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Moderation effects have long been an important consider-
ation for researchers across an array of substantive areas
(e.g., Aiken et al,, 1991). In the social sciences and across
many other disciplines, theories under investigation often
involve latent variables and moderation effects operational-
ized as interactions between latent variables. Structural
equation modeling (SEM) is an effective approach in these
settings and when hierarchical or clustered data are present,
multilevel SEM (MLSEM) is applicable (Preacher et al,
2016). SEM accounts for the uncertainty associated with
latent variables and their interactions thereby avoiding
biased parameter estimates and inaccuracies in the related
standard errors when measurement error is disregarded
(e.g., Asparouhov & Muthén, 2021). These advantageous
features hold true for MLSEM in addition to its ability to
examine between-, within-, and cross-level relationships
(Preacher et al., 2016).

Literature has developed several approaches to analyze
MLSEM with latent interactions. Contemporary approaches
include the latent moderated structural equation method
that directly estimates the latent interaction utilizing max-
imum likelihood estimation with the expectation maximiza-
tion algorithm (Klein & Moosbrugger, 2000). This approach
simultaneously estimates measurement and structural model
parameters which has been shown to produce bias and con-
vergence issues with complex models (e.g., >3 latent varia-
bles) or relatively small sample sizes (e.g., S. Smid &
Rosseel, 2020). The long-established but product-indicator
approach utilizes the products of the indicators of the latent
focal predictor and the indicators of the latent moderator to
form indicators of the interaction (Kenny & Judd, 1984).
While this approach is easily implemented in current soft-
ware (Schoemann & Jorgensen, 2021) it can quickly become
unwieldy as the number of observed variables and measure-
ment model parameters increase. A more recent develop-
ment has been the extension of Bayesian estimation to
single- and multilevel models with latent interactions (e.g.,
Asparouhov & Muthén, 2021). Bayesian approaches also
simultaneously consider the measurement and structural
models but tend to be more robust to convergence issues,
much more computational efficient, and typically less biased
than latent moderated structural equation approaches

(Asparouhov & Muthén, 2021; Cox & Kelcey, 2021; M.
Smid et al., 2020). Prior research has, however, suggested
that Bayesian estimation generally requires large samples or
informative priors for these advantages to fully materialize
in complex models such as those including latent interac-
tions (Cox & Kelcey, 2021).

Factor score regression or path analysis represents an
alternative to the simultaneous estimation of structural and
measurement models employed by latent moderated struc-
tural equation methods and Bayesian approaches. Factor
score regression takes a sequential approach to estimation,
first estimating the measurement models, then using pre-
dicted factor scores to estimate the structural or path mod-
els. It is relatively easy to implement, fairly robust to model
misspecifications, and performs well with smaller sample
sizes and more complex SEMs (Ng & Chan, 2020; Zitzmann
& Helm, 2021). Ng and Chan (2020) extended a factor score
approach to single-level structural equation models with
latent interactions and found improved performance. factor
score approaches have since been extended to MLSEMs
with latent interactions (e.g., Zitzmann & Helm, 2021).
However, typical factor score Regression disregards the
measurement error associated with latent variables resulting
in biased coefficient estimates (e.g., Cox & Kelcey, 2021).
Extension and adaptations to factor score approaches have
been proposed to accommodate latent variable measurement
error and subsequent parameter estimate bias, but these
extensions do not fully accommodate multilevel latent inter-
actions (Brandt et al., 2020; Hoshino & Bentler, 2013; Wall
& Amemiya, 2003).

To address this gap, we derived extensions for Croon’s
bias-corrected estimation to MLSEMs with latent interac-
tions. Croon’s bias-corrected estimation approach (Croon’s)
has performed well in terms of bias and convergence rates
with limited sample sizes in a variety of single-level SEMs
(Devlieger & Rosseel, 2017), sequential mediation models
(Kelcey, 2019), and when estimating mediated effects in
MLSEMs (Authors Redacted, in press; Kelcey et al.,, 2021). It
has also performed well with single-level SEMs with varying
complexity and latent interactions (Cox & Kelcey, 2021).
Similar to factor score regression, Croon’s takes a sequential
approach that separates estimation of the measurement and
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structural models. The distinguishing feature of Croon’s is a
method of moments correction to adjust estimates in the
structural model to account for latent variable unreliability
(Croon, 2002). Below we detail structural and measurement
models for two-level SEMs with latent interactions, Croon’s
estimation process, and the corrections necessary for esti-
mating two-level SEMs with latent interactions. Following
these description, we investigate the absolute and relative
accuracy of the new Croon’s based corrections through sev-
eral simulation studies.

1. Two-level Moderation Effects

We follow the MLSEM latent moderation effect conceptuali-
zations presented in Preacher et al. (2016) and utilized in
Asparouhov and Muthén (2021) such that a two-level model
with latent moderation can include interactions within lev-
els, between levels, and across levels. We consider seven
two-way interaction hypotheses under the four designs pos-
sible for a two-level moderation analysis [1x(1-1), 2x(1-1),
2x(2-1) and 1x(2-1)] where the numbers in the design
notation represent the levels of the moderator, focal pre-
dictor variable, and outcome (Preacher et al., 2016).

1.1. Design, Model, and Moderation Effect

A 1x(1-1) design indicates a level-one moderator (Z;) with
level-one focal variable (Xj) and outcome (Yj;) such that
Ziix(Xjj- Yj5). To consider all possible forms of moderation
in this design, it is necessary to decompose the focal variable
(Xjj) and moderator (Z;) into within and between compo-
nents such that

Xij=Xi+ X 1)
Zi=27;+7; (2)

with ij indicating individual i in cluster j and X; Z; cluster
specific latent means for each variable (i.e., the between-
level component of the variables). There are three feasible
moderation effects under the 1x(1-1) design: First (Al), Z;
moderates the effect of X; on Yj;, captured using

Yj = Boj + BiXi+ BoZi + B3 XiZi + & &; ~ N(0,0%)

3)
Boj = Y00 + Y01 Xj + 7022 + Uy; Uy ~ N(0,7%)

Z, X, and Y variable components retain their meaning
from above with the f; coefficient capturing the moderation
effect and ¢; u,; the within- and between-level residuals,
respectively. This is a within-level interaction effect as both
components of the interaction (i.e., Z; and X;) are located at
the within level. The second moderated effect (A2) possible
in a 1x(1-1) design occurs when Z; moderates the effect of
X; on Yj, captured using

Yij = Boj + Bi1Xi + PoZi + BsXiZj + &y &5 ~ N(0,0%)

(4)
ﬁoj = Y00 + V01X, + V02Z;j + Uy; Uy ~ N(o, T%ﬁ)

The coefficient associated with the moderated effect
remains f; but the product term now includes the between-
level component of the moderator (Z;) and the within-level
component of the focal variable (X;). With components of

the interaction located at different levels, A2 represents a
cross-level moderation effect. The last moderated effect in
the 1x(1-1) design, designated A3, occurs when Z; moder-
ates the effect of X; on Yj;, which is modeled using

Yij = ﬁOj + ﬁ]Xi + ﬂZZi + 81‘]‘ 8ij ~ N(O’ 6%’)
Boj = 700 + V01X + V022 + 003X, Zj + gy tg; ~ N(0,75).

(5)

With between-level components of both X and Z now
making up the interaction term, we have a between-level
moderation effect captured with y,;.

In a two-level MLSEM, the moderator may be also be
located at level-two (Z;) while the focal predictor (Xj)
remains unchanged. The 2x(1-1) design has two types of
moderated effects. First (B1), Z; and can moderate the rela-
tionship between X; and Y;; under the model

Yj = Boj + BiXi+ B XiZi +¢; &y~ N(0,0%)

(6)
Boj = Vo0 + Y01 X + Y0oZj + thy; thg; ~ N(0,7%)

with the coefficient of interest /5, capturing a cross-level
moderation effect. It is also possible to consider the moder-
ated effect (B2) of Z; on the relationship between X; and Y}
using

Yl] = ﬁ()] + ﬁIXi i 8,']' gij ~ N(O’ 6%’)
Boj =Yoo + V01X + Y022 + V03X, Zj + ug;  ug; ~ N(0,3).
)

The coefficient associated with the interaction term is
now y,; and captures a between-level moderation effect.

Next, a 2x(2-1) design with the moderator and focal
independent variable measured at level-two produces one
moderated effect (C) when Z; influences the relationship
between X; and Yj; modeled by

Y= Boj + ¢ & ~ N(0, %)
Boj =700 + 701 Xj + 2022 + 103X, Zj + ug;  ug; ~ N(0, 7).
(8)

The coefficient associated with the interaction is again
Y03 and captures a between-level moderation effect.

The last two-level design is a 1x(2-1) design that
includes a focal predictor located at level-two but a moder-
ator located at level-one. For this moderation effect (D), Z;
influences the relationship between X; and Yj;

Yij = Boj + P12 + ¢ &;j ~ N(0,0%)
Boj = Voo + 701X + 2022 + 103X, Zj + ug; gy ~ N(0, 7).
)

The interaction term is located at level-two and the
between-level moderation effect is again captured by y;.

The four multilevel moderation designs noted here and
the seven associated moderation effects possible under those
designs require six different Croon’s corrections. For moder-
ation effects, the corrections for Croon’s estimation adjust
the covariance between latent variables and latent interac-
tions and are dependent on the location of the variables and
interaction (i.e., between or within level). For two-level
SEMs with latent interactions, three corrections are needed
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for moderation effects at the between level, one correction
for the moderation effect at the within level, and two cor-
rections for cross-level moderation effects. Specifically, cor-
rections for between-level moderation effects are necessary
for the covariance of the between part of a level-one moder-
ator and the between part of a level-one predictor (A3),
level-two moderator and level-two predictor (C), and level-
two moderator or predictor and between part of a level-one
moderator or predictor (B2 and D). Moderation effects at
the within level require corrections for the covariance of the
within part of a level-one moderator and within part of a
level-one predictor (Al). Cross-level moderation effects
require corrections for the covariance of the between part of
a level-one moderator and within part of a level-one pre-
dictor (A2), and level-two moderator and the within part of
a level-one predictor (B1).

1.2. Measurement Models

Before detailing Croon’s corrections for two-level SEMs
with latent interactions, we present factor models for each
latent variable. While previous literature has emphasized
observed variables or latent variables with simple measure-
ment models in two-level moderation analyses (e.g.,
Asparouhov & Muthén, 2021; Preacher et al., 2016), we con-
sider a latent outcome, focal predictor, and moderator meas-
ured using multiple indicators. The latent variables of
interest may be located at the within- or between level.
When the latent variable is measured at level-two and there-
fore limited to the between level (e.g., Z; in Equation (6)), a
single-level common factor model is employed such that

Z] = uZ) + AZjan+sZJ' (10)

Here, Z; are the observed indicators for the latent 7y,
Az represents the factor loadings, p, the indicator inter-
cepts, and &, the error terms. To fix the scale the variance
of 1, can be set to one or the factor loading of the first
indicator can be set to one. We utilized the latter method to
set the scale and utilized three indicators per latent variable
in our models and simulation studies. The factor model for
Nz, is fit using maximum likelihood with factor scores for
Nz, determined using the regression predictor method and
represented by Z;. A similar model is utilized for latent
focal predictors measured at level-two (e.g., 1y, for X;).

For latent variables measured at level-one, it is necessary
to employ a multilevel factor model allowing each variable
to be decomposed into between- and within-level compo-
nents. For example, the focal independent variable Xj; is
decomposed into n“ and 7! such that

= ny, + ACHY, + Ay Hed e (11)

In the multilevel factor model i and j index the individu-
als and clusters, respectively, X;; represents the indicators
for the latent variable, the latent variable has a between-level
component represented by n%? and a within-level compo-
nent 7y, Af(z and Af(l are the corresponding factor load
ings, py, are the intercepts for each cluster, and &}? and &%
are the between- and within-level error terms. A351gn1ng
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unit variances to the between- and within-level factors can
set the scale but we again set the first factor loading of both

n% and n% to set the scale. Similar formulations are appro-
prlate for other latent variables measured at level-one (e. g.,
the latent outcome Y;; and latent moderator Z;).

While single-level factor scoring methods (i.e., regression
predictor method) are suitable for variables located entirely
at level-two (i.e., Z; in Equation (6)), we must consider the
clustering of observed indicators when factor scores are
determined for level-one variables that vary within- and
between levels (i.e., X;; in Equation (6); Kelcey et al., 2021).
For example, the between-level factor scores for the focal
predictor (X)) in Equation (6) can be found with

L2

X2 = A2 1 AP A2 (12)

The predicted factor scores for cluster j are represented

L ol2
with X', x? are the between-level components of the focal
predictor indicators, and A%* are the between-level factor
score matrix weights. To predict between-level factor scores

for the between-level component of a latent variable (e.g.,
the latent

between-level components of the within-level indicators
(xt%) are required along with the between-level covariance
matrix of the focal predictor indicators and between-level
factor loadings but these are available using the multilevel
factor model (Equation (11)). Put differently, the indicator
values at the between level of a multilevel latent variable are
not directly observed so they must also be predicted while
indicator values for single-level latent variables are observed
and thus directly used to predict factor scores. While alter-
native (e.g., empirical Bayes) and multivariate approaches
are available, we use the univariate cluster means approach
to estimate between-level components of indicators. This
approach simply uses the observed indicator cluster means
to estimate between-level components of indicators (Kelcey
et al., 2021). Of pertinence to our corrections, we can now
incorporate the reliability of between-level factor scores
(R") in corrections involving between-level components of
variables measured at the within level.

. <12
factor scores for the focal predictor X ),

2. Croon’s Bias-corrected Estimation

Croon’s estimation can be classified as a Structural After
Measurement approach (Rosseel & Loh, in press) as it first
estimates measurement models, then structural models with
a Croon’s based correction (Croon, 2002). Croon’s tracks
bias introduced into the structural or path model by the
unreliability associated with the latent variables and then
corrects for that uncertainty using measurement model
results (Croon, 2002; Kelcey et al., 2021). The process of
Croon’s estimation does parallel factor score regression but,
importantly, Croon’s estimation includes a correction to
structural relationships to account for measurement error.
More specifically, Croon’s bias-corrected estimation employs
a four step process: (a) a factor model is fit for each latent
variable using, for example maximum likelihood, and then
factor scores are predicted for each latent variable; (b) the
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variance-covariance matrix is estimated using the aforemen-
tioned factor scores; (c) a method of moments type correc-
tion is constructed using results from the measurement
models and applied to the variance-covariance matrix pro-
duced in step (b); and (d) the structural or path model is
estimated using the corrected variance-covariance matrix.

The correction of the factor score covariance matrix (step
(c) above) is the crucial and distinguishing component of a
Croon’s estimation. The method of moments correction
adjusts the factor score covariance matrices at each level to
account for latent variable measurement error (Croon, 2002;
Kelcey et al,, 2021). Croon’s based corrections utilize the
reliability of latent variables as derived from the measure-
ment models to adjust the covariances proportional to the
magnitude of the measurement error. Because the correc-
tions are applicable to the covariance between two variables
they are structured in variable pairs: (a) individual-level
covariance between two individual-level variables, (b) clus-
ter-level covariance between two individual-level variables,
(c) covariance between a cluster-level variable and individ-
ual-level variable, and (d) covariance between two cluster-
level variables. The covariance between a cluster-level vari-
able and the between-level component of an individual-level
variable is corrected using the cross-level correction (c). For
a more detailed explanation of each correction associated
with Croon’s estimation of MLSEMs see Kelcey et al. (2021)
and Devlieger and Rosseel (2020), for single-level latent
interactions see Cox and Kelcey (2021), and for single-level
mediation see Devlieger and Rosseel (2017) and
Kelcey (2019).

Cox and Kelcey (2021) applied the Croon’s correction
approach to estimating latent interactions in single-level
SEMs. The process and logic follow the previously detailed
steps but the corrections involving the covariance between a
variable and the interaction terms considered the measure-
ment models of all three variables. Croon’s has also been
successfully applied across other single-level SEMs (e.g.,
Devlieger et al.,, 2016; Devlieger & Rosseel, 2017; Kelcey,
2019; Loncke et al, 2018) and various multilevel contexts
(Authors Redacted, in press; Devlieger & Rosseel, 2020;
Kelcey et al., 2021). Across these settings Croon’s produced
nearly unbiased coefficient estimates and relative to other
prevalent estimators (i.e., ML and FS), Croon’s was often
more efficient and more likely to converge. The sequential
approach of Croon’s is well suited for complex models
including MLSEMs with latent interactions when sample
sizes are limited (Authors Redacted, in press; Kelcey
et al.,, 2021).

The robustness of Croon’s to model misspecifications
and its performance under various measurement model con-
ditions is an area of ongoing research. Hayes and Usami
(2020a, 2020b) investigated multidimensionality and corre-
lated errors under Croon’s method, and Devlieger and
Rosseel (2020) and Kelcey et al. (2021) investigated the
influence of item intraclass correlation on the accuracy and
sensitivity of Croon’s method in multilevel settings. In terms
of Croon’s robustness to model misspecifications, Cox and
Kelcey (2022) considered the sensitivity of Croon’s method

to non-normality in indicators, missing path values in the
structural models, indicators loading on the incorrect factor,
and missing cross-loadings in the measurement model.
Hayes and Usami (2020b) also considered Croon’s perform-
ance with misspecifications in the structural model. While
these works and others (e.g., Rosseel & Loh, in press) have
generally found Croon’s based approaches to be more
robust to model misspecifications than traditional maximum
likelihood estimators, Robitzsch (2022) found this to be true
only for structural model misspecifications and not for mis-
specifications  involving cross-loadings and  residual
correlations.

3. Croon Corrections for Multilevel Latent
Interactions

Using the measurement models and the structural models
detailed previously, we extend Croon’s estimation to accom-
modate latent interactions in two-level SEMs. We detail the
six different Croon based corrections needed to accommo-
date the seven latent moderation effects possible in two-level
SEMs. We begin with interactions involving variable compo-
nents at the between level (moderation effects A3, C, B2,
and D captured with y,;) then detail corrections when vari-
able components are located at the within level (moderation
effects Al), and conclude with cross-level moderation effects
(A2, and B1). With each correction we present simulation
study results to illustrate the accuracy, efficiency, and feasi-
bility of Croon’s estimation for MLSEMs with different
moderation effects.

As with previous extensions of Croon’s estimation, our
corrections do not accommodate random slopes, assume
cross-level invariance on the factor loadings and normally
distributed indicator residuals that are uncorrelated across
factors. Relaxing these assumptions are ongoing areas of
research (e.g., Blinded, 2022) but are beyond the scope of
this study. We discuss specific directions for future research
in the Discussion section.

3.1. Between Part of Level-one Moderator X between
Part of Level-one Predictor (A3)

Conceptually, Croon’s corrections adjust the factor score
covariance matrices at each level using the reliability of the
latent variables to account for latent variable measurement
error (Croon, 2002; Kelcey et al,, 2021). For the moderation
effect in Equation (5) (A3), we must correct the covariance
of the interaction involving the between part of the level-
one moderator (ZFjZ) and the between part of the level-one

predictor (Xﬁz) with the outcome (Y_?z). More formally, we

must correct

[2,02 12 S12412 ~L2
COV(’?ZJ’?X,”?YJ-) where cov(nzjnx‘j,nyj)

Sl2 ol2 olay . ol2

cov(Z; -X;,Y ;) with Y the between-level factor scores
Sl2 oI2 .

of the outcome and Z; - X representing the product of

L2 o2 )
factor scores from Z; and X ;. If we assume a simple

structure (i.e., no cross-loadings and conditional independ-
ent of the measurement residuals across factor models), a
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corrected estimate of the covariance between the interaction
and the outcome can be obtained using

cov(ilz i i1y.)

[2pl2 AL2 L2 AL2 AL2 AL2y2 A L2
AZ_)RZ_)AXJRX_)AX_)AZ_jAY_)RY_jAY_J

L2 L2

COV(’?Z x ’7Y ) (13)

This correction parallels the correction for latent interac-
tions in single-level SEMs (Cox & Kelcey, 2021). The esti-
mated covariance between the predicted factor scores
(cov(néznf(z,ﬁg}z)) is divided by the product of the factor
score matrix (A) and factor loading matrix (A) from each
latent variable involved in the covariance (nz , nX , and

). Unique to MLSEM interactions is the R term repre-
sentmg the vector of mean indicator reliabilities. The first
two components (A, A) adjust for the unreliability of the
factors while R** properly adjusts for the unreliability of
indicator cluster means.

After correcting covariances it is necessary to address the
variances of the within- and between-level components of
all the latent variables. Fixing the scale by setting the varian-
ces to one negates the need to correct the variance terms. If
one sets the scale of latent variable components using the
variance of the first indicator, a corrected variance is avail-
able from the factor models. For example, we utilized the
estimated variance of the within- and between-level compo-
nents of all the latent variables from the factor models.
However, neither of these solutions are applicable to the
variance of the latent interaction (e.g., var(nz2ny’)) as it is
not estimated in a measurement model. For latent variable
interactions at both the within- and between level, the vari-
ance can be estimated using the variance of the product of
two random variables (Bohrnstedt & Goldberger, 1969; Cox
& Kelcey, 2021) such that

var(nZng) = var(nvar(n) + cov(u7.ng)’.  (14)

Here, it is assumed that the mean of each latent variable
component is centered at zero. Note that the corrected
variance of the latent interaction (e.g., var(n;ny) in
Equation (14)) is calculated using corrected variance
(e.g., var(nx) and var(qz)) and covariance (e.g.
cov(nz , nX ?)) components.

3.1.1 Simulation

To assess the performance of Croon’s estimation with latent
interactions in MLSEMs we conducted a series of simulation
studies. Data were generated using R (R Development Core
Team, 2019) based on the corresponding multilevel moder-
ation model and measurement models. Analyses were com-
pleted using Mplus 8.6 (Muthén & Muthén, 1998-2021) and
the MplusAutomation package in R (Hallquist & Wiley,
2018). For example, simulated data for examining Croon’s
estimation for an A3 moderation effect, the between part of
the level-one moderator ( Z_sz) and the between part of the
level-one predictor (Xﬁz), were generated in R using
Equation (11) for the three indicators of each latent variable
and Equation (5) for structural components (see Figure 1).
Maximum likelihood was used in Mplus to estimate the fac-
tor models and structural models for both Croon’s and

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 5

| Between-level

Within-level

Figure 1. Conceptual model for MLSEM with latent interaction composed of
the between part of a level-one moderator and between part of a level-one
predictor (A3).

factor score regression approaches. Results were then com-
piled from Mplus outputs files.

The first factor loading of each indicator was fixed at 1.0
to set the scale of the latent variable. Factor loadings of the
second and third indicator at the within level were set at 1.5
and 0.5, respectively. We switched these values at the
between level such that the second indicator loading was 0.5
and the third loading was 1.5. Note that the multiple (three)
indicator measurement models considered in our analyses
are common in methodological and substantive research but
also more complex than those used in many previous simu-
lation studies of MLSEMs with latent interactions (e.g., sin-
gle indicator models; Asparouhov & Muthén, 2021; Preacher
et al.,, 2016). We constrained all indicator residuals to be
positive to avoid inflated non-positive definite covariance
matrixes from negative indicator residuals. Path coefficients
for each simulation were set at § =y, = 0.2. The outcome
variance decomposition in the structural models across
simulation studies was ¢} = 0.8 and 7} = 0.2. Error vari-
ance of the multilevel factor models had similar decompos-
ition with the variance of &y set to 0.8 and £}’ set to 0.2
while error variance of single-level factor models was set
to 1.0.

We varied cluster sample size (1, =90, 60, 30) and
individual per cluster sample size (n, =50 and 20) to
reflect limited sample size conditions in which prevalent
and default estimators for MLSEMs (i.e., maximum likeli-
hood) have demonstrated poor performance especially when
latent interactions are present (Devlieger & Rosseel, 2020;
Kelcey et al.,, 2021; Rosseel, 2020; S. Smid & Rosseel, 2020).
The fully crossed design produced six sample size conditions
for each of the six corrections. Each simulation study uti-
lized 500 data sets with coefficient estimates captured using
Croon’s estimation and an uncorrected factor score regres-
sion approach (FS). Default maximum likelihood estimation
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was excluded as a comparison estimator because initial
simulation study results even those with larger sample sizes
found it failed to converge in the vast majority of condi-
tions, took substantially more time to converge than
Croon’s or FS, and often yielded extreme parameter esti-
mates when results were produced. Maximum likelihood
was simply not a feasible estimator for the types of condi-
tions we considered for the two-level SEMs with latent
interactions.

3.1.2. Results

Estimator performance was evaluated using convergence
failure rate, bias, and efficiency. These metrics indicate the
absolute performance of Croon’s estimation while a com-
parison of these metrics to the uncorrected FS approach
helps evaluates the newly developed corrections. Below we
detail convergence failure rate, bias, and efficiency then pre-
sent related results followed by similar presentations for
each multilevel moderation effect.

3.1.2.1. Convergence Failure Rate. Convergence failure rate
indicates the rate at which an estimator failed to converge
(i.e., provided no results). Convergence failure for Croon’s
estimation and FS typically stemmed from a non-positive
definite matrix in the measurement model or, for Croon’s
only, a variable with a variance approaching zero after the
correction. Croon’s estimation avoided convergence issues
(i.e., reliably provided results) even at the smallest sample
sizes (i.e., n, = 30). It failed to produce results in around
3% of the simulation runs at this sample size and the con-
vergence failure rate fell to near 0 as n, increased to 90 or
more (see Table 1). Overall, both estimators performed well
with the A3 multilevel moderation effect model.

3.1.2.2. Bias. To evaluate the accuracy of Croon’s estimation
with our new corrections for multilevel latent interactions,
we tracked bias in coefficient estimates across all simulated
data sets. Bias was calculated as the difference between the
estimated coefficient value and the true value within
each data set. We found the average absolute bias at the

Table 1. Summary of estimator performance with latent interaction A3 in
terms of convergence failure rate, bias, and efficiency across sample
size conditions.

Bias SD RMSE

Fail

Estimator n, n, converge L2 L1 L2 L1 L2 L1
Croon 50 30 0006 0.016 0002 0.113 0.043 0.114 0.043
60 0008 0006 0.03 0078 0031 0.078 0.032

9 0 0.005 0.002 0063 0.025 0.064 0.026

20 30 0032 0013 0006 0.121 0.067 0.121 0.067

60 0018 0011 0.005 0082 0047 0.083 0.047

90 0004 0006 0.006 0.066 0039 0.066 0.04

FS 50 30 0 0.028 0.026 0.098 0.03 0.102 0.04
60 0 0.025 0.027 0.064 0.022 0.069 0.034
90 0 0.027 0.027 0.05 0.018 0.057 0.032
20 30 0.006 0.029 0.028 0.099 0.049 0.103 0.056
60 0 0.034 0.027 0.065 0.034 0.073 0.044

90 0.002 0.032 0.028 0.051 0028 006 0.04

Note: Fail converge represents the rate estimators failed to converge.
Estimators are abbreviated with Croon for Croon’s bias-corrected estimation
and FS for the uncorrected factor score regression approach.

within- (L1) and between level (L2) using all coefficient esti-
mates at the given level. This produced two summative val-
ues capturing bias for each estimator (i.e., within-level bias
and between-level bias)

Croon’s estimation performed well in terms of bias with
the A3 multilevel moderation model (see Table 1). These
results indicate the newly derived corrections involving an
A3 multilevel moderation effect are accurate. Croon’s esti-
mation demonstrated decreased bias as n, increased but this
trend was not present in FS estimates. The FS approach fails
to consider latent variable unreliability which produces
biased coefficient estimates across sample size conditions.
We found greater amounts of bias in between-level coeffi-
cient estimates when compared to within-level coefficient
estimates. This result was expected due to differences in
sample size. To understand these results in a broader con-
text, recall that each coefficient value was set at 0.2 indicat-
ing relative bias across all models can be found using
bias/0.2. For example, bias of .03, .02, and .01 is equivalent
to relative bias of 0.15, 0.1, and 0.05 indicating Croon’s esti-
mation was near or below conventional guidelines for rela-
tive bias of <0.05 (Hoogland & Boomsma, 1998) across
conditions for A3 latent interactions.

3.1.2.3. Efficiency. Estimator accuracy is vital but efficiency
or the precision of estimates is also an important criterion
to evaluate estimator feasibility. We used the standard devi-
ation of coefficient estimates across replications to gauge
estimator efficiency. Specifically, we averaged the standard
deviation of coefficient estimates at each level to measure
estimator efficiency (see SD in Table 1). Croon’s estimation
again performed comparatively well. The FS approach also
performed well on this metric as FS approaches typically
produce efficient estimates due to their exclusion of latent
variable unreliability. Our results reflect this expectation.

To consider bias and efficiency concurrently, we calcu-
lated the root mean square error (RMSE) for each coeffi-
cient estimate and tracked the average RMSE for each
estimator across the between- and within level (see Table 1).
Croon’s estimation demonstrated a good balance of accuracy
and efficiency when estimating the A3 multilevel moder-
ation model. In totality, Croon’s estimation demonstrated
dependable (i.e., low convergence failure rate), accurate (i.e.,
small bias), and efficient (i.e., small SD) estimates of the A3
multilevel moderation model. In the remaining corrections
for the different types of multilevel moderation effects in
two-level SEMs and corresponding simulation study results,
we emphasize the distinguishing features of each correction,
any changes to simulation conditions, and results that
diverge from other findings.

3.2. Level-two Moderator X Level-two Predictor (C)

For the moderation effect (C) in Equation (8) (see Figure
2a), we must correct the covariance of an interaction involv-
ing a level-two moderator (Z;) and a level-two predictor
(X;) with the outcome (Yﬁz). Following a similar process
and assumptions, a corrected estimate of the covariance
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Between-level

(a) C

Within-level

(b) B2
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(c)D
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(e) A2
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(f)B1

I Within-level

Figure 2. Conceptual models for MLSEMs with latent interactions for various moderation effects (a) C, (b) B2 (c) D, (d) A1, (e) A2, and (f) B1.

between this latent interaction and the latent outcome
L2 . .
(cov(n,nx,1y’")) can be obtained using
%)
cov(ilz iy iy))

L2

with variance of the interaction found using
Var(’?zj’?x)) = Var(nZJ)var(an) ps cov(nzj,nxj)z. (16)

Notice the correction is a simplified form of the one uti-
lized for the A3 multilevel moderation effect. This correc-
tion does not include indicator reliability terms (R{“Z) for Z;
or X; as they are not necessary for variables measured at the
second level of the model. The indicators of Z; and X; are
located at level-two and therefore are directly observed.
Variance of the latent interaction is again estimated using
the variance of the product of two random variables
(Bohrnstedt & Goldberger, 1969; Cox & Kelcey, 2021).

We conducted a similar simulation study to examine
Croon’s estimation for a MLSEM that included a type C
multilevel moderation effect. Croon’s estimation again per-
formed well in terms of dependability, accuracy, and effi-
ciency (see Table 2). Of note, the model only includes latent
variables at the between level so level-one results are neces-
sarily omitted. As for Croon’s, it performed well in terms of
convergence failure, bias, and efficiency. Convergence failure
rates were a bit higher than those found estimating a
MLSEM with an A3 moderated effect but quickly dropped
as n, exceeded 30 and never exceeded 6%. This result likely
stems from the location of all variables (and therefore coeffi-
cient estimates) at the between level. For comparison, the FS
approach had low convergence failure rates and small SD of

Table 2. Summary of estimator performance with latent interaction C in
terms of convergence failure rate, bias, and efficiency across sample
size conditions.

Bias SD RMSE
Estimator n, n, Fail converge L2 L2 L2
Croon 50 30 0.058 0.015 0.143 0.145
60 0.006 0.015 0.094 0.095
90 0 0.012 0.072 0.074
20 30 0.044 0.024 0.15 0.152
60 0.016 0.015 0.103 0.104
90 0 0.007 0.076 0.077
FS 50 30 0.006 0.028 0.126 0.129
60 0 0.034 0.077 0.085
90 0 0.031 0.06 0.068
20 30 0.01 0.04 0.119 0.126
60 0 0.035 0.078 0.086
90 0 0.033 0.06 0.069

Notes: Fail converge represents the rate estimators failed to converge.
Estimators are abbreviated with Croon for Croon’s bias-corrected estimation
and FS for the uncorrected factor score regression approach.

coefficient estimates but consistent bias ~ 0.03, slightly
higher than found with the A3 moderation effects model.

3.3. Level-two Moderator (or Predictor) X between Part
of Level-one Moderator (or Predictor) (B2 or D)

A single correction is applicable to the multilevel moder-
ation effects in Equations (7) and (9) (see Figure 2b and c).
In both cases (i.e.,, moderation effects B2 and D), a latent
variable measured at level-two covaries with the between
part of a level-one latent variable. For the B2 moderation
effect, we have a level-two moderator (Z;) influencing the
relationship of the between-level component of the level-one
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Table 3. Summary of estimator performance with latent interactions B2 in
terms of convergence failure rate, bias, and efficiency across sample
size conditions.

Bias SD RMSE

Fail

Estimator n, n, converge L2 L1 L2 L1 L2 L1

Croon 50 30 0.036 0.015 0.007 0.129 0.04 0.13 0.04
60 0 0.009 0.003 0.089 0.028 0.09 0.028

90 0.006 0.005 0.005 0.069 0.022 0.069 0.023

20 30 0.04 0.019 0.011 0.136 0.06 0.137 0.061

60 0.016 0.013 0.011 0.088 0.045 0.09 0.046

90 0.002 0.005 0.011 0.074 0.035 0.075 0.037

FS 50 30 0.004 0.031 0.046 0.107 0.032 0.111 0.056
60 0 0.029 0.043 0.071 0.022 0.077 0.048

90 0 0.027 0.044 0.055 0.018 0.062 0.048

20 30 0.01 0.034 0.044 0.114 0.049 0.119 0.066

60 0.004 0.036 0.046 0.07 0.037 0.079 0.059

90 0.002 0.032 0.045 0.058 0.029 0.066 0.054

Notes: Fail converge represents the rate estimators failed to converge.
Estimators are abbreviated with Croon for Croon’s bias-corrected estimation
and FS for the uncorrected factor score regression approach.

focal predictor (X;) on the outcome (Yjj). For the D moder-
ation effect, the location and type of the moderator and
focal predictor switch with the between-level component of
the level-one moderator (Z;) influencing the relationship of
a level-two focal predictor (X;) on the outcome (Yj). We
use the B2 multilevel moderation effect to present the cor-
rection for a covariance involving a level-two latent variable
and the between part of a level-one latent variable
(cov(nzjn%_ ,n%)). The corrected covariance is

cov(ﬁzjﬁg}i, )

cov(iy, ’7)ch> ’7%'2) = 12 A L2 (17)
5 A, AZRE A, AL AT RYAY
With variance of the interaction such that
Var(nzjn%) = var(nzj)var(n%) + cov(ry, n%)z (18)

This correction follows the previous corrections with the
biased factor score covariance representing the latent inter-
action and latent outcome (cov() ijq?j ,71%%) divided by com-
ponents that capture unreliability (i.e., A, A, and R'?). The
R’ terms are included for the latent variables located at
level-one (1, and #y) but are unnecessary for the level-two
latent variable (17,).

Results for the simulation study examining estimation
of the B2 multilevel moderation model can be found in
Table 3. Convergence failure rates remained at or below 4%
for Croon’s estimation even at the smallest sample sizes
while increases in sample size continued to reduce bias and
increase efficiency. The FS approach continued to demon-
strate consistently biased coefficient estimates.

3.4. Within Part of Level-one Moderator X within Part
of Level-one Predictor (A1)

The corrections detailed thus far have involved the covari-
ance of a latent interaction with another latent variable at
the between level (see Figures 1 and 2). There are also
unique corrections necessary for the moderation effects at
the within level and across levels. We begin with a correc-
tion for an Al moderation effect that involves the within
part of a level-one moderator (Z;) and within part of a

level-one predictor (X;; see Figure 2d). This moderation
effect occurs entirely at the within level. More formally, we

L1,L1 L] pLlipll pLi
correct cov(nzny;,ny,) where cov(iz iy y,)

cov(ZiL1 ~)~(i“, ?gl)cov(ziu -)N(fl, ?ile) with Z;‘Ll ')N(iu repre-

must

. L1 oLl
senting the product of factor scores from Z;, and X, and

S L1 . 1
Y representing the within-level factor scores of the out-
come. Retaining our process and assumptions, a corrected

covariance can be obtained using

~L1~L1 ~L1
L1 L1 Ll COV(”Zi”XI’”Y,j)
cov(nzny,ny.) = (19)
Zi X2 Yy ALlALlALlALIALlALl
72 0 2 X Y Yy

with latent variable interaction variance found with

var (i ) = var (g, Jvar (i) + cov(nzni))”.  (20)

Here all components of the covariance are located at the
within level eliminating the need for any consideration of
unreliability of indicator cluster means (R?). In fact, this
correction operates as a correction for a single-level latent
interaction (see Cox & Kelcey, 2021).

Results for the simulation study examining this correc-
tion can be found in Table 4 and indicate Croon’s estima-
tion performs well when estimating MLSEMs with an Al
moderation effect. Convergence failure rates were <4% at
the smallest sample size condition and around 1% or less as
n, exceeded 30. Bias and efficiency metrics for Croon’s esti-
mation again suggest it is an effective estimator and it con-
tinued to produce less biased estimates than the FS
approach. The takeaway is that the newly derived correc-
tions are accurate for latent interactions occurring at the
within level.

3.5. Between Part of Level-one Moderator X within Part
of Level-one Predictor (A2)

The final two corrections involve covariances with cross-
level latent interactions. First, we present the correction for
an A2 moderation effect when the covariance includes the
between part of a level-one moderator (Z;) and within part
of a level-one predictor (X;) and the outcome (Yél; see
Figure 2e). This correction can be expressed as

~12~L1 ~L1
cov(iiz iy, My,)

2, L1 L1
COV(”ZJ”X,-’”Y,;) = A L2pIZ ALLALZ ALLALL A L1 2n
A7 ; R7 ; Ay A7 ! Ay, Ayij Ayij
with the latent interaction variance such that
Var(nézjng) = Var(nz)var(ng) + 0% (22)

The cross-level nature of the latent interaction does not
change the general structure of the covariance correction
(i.e., estimated covariance divided by components that cap-
ture unreliability). The estimated variance of the latent
interaction does reflect a minor change stemming from the
consideration of a cross-level interaction. The within- and
between-level components are unrelated by design so the
covariance term in the variance formula is essentially
dropped. We include the 0% term as a placeholder to
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Table 4. Summary of estimator performance with latent interaction A1 in
terms of convergence failure rate, bias, and efficiency across sample
size conditions.
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Table 6. Summary of estimator performance with latent interaction B1 in
terms of convergence failure rate, bias, and efficiency across sample
size conditions.

Eail Bias SD RMSE Eail Bias SD RMSE

Estimator n, n, converge L2 L1 L2 L1 L2 L1 Estimator n, n, converge L2 L1 L2 L1 L2 L1
Croon 50 30 0.02 0.01 0.005 0.099 0.041 0.1 0.041  Croon 50 30 0026 0011 0.012 0.105 0.056 0.106 0.058
60 0014 0006 0.005 0066 003 0067 0.03 60 0016  0.009 0.009 0073 0.041 0.074 0.042

90 0004 0006 0.004 0058 0023 0.058 0.024 90 0006  0.005 0.07 006 0034 006 0.035

20 30 0.03 0009 001 0103 0.065 0.104 0.066 20 30 0032 0018 0.017 0111 008 0.113 0.082

60 0014 0009 001 0072 0046 0.072 0.048 60 0014 001 0014 0075 0055 0076 0.057

90 001 0.002 0.008 0.059 0.037 0.059 0.038 90 0006  0.007 0.011 0061 0.044 0.062 0.045

FS 50 30 0006 0031 0026 008 0.031 0.094 0.04 FS 50 30 0002 0031 0.048 0.094 0.045 0.099 0.066
60 0 0.031 0026 0057 0.022 0.065 0.034 60 0002 0.033 0046 0065 0033 0.073 0.057

90 0002 0033 0.025 0049 0018 0.059 0.031 90 0002 0.031 0.045 005 0027 0.059 0.053

20 30 0.006 0.037 0.028 008 0.051 0.09 0.058 20 30 0.004 0.041 0.049 0.1 0.065 0.109 0.081

60 0002 0038 0.027 006 0036 0.071 0.045 60 0002 0.038 0.047 0.062 0.045 0.073 0.065

90 0002 0036 0.025 0047 0028 0.059 0.038 90 0002 0.038 0.045 005 0035 0.062 0.057

Notes: Fail converge represents the rate estimators failed to converge.
Estimators are abbreviated with Croon for Croon’s bias-corrected estimation
and FS for the uncorrected factor score regression approach.

Table 5. Summary of estimator performance with latent interaction A2 in
terms of convergence failure rate, bias, and efficiency across sample
size conditions.

Bias SD RMSE

Fail
converge L2 L1 L2 L1 L2 L1
0.022  0.009 0.004 0.107 0.047 0.108 0.047

Estimator n, n,
Croon 50 30

60 0.002 0.007 0.004 0.071 0.033 0.072 0.033

90 0.002 0.005 0.004 0.057 0.027 0.057 0.027
20 30 0.034 0.01 0.009 0.114 0.065 0.114 0.066
60 0.002 0.008 0.008 0.076 0.048 0.077 0.049

90 0.016 0.006 0.007 0.061 0.038 0.062 0.039

FS 50 30 0 0.047 0.03 1443 0.035 1443 0.047
60 0 0.03 003 0.062 0.024 0.069 0.04

90 0 0.03 003 0.048 0.02 0.057 0.037
20 30 0.008 0.034 0.032 0.099 005 0.104 0.06
60 0 0.035 0.032 0.064 0.037 0.073 0.05

90 0.002 0.036 0.031 0.051 0.029 0.062 0.043

Notes: Fail converge represents the rate estimators failed to converge.
Estimators are abbreviated with Croon for Croon’s bias-corrected estimation
and FS for the uncorrected factor score regression approach.

illustrate this point. Results for the simulation study exam-
ining this correction and performance of Croon’s estimation
can be found in Table 5. Croon’s performance in terms of
convergence failure, bias, and efficiency paralleled previous
simulation study results. The performance of the FS
approach and the performance of Croon’s relative to FS
were also similar to previous results.

3.6. Level-two Moderator X within Part of Level-one
Predictor (B1)

Our final correction involves the covariance of a B1 moder-
ation effect that includes a level-two moderator (Z;) and the
within part of a level-one predictor (X;; see Figure 2f)
expressed as

~ ~L1 ~L1

cov(il, x> My,)

L1 | L1 j i ij
cov N = 23
(12,1, 1) AL AL A, AL AT AT 23

with the variance of the latent interaction found using

Var(nzjnf(ll) = Var(nzj)var(nf(}) + 0% (24)

Notes: Fail converge represents the rate estimators failed to converge.
Estimators are abbreviated with Croon for Croon’s bias-corrected estimation
and FS for the uncorrected factor score regression approach.

The correction and variance term for the Bl moderation
effect is similar to the other cross-level interaction (see
Equations (21) and (22)). The only noteworthy difference is
that the components of a Bl moderation effect are measured
at the corresponding level (e.g., within- or between level) so
no RX? term is necessary. Results for this final simulation
study are presented in Table 6. Croon’s performance in
terms of convergence failure, bias, and efficiency paralleled
previous simulation study results especially those of the
other cross-level interaction (see results for A2 in Table 5).
The takeaway from the simulation studies involving B1 and
A2 moderation effects is that the newly derived corrections
are not only accurate for models with latent interactions at
the within- and between level but also for models with
latent interactions occurring across levels.

3.7. Summary

Having presented the six corrections necessary for Croon’s
estimation to be utilized in with two-level SEMs that include
latent interactions, we summarize the key results from the
corresponding simulation studies. (1) The totality of results
demonstrates the accuracy of the covariance (and variance)
correction formulas involving two-level latent interactions.
Specific results for Croon’s estimation of the coefficients
associated with each latent interaction are summarized in
Table 7. These specific results parallel Croon’s overall per-
formance. Of note, relative bias for estimates of interaction
term coefficients are near or below conventional guidelines
of <0.05 (Hoogland & Boomsma, 1998) in almost all cases
when n, > 60.

(2) Overall Croon’s estimation convergence failure rates,
bias, SDs of coefficient estimates, and RMSE values indicate
it is a viable estimator for two-level SEMs with latent inter-
actions; (3) Bias, SDs of coefficient estimates, and RMSE
were fairly consistent across models with different types of
latent interactions and their respective analytic models.
These metrics generally decreased as #n,, #n;, or both
increased and were generally smaller at the within level (L1)
when compared to the between level (L2). Croon’s estima-
tion did have elevated levels of relative bias (e.g., ~0.15)
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Table 7. Croon estimation performance with specific latent interaction coeffi-
cients in terms of bias and efficiency across sample size conditions.

Type of interaction n, Bias Relative bias SD
A3 30 0.024 0.119 0.112
60 0.013 0.064 0.078
90 0.009 0.045 0.065
C 30 0.030 0.154 0.142
60 0.023 0.116 0.097
90 0.018 0.089 0.076
B2 or D 30 0.029 0.142 0.139
60 0.010 0.051 0.097
90 0.009 0.045 0.073
Al 30 0.009 0.045 0.036
60 0.008 0.040 0.025
90 0.007 0.035 0.020
A2 30 0.041 0.03 0.036
60 0.038 0.035 0.024
90 0.038 0.03 0.019
B1 30 0.019 0.096 0.056
60 0.011 0.055 0.044
90 0.009 0.045 0.036
Note: n; = 50.

when cluster sample size (n,) was less than 60; (4)
Convergence failure rate was slightly higher for Croon’s esti-
mation when estimating models with latent interactions at
the between level or across levels. That said, these conver-
gence failure rates were almost always < 5% with rates >1%
almost always occurring with n, < 30.

4. lllustration and Additional Considerations

In this section we use simulated data based on Capin et al.
(2022) to illustrate Croon’s estimation with multilevel latent
interactions and consider the effect of scale reliability and
intraclass correlation of items on estimator performance.
Capin et al. (2022), examined the effect of the Promoting
Adolescents’ Comprehension of Text (PACT) reading pro-
gram on academic outcomes in eighth grade students. The
study utilized a MLSEM with students (within level) or
level-one) nested within classes (between level or level-two)
to consider relations among several latent variables includ-
ing instructional quality, treatment adherence, student social
studies content knowledge (pre- and post-test scores), and
student reading comprehension (pre- and post-test scores).
Our adapted research question inspired by Capin et al.
(2022) includes a focal predictor of adherence to the PACT
program (adherence) measured at level-two or the class-
level, a student’s initial reading comprehension level as a
moderator (reading pre-test) measured at level-one or the
student-level, and the student’s reading comprehension level
after receiving PACT program instruction (reading post-
test) as the outcome measured at level-one or the student-
level (see Figure 3). This examination would have a particu-
lar interest in the main effect of the PACT program on stu-
dent’s reading post-test but also includes a multilevel latent
interaction. Specifically, it includes a type D multilevel latent
interaction (1 x (2 — 1)) that involves the between compo-
nent of the reading pre-test moderating the relationship
between the level-two PACT program adherence predictor
and reading post-test outcome. In other words, the initial
reading comprehension ability of a teacher’s students may

- Within-level

Figure 3. Conceptual model for illustration MLSEM with latent interaction com-
posed of the between part of a level-one moderator and a level-two pre-
dictor (D).

moderate the effect of the PACT program adherence.
Perhaps the program is more beneficial with groups of stu-
dents that on average start with lower levels of reading com-
prehension or it may be less beneficial under these
conditions. The inclusion of the interaction term allows us
to consider these possibilities.

Following the steps for Croon’s estimation, a factor
model would be fit using maximum likelihood estimation
and factor scores generated for all latent variables (e.g.,
adherence, pre-test, post-test), the variance-covariance
matrix of these factor scores would be estimated, then the
Croon’s correction would be applied before estimated the
structural model with this corrected variance-covariance
matrix (see R code for data generation and analysis code).
Kelcey et al. (2021) provides details for Croon’s estimation
that corrects all variances and covariances involving the
latent variables while this work provides the correction for
covariances involving the latent interaction term (e.g., pre-
test X adherence). In technical terms, the correction for the
covariance involving the between part of a level-one latent
moderator and a level-two latent predictor and

(cov(nzny,ny’)) is

cov (i iy i)

12 12
COV(’?z,ﬂx-’ ny )= 2L 12 I2pL2 A L2 (25)
A AZ_]‘RZ_ZJ‘A)() AZ,jAXJAY_) RY_ZJ‘AY_]‘
with variance of the interaction such that
Var(nézjnxj) = var(né?j)var(n)(]) + cov(n%, an)z. (26)

With a corrected variance-covariance matrix, the structural
model can be estimated wusing maximum likeli-
hood estimation.

Using simulated data, we estimate the illustrative example
model. For simplicity, we set the conditions in the example
to match those described for the B2 multilevel moderation
effect simulation study (e.g., measurement models) but used
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Table 8. Estimator performance for illustration example with latent interaction D in terms of convergence failure rate, bias, and efficiency.

RMSEA i o1 Y2 o3
Estimator Fail converge L2 L1 Est. SD Est. SD Est. SD Est. SD
Croon 0.02 0.1 0.056 0.181 0.053 0.189 0.101 0.2 0.098 0.185 0.098
FS 0.002 0.088 0.065 0.149 0.043 0.162 0.05 0.176 0.077 0.165 0.078

Note: All coefficients were simulated with values of 0.2 and n, = 47 with n, = 16.

Table 9. Summary of estimator performance with latent interaction D in terms of convergence failure rate, bias, and efficiency across sample size conditions

and different variance decompositions for the multilevel factor models ( €5, €%, and &}?).
Bias SD RMSE

Item ICC (7, &1?) Estimator n, n, Fail converge L2 L1 L2 L1 L2 L1
0.05 Croon 50 30 0.066 0.017 0.003 0.113 0.042 0.114 0.042
60 0.012 0.007 0.004 0.077 0.029 0.078 0.029
920 0.016 0.007 0.002 0.063 0.024 0.064 0.024
20 30 0.226 0.011 0.01 0.126 0.061 0.126 0.062
60 0.154 0.002 0.009 0.082 0.044 0.082 0.045
90 0.116 0.005 0.005 0.066 0.037 0.066 0.037
FS 50 30 0.006 0.016 0.049 0.103 0.032 0.105 0.058
60 0.002 0.013 0.051 0.066 0.022 0.068 0.055
90 0.002 0.016 0.049 0.054 0.018 0.057 0.053

20 30 0.09 0.019 0.052 0.105 0.047 0.107 0.07
60 0.056 0.017 0.052 0.066 0.034 0.068 0.062
90 0.034 0.017 0.049 0.055 0.028 0.058 0.057
04 Croon 50 30 0.032 0.023 0.005 0.143 0.036 0.145 0.036
60 0.004 0.02 0.005 0.096 0.026 0.098 0.027
90 0 0.011 0.004 0.078 0.022 0.079 0.023
20 30 0.02 0.025 0.008 0.146 0.055 0.149 0.056
60 0.008 0.017 0.011 0.101 0.042 0.103 0.043
920 0.004 0.015 0.008 0.079 0.034 0.08 0.035
FS 50 30 0.006 0.044 0.035 0.116 0.031 0.124 0.046
60 0 0.048 0.035 0.077 0.022 0.09 0.041
90 0 0.044 0.035 0.06 0.019 0.075 0.039
20 30 0.002 0.048 0.034 0.121 0.048 0.131 0.058
60 0.002 0.049 0.036 0.076 0.036 0.091 0.051
90 0 0.051 0.034 0.058 0.029 0.078 0.045

Note: Fail converge represents the rate estimators failed to converge. Estimators are abbreviated with Croon for Croon’s bias-corrected estimation and FS for the
uncorrected factor score regression approach.

a sample size that reflected Capin et al. (2022) such that the item intraclass correlation on the accuracy and sensitivity of
cluster or class sample size was 47 (n, = 47) and individual the Croon’s method in multilevel settings. We again set
per cluster or student per class sample size was 16 simulation conditions in the example to match those
(n, = 16). Let us first consider specific coefficient estimates described for the B2 multilevel moderation effect simulation
across simulated data sets (see Table 8). Across the 500 rep- study but consider two different intraclass correlation coefti-
lications, Croon’s estimation mostly avoided convergence cients of the indicator error terms (s%,sﬁ) in the multilevel
failure issues even with the limited sample sizes. Croon’s factor models (see Table 9) and two scale reliability condi-
estimation  did slightly underestimate the relationships tions by varying item factor loadings (see Table 10). While
between program adherence, the within-level component of these conditions only provide a preliminary and limited
pre-test scores, and the interaction term with the post-test assessment, we can glean some important implications.
outcome but was more accurate than the factor score First, as indicator error term ICCs approached zero
approach. Of particular importance is y,,; which captures convergence failure rate for Croon’s estimation, and to a
the magnitude of the interaction. Croon’s estimate of 0.185 lesser extent the factor score approach, increased. The
indicates relative bias of 0.075, just exceeding typical thresh- influence of indicator error term ICC on estimator bias
olds but substantially outperforming the factor score and efficiency was minimal. In terms of our example, if
approach. When considering both accuracy and efficiency very little indicator error variance was attributable to the
(i.e., RMSEA), Croon’s estimation outperformed or was per- class-level then estimation would be slightly more difficult.
formed similarly to the factor score approach. Overall, Second, increases to factor loadings (i.e., increased scale
Croon’s approach demonstrated apt performance with the reliability) decreased the convergence failure rate of
hypothetical example from Capin et al. (2022) and this illus- Croon’s and also produced slight decreases to bias while
tration serves as a showcase for possible applications of the improving efficiency. In our example, improvements in
estimator in substantive research. measuring PACT program adherence and reading compre-
We also use this example as the context to conduct an hension (pre- and post-test) would improve model estima-
initial evaluation of the influence of scale reliability and tion. It should be noted that these results echo previous
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Table 10. Summary of estimator performance with latent interaction D in terms of convergence failure rate, bias, and efficiency across sample size conditions

and different scale reliability.

Bias SD RMSE

Factor loadings Estimator n, n, Fail converge L2 L1 L2 L1 L2 L1
0.5 Croon 50 30 0.104 0.02 0.005 0.195 0.056 0.196 0.057
60 0.016 0.012 0.006 0.122 0.039 0.123 0.04
90 0.004 0.011 0.003 0.091 0.032 0.092 0.032
20 30 0.07 0.039 0.015 0.179 0.088 0.184 0.089
60 0.012 0.022 0.009 0.123 0.06 0.125 0.061
90 0.008 0.013 0.008 0.099 0.048 0.101 0.048
FS 50 30 0.008 0.05 0.078 0.145 0.037 0.154 0.087
60 0 0.049 0.079 0.094 0.026 0.106 0.083

90 0 0.054 0.078 0.07 0.021 0.088 0.08

20 30 0.002 0.101 0.078 0.752 0.063 0.762 0.1

60 0 0.065 0.077 0.09 0.041 0.111 0.087
90 0.002 0.061 0.076 0.074 0.032 0.096 0.083
15 Croon 50 30 0.004 0.01 0.004 0.121 0.034 0.122 0.034
60 0 0.005 0.004 0.077 0.025 0.077 0.025
90 0 0.003 0.003 0.064 0.019 0.064 0.019
20 30 0.022 0.01 0.01 0.133 0.055 0.133 0.056

60 0.002 0.004 0.008 0.085 0.04 0.085 0.04
90 0 0.003 0.01 0.068 0.032 0.068 0.033
FS 50 30 0 0.02 0.03 0.105 0.029 0.107 0.042
60 0 0.024 0.03 0.065 0.021 0.069 0.036
90 0 0.02 0.029 0.055 0.016 0.059 0.033
20 30 0.002 0.031 0.03 0.104 0.05 0.109 0.058
60 0 0.029 0.028 0.069 0.036 0.075 0.045
90 0 0.032 0.03 0.053 0.029 0.062 0.041

Notes: The first factor loading of each indicator was fixed at 1.0 to set the scale of the latent variable all other factor loadings were set at 1.5 and 0.5 in each
condition, respectively. Fail Converge represents the rate estimators failed to converge. Estimators are abbreviated with Croon for Croon'’s bias-corrected estima-

tion and FS for the uncorrected factor score regression approach.

findings related to Croon’s estimation

et al., 2021).

(e.g., Kelcey

5. Discussion

Estimation of MLSEMs with latent interactions, especially
with limited samples sizes, is often not feasible with typical
estimators (e.g., maximum likelihood) because of its compu-
tational complexity. Croon’s estimation has performed well
in a variety of SEMs but was not yet available for MLSEMs
with latent interactions. The purpose of this study was (a)
to extend Croon’s estimation to accommodate two-level
SEMs with latent interactions and (b) assess the accuracy of
new Croon’s based corrections and the performance of
Croon’s estimation with a variety of multilevel moderation
models. Following the multilevel moderation effect concep-
tualizations presented in Preacher et al. (2016), we identified
and developed six covariance and variance corrections
necessary for Croon’s estimation to accommodate all two-
level moderation effects. We then conducted simulation
studies examining each of the corrections to demonstrate
their accuracy, the feasibility of Croon’s estimation to esti-
mate MLSEMs with latent interactions, and evaluate the
comparative performance of Croon’s against uncorrected
factor score regression. Results indicated that the covariance
corrections were accurate and Croon’s estimation is a viable
estimator for two-level SEMs with latent interactions.

The primary contributions of this work are (1) the
Croon’s corrections necessary for estimating MLSEMs with
latent interactions and (2) an initial understanding of how

well Croon’s estimation performs with MLSEMs that include
latent interactions. The availability of Croon’s estimation for
MLSEMs with latent interactions expands the capacity of
researchers to consider complex theories in multilevel set-
tings. In these settings, we found typical maximum likeli-
hood estimation to be impractical as model complexity
increased and FS approaches biased. The struggles of these
estimators with limited sample sizes makes the availability
of alternative estimators such as Croon’s crucial. Simulation
study results increase understanding of the sample sizes
requirements for Croon’s estimation to dependably produce
accurate and efficient estimates for different multilevel mod-
eration models. Our results suggested that Croon’s estima-
tion can deliver dependable estimates with sample sizes as
small as 1, = 30 and n; = 20 whereas maximum likelihood
estimation was not feasible with similar sample sizes and
uncorrected factor score regression estimates were biased.
There are limitations to this work. We considered multi-
level moderation models with all latent variables measured
using three indicators per latent variable. We did not vary
measurement models or their conditions. While the com-
plexity of the latent variable measurement models is novel,
Croon’s estimation is not limited to these factor models. We
recommend future research consider different measurement
model conditions including various levels of composite reli-
ability, correlated measurement residuals, and factor load-
ings that vary across levels (i.e., cross-level non-invariance).
Structural model modifications that were not considered
here but may be of interest include more complex path
models, latent moderated mediation, and corrections that
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accommodate random slopes. Another pertinent area of
research is the robustness of Croon’s estimation when
assumptions related to the measurement and structural
model are not met (e.g., Blinded, 2022; Robitzsch, 2022).
Finally, we recommend a more comprehensive examination
of the factors influencing estimation of MLSEMs with latent
interactions including a wider variety of n, and n; condi-
tions, different decompositions of outcome variance across
levels, and a comparison Croon’s estimation to Bayesian
approaches. These limitations suggest many details sur-
rounding Croon’s estimation of MLSEMs with latent inter-
actions need to be investigated further but we are confident
in recommending its use even with limited sample sizes.
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