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| Benjamin Kelcey?

Abstract

A variety of inferential tests are available for single
and multilevel mediation but most come with notable
limitations that balance tradeoffs between power and
Type I error. We extend the partial posterior p value
method (p; method) to test multilevel mediation. This
contemporary resampling-based composite approach is
specifically suited for complex null hypotheses. We
develop the p; method and investigate its performance
within the context of two-level cluster-randomized
multilevel mediation studies. Similar to its performance
in single-level studies, we found that the p; method per-
formed well relative to other mediation tests suggesting
it provides a judicious balance between Type I error rate
and power. While bias-corrected bootstrapping achieved
the best overall performance, the p; method serves as an
alternative tool for researchers investigating multilevel
mediation that is especially useful when conducting a
priori power analyses. To encourage utilization, we pro-
vide R code for implementing the p; method.
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2 Wl LEY COX and KELCEY

1 | INTRODUCTION

Mediation analysis captures the mechanisms and pathways through which an independent
variable acts upon an outcome (e.g., MacKinnon, 2008). The literature provides a framework
from which to draw inferences regarding mediation, delineated the structure and decomposition
of mediation effects, and outlined the assumptions that support mediation (e.g., Pituch & Sta-
pleton, 2012; VanderWeele, 2015). The literature also details a broad range of inferential tests
designed to determine the statistical significance of mediated effects (MacKinnon, Fairchild, &
Fritz, 2007; MacKinnon, Lockwood, Hoffman, West, & Sheets, 2002).

However, mediated effects are often quantified using the product of two path coefficients
resulting in a sampling distribution that depends on the specific population values of the individ-
ual coefficients. This complicates inferential testing as the sampling distribution of and resulting
inferences regarding a mediated effect concurrently depend on the population values of the two
path coefficients. The dependence creates a complex null hypothesis or one in which many path
coefficient combinations result in the null hypothesis being true. Under a complex null hypoth-
esis, the Type I error rate and power associated with a test varies depending on the population
parameter values. Put differently, a single observed mediated effect can align with various p values
(Biesanz, Falk, & Savalei, 2010).

Past inferential test literature details a variety of approximation techniques that account to
varying degrees for this dependence under the complex null hypothesis of no mediation such
as: the Sobel test (Sobel, 1982), the joint test (MacKinnon et al., 2002); Monte Carlo (MC)
interval test (Preacher & Selig, 2012), bias-corrected (BC) bootstrap, and parametric percentile
bootstrap (Pituch, Stapleton, & Kang, 2006). An alternative approach developed by Bayarri and
Berger (2000) and Robins, van der Vaart, and Ventura (2000) uses a partial posterior p value
distribution method (p; method) that formulates inferences more theoretically aligned with the
complex and composite nature of mediation effects. First, the p; method takes a composite
approach by employing two subordinate tests, one for each path coefficient comprising the medi-
ated effect. Second, the p; method accounts for the complex null hypothesis of no mediated effect
through a resampling technique. The subordinate tests each produce a distribution of p values
assuming one null path coefficient and a distribution of values for the remaining path coefficient.
By incorporating each path coefficient in the subordinate test they are explicitly formulated to
obtain p values under a complex null hypothesis in which the sampling distribution is dependent
on another population parameter (Bayarri & Berger, 2000; Robins et al., 2000). The p values can
then be used to make inferential decisions about the mediated effect. The p; method is applicable
in many contexts with a complex null hypothesis (e.g., Bayarri & Berger, 2000; Robins et al., 2000)
but we focus on its application with testing mediated effects and a novel extension to multilevel
mediation.

Previous work has evaluated numerous tests available to determine the significance of a
multilevel mediation effect (e.g., Krull & MacKinnon, 2001; Pituch et al., 2006; Pituch & Sta-
pleton, 2008; Pituch, Whittaker, & Stapleton, 2005) and identified several persistent problems
including inaccurate Type I error rates in the null condition and inadequate power to detect a
mediated effect in small sample sizes (Kelcey, Dong, Spybrook, & Cox, 2017; Kelcey, Dong, Spy-
brook, & Shen, 2017; Pituch et al., 2006). Biesanz et al. (2010) extended this work to include
the p; method for testing single-level mediation effects but a multilevel adaptation has yet to
be developed. For testing multilevel mediation, we hypothesize the p; method will better track
the asymmetric sampling distributions that arise when considering the product of two random
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COX and KELCEY Wl LEY 3

variables (e.g., each path coefficient utilized when estimating a mediated effect) leading to more
accurate inferences and greater statistical power. To investigate this hypothesis, we extend the p;
method to multilevel mediation settings and conduct simulation studies to assess its performance
with two common types of multilevel mediation.

We begin with two pertinent multilevel mediation models and then detail and extend the
p3 method for testing multilevel mediation effects. Following these sections, we present two
simulation studies comparing power and Type I error rates of the p; method to the Sobel test,
joint test, MC interval test, and two bootstrapping methods—parametric percentile and BC—in
group-randomized studies with group and individual level mediators (i.e., 2-1-1 and 2-2-1). Sim-
ulation conditions include two mediated effects, three cases of the null condition, two sample
sizes typical for these types of multilevel experiments (e.g., Schochet, 2011; Spybrook, Shi, & Kel-
cey, 2016), and normal and nonnormal data. These simulation studies provide an assessment of
the p; method’s potential in multilevel mediation settings and further develop understanding
inferential testing of multilevel mediation. We conclude by discussing implications of the results,
study limitations, and related future inquiry.

2 | MULTILEVEL MEDIATION MODELS

Our description of the p; method to multilevel mediation and our simulations involve two analytic
models. The first model reflects a two-level cluster randomized trial with a cluster-level treatment,
cluster-level mediator, and individual-level outcome (i.e., 2-2-1 mediation) such that (e.g., Zhang,
Zyphur, & Preacher, 2009)

Mediator model (Level 2) M; =m+aT; + eJM eJM ~N (0, af/”) . 1)
Outcome model (Level 1) Yy = foj + 6; e;.’ ~N(0,0%). (2)
(Level 2) figy = yoo + bM; + ¢'T) + gy o~ N (0.7,

Under the mediation model (Equation 1), we use M; as the mediator for cluster j, T; as
the treatment assignment coded as +1/ with associated coefficient a, capturing the relationship
between the treatment and mediator, and 5JM as the error term with conditional normal distribu-

tion eJM ~N <0, 0']%/”). In the outcome equations (Equation 2), we use a multilevel model with Yj;

as the outcome for individual i in cluster j, and ei’; as the normally distributed level one error term
55 ~N (O, o-f,). At the cluster-level, we use b as the conditional relationship between the medi-
ator and the outcome, ¢’ as the direct effect of the predictor, and ug; as the cluster-level random
effects with conditional normal distribution ug; ~ N <0, 1|2>

The second analytic model again employs a cluster-level treatment and individual-level out-
come but utilizes an individual-level mediator (e.g., 2-1-1 mediation). For this type of multilevel
mediation multilevel models are necessary for both the mediator and outcome such that (Pituch
& Stapleton, 2012; Raudenbush & Bryk, 2002; VanderWeele, 2010)

o M M 2
Mij—ﬂ()]-i-é‘ij £ N(O,O’M)

7y = Goo +aTy +ulf w ~ N (0,22). 3)
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4 Wl LEY COX and KELCEY

Here, the mediator, M;;, is measured at the individual level with individual- and group-level
variance afﬂ and Tz%/u’ respectively. Other terms retain similar meaning to those described for
Equations (1) and (2). At the cluster level the mediator model includes ué‘? as the normally
distributed mediator group-level random effects with a true residual variability of Tiﬂ.

The multilevel model of the outcome is also adjusted to accompany the added complexities of

2-1-1 mediation (e.g., Pituch & Stapleton, 2012). Now,

L

kY3 Yy Y
Yy = foj + b1 <Mij—Mj>+6ij £ ~N<0,612,|>
foy =700+ BM; + T+ wl ~ N (0.7). @

with most terms retaining similar meaning to those in Equation (2). Additional terms include b; as
the path coefficient capturing the individual-level conditional relationship between the mediator
(M) and the outcome and M; as the cluster-level mean of the mediator with coefficient B cap-
turing the conditional overall (cluster- and individual-level) relationship between the mediator
and outcome. Studies with an individual-level mediator should allow for an individual outcome
to be influenced by the individual-level mediator value (M) and the mean mediator value of the
cluster (Mj).

Across each of these models the product of the treatment-mediator and mediator-outcome
path coefficients provide a point estimate of the mediated effect such that 2-2-1 mediated effects
can be estimated with

ME = ab, (5)
and the 2-1-1 overall or cumulative mediation effect is estimated by (e.g., VanderWeele, 2010)

ME = aB. (6)

3 | TESTING MEDIATION EFFECTS

There are a variety of well-established tests for mediation effects (i.e., ME). We include five medi-
ation tests along with the p; method in our simulation studies. First, the Sobel test or z-test which
has a legacy of assessing mediation but has recently come under scrutiny due to low power and
inaccurate Type I error rates (Hayes & Scharkow, 2013). Second, the joint test which determines
the significance of the a and b paths separately with inferences regarding the mediation effect
determined based on each sub-test rejecting the null hypothesis of a zero path coefficient. The
joint test has performed well in terms of power and Type I error rates for both single and multilevel
mediation but it does not provide a summative descriptor of the mediated effect such as a con-
fidence interval or p value (e.g., Hayes & Scharkow, 2013; Kelcey, Dong, Spybrook, & Cox, 2017;
Kelcey, Dong, Spybrook, & Shen, 2017; Pituch et al., 2006).

The third test included is the MC interval test. It represents a resampling based alterna-
tive to the Wald-like approaches in the Sobel and joint test (Preacher & Selig, 2012). The test
typically assumes a multivariate normal sampling distribution of path coefficients with means,
variances, and covariances based on maximum likelihood estimates (Preacher & Selig, 2012). It
then employs the primary path coefficient estimates and their error variances to simulate draws
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COX and KELCEY Wl LEY 5

from the posterior distribution of the mediation effect. Confidence intervals from this estimated
sampling distribution allow inferential decisions regarding the mediated effect. MC interval test
performance is similar to bootstrapping approaches but its use of the estimated path coefficients
and their error variances allows for this resampling-based approach to be available in the study
design phase (Hayes & Scharkow, 2013; MacKinnon, Lockwood, & Williams, 2004; Preacher &
Selig, 2012).

Finally, we include the BC bootstrap and parametric percentile bootstrap and follow the boot-
strapping procedures and methods set forth in Pituch et al. (2006). Bootstrapping represents a
class of resampling based methods that determine the significance of a mediated effect by approx-
imating its sampling distribution through repeated sampling of observed data. As with the MC
interval test, resampling to approximate the distribution of the statistic (e.g., ab) avoids any a
priori assumption about the statistic. Across both single level and multilevel mediation, boot-
strap methods generally perform well in terms of power and Type I error rates. A significant
body of the literature recommends the BC bootstrap or parametric percentile bootstrap (Hayes
& Scharkow, 2013; MacKinnon et al., 2004; Pituch et al., 2006; Pituch & Stapleton, 2008) but
concerns have been raised about inflated Type I error rates in BC bootstrap methods (Biesanz
et al., 2010; Hayes & Scharkow, 2013). A more fundamental drawback of all bootstrapping
approaches is a reliance on observed data for resampling. This precludes bootstrapping from
consideration during the design phase of a study (i.e., before data have been collected).

Bootstrapping methods along with the Sobel test and MC interval test determine the sig-
nificance of the mediated effect through confidence intervals based on point and precision
estimates. These approaches disregard the complex null hypothesis of no mediation and open the
approaches to inaccuracies in Type I error rate and possibly power rate limitations in smaller sam-
ple sizes (Biesanz et al., 2010). The joint test uses a composite null hypothesis approach that avoids
the complex null of no mediation but fails to provide an effect size, p value, or confidence interval
related to the mediated effect. This combination of issues and limitations has prevented broad and
strong recommendations for any one method to test multilevel mediation effects. The p; method
has the potential to address these concerns because it employs a composite approach (i.e., test the
a path and b path separately), is formulated for complex null hypotheses, and produces a single
summative p value for the mediated effect.

4 | PARTIAL POSTERIOR PREDICTIVE
DISTRIBUTION TEST

Justification for developing the p; method for multilevel mediation stems from the difficul-
ties of testing mediated effects. These difficulties often begin with the complexity of the null
hypothesis of no mediation. Recall, a mediated effect is typically quantified using the product
of the treatment-mediator and mediator-outcome path coefficients creating a null mediation
effect under three different conditions (a) both the treatment-mediator and mediator-outcome
path coefficients are zero (i.e., a =0 and b = 0), (b) the treatment-mediator is zero but the
mediator-outcome path coefficient is nonzero (i.e.,a = 0 and b # 0), or (c) the treatment-mediator
is nonzero but the mediator-outcome path coefficient is zero (i.e., a # 0 and b = 0). Note, we con-
ceptually use the a and b variables here to represent any of the different treatment-mediator or
mediator-outcome path coefficients represented in the different analytic models described above
(e.g., B). In each of the null cases the mediation effect is zero but each scenario produces differ-
ent sampling distributions. Effective tracking of the sampling distribution of the mediation effect

w00 KofimATeaqiiounuo/sdiy Woiy papeojumod °0 “bLS6LOVT

ue suud | oy 38 “[£70/40/£0] U0 Aeiqr autjuo LA ‘SHIMVHEIT YHLNAD TVOIAEW LLYNNIONIO A0 ALISHHAINN A9 167Z1°UeIS/ 1 [11°01/10p/ur

Iny) suonipuo)) pt

Kolm A

K1maqr] aunuO Aojipy U

10)

2501 SUOWILIO) dAIIERL) A[qEoHdE U Aq PALIDACS IE SOOIIE YO 1281 JO Sot



6 Wl LEY COX and KELCEY

and subsequent determination of p values is only possible after evaluating the non-null path. For
example, when a = 0 the sampling distribution of the mediated effect is heavily influenced by
the magnitude of the b path and, conversely, when the mediation effect is zero because b = 0 the
sampling distribution of the mediated effect is heavily influenced by the magnitude of the a path.

Under these conditions it is challenging to test the null hypothesis of mediated effects because
there are many combinations of a and b that result in a true null hypothesis (i.e., mediation has a
complex null hypothesis; MacKinnon et al., 2002). Most mediation tests use a point estimate and
an estimate of precision to test the null hypothesis of no mediation, the joint test being a notable
exception (Biesanz et al., 2010; MacKinnon et al., 2002). However, there are consequences to dis-
regarding the complex nature of the null hypothesis. Under different sampling distributions it is
the possible to draw different inferences about the significance of an observed mediated effect
depending on the specific null hypothesis under consideration (Biesanz et al., 2010). Put differ-
ently, it is possible to find a variety of p values from a single observed mediated effect because of
the possibility of many different sampling distributions of the mediated effect under a complex
null hypothesis.

The p; method is especially well suited for testing mediated effects because it takes a composite
approach with subordinate tests formulated to identify p values under complex null hypotheses.
Specifically, the p; method incorporates one subordinate test assuming the treatment-mediator
relationship is zero (without specifying the mediator-outcome relationship) and a second test
assuming the mediator-outcome relationship is zero (without specifying the treatment-mediator
relationship). Path-specific inferences for each subtest are generated by treating the unspecified
relationship as a nuisance parameter, resampling this nuisance parameter, and calculating a p
value for each draw. Inferences involving the overall test of no mediation are determined using the
maximum p value of the two subordinate tests. The inferential approach of the p; method requires
both subordinate tests to be significant in order to reject the null hypothesis of no mediation effect
with the largest p value identified by the two subordinate tests a conservative summative value of
the overall inferential test.

When implementing this method, the evaluation or assignment of a reasonable value to the
nuisance parameter (i.e., the path not currently being assessed or the unspecified path) for each
subordinate null hypothesis is required. One obvious choice is the maximum likelihood point
estimate of the nuisance parameter sometimes referred to as the plug-in method. Unfortunately,
this estimate assumes the nuisance parameter is known and therefore disregards any uncertainty
in the estimate. It is possible to incorporate this uncertainty by considering the full posterior dis-
tribution of the nuisance parameter (e.g., posterior predictive p value; Bayarri & Berger, 2000).
The inferences under this approach can be generated using weights proportional to the posterior
density.

The posterior predictive approach is an improvement compared to the plug-in method as it
incorporates the uncertainty in the nuisance parameter but it has its own limitation. Inferences
using the posterior predictive approach are weakened by the dependence introduced through the
methods twofold use of the observed data. The posterior predictive approach first estimates the
mediation effect and then the posterior predictive distribution of the nuisance parameter. This
is the specific weakness addressed by the partial posterior predictive approach. The p; method
eliminates the dependency between the mediation effect and nuisance parameter by adjusting
the posterior predictive distribution of the nuisance parameter by the density of the observed
mediation effect under the null hypothesis. As a result, for each subordinate null hypothesis, the
p3 method asymptotically provides the true probability of observing the mediation effect given
the null hypothesis (Robins et al., 2000).
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COX and KELCEY Wl LEY 7
4.1 | Testing multilevel mediation effects

Having conceptually outlined the p; method, we detail the extension of the test to multilevel
mediation. We begin with the test statistics that inform the two subtests of the composite
approach. For our implementation we used the noncentral ¢-test statistics (e.g., t, and tp). Here,
t, is the test statistic for the treatment-mediator path and is used to determine inferences
regarding the a path coefficient. Conversely, ¢, is the test statistic for the mediator-outcome
path and is used to determine inferences regarding the b path coefficient. We formed the ¢-test

statistics as
ty=a/y/c2 and ty=>b/ alf, @)

with 62 and ai as the error variances of the respective paths. For inference, we use as the ref-
erent distributions a pair of ¢-distribution with degrees of freedom based on cluster sample size
(n,) and number of cluster level predictors such that df = n, — g — 1 (Kelcey, Dong, Spybrook,
& Shen, 2017; Kenny & Judd, 2014; Raudenbush & Bryk, 2002). The estimated error variances
of each path (62 and alf) are obtained using the diagonal of the observed information matrix
associated with the maximum likelihood estimates of the parameters.

The p; method requires significance testing of each t-statistic to make inferential decisions
about the separate paths and overall mediated effect. The complex null of no mediation indicates
proper testing of one path requires accounting for the value of the other path (i.e., the nuisance
parameter). More formally, the subordinate complex null hypotheses of the composite approach
of the p; method are (a) t, = 0 with ¢, as the nuisance parameter and (b) ¢, = 0 with ¢, as the
nuisance parameter.

In order to track the nuisance parameter under each subordinate hypothesis, the multilevel
extension of the p; method resamples values to approximate p values under each subordinate null
hypothesis. Recall, that changes in the nuisance parameter lead to differences in the sampling
distribution of the mediated effect and therefore different p values under the null hypothesis.
Capturing these different p values creates a distribution of p values allowing us to incorporate
the uncertainty of our estimated nuisance parameter and eliminate the dependency between the
mediation effect and nuisance parameter.

The resulting structures of the subordinate tests are.

K (tAtAlt =0, tb—tbk) K (t»tAlt =ty b= 0)
]E1f(tat‘|iu=0stb=tbk> }§1f(tat‘|la=la vtb=0>

Pa=0b=b, ® — and po=q, b=0 * — : )
Z o] Z i)

Let pa—o,p=p, and pu=q, b=0 be the respective partial posterior p values under the complex null
hypothesis f, = 0 with ¢, as the nuisance parameter and ¢, = 0 with ¢, as the nuisance parameter.
Further, let K be the number of draws from the posterior distribution of the respective nui-
sance parameter and k be a specific draw. Last, f (t3t5]ta = 0,1, = ) and f (tat5]ta = to,. tp = 0)
are the densities of the observed mediation effect under the respective subordinate hypotheses.
Adjustment—on the basis of these densities—addresses the partial association between the medi-
ated effect and the nuisance parameter (i.e., t, and t,, respectively, in the above formulations)
that arises from the dual use of the nuisance parameter to compute the posterior distribution and
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8 Wl LEY COX and KELCEY

estimate the mediated effect. Densities and p values are empirically estimated using the product
of the appropriate ¢-statistics under, for example, 10,000 or more draws.

The final result of this composite test yields two p values, the largest value from each of the sub-
ordinate tests in Equation (8). We adopt the conservative approach and draw inferences regarding
the mediated effect from the larger of the two p values. The formulation in Equation (8) utilizes
path notation from the 2-2-1 analytic model (¢, and ¢) but it is applicable to a wide range of mul-
tilevel mediation effects (e.g., ME = aB with t, and tg) as long as the correct path estimate, error
variance, and degrees of freedom are utilized in the formulation.

In summary, the final p value of the p; method is the largest p value from the two posterior
distributions of p values for the a path and b path. This is conceptually similar to the joint test
but the p; method appropriately incorporates the complex null hypothesis of mediation effects.
Consider the p values from other common mediation tests. The p-value under the Sobel test
reflects the location of a z-score formed using the estimated mediation effect and its SE on a
standard normal distribution. The joint test does not have a p value directly associated with
the mediation effect but two associated p values, one each reflecting the location of ¢ statistics
formed with the a path and b path coefficients and their SEs and compared to a t-distribution.
The MC interval test and bootstrapping methods do not produce a specific p value as inferen-
tial decisions are based on a 95% confidence interval from the distribution of sampled mediation
effects.

The literature has noted the p; method as the most advantageous for determining p val-
ues when faced with a complex null hypothesis (Bayarri & Berger, 2000; Biesanz et al., 2010;
Robins et al., 2000) but its performance when applied to determining the significance of multilevel
mediation effects is unknown.

5 | SIMULATION

To provide an assessment as to the relative and absolute utility of the p; method, we probed
its performance in simulated two-level cluster-randomized multilevel mediation studies (Scho-
chet, 2011; Spybrook et al., 2016). These simulations demonstrate the accuracy of our p; method
derivations and help us assess its performance in terms of power and Type I error rate. Addition-
ally, the inclusion of five other mediation tests allows us to gauge the p; method in more relative
terms.

We generated 500 datasets for each condition of the fully crossed design (see Table 1) based
on the analytic models above. The cluster-level treatment indicator was coded as +0.5 with con-
tinuous mediator and outcome variables for both the 2-2-1 and 2-1-1 designs. Next, we analyzed
each of the data sets using the aforementioned mediation tests and tracked the number of times
a test found a statistically significant mediation effect. In the null condition (a and/or b = 0), any
statistically significant result represented a Type I error. Conversely, when the alternative hypoth-
esis was true (i.e., ME > 0), the proportion of significant results represented the power of the test
to detect the mediated effect.

We systematically varied the a and b (or B) path coefficient values to create three null and
two nonnull conditions (see Table 1) matching previous simulation studies (e.g., Pituch & Sta-
pleton, 2008). We included two sample size conditions by pairing clusters of 40 and 80 with
individuals per cluster of 20 and 40, respectively (n, = 40 and n; = 20; n, = 80 and n; = 40).
These sample sizes represent small but typical two-level multilevel mediation studies (e.g., Scho-
chet, 2011; Spybrook et al., 2016). Limited sample sizes are also appropriate based on prior

Iny) suonipuo)) pue swd . 3y 238 “[€20Z/40/€0] U0 AiqrT duluO AfIA ‘SHIVIEIT YELNAD TVOIAIN LLVNNIONID 40 ALISYAAINN Aq 16T 1 UwIs/[ [ 11°01/10p/wiod Ka[im Aeaqraus|uo/:sdiy woiy papeojumod 0 ‘vLS6LIYT

Kolm A

25201 SUOWILIO)) aAEaI) d[qeatidde AU A POUIDAOS BIE SAOIIE V() S9SN JO SIINI 10} AIBIQIT AUIIUQ) AO]1AN UO



COX and KELCEY Wl LEY 9

TABLE 1 Simulation conditions summary table.

Conditions
Test Outcome Model Data (residuals) Sample size Mediated effect (ab)
Sobel Power 2-2-1 Normal n,=40n; =20 a=06b=04
Joint Type I error 2-1-1 Nonnormal n, =80 n; =40 a=03b=0.1
MC a=0b=0
% boot a=0b=04
BC boot a=06b=0

P3

Note: ¢ is held constant at 0.1 across conditions. For 2-2-1 mediation, %24 =0.9, 0‘2, =0.8, and 1)2, = 0.2. For 2-1-1 mediation,

63, =02 = 0.8, 77, = 77 = 0.2, and the b notation above represents the B used in the 2-1-1 analytic model.

theoretical and simulation literature demonstrating methods converge in larger sample sizes (e.g.,
Hayes & Scharkow, 2013).

The remaining parameters influencing the power to detect mediation effects were held con-
stant throughout the simulations. The chosen theoretical Type I error rate was set at @ = .05
and the conditional direct effect, ¢’ was held at 0.1 because it has little influence on mediation
test power (Kelcey, Dong, Spybrook, & Cox, 2017; Kelcey, Dong, Spybrook, & Shen, 2017) and
this value reflects previous simulation studies (e.g., Pituch et al., 2006; Tofighi, West, & MacK-
innon, 2013). Finally, the variance components for each mediation type varied slightly across
models but were held constant within each type. For 2-2-1 mediation, 01%4 =0.9, 012, =0.8, and
73 = 0.2 resulting in an unconditional intraclass correlation coefficient for the outcome of
py = 0.2. For 2-1-1 mediation, 6}, = o = 0.8 and 77, = 7 = 0.2 resulting in an unconditional
intraclass correlation coefficient for the outcome and mediator of py = 0.2 and pp = 0.2,
respectively.

51 | Nonnormal data

An additional consideration when testing mediation effects is the possibility of nonnormal data
(i.e., skewness and kurtosis in the mediator and outcome variables). While often disregarded,
these types of data are common in applied research (e.g., Blanca, Arnau, Lopez-Montiel, Bono,
& Bendayan, 2013) and when considered demonstrate a substantial and detrimental influence
on mediation test performance (Biesanz et al., 2010; Pituch & Stapleton, 2008). For example,
Pituch and Stapleton (2008) found increased inaccuracies in Type I error rate across several
types of mediation tests in a multilevel context with nonnormal data. Additionally, they found
mediation tests specifically designed to accommodate nonnormal data (e.g., BC nonparamet-
ric bootstrap) still experienced performance issues (e.g., inflated Type I error) and differences
among tests in terms of power rates appear the most pronounced under critical conditions (e.g.,
small sample sizes). The p; method has not been examined in multilevel settings with non-
normal data but Biesanz et al. (2010) did consider nonnormal data when they applied the ps
method to single-level mediation. Under those conditions the p; method performed relatively
well in terms of Type I error and power in comparison to other mediation tests included in
the study.
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10 Wl LEY COX and KELCEY

We replicated the simulation study described above with nonnormal data generated by trans-
forming the residuals of the mediator and dependent variable to have skewness of 2 and kurtosis
of 7 (Biesanz et al., 2010; Fleishman, 1978). This type of nonnormal data is a common occurrence
in applied research (e.g., Blanca et al., 2013; Micceri, 1989). We expect the estimated mediation
effect (e.g., ab) to remain unbiased even when the normality assumption fails to hold (Little &
Rubin, 2002). However, SEs and therefore the methods employed in this study that utilize the SEs
will be affected (e.g., Sobel test).

To conclude, we evaluate the performance of six mediation tests aimed at detecting two types
of multilevel mediation effects from a cluster-randomized study. The evaluation includes three
null and two nonnull conditions that vary by treatment-mediator and mediator-outcome path
coefficient values. In each condition we generate 500 datasets and track the rejection of the null
hypothesis for each test. The MC interval test and novel p; method uses 10,000 draws to deter-
mine the significance of the mediated effect. The bootstrapping methods utilize 1000 resampled
datasets. We then repeated this investigation using nonnormal data. All data generation and anal-
yses were completed in R using the Ime4 package and author created scripts (see Appendix A for
p3 method code and Data S1 for complete R code).

6 | RESULTS

The primary outcomes of interest were Type I error and power rate. Table 2 presents results
for the simulated cluster-randomized study of 2-2-1 mediation and Table 3 presents results
for the simulated cluster-randomized study of 2-1-1 mediation. Type I error rates were cap-
tured when mediation tests were applied to data generated under the null condition and the
test—incorrectly—identified a significant mediated effect. To improve the presentation and inter-
pretation of these results we apply two criteria utilized in similar studies (e.g., Biesanz et al., 2010).
First, we bold values that fall outside of the 2.5%-7.5% range identified by Bradley’s (1978) lib-
eral criterion. Second, we italicize values that fall outside the 3.5%-6.5% range identified by Serlin
(Serlin, 2000; Serlin & Lapsley, 1985). To further highlight inflated Type I error rates those cells
that exceed upper levels of the criteria stated are shaded.

In the two conditions when data were generated to have a nonnull mediated effect power rates
were determined using the number of times the test correctly identified the significant effect. To
improve the readability of the power rate section of each table we bold the highest power rate in
a specific condition and bold and italicize the second highest value (e.g., Biesanz et al., 2010).

Overall, the null condition created lower than expected Type I error rates. This was particularly
true when both the treatment-mediator path and mediator-outcome path were null (i.e., a =0
and b = 0). In this double null case, Type I error rates were well below the expected .05 value
across all mediation types, tests, and conditions. The accuracy of Type I error rates varied in the
two other null conditions depending on the type of multilevel mediation being considered but
were still consistently lower than expected. Inflated Type I error rates were much less common.
Across the 144 cells representing Type I error rates only five cells exceeded the criteria for inflated
Type I error rate. Of note, four of the five cases were a result under the p; method.

In terms of overall results related to power, the selected mediation tests performed similarly
across many of the conditions. The notable exception being the Sobel test which is consistently
underachieved. Even though differences in power rates achieved by the tests were relatively close,
the p; method and BC bootstrap method were consistently top performers. As noted in the pre-
vious literature, test performance converged in well-powered designs with larger samples sizes
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COX and KELCEY Wl LEY 13

(see Table 3, when n, = 80 and n; = 40 with a : b = 0.6 : 0.4). The remainder of the Section 6 is
divided into two parts based on the mediated effect (i.e., 2-2-1 and 2-1-1). Within each section we
describe more specific results involving Type I error and power with normal and nonnormal data.

6.1 | Cluster randomized studies of 2-2-1 mediation

We found very low Type I error rates in the double null case of 2-2-1 mediation but results were
more nuanced when only one path was null. Overall, the Type I error rate was lower when the null
condition was a result of a null mediator-outcome path (i.e., b = 0). Sample size also influenced
Type I error rates but this influence varied based on the null condition. For example, Type I error
rates were typically greater in the larger sample size condition when b = 0 but smaller in the larger
sample size condition when a = 0. The influence of nonnormal data on Type I error rate when
testing 2-2-1 mediation was test specific with increasing and decreasing rates observed across the
six mediation tests. As far as relative test performance, the p; method, BC bootstrap, and joint
test performed well with 2-2-1 mediation in terms of Type I error rate outside of the double null
condition.

When considering power, all tests performed well in the large sample size and large mediated
effect condition and few substantial differences were noted in the smaller sample size and large
mediated effect condition. However, test power performance differed in the more difficulta = 0.3
and b = 0.1 condition. Here, power rates in the larger sample size and normal data condition
ranged from 17% with the Sobel test to 40% with the BC bootstrap. Across all conditions with
a = 0.3 and b = 0.1 the BC bootstrap and p; method achieved the greatest power rates. We also
noted a general but minor decrease in power to detect 2-2-1 mediation effects when comparing
tests across the normal and nonnormal data conditions.

6.2 | Cluster randomized studies of 2-1-1 mediation

For 2-1-1 mediation, all tests again failed to achieve a Type I error rate approaching the .05 level
when both path values were 0 (i.e., double null condition). In the other null conditions for 2-1-1
mediation, accuracy of Type I error rates varied by sample size and mediation test but these results
did not parallel the results involving 2-2-1 mediation. For example, we found some inflated Type I
error rates in the smaller sample size condition but overall Type I error rate was more accurate in
the B = 0 null condition. While not as conclusive, the opposite was observed in the larger sample
size condition where Type I error rate was more accurate in the a = 0 null condition and less
accurate in the B = 0 null condition. Additionally, inflated Type I error rates were more common
when testing 2-1-1 mediation.

Unlike the results noted for 2-2-1 mediation, the effect of nonnormal data on Type I error rate
varied by sample size for 2-1-1 mediation. In the smaller sample size condition, Type I error rates
generally decreased in the nonnormal data condition while they increased in the larger sample
size condition. As for the overall performance of specific tests, the p; method, BC bootstrap, and
joint test again performed well but all demonstrated some cases of inaccurate Type I error rates.
In terms of statistical power to detect 2-1-1 mediation, the tests performed very similarly with the
greatest power rates achieved with BC bootstrapping, the p; method, and the MC interval test.
We did see a similar minor decrease in power when conducting mediation tests with nonnormal
data but not across all conditions (e.g., n, = 80, n; =40,anda : B=10.3 : 0.2).
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14 Wl LEY COX and KELCEY

To summarize, we investigated the power to detect a mediated effect and the accuracy of Type
I error rates for a variety of mediation tests in simulated cluster-randomized studies with two
different types of multilevel mediation effects. The primary purpose of this simulation was to serve
as a case study of the newly developed p; method for testing multilevel mediation. For Type I error
rates across the different null conditions considered here, the p; method performed admirably
compared to the other established tests even the highly recommended BC bootstrap but did suffer
from some inflated Type I error rates. While valuable, the method is far from a comprehensive
solution to the problems associated with testing multilevel mediation effects. For example, all tests
in this investigation suffered extremely low Type I error rates when both the treatment-mediator
and mediator-outcome path were nonsignificant.

In terms of power rates, the p; method ranked first or second in 11 of the 16 condi-
tions. It along with the BC bootstrap and the MC interval test performed consistently well.
The p; method and BC bootstrap were particularly advantageous when data were nonnor-
mal and in conditions with a smaller mediated effect. Interestingly, we noted some differ-
ences in mediation test performance with normal versus nonnormal data but relative test
performance was fairly consistent (e.g., test performance rank remained the same in normal
and nonnormal conditions). Overall, the newly developed p; method performed well com-
pared to the current set of mediation tests but any advantages should also be considered
from a practical standpoint (e.g., additional power of 1%-2%, more accurate Type I error rate
by 1%-2%).

7 | DISCUSSION

The literature has found it difficult to develop sound inferential tests of mediated effects because
their composite nature creates a complex null hypothesis (MacKinnon et al., 2002; MacKinnon
et al., 2007). For example, inaccurate Type I error rates and low power are persistent issues
when conducting inferential tests on multilevel mediation effects. In this study, we sought to
address this limitation by developing and investigating the p; method. This new and promis-
ing test is designed for and sensitive to the composite nature of mediation. Our results suggest
the p; method is an appropriate and effective test of multilevel mediation effects and in rel-
ative terms its performance was commensurate or better than currently available inferential
tests.

The availability of the p; method to determine the significance of multilevel mediation effects
is an important development for three reasons: (a) The p; method performs relatively well com-
pared to commonly utilized mediation tests in terms of power. Increases in power to detect
multilevel mediation effects increases the capacity of applied researchers to conduct studies
aimed at multilevel mediation. (b) The p; method produces a single representative p value. This
type of clear and concise summative value allows easy interpretation of results from the p; method
and directly overcomes a disadvantage of using the joint test. (c) With properly formatted variance
components, the p; method can be utilized for study design and planning (e.g., a priori power
analysis).

Quickly reformulating the error variance of the path coefficients allows the p; method to be
available before data collection. In the context of experimental designs this is a crucial feature
and one that prevents the use of bootstrapping methods. As expressed, the estimates of 62 and alf
(or 6123) are based on observed data, thus precluding the use of the p; method for study planning.
However, it is possible to restructure these error variance formulations on the basis of the expected
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COX and KELCEY Wl LEY 15

information which can be tracked in terms of path coefficients, intraclass correlation coefficients,
and, if applicable, variance explained by covariates (see Appendix B; Kelcey, Dong, Spybrook, &
Cox, 2017; Kelcey, Dong, Spybrook, & Shen, 2017). The literature and other past research provide
plausible estimates of these values allowing power analyses and other study planning activities to
consider the p; method. Using these formulations, the newly extended p; method is accessible for
power analyses or adequate sample size determination when planning group-randomized studies
of multilevel mediation.

The p; method is not without limitations. In comparison to other mediation tests, it
often avoids substantially underestimated Type I error rates but performs just as poorly as
its peers under a double null condition (i.e., a =0 and b =0). When considering power,
the p; method ranked among the best performers but was consistently less than BC boot-
strapping and typically outperformed other tests by >5%. In many cases, power differences
of >5% may not be practically meaningful. The p; method also has substantial computa-
tional demands requiring more time to complete inferential testing and as a newly developed
test is less accessible and certainly less understood than other methods. Here, we pro-
vide R code to encourage utilization of the p; method and improve accessibility but rec-
ognize adoption of novel methods often takes substantial time and ongoing dissemination
efforts.

Given the alignment between the p; method and inferential testing of multilevel mediation
effects, it is worth asking why it did not substantially outperform the currently available tests.
The strong overall performance of the p; method suggests that its composite null approach that
explicitly addresses the complex null of no mediation is advantageous when considering the
asymmetric sampling distributions of mediated effects. However, the strong results from other
mediation tests indicate a robustness to any asymmetries and adequate accommodation of the
complex null hypothesis of no mediation. Put differently, our results suggest, several confidence
interval approaches (e.g., bootstrapping, MC interval test, and joint test) appropriately accom-
modate the asymmetric sampling distributions and complex null hypotheses of mediated effects
even with smaller sample sizes. For example, the p; method performed well with nonnormal data
but not well enough to distinguish itself from other tests as their relative rank remained fairly
consistent across the normal and nonnormal data conditions.

Our results further indicate that test selection for multilevel mediation studies is context
dependent and researchers must weigh multiple factors to select the most advantageous test. Gen-
erally, we recommend BC bootstrapping for testing multilevel mediation effects. It garners default
status through consistent performance in terms of power and Type I error rate accuracy. However,
bootstrapping approaches are unavailable for study planning so we suggest employing the MC
interval test or the p; method for this purpose. These approaches still achieve consistently high
power rates and relatively accurate Type I error rates but only require estimated path coefficients
and their error variances to predict power. Applied researchers should consider these guide-
lines but also weigh their tolerance for Type I errors, interpretability of test results, and ease of
implementation when selecting a test for multilevel mediation. We would, however, make a final
recommendation to avoid the Sobel test because it consistently and substantially underperformed
compared to the other tests considered in this study.

To conclude, the p; method represents a continued push to better align mediation tests,
inferential decisions, and mediated effects. While we echo general recommendations for BC boot-
strapping, the p; method was consistently the most powerful test available for study planning.
Ultimately, these general guidelines should be disregarded by researchers in favor of test selec-
tion based on their study specific conditions and mediated effect of interest. We believe our
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16 Wl LEY COX and KELCEY

extension of the p; method to multilevel mediation and assessment of its potential aids in these
efforts. Given some promising findings and remaining questions future research is important
especially considering different analytic models, sample allocations, and path coefficient values.
Additionally, a comparison of the p; method against Bayesian approaches to mediation analy-
sis (e.g., Yuan & MacKinnon, 2009) could further distinguish advantageous conditions for either
approach. This work and these future studies build on the capacity of applied researchers to
conduct adequately powered multilevel mediation studies and therefore improves the quality of
research across substantive fields.
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APPENDIX A

#. H
H i

# PPP Function: R Code
# Testing 2-2-1 and 2-1-1 Mediation

## Partial Posterior Method

## Explanation of function/method:

# This requires two functions: PathANull, PathBNull

# Take the maximum p-value from the output of these functions

# Partial Posterior method is first p-value from each function’s output
# Mediation model (221 or 211) dictates ta and tb values

## Note: this code will take a while to run, please be patient

## Terms:

# n_nullsim Number of draws in PathANull and PathBNull for each grid value
# ngrid Number of grid points evaluated within PathANull and PathBNull

# ndraws Number of posterior values to draw from ta and tb.

# PPP Function- PathANull

PathANull <- function(ta, tb, dfa, dfb, n_nullsim=1000000, ngrid=200, ndraws=50000){

test <- ta*tb

posteriorB<- (rnorm(ndraws,mean=0,sd=1) + (tb)*(sqrt(rchisq(n= ndraws,df=dfb,ncp=0)/
(dfb))))/(sqrt(rchisq(n= ndraws,df=(dfb+1),ncp=0)/(dfb)))

pvalues<-matrix(NA,ncol=3,nrow= ngrid+1)

for (iin 1: (ngrid+1)){

x <-(i-1)*((max(posteriorB)-min(posteriorB))/ngrid) + min(posteriorB)

yp <- (rnorm(n=n_nullsim,mean=0,sd=1) + x*(sqrt(rchisq(n= n_nullsim,df=dfb,ncp=0)/
(dfb))))/sqrt(rchisq(n= n_nullsim,df=dfb,ncp=0)/dfb)*(rnorm(n= n_nullsim,mean=0,sd=1)/
sqrt(rchisq(n= n_nullsim,df=dfa,ncp=0)/dfa))

yd <- (rnorm(n=n_nullsim,mean=0,sd=1) + x*(sqrt(rchisq(n= n_nullsim,df=dfb,ncp=0)/
(dfb))))/sqrt(rchisq(n= n_nullsim,df=dfb,ncp=0)/dfb)*(rnorm(n= n_nullsim,mean=0,sd=1)/
sqrt(rchisq(n= n_nullsim,df=dfa,ncp=0)/dfa))

FN<- ecdf(yp)
kernden <- density(yd, from=test, to= test+1)

pvalues[i,1]<-x
pvalues[i,2]<-1-FN(abs(test))+ FN(-1* abs(test))
pvalues[i,3]<-kernden$y[kernden$x == test]
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##Note:

#If the largest p-value is very small (<.0001), then return 0.

#The spline function will fail for very large observed values of ta and tb
t#tas p-values and densities will be 0 under the null hypotheses.

if (max(pvalues[,2]>.0001)){
pvalues<-subset(pvalues, pvalues[,3]> 1e-8)
pvalues.lo <- smooth.spline(y=pvalues[,2],x=pvalues[,1],tol=1e-6)
dvalues.lo <- smooth.spline(y=pvalues|,3],x=pvalues|,1],tol=1e-6)
pvalx <-predict(pvalues.lo, data.frame(x= posteriorB))
dvalx <-predict(dvalues.lo, data.frame(x= posteriorB))

postval <- cbind(posteriorB,pvalx$y,dvalx$y)

#Replacing zero densities with the smallest positive value.
postval[,3][postval[,3]<=0]<- min(subset(postval, postval[,3]>0))
postval[,2][postval[,2]<=0]<- min(subset(postval, postval[,2]>0))

pplug<- as.numeric(predict(pvalues.lo, data.frame(x= tb))$y)
postvalue <- mean(postvall,2])
ppvalue <- sum(postval[,2]/postval[,3])/sum(1/postval[,3])

if (ppvalue<0){ppvalue<-0}
if (postvalue<0){postvalue<-0}
if (pplug<0){pplug<-0}

c(ppvalue, postvalue, pplug)
} else ¢(0,0,0)
}

# PPP Functions- PathBNull

PathBNull <- function(ta, tb, dfa, dfb, n_nullsim=1000000, ngrid=200, ndraws=50000){
test <- ta*tb
posteriorA<- (rnorm(ndraws,mean=0,sd=1) + (ta)*(sqrt(rchisq(n= ndraws,df=dfa,ncp=0)/
(dfa))))/(sqrt(rchisq(n= ndraws,df=(dfa+1),ncp=0)/(dfa)))
pvalues<-matrix(NA,ncol=3,nrow= ngrid+1)

for (i in 1: (ngrid+1)){
x <-(i-1)*((max(posteriorA)-min(posteriorA))/ngrid) + min(posteriorA)
yp <- (rnorm(n=n_nullsim,mean=0,sd=1) + x*(sqrt(rchisq(n= n_nullsim,df=dfa,ncp=0)/

(dfa))))/sqrt(rchisq(n= n_nullsim,df=dfa,ncp=0)/dfa)*(rnorm(n= n_nullsim,mean=0,sd=1)/
sqrt(rchisq(n= n_nullsim,df=dfb,ncp=0)/dfb))

w00 KofimATeaqiiounuo/sdiy Woiy papeojumod °0 “bLS6LOVT

1Y) suonipuo) pue sud Ly 33§ “TE20/40/£0] U0 A1paqr uruQ A1 *SHIAVULIT YLLNAD TYOIIAHN ILVNNIONID 40 ALISYAAINA £q 1621 UeIs/[[11°01/10p/uw

Kolm A

10§ AIRIQrT UIUQ DI UO

2501 SUOWILIO) dAIIERL) A[qEoHdE U Aq PALIDACS IE SOOIIE YO 1281 JO Sot



20 Wl LEY COX and KELCEY

yd <- (rnorm(n=n_nullsim,mean=0,sd=1) + x*(sqrt(rchisq(n= n_nullsim,df=dfa,ncp=0)/

(dfa))))/sqrt(rchisq(n= n_nullsim,df=dfa,ncp=0)/dfa)*(rnorm(n= n_nullsim,mean=0,sd=1)/
sqrt(rchisq(n= n_nullsim,df=dfb,ncp=0)/dfb))

}

FN<- ecdf(yp)
kernden <- density(yd, from=test, to= test+1)

#cbind(kernden$x, kerndenSy)

pvalues|i,1]<-x

pvalues|i,2]<-1-FN(abs(test))+ FN(-1* abs(test))
pvalues[i,3]<-kernden$y[kernden$x == test]

#See note above regarding very small p values

if (max(pvalues[,2]>.0001)){

pvalues<-subset(pvalues, pvalues[,3]> 1e-8) ###changed from 8 to 6
pvalues.lo <- smooth.spline(y=pvalues|,2],x=pvalues|,1],tol=1e-6)
dvalues.lo <- smooth.spline(y=pvalues|,3],x=pvalues|,1],tol=1e-6)
pvalx <-predict(pvalues.lo, data.frame(x= posteriorA))

dvalx <-predict(dvalues.lo, data.frame(x= posteriorA))

postval <- cbind(posteriorA,pvalx$y,dvalx$y)

#Replacing zero densities with the smallest positive value.
postval[,3][postval[,3]<=0]<- min(subset(postval, postval[,3]>0))
postval[,2][postval[,2]<=0]<- min(subset(postval, postval[,2]>0))

pplug<- as.numeric(predict(pvalues.lo, data.frame(x= ta))$y)
postvalue <- mean(postval[,2])
ppvalue <- sum(postval[,2]/postval[,3])/sum(1/postval[,3])

if (ppvalue<0){ppvalue<-0}
if (postvalue<0){postvalue<-0}

if (pplug<0){pplug<-0}

c(ppvalue, postvalue, pplug)

} else ¢(0,0,0)

}

H
1

# PPP Application

# 1) Run code above to create PPP functions

# 2) Determine ta and tb and dfa and dfb using mediation power literature
# 211- Kelcey, Dong, Spybrook, & Cox, 2017
# 221- Kelcey, Dong, Spybrook, & Shen, 2017
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# 3) Get posterior p value for each path using code below
# 4) Determine significance of mediated effect using the largest of the two p # values

a_path_p3<-PathANull(ta=, tb=, dfa=, dfb=,
n_nullsim=1000000, ngrid=200, ndraws=50000)

b_path_p3<-PathBNull(ta=, tb=, dfa=, dfb=,
n_nullsim=1000000, ngrid=200, ndraws=50000)

APPENDIX B

B.1 Error variance of the path coefficients in 2-2-1 mediation
For the 2-2-1 model in a group-randomized study with a balanced design the expected error
variance of the a path coefficient can be estimated as (Kelcey, Dong, Spybrook, & Shen, 2017),

63 = w' (B1)
n;

Similarly, for the b path coefficient the expected error variance is
(p- —p2 (1-2)) +1 - pi/m

aZ
n(1-%)

where n; and n, are the individual per cluster and cluster sample size, respectively, p is the intr-
aclass correlation for the outcome such that p = lefl /o3 + lefl’ anda, b, ¢, 67, and sz/| retain their
interpretation from Equations (1) and (2).

) (B2)

B.2 Error variance of the path coefficients in 2-1-1 mediation
For the 2-1-1 model in a group-randomized study with a balanced design the expected error
variance of the a path coefficient can be estimated as (Kelcey, Dong, Spybrook, & Cox, 2017),

1_“_2) (1_FM)
2 pM( 4py + n

o5 = o . (B3)

For the b path coefficient the expected error variance is

(o [ o 1[5 -2 )

Op = : ! L=y 4(1-ry)
() N
4

Terms retain a similar meaning as previously described but now we have an intraclass
correlation coefficient (p) for the outcome and mediator.
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