
in the forthcoming paper [15].

The following crucial property of GALERKIN guarantees its convergence in a finite
number of iterations proportional to  log   . We postpone its proof to section 5.4.

Theorem 5.1 (contraction property of GALERKIN). Let    be the set of

marked elements relative to the Galerkin solution u  V . If   is the refinement

of  obtained by applying REFINE, then for  sufficiently large, there exist constants

  (0,1) and  > 0 such that one has

   u u     2 +   2  (u  , )  
 
   u u    2 +   2 (u , )

 
.(5.5)
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5.2. Error estimator under local mesh refinements. In this section we
prove three crucial properties of the error estimator that will be employed in studying
the convergence of GALERKIN.

Let   be a refinement of  produced by REFINE by bisection. Consider an
element E   which has been split into two elements E1,E2    . If v  V , then v
is known on  E, hence in particular at the new vertex of E1,E2 created by bisection.
Thus, v is known at all nodes (vertices and possibly hanging nodes) sitting on  E1 and
 E2, since the new edge e=E1  E2 does not contain internal nodes. This uniquely
identifies a function in VE1

and a function in VE2
, which are continuous across e. In

this manner, we associate to any v  V a unique function v  V  that coincides
with v on the skeleton  (but possibly not on   ). We will actually write v for v 
whenever no confusion is possible.

A. Comparison of residuals under refinement. Let   be a refinement of  
as above, and let E   be an element that has been split into two elements E1,E2  
  ; observe that hEi

= 1 
2
hE , i = 1,2. Given v  V , we aim at comparing the

local residual estimator   (E;v, ) defined in (4.3) to the local estimator    (E;v, )
defined by

 2  (E;v, ) :=
2 

i=1

 2  (Ei;v, )(5.6)

=

2 

i=1

h2
Ei
 fEi

 cEi
Π Ei

v 20,Ei
+ 1

2

2 

i=1

 

e  Ei

hEi
 j  (e;v) 20,e,

where it is important to observe that, as  does not change under refinement, we
have fEi

= fE  Ei
, cEi

= cE  Ei
, AEi

=AE  Ei
.

Lemma 5.2 (local estimator reduction). There exist constants   (0,1) and

cer,1 > 0 independent of  such that for any element E   which is split into two

children E1,E2    , one has

(5.7)    (E;v, )    (E;v, ) + cer,1 S
1/2
 (E)(v, v)  v  V ,

where S (E)(v, v) :=
 

E
   (E)

S
E
 (v, v) with  (E) :=  E   :  E   E  =   .

Proof. As fE and cE do not change under refinement, we simplify the notation
and write rE = f  cΠ Ev, rEi

= f  cΠ Ei
v (i = 1,2) with f = fE and c= cE . We have

rEi
= f  cΠ Ei

v = rE + c(Π Ev Π Ei
v), whence

(5.8)
2 

i=1

h2
Ei
 rEi

 20,Ei
 

2 

i=1

h2
Ei

 
(1 +  ) rE 20,Ei

+

 
1 +

1

 

 
 c(Π Ev Π Ei

v) 20,Ei

 

 1 +  

2
h2
E rE 20,E + h2

E

 
1 +

1

 

 
c2E
2

2 

i=1

 Π Ev Π Ei
v 20,Ei

.

In addition, we see that
 2

i=1  Π Ev  Π Ei
v 20,Ei

 2 v  Π Ev 20,E + 2
 2

i=1  v
 Π Ei

v 20,Ei
. Applying the Poincaré inequality and the minimality of Π E , we get

 v Π Ev 20,E   Π Ev v 21,E    Ev v 21,E ,
2 

i=1

 v Π Ei
v 20,Ei

 

2 

i=1

 v Π Ei
v 21,Ei

  v Π Ev 21,E   v  Ev 21,E .
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Therefore, choosing  = 1
2 , setting  := 1+ 

2 = 3
4 in (5.8), and employing (2.18) we

infer that

2 

i=1

h2
Ei
 rEi

 20,Ei
  h2

E rE 20,E +Ch2
E  v  Ev 21,E(5.9)

  h2
E rE 20,E +Ch2

ESE(v, v).

Concerning the jump terms, we first observe that writing j  (e;v) = j (e;v) +
(j  (e;v) j (e;v)), one has for any  > 0

(5.10)

2 

i=1

 

e  Ei

hEi
 j  (e;v) 20,e  (1 +  )T1 +

 
1 + 1

 

 
T2

with T1 :=
 2

i=1

 
e  Ei

hEi
 j (e;v) 20,e, T2 :=

 2
i=1

 
e  Ei

hEi
 j  (e;v) j (e;v) 20,e.

Considering T1, notice that j (e;v) = 0 on the new edge created by the bisection
of E; hence,

(5.11) T1  
1 
2

 

e  E
hE j (e;v) 20,e .

In order to bound the second term T2, define   (Ei) :=  E    :  Ei
  

E
  =   ; for

an edge e  Ei
, let Ei,e    (Ei) be such that e=  Ei   Ei,e. Then,

 j  (e;v) j (e;v) 0,e =  [[A (Π    Π  )v]] 0,e
  AE (Π Ei

 Π E )v 0,e +  A  Ei,e
 (Π Ei,e

 Π 
Êi,e

)v 0,e ,

where, in general,  F   denotes the parent element of F    . Hence, using the trace
inequality and the equivalence hEi

 hEi,e
, we easily get

T2  

2 

i=1

 

E
    (Ei)

  (Π 
E
  Π 

 E
 )v 2

0,E
 

 

2 

i=1

 

E
    (Ei)

 
  (v Π 

E
 v) 2

0,E
 +   (v Π 

 E
 v) 2

0,E
 
 
.

The minimality property of the orthogonal projections Π 
E
 and Π 

 E
 yields

  (v Π 
E
 v) 0,E    (v   E v) 0,E    (v   E v) 0,  E 

and

  (v Π 
 E
 v) 0,E    (v Π 

 E
 v) 0,  E    (v   E v) 0,  E .

This gives

(5.12) T2  C
 

E
   (E)

  (v  
E
 v) 2

0,E
  C

 

E
   (E)

S
E
 (v, v) ,

thanks to (2.15) and (2.16). Using (5.9), (5.10) with a sufficiently small  , (5.11), and
(5.12), we arrive at the desired result.
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B. Lipschitz continuity of the residual estimator. Since the following re-
sult can be proven by standard arguments, we only sketch its proof.

Lemma 5.3 (Lipschitz continuity of error estimator). There exists a constant

cer,2 > 0 independent of  such that for any element E   , one has

(5.13)
    (E;v, )   (E;w, )

   cer,2  v w 1, (E)  v,w  H1(Ω) ,

where  v w 21, (E) :=
 

E
   (E)

 v w 2
1,E
 .

Proof. By standard FE arguments, using the fact that   (E;v, ) and   (E;w, )
are written in terms of Π Ev and Π Ew, which are polynomials, and employing inverse
estimates, we easily obtain

    (E;v, )   (E;w, )
   C  Π  (E)(v w) 1, (E)  C  v w 1, (E),(5.14)

where the last inequality uses the definition of Π E .

C. Reduction property for the local residual estimators. Concatenating
Lemma 5.2 with Lemma 5.3 we arrive at the following reduction property for the local
residual estimators.

Proposition 5.4 (estimator reduction property on refined elements). There

exist constants   (0,1), cer,1 > 0, and cer,2 > 0 independent of  such that for

any v  V and w  V  , and any element E   which is split into two children

E1,E2    , one has

(5.15)    (E;w, )    (E;v, ) + cer,1 S
1/2
 (E)(v, v) + cer,2  v w 1, (E) .

Proof. Employing Lemma 5.3 with  replaced by   , we get

   (E;w, )    (E;v, ) + cer,2  v w 1,  (E) .

Finally, noting that   (E) is a refinement of  (E), we conclude using Lemma 5.2.

5.3. Convergence of AVEM. In this section we aim at proving Theorem 5.1
(contraction property of REFINE). To do so, since we first need to quantify the
estimator and error reduction under refinement, we divide our argument into three
steps.

A. Estimator reduction. We first study the effect of mesh refinement on the
estimator.

Proposition 5.5 (estimator reduction). Let    be the set of marked ele-

ments in MARK, relative to the Galerkin solution u  V , and let   be the refinement

produced by REFINE. Then, there exist constants  < 1 and Cer,1,Cer,2 > 0 indepen-

dent of  such that for all w  V  one has

(5.16)  2  (  ;w, )   2 ( ;u , ) +Cer,1 S (u , u ) +Cer,2  u  w 21,Ω .

Proof. For simplicity of notation, let us set v = u and let  =     be the set
of all elements of  that are refined by REFINE to obtain   . If E   , then Proposition
5.4 (estimator reduction property on refined elements) yields for all 0<   1

 2  (E;w, ) (1 +  ) 2  2 (E;v, )

+ 2

 
1 +

1

 

  
c2er,1 S (E)(v, v) + c2er,2  v w 21, (E)

 
.
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VEM STABILIZATION-FREE A POSTERIORI ERROR ANALYSIS 475

If E    , then Lemma 5.3 (Lipschitz continuity of estimator) implies

 2  (E;w, ) (1 +  )  2 (E;v, ) +
 
1 +

1

 

 
c2er,2  v w 21, (E).

Hence, adding the two inequalities, there exist positive constants Cer,1 =Cer,1( ) and
Cer,2 =Cer,2( ) such that

 2  (  ;w, ) (1 +  )  2 ( ;v, )
 (1 +  )(1  2)  2 ( ;v, ) +Cer,1 S (v, v) +Cer,2  v w 21,Ω.

Since  2 ( ;v, )   2 ( ;v, ) due to the property    , making use of (5.4)
yields

(5.17)  2 ( ;v, ) (1  2) 2 ( ;v, ) 
 
1  (1  2)

 
 2 ( ;v, ).

Choosing  > 0 sufficiently small so that

(1 +  )(1  (1  2)) = 1  (1  2)

2

and setting  := 1  (1  2)
2 < 1 concludes the proof.

B. Comparison of errors under refinement. Let u  V be again the
solution of problem (2.23), and let u   V  be the solution of the analogous problem
on the refined mesh   . We aim at comparing    u u    with    u u     .

Lemma 5.6 (lack of orthogonality). There exists a constant CD > 0 independent

of  and   such that for all  > 0

(5.18)

   (u u  , u   u )
     u u   21,Ω +   u  u   21,Ω

+CD

 
1 +

1

 

  
S  (u  , u  ) + S (u , u )

 
.

Proof. Write  (u u  , u   u ) = I + II + III with

I := (u u  , u   I0  u  ), II :=  (u u  , u  I0 u ),

III := (u u  , I
0
  u   I0 u ).

We recall the crucial estimate, stemming from Proposition 3.2 and (2.18),

(5.19)  v  0 v 1,Ω   v   v 1,  S (v, v)  v  V .

Invoking this estimate twice, and employing Young’s inequality with  > 0, we obtain

 I   u u   1,Ω S
1/2
  (u  , u  )   u u   21,Ω +

C

 
S  (u  , u  ),

 II   u u   1,Ω S
1/2
 (u , u )   u u   21,Ω +

C

 
S (u , u ).(5.20)

For the term III, we observe that I0  u   I0 u  V
0
  in view of V0

  V
0
  , which

allows us to apply Lemma 2.6 (Galerkin quasi-orthogonality) with  replaced by   .
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476 BEIRÃO DA VEIGA ET AL.

Thus, III is zero in the enhanced case (2.7) due to (2.25). In the other cases, bound
(2.26) yields

 III  S  (u  , u  )
1/2 I0  u   I0 u  1,Ω.

Furthermore,

 I0  u   I0 u  1,Ω   I0  u   u   1,Ω +  I0 u  u  1,Ω +  u   u  1,Ω
 S  (u  , u  )

1/2 + S (u , u )
1/2 +  u   u  1,Ω,

whence using again Young’s inequality

 III    u   u  21,Ω +C

 
1 +

1

 

 
(S  (u  , u  ) + S (u , u )).

This completes the proof.

Proposition 5.7 (comparison of energy errors under refinement). For any  > 0
there exists a constant CE > 0 independent of  such that

(5.21)

   u u     2  (1+ )   u u    2    u   u    2+CE

 
1 +

1

 

  
S (u , u )+S  (u  , u  )

 
.

Proof. We first observe that

 (u u  , u u  ) = (u u , u u )  (u  u  , u  u  )+2 (u u  , u  u  )

and that (5.18) gives an estimate for the last term. This, in conjunction with (2.3),
yields for all  > 0

   u u     2 =    u u    2     u   u    2 + 2 (u u  , u  u  )

    u u    2 +K    u u     2  (1 K )   u  u     2

+ 2CD

 
1 +

1

 

 
S  (u  , u  ) + 2CD

 
1 +

1

 

 
S (u , u ) ,

with K = 2c 1
 , whence

   u u     2  
1

1 K 
   u u    2     u  u     2

+
2CD

1 K 

 
1 +

1

 

  
S  (u  , u  ) + S (u , u )

 
.

For any  > 0, let us define  > 0 so that

1

1 K 
= 1+  ,

namely  =  
K(1+ ) . Inserting this into the previous estimate implies (5.21) for a

suitable choice of the constant CE .

Let us now prove a simple consequence of the above result that exploits Proposi-
tion 4.4 (bound of the stabilization term by the residual).

Corollary 5.8 (quasi-orthogonality of energy errors without stabilization). Let
 be the stabilization parameter in (2.19). Given any   (0, 14 ), there exists   > 0
such that for any     it holds that

   u u     2  (1 + 4 )   u u    2     u   u    2.(5.22)
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Proof. Let e =    u u    , e =    u u     , S = S (u , u ), S = S  (u  , u  ),
and E =    u  u     . We combine (4.10) with (4.11) and (2.3) to deduce

S  CB

 2CLc 
e2 and S  

CB

 2CLc 
e2 .

Employing these inequalities in conjunction with (5.21), we get

e2  (1 +  )e2  E2 +CE

 
1 +

1

 

 
CB

 2CLc 
(e2 + e2 ) ,

which can be rewritten as
 
1 D

 2

 
e2  

 
1 +  +

D

 2

 
e2  E2(5.23)

with D= (1+ 1
 )

CECB

CLc 
. Let us choose  such that

(5.24)
D

 2
  , i.e.,  2   2

 :=
CECB

CLc 

1 +  

 2
.

Then, (5.23) yields (1  )e2  (1 + 2 )e2  E2, which in turn implies

e2  
1 + 2 

1  
e2  E2 .

We conclude the proof by observing that 1+2 
1   1 + 4 if   1

4 .

C. Proof of Theorem 5.1 (contraction property of GALERKIN). To simplify
notation, set e2 =    u  u    2, e2 =    u  u     2, E2 =    u  u     ,  2 =  2 (u , ),
 2 =  2  (u  , ), and S = S (u , u ). By employing (5.22) together with (5.16) and
(2.3), we obtain

e2 +   2  (1 + 4 )e2 +
  Cer,2

c 
 1
 
E2 +    2 +  Cer,1S .

Choose  = c 
Cer,2

and recall that S  CB

 2  2 from (4.10). This implies

e2 +   2  (1 + 4 ) e2 +  
 
 +

Cer,1CB

 2

 
 2.

The coefficient of  2 satisfies

 
 
 +

Cer,1CB

 2

 
  

1 +  

2

provided

Cer,1CB

 2
 1  

2
.

Recalling the condition (5.24) on  , which stems from the proof of Corollary 5.8
(quasi-orthogonality of energy errors without stabilization), we thus impose

 2  max

 
2Cer,1CB

1  
,
CECB

CLc 

1 +  

 

 
.
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478 BEIRÃO DA VEIGA ET AL.

Therefore, we get

e2 +   2  (1 + 4 )e2 +  
1 +  

2
 2 = (1+ 4 )e2   

1  

4
 2 +  

3 +  

4
 2 .

Rewriting the a posteriori error bound (4.11) as e2  c Capost(1+
CB

 2 ) 
2, we obtain

e2 +   2  
 
(1 + 4 )  (1  )

4c Capost(1 +
CB

 2 )

 
e2 +  

3 +  

4
 2.

We finally choose  . Let us assume that   1 and let us pick  satisfying

   (1  )

20c Capost(1 +CB)
  (1  )

20c Capost(1 +
CB

 2 )
,

which implies

(5.25) e2 +   2  (1  )e2 +
3+  

4
  2   (e2 +   2)

provided

 =max

 
1  ,

3 +  

4

 
< 1.

We eventually realize that the final choice of parameters is

 =
c 

Cer,2
,  = min

 
1

4
,

 (1  )

20c Capost(1+CB)

 
,  2  max

 
1,

2Cer,1CB

1  
,
CECB

CLc 
1 +  

 

 
,

which is admissible. This concludes the proof of Theorem 5.1.

6. Scaled Poincaré inequality in VT : Proof of Proposition 3.1. We first
introduce some useful definitions. Let T denote the infinite binary tree obtained by
NVB from the initial partition  0. If T  T is not a root, denote its parent by A(T ),
and let  (T ) be the chain of its ancestors, i.e.,

 (T ) =  A1(T ) =A(T ),Aj(T ) =A(Aj 1(T )) for j  2 until the root is reached .

Given an integer m 1, let  m(T ) be the subchain containing the first m ancestors
of T .

Given any T   , with vertices x1, x2, x3, define the cumulative index of T to be

 (T ) :=

3 

i=1

 (xi) ,

where  (xi) is the global index of the node xi.
Let v  V satisfy v(x) = 0 for all x  . We divide the proof into several steps.

Step 1. Local bounds of norms. Let E   be fixed. If one of its vertices is a proper
node, we immediately have

(6.1) h 2
E  v 20,E   v 21,E .
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E

x0

T

i

j

k ℓ

Fig 3. Sample of element E ∈ T , where T =A(E) is the parent of E; i, j, k are the global indices
of the vertices of E (i being the global index of x0); and  is global index of the remaining vertex
of T .

So, from now on, we assume that none of the vertices of E is a proper node. Since v
need not vanish in E, we use the inequality

(6.2) h 2
E  v 20,E  

 
 v(x0) 2 +  v 21,E

 
,

where x0 is any point in E. Let us choose x0 as the newest vertex of E. In the two
previous inequalities, the hidden constants only depend on dimVE , which by (2.5)
and Remark 2.3 can be bounded by 3  2Λ.
Step 2. Path to a proper node. Denote by i, j, k the global indices of the vertices of
E, with i being the global index of x0; by assumption, they are all > 0. Consider
the parent T = A(E) of E, and let   0 be the global index of the vertex of T not
belonging to E. We claim that

(6.3)  < i .

To prove this, observe that x0 is the midpoint of an edge e of T , whose endpoints
have global indices  and (say) k (see Figure 3). By the definition of a global index
of a hanging node, it holds that i = max(k,  ) + 1: if k   , then i =  + 1 whence
 = i 1 < i, whereas if  < k, then i = k + 1 whence  < i 1 < i. Inequality (6.3)
implies that the cumulative index decreases in going from E to T , i.e.,  (E)> (T ).

By repeating the argument above with E replaced by T , and then arguing re-
cursively, we realize that when we move along the chain  (E) of ancestors of E, the
cumulative index strictly decreases by at least 1 unit each time, until it becomes < 3,
indicating the presence of a proper node. In this way, after observing that  (E) 3Λ
by Definition 2.2, we obtain the existence of a subchain of ancestors

(6.4)  M (E) =  T0 =E,T1, . . . , TM 

with the following properties:

1. TM is the first element in the chain which has a proper node, say, xP , as a
vertex;

2. M < 3Λ;
3. for m > 0, each Tm has an edge gm whose midpoint is the newest vertex of

Tm 1; the path g1 g2     gM connects the node x0  E (the midpoint
of g1) to the proper node xP  TM (the endpoint of gM ) (see Figure 4).

Step 3. Properties of edges with hanging nodes. Consider an edge g shared by two
triangles T,T   T, with T    ; suppose that the midpoint x̂ of g is a hanging node
for T  , created by a refinement of T to produce elements in  . Then, g cannot contain
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xP xP xP xP xP

x0

x1

x2 x3

x4

T4

T5
T3

T2T1
T0

E

x0g1

g2

g3

g4

g5xP

Fig 4. The chain of ancestors of E = T0 leading to T5 having a proper node as a vertex (above).
The path g1 → g2 → · · ·→ g5 connecting x0 ∈E to the proper node x

P ∈ T5 (below).

Tm

gm gm

en
En

Fig 5. The edge gm of the ancestor Tm of E (left). The partition of gm into edges en of
elements En ∈ T (right).

proper nodes except possibly the endpoints, since their presence would be possible
only by a refinement of T  , which is ruled out by the assumption on x̂.

Consequently, the edge g is partitioned by the hanging nodes into a number of
edges ẽ of elements Ẽ   contained in T ; recalling Remark 2.3, the number of such
edges is bounded by 2Λ.
Step 4. Sequence of elements along the path. We apply the conclusions of Step 3 to
each edge gm of the path defined in Step 2. We obtain the existence of a sequence of
edges en (1 n NE for some integer NE) and corresponding elements En   , such
that (see Figure 5)

1. en   En;
2. en  gm for some m, and correspondingly En  Tm, with

 En   en 2  2 2Λ gm 2  2 2Λ Tm ,

where the hidden constants only depend on the shape of the initial triangu-
lation but not on Λ;

3. the number NE of such elements is bounded by M2Λ < 3Λ2Λ;
4. writing en = [xn 1,xn], then x0 is the newest vertex of E, whereas xN is the

proper node xP .
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Step 5. Bound of  v(x0) . Let us write v(x0) = v(x0)  v(xP ) =
 NE

n=1(v(xn 1)  
v(xn)) =

 NE

n=1 v En
 (xn 1  xn). Then,

 v(x0) 2  NE

NE 

n=1

  v En
 2 xn 1  xn 2  NE

NE 

n=1

  v En
 2 En =NE

NE 

n=1

 v 21,En
.

Inserting this into (6.2) yields

(6.5) h 2
E  v 20,E  

 
 v 21,E +NE

NE 

n=1

 v 21,En

 
.

Taking into account also (6.1), we end up with the bound

(6.6)
 

E  
h 2
E  v 20,E  

 
  

E  
 v 21,E + 3Λ2Λ

 

E  h

NE 

n=1

 v 21,En

 
 ,

where  h denotes the set of elements in  whose vertices are all hanging nodes. Thus,
we will arrive at the desired result (3.1) if we show that an element En   may occur
in the double summation on the right-hand side a number of times bounded by some
constant depending only on Λ.
Step 6. Combinatorial count. Let E = En be such an element, which is contained
in some triangle T = Tm according to Step 4, where T belongs to a subchain of
ancestors  M (E) defined in (6.4), for some E   h.

Notice that T   (E ) and its measure satisfies  T   22Λ E  by Step 4. Thus,
the number K of admissible T ’s satisfies

2K  E  =  T   22Λ E  ,
whence K  2Λ+ c for some c independent of Λ.

On the other hand, a triangle T may belong to a subchain of ancestors  M (E),
for at most 23Λ descendants E, since we have seen in Step 2 that M < 3Λ.

We conclude that E may occur in the double summation on the right-hand side
of (6.6) at most (2Λ+ c)23Λ times. This concludes the proof of Proposition 3.1.

7. Interpolation errors: Proof of Proposition 3.2. This section is devoted
to the proof of Proposition 3.2, which is crucial for the proof of Proposition 4.4 in the
next section.

Note that by the triangle inequality

 v  0 v 1,Ω =  v  0 v 1,   v   v 1, +    v  0 v 1, ,

it is enough to prove the bound

(7.1)    v  0 v 1,   v   v 1, .

To this end, we need several preparatory results that allow us to express both semi-
norms as sums of hierarchical details. Let us start by considering the right-hand
side.

Let E be any element in  . Define

 E =  x :x is a node of  sitting on  E ,
 E =  x :x is a vertex of E ,
 E = E   E =  x :x is a hanging node for E .
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To each function v  VE we associate a vector d(v) =  d(v,z) z  E
that collects

the following values, so-called hierarchical details of v:

(7.2) d(v,z) =

 
v(z) if z   E ,

v(z) 1
2 (v(z

 ) + v(z  )) if z   E ,

where for z   E we denote by z ,z    (z) the endpoints of the edge halved to create
z. While the collection  v(z) z  E

represents the coefficients expressing v  VE in
terms of the (local) dual basis associated to the degrees of freedom, the collection
 d(v,z) z  E

represents the coefficients with respect to a hierarchical-type basis.
The following lemma introduces a relation between the H1 seminorm of a function

v  VE and the Euclidean norm of d(v).

Lemma 7.1 (local interpolation error versus hierarchical details). Let  be Λ-
admissible. For all E   the relation

(7.3)
 

x  E

d2(v,x)  v  Ev 21,E  
 

x  E

d2(v,x)  v  VE

holds with hidden constants only depending on Λ.

Proof. We recall that, according to [8, 24], the stability property (2.15) holds true
for the particular choice (2.14) of stabilization (which need not be the stabilization
used in our Galerkin scheme). Hence, we obtain

(7.4)  v  Ev 21,E  
 

x  E

 v(x)  E(x) 2  v  VE ,

where the symbol  denotes an equivalence up to uniform constants. Since d(v,x) =
d(v  Ev,x) for x  E , (7.4) yields that (7.3) is equivalent to

 

x  E

d2(v  E ,x) 
 

x  E

 v(x)  E(x) 2  v  VE ,

which in turn corresponds to

(7.5)
 

x  E

d2(w,x) 
 

x  E

 w(x) 2  w   VE ,

where  VE =  v  VE : v(x) = 0  x  E . The two quantities appearing in (7.5) are
norms on the finite dimensional space  VE . Furthermore, since both depend only on
 w(x) x  E

, the values of w at the hanging nodes, such norms do not depend on the
position (that is, the coordinates) of the nodes of E. On the other hand, an inspection
of (7.2) reveals that the norm at the left-hand side depends on the particular node
“pattern” on E, i.e., on which sequential edge subdivision led to the appearance of
hanging nodes on  E. Nevertheless, since  is Λ-admissible, not only is the number of
hanging nodes uniformly bounded, but also the number of possible patterns is finite.
As a consequence, property (7.5) easily follows from the equivalence of norms in finite
dimensional spaces, with hidden constants only depending on Λ.

In order to get the global equivalence, we observe that the set  =
 
E   E

of all hanging nodes of  is a disjoint union, i.e., x   if and only if there exists
a unique E   such that x   E . Combining this with (7.3), and recalling that
(v   v) E = v E   Ev E for any E   , we obtain the following result.
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Corollary 7.2 (global interpolation error versus hierarchical details). The fol-

lowing seminorm equivalence holds:

(7.6) cD
 

x  
d2(v,x)  v   v 21,  CD

 

x  
d2(v,x)  v  V ,

where the constants CD  cD > 0 depend on Λ but are independent of the triangula-

tion  .
Let us now focus on the left-hand side of (7.1). Since   v  0 v is affine on each

element of  , one has

   v  0 v 21, =
 

E  
   v  0 v 21,E  

 

E  

 

x  E

( Ev  0 v)2(x) .

Note that ( Ev)(x) = v(x) if x   E . Furthermore, ( 0 v)(x) = v(x) if x is a proper
node of  . Thus, for any x  , let us define the detail

 (v,x) = v(x) ( 0 v)(x)

so that

(7.7)    v  0 v 21,  
 

x  
 2(v,z) .

Recalling (7.6), the desired result (7.1) follows if we prove the bound

(7.8)
 

x  
 2(v,x) 

 

x  
d2(v,x)  v  V .

From now on, to ease the notation, we assume v fixed and we write d(x) := d(v,x),
 (x) :=  (v,x), and v :=  0 v. Setting

δ=
 
 (x)
 
x  , d=

 
d(x)
 
x  ,

the desired inequality (7.8) is equivalent to

(7.9)  δ l2( )   d l2( ) .

We can relate δ to d as follows: let x  , and let x ,x    (x); since v is linear
on the segment [x ,x  ], one has

 (x) = v(x) v (x) = v(x) 1
2 (v

 (x ) + v (x  ))

= v(x) 1
2 (v(x

 ) + v(x  )) + 1
2 (v(x

 ) v (x )) + 1
2 (v(x

  ) v (x  ))

= d(x) + 1
2 (x

 ) + 1
2 (x

  ).(7.10)

Thus, we have δ=Wd for a suitable matrix of weights W : l2( ) l2( ), and (7.9)
holds true for any d if and only if

 W  2  1 .

To establish this bound, it is convenient to organize the hanging nodes in a block-
wise manner according to the values of the global index   [1,Λ ]. Let

 =
 

1   Λ 

  with   =  x  :  (x) =   ,
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1

2

1

2

01

1

1

hanging nodes of index < λ

hanging nodes
of index λ

x
′x1

x2

x3

x4

x5

Fig 6. Left: structure of one factor W λ in the factorization (7.11). Right: given a hanging
node x

 with  (x ) <  , at most five hanging nodes xi for i = 1, . . . ,5 of index  may be such that
x
 ∈B(xi).

and let δ = (δ )1   Λ , d = (d )1   Λ be the corresponding decompositions on
the vectors δ and d; then, the matrix W , considered as a block matrix, can be
factorized as

(7.11) W =WΛ WΛ  1    W     W 2W 1 ,

where the lower-triangular matrix W  realizes the transformation (7.10) for the hang-
ing nodes of index  , leaving unchanged the other ones. In particular, W 1 = I since
 (x ) =  (x  ) = 0 when x and x  are proper nodes; on the other hand, any other
W  differs from the identity matrix only in the rows corresponding to the block  :
each such row contains at most two nonzero entries, equal to 1

2 , in the off-diagonal
positions, and the value 1 on the diagonal (see Figure 6, left). In order to estimate
the norm of W  , we use Hölder’s inequality  W   2  ( W   1 W    )1/2. Easily
one has

 W     
1

2
+

1

2
+ 1= 2 ,  W   1  5

1

2
+ 1=

7

2
,

the latter inequality stemming from the fact that a hanging node of index <  may
appear on the right-hand side of (7.10) at most five times (since at most five edges
meet at a node; see Figure 6, right).

Hence,  W   2  71/2, which yields

 W  2  
 

2   Λ 

 W   2  7(Λ  1)/2  7(Λ 1)/2

as desired. Concatenating (7.7), (7.8), and (7.6), we conclude the proof of Proposi-
tion 3.2.

8. Bounding the stabilization term by the residual: Proof of Proposi-
tion 4.4. By (2.20) and the definition (2.19), for all w  V

0
 we obtain

 S (u , u ) =  S (u , u  w) =  (u , u  w) a (u , u  w) m (u , u  w) .
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By (2.23), (4.1), the scaled Poincaré inequality, and the continuity of Π  with respect
to the H1 broken seminorm we get

  (u , u  w) m (u , u  w) = (f  cΠ  u ,Π  (u  w))Ω

 
 

E  
hE r (E;u , ) 0,E h 1

E ( u  w 0,E + hE  u  w 1,E) .

On the other hand, by (2.13), (2.8), and (4.1),

a (u , u  w) =
 

E  
(AE Π Eu , Π E (u  w))E =

 

E  
(AE Π Eu , (u  w))E

=
 

E  
((AE Π Eu )  n, u  w) E =

 

e  
(j (e;u , ), u  w)e

 1
2

 

E  

 

e  E
h
1/2
E  j (e;u , ) 0,e h

 1/2
E  u  w 0,e .

Recalling (4.3) and (4.4), we thus obtain for any  > 0

(8.1)  S (u , u ) 
1

2 
 2 (u , ) +  

2
Φ (u  w)  w  V

0
 

with

Φ (u  w) =
 

E  

 
h 2
E  u  w 20,E +  u  w 21,E +

 

e  E
h 1
E  u  w 20,e

 

 
 

E  

 
h 2
E  u  w 20,E +  u  w 21,E

 
.

At this point, we choose w =  0 u in (8.1) and apply (3.1) to u   0 u , getting
Φ (u   0 u )   u   0 u  21,Ω. Then recalling (3.3) and (2.18), we derive the
existence of a constant CΦ > 1 independent of  and u such that Φ (u   0 u ) 
CΦ S (u , u ). We obtain the desired result by choosing  =  

CΦ
in (8.1) and setting

CB :=CΦ.

9. Variable data. We briefly consider the extension of Propositions 4.1 and
4.2 to the case of variable data  = (A,c, f), while we postpone to the forthcoming
paper [15] the development of an AVEM for variable data. To this end, we denote by
  = (  A, c,  f) a piecewise constant approximation to  . The discrete virtual problem
is obtained from (2.23) by taking AE =  AE , cE =  cE and fE =  fE in (2.13) and (2.22),
respectively. Similarly, we define  2 (u ,   ) from (4.1)–(4.2). The following result
generalizes Proposition 4.1 (upper bound) to variable data.

Proposition 9.1 (global upper bound). There exists a constant  Capost > 0
depending on Λ and  , but independent of u,  , u , and  , such that

(9.1)  u u  21,Ω   Capost

 
 2 (u ,   ) + S (u , u ) +Ψ2

 (u ,   )
 
,

where

Ψ2
 (u ,   ) =

 

E  
Ψ2
 (E;u ,   ),

Ψ2
 (E;u ,   ) = h2

E f   fE 20,E +  (A  AE) Π Eu  20,E +  (c  cE)Π Eu  20,E .
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Proof. We proceed as in the proof of Proposition 4.1. We set v =   0 v and we
get

 (u u , v) =
 

E  

 
(  f, v v )E  (  AE Π Eu , (v v ))E  ( cEΠ Eu , v v )E

 

+
 

E  

 
((  AE  A) Π Eu , v)E + (( cE  c)Π Eu , v)E

 

+
 

E  

 
(A (Π E  I)u , v)E + (c(Π E  I)u , v)E

 

+  S (u , v ) + (f   f, v)

from which the thesis easily follows using standard arguments.

Remark 9.2. In the a posteriori bound (9.1) we highlight the presence of the
oscillation term Ψ (u ,   ) measuring the impact of data approximation on the error.

The following is a generalization of Proposition 4.2 to variable coefficients.

Proposition 9.3 (local lower bound). There holds

(9.2)  2 (E;u ,   ) 
 

E
   E

 
 u u  21,E + S

E
 (u , u ) +Ψ2

 (E;u ,   )
 
,

where  E :=  E :   E   E   = 0 . The hidden constant is independent of  ,h,u, and
u .

Proof. Using standard arguments of a posteriori analysis the thesis follows as in
[25].

With these results at hand, we can extend the validity of Corollary 4.5 to the
variable-coefficient case, as follows.

Corollary 9.4 (stabilization-free a posteriori error estimates). There exist con-

stants  Capost   capost > 0 depending on Λ and  , but independent of u,  , u , and
 , such that if  is chosen to satisfy  2 > CB

 capost
, it holds that

 u u  21,Ω   Capost

  
1 +CB  2

 
 2 (u , ) +Ψ2

 (u ,   )
 
,(9.3)

 
 capost  CB  2

 
 2 (u , )  u u  21,Ω +Ψ2

 (u ,   ).(9.4)

Remark 9.5. So far, we have considered homogeneous Dirichlet boundary condi-
tions. Following [46], it is possible to extend our analysis to the case of nonhomo-
geneous conditions, which amounts to incorporating the oscillation of the boundary
data measured in H1/2( Ω) into the term Ψ2

 (u ,   ). Since this endeavor is similar
to AFEMs, we omit the technical details and refer to [46].

10. Numerical results. This section contains a discussion on the enforcement
of Λ-admissibility and two sets of numerical experiments which corroborate our the-
oretical findings and elucidate some computational properties of AVEM.

10.1. Enforcing Λ-admissibility. In the VEM framework, clearly meshes gen-
erated by REFINE need not be conforming. However, as already noted, we require
that our meshes be Λ-admissible, i.e., the global index is uniformly bounded by Λ.
We now describe how this is achieved within REFINE.
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Ê

x̂

nv(Ê)

Ê

x̂

Case A

nv(Ê)

Ê

x̂

Ê′

Case B

Fig 7. Left: mesh element  E having  x as a hanging node, with  x such that  ( x) = Λ > Λ.

Middle, Case A: the node  x belongs to the opposite edge to the newest vertex of  E, therefore one
bisection is needed. Right, Case B: the node  x belongs to the same edge of the newest vertex of  E,
therefore two bisections are needed.

Let BISECTION( ,E) be the procedure that implements the newest vertex bisec-
tion of an element E   . In the first part, the algorithm REFINE bisects all the
marked elements E   employing BISECTION( ,E). This procedure clearly may
in principle generate a mesh not Λ-admissible. Assume that there exists  x   such
that  ( x) = Λ > Λ. Since the input mesh  of REFINE is Λ-admissible, necessarily
 ( x) = Λ + 1. Furthermore  ( x) > 0; therefore  x is a hanging node for an element
(say)  E (see Figure 7). In order to restore the Λ-admissibility of the mesh we need
to refine  E. Two possible cases arise: Case (A) If the node  x belongs to the opposite
edge to the newest vertex of  E, then BISECTION( ,  E) immediately yields  ( x)  Λ
(see Figure 7). Case (B) If the node  x belongs to the same edge of the newest vertex
of  E, then in order to reduce the global index of  x we need to refine twice the element
 E, namely after the first bisection, the new element (say)  E having  x as a hanging
node is further bisected (see Figure 7). Notice that in the latter case the procedure
can create a new node (the blue node in Figure 7) possibly having global index greater
than Λ. However, in [15] we prove that the algorithm REFINE detailed here is optimal
in terms of degrees of freedom, very much in the spirit of the completion algorithm
for conforming bisection meshes by Binev, Dahmen, and DeVore [19]; see also [43, 44,
47].

The modules REFINE and MAKE ADMISSIBLE consist of the following steps.

[T ] = REFINE(T ,M,Λ)
for E ∈M

[T ] = BISECTION(T ,E)
end for

while Λ >Λ
 E = element having as hanging node a vertex with maximum global index  x

[T ] = MAKE ADMISSIBLE(T ,  E)
end while

return(T )

[T ] = MAKE ADMISSIBLE(T ,  E)

if Case A

[T ] = BISECTION(T ,  E)
else

[T ] = BISECTION(T ,  E)
 E = element having as hanging node a vertex with maximum global index  x

[T ] = BISECTION(T ,  E )

end if
return(T )
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Fig 8. Test 1. Sharpness of bound (4.10): ratio between the term  2S (u , u ) and the term
 2 (u ,D) obtained with the adaptive algorithm (5.3).

10.2. Test 1: Control of stabilization by the estimator. The aim of this
first test is to confirm the theoretical predictions of Proposition 4.4 and in particular
to assess the sharpness of inequality (4.10). To this end we solve a Poisson problem
(2.1) combining the VEM setting (2.23) with the adaptive algorithm GALERKIN de-
scribed in section 5.2. We run GALERKIN and iterate the loop (5.3) with the following
stopping criterion based on the total number of degrees of freedom NDoFs, rather than
a tolerance  :

(10.1) NDoFs N Max .

In the present test we consider the L-shaped domain Ω= ( 1,1) ( 1,1) [0,1] 
[ 1,0] and solve the Poisson problem (2.1) with A = I, c = 0, f = 1 and vanishing
boundary conditions. The exact solution has a singular behavior at the reentrant
corner. In the test we adopt the loop (5.3) with Dörfler parameter  = 0.5, and
N Max = 2000, and furthermore we pick Λ = 10. We adopt the dofi-dofi stabi-
lization (2.14). To assess the effectiveness of bound (4.10) we consider the following
quantity:

ratio :=
 2S (u , u )
 2 (u , ) .

In Figure 8 we display the quantity ratio, for different values of the stabilization
parameter  , obtained with the adaptive algorithm (5.3). Notice that for all the
proposed values of  the quantity ratio at the first iteration of the algorithm is
zero since the starting mesh  =  0 is made of triangular elements, consequently
S (u , u ) = 0. Figure 8 shows that the estimate of Proposition 4.4 is sharp and for
the proposed problem the constant CB in (4.10) is bounded from above by 0.1.

10.3. Test 2: Kellogg’s checkerboard pattern. The purpose of this numeri-
cal experiment is twofold. First, we again confirm the theoretical results in Proposition
4.4 and Corollary 4.5. Second, we discuss the practical performance of GALERKIN with
a rather demanding example and compare it with the corresponding AFEM. In order
to compute the VEM error between the exact solution uex and the VEM solution u ,
we consider the computable H1-like error quantity:

Hˆ1-error :=

  
E    (uex  Π Eu ) 20,E

 1/2

  uex 0,Ω
.
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Notice that Hˆ1-error (as well as the discrete problem (2.23)) depends only on the
DoF values of the discrete solution u , hence, it is independent of the choice of the
VEM space VE in (2.9). If the mesh  does not contain hanging nodes, obviously
Hˆ1-error coincides with the “true” H1-relative error. In the numerical test we use
the dofi-dofi stabilization (2.14) with stabilization parameter  = 1 (cf. (2.19)),
and we pick Λ = 10 (cf. Definition 2.2) and Dörfler parameter  = 0.5 (cf. (5.4)),
whereas the stopping parameter N Max (cf. (10.1)) will be specified later.

We consider from [40, Example 5.3] the Poisson problem (2.1) with piecewise
constant coefficients and vanishing load with the following data: Ω= ( 1,1)2, A= aI,
with a= 161.4476387975881 in the first and third quadrants and a= 1 in the second
and fourth quadrants, c = 0, and f = 0. According to the Kellogg formula [37] the
exact solution is given in polar coordinates by uex(r, ) = r  ( ), where

 ( ) :=

 
   
   

cos
  

 
2   

 
 
 
cos
  

   
2 +  

 
 
 

if 0    /2,
cos (  ) cos ((   +  )  ) if  /2    ,
cos (  ) cos ((     )  ) if     3 /2,
cos
  

 
2   

 
 
 
cos
  

  3 
2   

 
 
 

if 3 /2   2 ,

and where the numbers  ,  ,  satisfy suitable nonlinear relations. In particular we
pick  = 0.1,  = pi/4, and  = -14.92256510455152. Notice that the exact solution
uex is in the Sobolev space H1+ only for  < 0.1 and thus is very singular at the
origin.

In Figure 9 (plot on the left) we display Hˆ 1-error, the estimator   (u , ),
and the stabilization term S (u , u )1/2 obtained with the adaptive algorithm (5.1)
with stopping parameter N_Max = 25000. The predictions of Proposition 4.4 and
Corollary 4.5 are confirmed: the estimator bounds from above both the energy error
and the stabilization term. Furthermore, one can appreciate that, after a fairly long
transient due to the highly singular structure of the solution, the error decay reaches
asymptotically the theoretical optimal rate NDoFsˆ-0.5 (whereas the estimator decays
with this rate through the whole refinement history).

To validate the practical performances of the proposed numerical scheme (2.23),
we compare the results obtained with our VEM to those obtained with a standard P1

FEM, implemented as a VEM with Λ = 0 (cf. Definition 2.2). The results for both
methods are obtained with an “in-house” code, yet the FEM outcomes coincide (up to
machine precision) with those obtained with the code developed in [34]. In Figure 9

Fig 9. Test 2. Left: Hˆ1-error, estimator   (u ,D), stabilization term S (u , u )1/2.
Right: Hˆ1-error and estimator   (u ,D) obtained with VEM and FEM. In both figures the optimal
decay is indicated by the dashed line with slope -0.5.
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Fig 10. Test 2. Left: final grid TVEM obtained with VEM. Right: final grid TFEM obtained with FEM.
Mesh elements having more than three vertices are drawn in red.

Fig 11. Test 2. Left: final grid TVEM. Right: final grid TFEM. Zoom to (−10 9,10 9)2. Mesh
elements having more than three vertices are drawn in red.

(plot on the right) we display Hˆ 1-error and estimator   (u , ) obtained with
VEM and FEM coupled with the adaptive algorithm (5.3) and stopping parameter
N Max = 25000. Notice that for FEM, Hˆ 1-error is the “true” H1-relative error.
Both methods yield very similar results in terms of behavior of the error and the
estimator.

However, a deeper analysis shows important differences between VEM and FEM
approximations in terms of the final grids denoted respectively with  VEM and  FEM.
In Figure 10 we display the meshes  VEM and  FEM obtained with stopping param-
eter N Max = 5000. The number of nodes N_vertices and elements N_elements

are N vertices( VEM) = 5259, N elements( VEM) = 8725, N vertices( FEM) = 5070,
N elements( FEM) = 10094, i.e., the mesh  FEM has 16% more elements than the mesh
 VEM. Furthermore the number of polygons in  VEM (elements with more than three
vertices) is 1653: 1563 quadrilaterals, 86 pentagons, 2 hexagons, 1 heptagon, and 1

nonagon.
The grids  VEM and  FEM are highly graded at the origin along the bisector of the

first and third quadrants. However, from Figure 11 we can appreciate how grid  VEM
still exhibits a rather strong grading also for the zoom scaled to 10 9, thus revealing
the singularity structure much better than  FEM.

Finally, in Figure 12 we plot the zoom to ( 10 10,10 10)2 for the grid  VEM and
the plot of the discrete solution for the finer grid. We highlight the presence of the
nonagon with two nodes having global index  = 3. It is worth noting that the largest

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fig 12. Test 2. Left: final grid TVEM, zoom to (−10 10,10 10)2 (mesh elements having more
than three vertices are drawn in red, and the mesh element drawn in black is a nonagon). Right:
graph of the discrete solution.

global index is  = 3, whence the threshold Λ = 10 is never reached by the module
REFINE. Therefore, the condition   Λ is not restrictive in practice.

11. Conclusions. The analysis of this paper relies crucially on the existence of
a subspace V

0
  V satisfying the following properties:

 The discrete forms satisfy the consistency property (2.20) on V
0
 .

 There exists a subset  of mesh nodes such that the collection of linear
operators v  v(x) x  constitutes a set of degrees of freedom for V0

 .
 Propositions 3.1 and 3.2 hold for the above choice of V0

 and  .
We have established these properties for meshes made of triangles, which is the

most common situation in FEMs. Yet, there are other cases in which the above
construction can be easily applied. One notable example is that of square meshes,
where we assume a standard quadtree element refinement procedure that subdivides
each square into four squares; in this framework the advantage of allowing hanging
nodes is evident. In such case, the space V

0
 is chosen as

V
0
 =
 
v  V such that v E  Q1(E)  E   

 
,

where Q1 denotes the space of bilinear polynomials, and  is the set of proper (i.e.,
nonhanging) nodes of the mesh. It is not difficult to adapt to the new framework
the arguments given in the paper and to prove the validity of the three conditions
above, thereby arriving at the same conclusions obtained for triangles. Obviously,
heterogeneous meshes formed by triangles and squares could be handled as well.

The extension of the techniques presented above to general polygonal meshes (for
which even a deep understanding of the refinement strategies is currently missing)
seems highly nontrivial. However, we believe that the main results of this paper,
namely the bound of the stabilization term by the a posteriori error estimator and
the contraction property of the proposed adaptive algorithm, should hold in a wide
variety of situations. We also hope that some of the ideas that we have elaborated here
will turn out to be useful to attack the challenge of providing a sound mathematical
framework to AVEMs in a more general setting.

Furthermore, the results presented herein will serve as a basis in the sequel paper
[15], in which we will design and analyze a two-step AVEM (still on triangular parti-
tions admitting hanging nodes) able to handle variable coefficients. The primary goal
of [15] is to develop a complexity analysis.
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