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Abstract. An r-quasiplanar graph is a graph drawn in the plane with
no r pairwise crossing edges. Let s ≥ 3 be an integer and r = 2s. We
prove that there is a constant C such that every r-quasiplanar graph
with n ≥ r vertices has at most n

(
Cs−1 logn

)2s−4
edges.

A graph whose vertices are continuous curves in the plane, two
being connected by an edge if and only if they intersect, is called a string
graph. We show that for every ε > 0, there exists δ > 0 such that every
string graph with n vertices, whose chromatic number is at least nε con-
tains a clique of size at least nδ. A clique of this size or a coloring using
fewer than nε colors can be found by a polynomial time algorithm in
terms of the size of the geometric representation of the set of strings.

In the process, we use, generalize, and strengthen previous results of
Lee, Tomon, and others. All of our theorems are related to geometric
variants of the following classical graph-theoretic problem of Erdős, Gal-
lai, and Rogers. Given a Kr-free graph on n vertices and an integer s < r,
at least how many vertices can we find such that the subgraph induced
by them is Ks-free?

Keywords: Quasi-planar graphs · String graphs · Graph coloring

1 Introduction

A topological graph is a graph drawn in the plane with points as vertices and edges
as continuous curves connecting some pairs of vertices. The curves are allowed
to cross, but they may not pass through vertices other than their endpoints.
If the edges are drawn as straight-line segments, then the graph is geometric.
If no r edges in a topological graph G are pairwise crossing, then G is called
r-quasiplanar.
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The following is a longstanding unsolved problem in the theory of topological
graphs; see, e.g., [5].

Conjecture 1. The number of edges of every r-quasiplanar graph of n vertices is
Or(n).

Conjecture 1 has been proved for r ≤ 4. See [1,3,4].
The intersection graph of a family of geometric objects, S, is a graph with

vertex set S, in which two vertices are joined by an edge if and only if their
intersection is nonempty. If S consists of continuous curves (or line segments) in
the plane, then their intersection graph is called a string graph (resp., a segment
graph).

A natural approach to prove Conjecture 1 is the following. Removing a small
disc around every vertex of an r-quasiplanar graph G, we are left with a family
of continuous curves S in the plane, no r of which are pairwise crossing. These
curves define a Kr-free string graph H. Suppose that the chromatic number of H
satisfies χ(H) ≤ f(r). Then each color class corresponds to the edges of a planar
subgraph of G. Thus, the size of each color class is at most 3n − 6, provided
that n ≥ 3. This would immediately imply that every r-quasiplanar graph with
n vertices has at most (3n − 6)f(r) = Or(n) edges, as required.

Surprisingly, this approach is not viable. In 2014, Pawlik, Kozik, Krawczyk,
Lasoń, Micek, Trotter, and Walczak [28] represented a class of K3-free graphs
originally constructed by Burling [6] as segment graphs whose chromatic numbers
can be arbitrarily large. Shortly after, Walczak [35] strengthened this result by
proving that there are K3-free segment graphs on n vertices in which every
independent set is of size O( n

log log n ).
Using the same approach, in order to prove Conjecture 1 for some r, it would

be sufficient to show that there is a constant g(r) with the property that the
vertex set of every Kr-free string graph can be colored by g(r) colors such that
each (string) graph induced by one of the color classes is K4-free. Indeed, the
result of Ackerman [1] cited above implies that the number of edges in each color
class is O(n). The first question to answer is the following.

Problem 1. Fix an integer r ≥ 4. Is it true that every Kr-free segment graph on
n vertices has an induced subgraph on Ωr(n) vertices which is Kr−1-free?

Building upon the work of McGuinness [26], Suk [32] showed that every Kr-
free segment graph on n vertices has a Kr−1-free induced subgraph with at least
Ωr( n

log n ) vertices. (See also [29,30].) For string graphs, in general, until now
the best known result, due to Fox and Pach [17], was weaker: they could only
guarantee the existence of an independent set and, hence, a Kr−1-free induced
subgraph, of size at least n

(log n)O(log r) .

In a different range, where r grows polynomially in n, Tomon [33] solved a
longstanding open problem by showing that there is a constant c′ > 0 such that
every string graph on n vertices has a clique or an independent set of size nc′

.
Our next theorem slightly strengthens the result of Fox and Pach [17].
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Theorem 1. Let s be a positive integer and r = 2s. Every Kr-free string graph
on n ≥ r vertices has an independent set of size at least n(cs/ log n)2s−2, where
c > 0 is an absolute constant.

At the beginning of Sect. 4, we show how to deduce from Theorem 1 the
following strengthening of Tomon’s above mentioned theorem [33].

Corollary 1. For any ε > 0, there is δ > 0 such that every string graph G on
n vertices has a clique of size at least nδ or its chromatic number is at most nε.
(In the latter case, obviously, G has an independent set of size at least n1−ε.)

Theorem 1 guarantees the existence of a large independent set in a Kr-free
string graph G. If, in the spirit of Problem 1, we want to find only a large
Kr−1-free induced subgraph in G, we can do better.

Theorem 2. For any n ≥ r ≥ 3, every Kr-free string graph with n vertices has
a Kr−1-free induced subgraph with at least c n

log2 n
vertices, where c > 0 is an

absolute constant.

At the expense of another logarithmic factor, we can also find an induced
subgraph with no clique of size �r/2�.
Theorem 3. For any n ≥ r ≥ 3, every Kr-free string graph with n vertices has
a K�r/2�-free induced subgraph with at least c n

log3 n
vertices, where c > 0 is an

absolute constant.

Now we return to the original motivation behind our present note: to esti-
mate from above the number of edges of an r-quasiplanar topological graph of n
vertices. As mentioned before, for r ≤ 4, Conjecture 1 is true. For any r ≥ 5, the
best previously known upper bounds were n(log n)O(log r) and O(n(log n)4r−16),
established in [17] and [27], respectively. For geometric graphs, for any fixed
r ≥ 5, Valtr [34] obtained the upper bound O(n log n). See [2] for a survey.

Using the result of Ackerman [1] as the base case of an induction argu-
ment, and exploiting several properties of string graphs established by Lee [24],
Tomon [33], and Fox and Pach [16,17], we will deduce the following improved
upper bound for the number of edges of r-quasiplanar topological graphs.

Theorem 4. Let s ≥ 3 be an integer and r = 2s. Then every r-quasiplanar
graph with n ≥ r vertices has at most n( c log n

s )2s−4 edges, where c > 0 is an
absolute constant.

Setting s = 3, for instance, we obtain that every 8-quasiplanar topological
graph on n vertices has O(n(log n)2) edges, which is better than the previously
known bound of O(n(log n)16) [1,27]. For r = δ log n, Theorem 4 immediately
implies the following.

Corollary 2. For any ε > 0 there is δ > 0 such that every topological graph
with n vertices and at least 3n1+ε edges has nδ pairwise crossing edges.
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The factor 3 in front of the term n1+ε guarantees that the graph is not planar.
Otherwise, we could not even guarantee that there is one crossing pair of edges.

In the special case where the strings are allowed to cross only a bounded
number of times, some results very similar to Theorems 1 and 4 were established
in [15].

Theorems 1, 2, 3, and Corollary 1 guarantee the existence of an independent
set or a Kp-free induced subgraph for some p > 2 in a string graph satisfying
certain conditions. All of these sets and subgraphs can be found by efficient
polynomial time algorithms in terms of the size of a geometric representation
of the underlying string graph. For example, the proof of Corollary 1 yields the
following algorithmic result.

Proposition 1. For any ε > 0 there is δ > 0 with the following property. Given
a representation of a string graph on n vertices as an intersection graph of
strings, there is a polynomial time algorithm which either properly colors the
vertices with nε colors or finds a clique of size nδ.

Erdős and Gallai [11] raised the following question. Given a pair of integers,
2 ≤ p < r, how large of a Kp-free induced subgraph must be contained in
every Kr-free graph of n vertices? For p = 2, we obtain Ramsey’s problem:
how large of an independent set must be contained in every Kr-free graph of n
vertices. The special case p = r − 1 was considered by Erdős and Rogers [12].
These problems have since been extensively studied. For many striking results,
see, e.g., [9,10,19,22,23,31,36]. Apart from our last two results listed in the
introduction, all statements in this paper can be regarded as geometric variants
of the Erdős-Gallai-Rogers problem for string graphs.

The rest of this note is organized as follows. In Sect. 2, we apply the ana-
logues of the separator theorem and the Kővári-Sós-Turán theorem for string
graphs [17,24] to establish Theorems 2 and 3. In Sect. 3, we present a simple
technical lemma (Lemma 3) and some of its consequences needed for the proof
of Theorems 1 and 4. The proofs of these two theorems and Corollary 1 are given
in Sect. 4. The last section contains some concluding remarks.

Throughout this paper, log always stands for the binary logarithm. The let-
ters c and C appearing in different theorems denote unrelated positive constants.
Whenever they are not important, we will simply omit floor and ceiling signs.

2 Separators—Proofs of Theorems 2 and 3

In this section, we prove Theorems 2 and 3. We need the separator theorem for
string graphs, due to Lee [24]. A separator in a graph G = (V,E) is a subset S of
the vertex set V such that no connected component of G\S has more than 2

3 |V |
vertices. Equivalently, S is a separator of G if there is a partition V = S∪V1∪V2

with |V1|, |V2| ≤ 2
3 |V | such that no vertex in V1 is adjacent to any vertex in V2.
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Lemma 1 ([24]). Every string graph with m edges has a separator of size at
most c1

√
m, where c1 is an absolute constant.

We now prove the following theorem which immediately implies Theorem 2.
Let us remark that the neighborhood of vertex v does not include v.

Theorem 5. There is an absolute constant c > 0 with the following property.
Every string graph G on n vertices contains an induced subgraph G′ on c n

log2 n

vertices whose every connected component is contained in the neighborhood of a
vertex or is an isolated vertex.

Proof. Let c > 0 be a sufficiently small constant to be specified later. We proceed
by induction on n. The base case when n = 1 is trivial. For the inductive step,
assume that the statement holds for all n′ < n. Let G = (V,E) be an n-vertex
string graph.

If G contains a vertex v of degree at least cn/ log2 n, then we are done by
setting G′ to be the neighborhood of v. Otherwise, we know that there are at
most cn2/ log2 n edges in G. By Lemma 1, G has a separator S ⊂ V of size
at most c1

√
cn/ log n, where c1 is the absolute constant from Lemma 1. Hence,

there is a partition V = S ∪ V1 ∪ V2 with |V1|, |V2| ≤ 2
3 |V | such that no vertex in

V1 is adjacent to any vertex in V2, and |S| ≤ c1
√

cn/ log n. By applying induction

on V1 and V2 and setting c <
(

log 3/2
c1

)2

, we obtain an induced subgraph G′ on
at least

c
|V1|

log2 |V1|
+ c

|V2|
log2 |V2|

≥ c
|V1| + |V2|
log2(2n/3)

≥ c
n − c1

√
cn

log n

log2(2n/3)

= c
n

log2 n
·

1 − c1
√

c
log n(

1 − log(3/2)
log n

)2 ≥ c
n

log2 n

vertices such that each component of G′ is contained in the neighborhood of a
vertex or is an isolated vertex.

To see that Theorem 5 implies Theorem 2, it is sufficient to notice that if G′

has a clique of size r − 1, then G has a clique of size r.
The proof of Theorem 3 is very similar to that of Theorem 2. Here, we

need the following analogue of the Kővári-Sós-Turán theorem, which can also be
deduced from Lemma 1 (see Conjecture 3.3 in [17]).

Lemma 2 ([17,24]).
Every Kt,t-free string graph on n vertices has at most c2t(log t)n edges, where

c2 is an absolute constant.

Proof of Theorem 3. Let c > 0 be a sufficiently small constant to be determined
later. We proceed by induction on n. The base case n = 1 is trivial. For the
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inductive step, assume that the statement holds for all n′ < n. Let G = (V,E)
be a Kr-free string graph on n vertices, and let c1 and c2 be the constants from
Lemmas 1 and 2, respectively.

If G has at least cc2
n2

log2 n
edges, then, by Lemma 2, G contains a complete

bipartite graph Kt,t, where t ≥ c n
log3 n

. Since G is Kr-free, one of these parts
must be K�r/2�-free, and we are done.

Otherwise, if G has fewer than cc2
n2

log2 n
edges, then, by Lemma 1, there is

a partition V = S ∪ V1 ∪ V2 with |V1|, |V2| ≤ 2
3 |V | such that no vertex in V1 is

adjacent to any vertex in V2, and |S| ≤ c1
√

cc2n/ log n. Applying the induction

hypothesis to V1 and V2, and setting c < log2(3/2)
c2c21

, we obtain a K�r/2�-free
induced subgraph G′ ⊆ G with at least

c
|V1|

log3 |V1|
+ c

|V2|
log3 |V2|

≥ c
|V1| + |V2|
log3(2n/3)

≥ c
n − c1

√
cc2n

log n

log3(2n/3)

= c
n

log3 n
·

1 − c1
√

cc2
log n(

1 − log(3/2)
log n

)3 ≥ c
n

log3 n

vertices. �

3 A Technical Lemma for String Graphs

The average degree in a graph G = (V,E) is d = 2|E|
|V | . The edge density of G

is defined as |E|
(|V |

2 ) = d
|V |−1 . We say that a graph is dense if its edge density is

larger than some positive constant (which we will conveniently specify for our
purposes).

Using Lee’s separator theorem for string graphs (Lemma 1), it is easy to
deduce the following technical lemma which states that every string graph G
has a dense induced subgraph G′ whose average degree is not much smaller than
the average degree in G.

Lemma 3. For any ε > 0, there is C = C(ε) with the following property. Every
string graph G = (V,E) with average degree d = 2|E|/|V | has an induced sub-
graph G[V ′] with average degree d′ ≥ (1 − ε)d and |V ′| ≤ Cd′.

Proof. Let G = (V,E) be a string graph with average degree d. We recursively
define a nested sequence of induced subgraphs G0 ⊃ G1 ⊃ · · · .

We begin with G0 = G, and let V0 = V , E0 = E and d0 = d. After obtaining
Gi = (Vi, Ei) with Ei = E(G[Vi]) and with average degree di = 2|Ei|/|Vi|,
we show that Gi is the desired induced subgraph if di ≥ |Vi|/C. Otherwise if
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di < |Vi|/C, we have |Ei| ≤ |Vi|2/(2C), and by Lemma 1, there is a partition
Vi = U0 ∪ U1 ∪ U2 with |U1|, |U2| ≤ 2|Vi|/3,

|U0| ≤ c1
√

|Ei| ≤ c1
|Vi|√
2C

≤ |Vi|/12,

and there are no edges from U1 to U2. The last inequality above follows from
the fact that C ≥ (12c1)2. We can assume this as we can choose C as large as
we want.

We take Gi+1 to be the induced subgraph on whichever of G[U1 ∪ U0] and
G[U2 ∪ U0] has larger average degree. As all edges of Gi are in at least one of
these two induced subgraphs and |U1 ∪ U0| + |U2 ∪ U0| = |Vi| + |U0|, the average
degree of Gi+1 satisfies

di+1 ≥ di
|Vi|

|Vi| + |U0| = di
1

1 + |U0|/|Vi|

≥ di
1

1 + c1
√|Ei|/|Vi|

≥ di
1

1 + c1
√

di/(2|Vi|)
.

As di < |Vi|/C and C can be chosen sufficiently large, the above inequal-
ity implies that di+1 ≥ 9

10di. The inequality |U0| ≤ |Vi|/12 implies that
|Vi+1| ≤ 3

4 |Vi|. These two inequalities together imply that di+1/|Vi+1| ≥ 6
5di/|Vi|.

It follows from the inequality above that

di+1 = d

i∏
j=0

dj+1/dj ≥ d

i∏
j=0

1
1 + c1

√
dj/(2|Vj |)

≥ de− ∑i
j=0 c1

√
dj/(2|Vj |),

where the last inequality uses that 1
1+x ≥ e−x for any x > 0. The sum in the

exponent is dominated by a geometric series with common ratio
√

6/5 > 1, and
its largest summand is at most c1(1/(2C))1/2, as di ≤ |Vi|/C. Hence, the sum in
the exponent is O(C−1/2). Taking C large enough, we have that di+1 ≥ (1 − ε)d
for every i for which di+1 is defined. (We can choose C = O(1/ε2) to satisfy
this.) Further, as |Vi+1| ≤ 3

4 |Vi| < |Vi| for every i for which Vi+1 is defined, after
at most |V | iterations, the above process will terminate with the desired induced
subgraph Gi.

The main result of [16] is that every dense string graph contains a dense
spanning subgraph which is an incomparability graph. Applying Lemma 3 to
this spanning subgraph with ε = 1/2, we obtain the following corollary.

Corollary 3. There is a constant c > 0 with the following property. Every string
graph with n vertices and m edges has a subgraph with at least cm

n vertices which
is an incomparability graph with edge density at least c.

Given a graph G = (V,E) and two disjoint subsets of vertices X,Y ∈ V , we
say that X is complete to Y if xy ∈ E for all x ∈ X and y ∈ Y .

The next lemma can be deduced by combining Corollary 3 above with Lem-
mas 6 and 7 of Tomon [33].
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Lemma 4. There is a constant c > 0 with the following property. If G = (V,E)
is a string graph with n vertices and at least αn2 edges, for some α > 0, then
there are disjoint vertex subsets X1, . . . , Xt ⊂ V for some t ≥ 2 such that

1. Xi is complete to Xj for all i �= j, and
2. |Xi| ≥ cα n

t2 for every i.

4 Back to Quasiplanar Graphs—Proofs of Theorems 1
and 4

Before turning to the proof of Theorem 1, we show how it implies Corollary 1.

Proof of Corollary 1. The most natural technique for properly coloring a graph is
by successively extracting maximum independent sets from it. Using this greedy
method and the bound in Theorem 1, for r = 2s, we obtain a proper coloring
of any Kr-free string graph on n vertices with at most ( log n

cs )2s−2 log n colors.
Indeed, each time we extract a maximum independent set, the fraction of remain-
ing vertices is at most 1 − α with α = ( cs

log n )2s−2. As 1 − α < e−α, after at most
log n

α iterations, no vertex remains.
For a given ε > 0, choose a sufficiently small δ > 0 be such that

1. 2δ log 1
cδ < ε

2 and
2. log n < nε/2 provided that nδ ≥ 2.

Consider any Knδ -free string graph G on n vertices. If nδ < 2, then G has
no edges and, hence, its chromatic number is 1 ≤ nε. Otherwise, substituting
s = δ log n, Theorem 1 yields that the chromatic number of G is at most

n2δ log 1
cδ log n < nε.

�
Now we turn to the proof of Theorem 1 which gives, for r = 2s, a lower

bound on the independence number of a Kr-free string graph on n vertices.

Proof of Theorem 1. Our proof is by double induction on s and n. Throughout
we let r = 2s. The base cases are when s = 1 (in which case we get an independent
set of size n) or n = r (in which case we get an independent set of size 1) and
are trivial. The induction hypothesis is that the theorem holds for all s′ < s and
all n′, and for s′ = s and all n′ < n. Note that we may assume that r ≤ n/4,
as otherwise the theorem holds. Let α = c′( s

log n )2, where c′ > 0 is a sufficiently
small absolute constant. Let G be a Kr-free string graph on n vertices.

If G has at most αn2 edges, applying Lemma 1, there is a vertex partition
V = V0 ∪ V1 ∪ V2 with |V0| ≤ c1α

1/2n, |V1|, |V2| ≤ 2n/3, and there are no edges
from V1 to V2. Note that |V0| ≤ n/12 so |V1|, |V2| ≥ n/4. We obtain a large
independent set in G by taking the union of large independent sets in V1 and
V2. Using the induction hypothesis applied to G[V1] and G[V2], we obtain an
independent set in G of order at least
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|V1|
(

cs

log |V1|
)2s−2

+ |V2|
(

cs

log |V2|
)2s−2

≥ (|V1| + |V2|)
(

cs

log(2n/3)

)2s−2

.

Note that |V1| + |V2| = n − |V0| ≥ n(1 − c1c
′1/2 · s

log n ). We also have

(log(2n/3))2s−2 = (log n)2s−2

(
1 − log(3/2)

log n

)2s−2

≤ (log n)2s−2

(
1 − s

2 log n

)
.

Substituting in these estimates and using c′ > 0 is sufficiently small, we
obtain an independent set of the desired size.

Suppose next that G has at least αn2 edges. By Lemma 4, there is an integer
t ≥ 2 and disjoint vertex subsets X1, . . . , Xt such that Xi is complete to Xj for
all i �= j and |Xi| ≥ 4c′′αn/t2 for i = 1, . . . , t where 0 < 4c′′ < 1 is an absolute
constant. Losing a factor at most 2 in the number of sets Xi, we may assume
t = 2p for a positive integer p < s, which implies |Xi| ≥ c′′αn/t2. As G is K2s -
free, one of these sets Xi induces a subgraph which is K2s−p -free. Let n0 = |Xi|.
Applying the induction hypothesis to G[Xi], we obtain an independent set of
size at least

n0

(
c(s − p)
log n0

)2(s−p)−2

≥ c′′c′
(

s

log n

)2

n2−2p

(
c(s − p)
log n0

)2(s−p)−2

≥ n

(
cs

log n

)2s−2

.

The last inequality holds, because after substituting log n0 ≤ log n, the ratio
of the right-hand side and the expression in the middle reduces to

(2c)2p

c′′c′

(
s

log n

)2(p−1) (
1 +

p

s − p

)2(s−p)−2

≤ (2ec)2p

c′′c′

(
s

log n

)2(p−1)

≤ 1.

At the first inequality, we used 1 + x ≤ ex with x = p
s−p . As for the second

inequality, we know that s ≤ log n, and we are free to choose the constant c > 0
as small as we wish (for instance, c = c′′c′/30 will suffice). This completes the
proof. �

A careful inspection of the proof of Theorem 1 shows that it recursively
constructs an independent set of the desired size in a Kr-free string graph in
polynomial time in terms of the size of the geometric representation of the set
of strings. Indeed, the proof itself is essentially algorithmic. In the first case,
when the string graph is relatively sparse, we apply Lee’s separator theorem
for string graphs, and take the union of large independent sets from the string
graph of the two remaining large vertex subsets after deleting the small sepa-
rator. In the second case, when the string graph is relatively dense, we apply
Lemma 4 to get in the string graph a complete multipartite subgraph with large
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parts, and we can find a large independent set in one of the parts. However, this
does require checking that results from several earlier papers each yield desir-
able structures in string graphs and incomparability graphs in polynomial time.
These results include Lee’s separator theorem for string graphs [24], the Fox-
Pach result that every dense string graph contains a dense spanning subgraph
which is an incomparability graph [16], and some extremal results of Tomon [33]
for incomparability graphs.

A set of vertices X ⊆ V in a graph G = (V,E) is said to be r-independent
if it does not induce a clique of size r, that is, if G[X] is Kr-free. In particular,
a 2-independent set is simply an independent set. Note that the proof of Theo-
rem 1 carries through to the following generalization concerning the Erdős-Gallai
problem for string graphs.

Theorem 6. Let s, q be positive integers with s > q. Every K2s-free string graph
G on n ≥ 2s vertices contains a 2q-independent set of size at least

min

((
c(s + 1 − q)

log n

)2s−2q

n,

(
c(s + 1 − q)

2s log n

)2

n

)
,

where c > 0 is an absolute constant.

Proof. (Sketch) We follow the proof of Theorem 1, making minor modifications.
The proof is by double induction on s and n, with the base cases s = q or n = 2s

being trivial. We let α = c′
(

s+1−q
log n

)2

. As in the proof of Theorem 1, if G has

at most αn2 edges, we apply the string graph separator lemma (Lemma 1). We
delete the separator, use the induction hypothesis on the resulting components,
and take the union of the 2q-independent sets in the components to get a 2q-
independent set of the desired size in G.

So, we may assume G has more than αn2 edges. By Lemma 4, there is an
integer t ≥ 2 and disjoint vertex subsets X1, . . . , Xt such that Xi is complete to
Xj for all i �= j and |Xi| ≥ 4c′′αn/t2 for i = 1, . . . , t, where c′′ > 0 is an absolute
constant. Losing a factor at most 2 in the number of sets Xi, we may assume
that t = 2p for a positive integer p < s, which implies |Xi| ≥ c′′αn/t2. As G is
K2s -free, at least one of the sets Xi induces a subgraph which is K2s−p-free.

The proof now splits into two cases, depending on whether s − p > q or not.
If s − p > q, the rest of the proof goes through as in the proof of Theorem 1. If
s − p ≤ q, then Xi is the desired 2q-independent set. Indeed, we have

|Xi| ≥ c′′αn/t2 ≥ c′′αn/22s = c′′c′
(

s + 1 − q

2s log n

)2

n ≥
(

c(s + 1 − q)
2s log n

)2

n,

for a sufficiently small absolute constant c > 0, as desired.

We complete the section by proving Theorem 4, which gives an upper bound
on the number of edges of a r-quasiplanar graph with n vertices for r = 2s a
perfect power of two.
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Proof of Theorem 4. Let s ≥ 3 be an integer and r = 2s. We have to prove that
every r-quasiplanar graph on n ≥ r vertices has at most n(C log n

s )2s−4 edges,
where C is an absolute constant.

For any r-quasiplanar graph G = (V,E) on n vertices, delete a small disk
around each vertex and consider the string graph whose vertex set consists of
the (truncated) curves in E. As G is r-quasiplanar, the resulting string graph is
K2s -free.

Applying Theorem 6 with q = 2, we obtain a subset E′ ⊂ E with

|E′| ≥ |E|
(

c(s − 1)
log |E|

)2s−4

≥ |E|
(

c(s − 1)
2 log n

)2s−4

,

for some absolute constant c > 0 such that G′ = (V,E′) is 4-quasiplanar. Accord-
ing to Ackerman’s result [1], every 4-quasiplanar graph on n vertices has at most
a linear number of edges in n, that is, we have |E′| ≤ C ′n for a suitable constant
C ′ > 0. Putting these two bounds together, we get the desired upper bound

|E| ≤ C ′n
(

2 log n

c(s − 1)

)2s−4

≤ n

(
C

log n

s

)2s−4

,

provided that C is sufficiently large.
�

5 Concluding Remarks

A. A family of graphs G is said to be hereditary if for any G ∈ G, all induced
subgraphs of G also belong to G. Obviously, the family of string graphs is hered-
itary.

The proof of Lemma 3 only uses the fact that there is a separator theorem
for string graphs. A careful inspection of the proof shows that the same result
holds, instead of string graphs, for any hereditary family of graphs G such that
every G = (V,E) ∈ G has a separator of size O(|E|α|V |1−2α), for a suitable
constant α = α(G) > 0.

Similar techniques were used in [13–15,25]. Our Lemma 3 enables us to sim-
plify some of the proofs in these papers.

B. Circle graphs are intersection graphs of chords of a circle. Gyárfás [18] proved
that every circle graph with clique number r has chromatic number at most
O(r24r). Kostochka [20], and Kostochka and Kratochv́ıl [21] improved this bound
to O(r22r) and O(2r) respectively. Recently, a breakthrough was made by Davies
and McCarty [7], who obtained the upper bound O(r2). Shortly after this, Davies
[8] further improved this bound to O(r log r), which is asymptotically best pos-
sible due to a construction of Kostochka [20]. By taking the union of the r − 2
largest color classes in a proper coloring with the minimum number of colors,
Davies’ result implies that every circle graph on n vertices with clique number
r contains an induced subgraph on Ω(n/ log r) vertices that is Kr−1-free. We
conjecture that this “naive” bound can be improved as follows.
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Conjecture 2. Every Kr-free circle graph on n vertices contains an induced sub-
graph on Ω(n) vertices which is Kr−1-free.

Acknowledgement. We are grateful to Zach Hunter for carefully reading our
manuscript and pointing out several mistakes.
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10. Dudek, A., Rödl, V.: On ks-free subgraphs in ks+k-free graphs and vertex folkman
numbers. Combinatorica 31, 39–53 (2011)
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