PlasticityNet: Learning to Simulate Metal, Sand, and
Snow for Optimization Time Integration

Xuan Li Yadi Cao
Department of Mathematics Department of Computer Science
University of California, Los Angeles University of California, Los Angeles
xuanlil@math.ucla.edu yadicao95@cs.ucla.edu
Minchen Li Yin Yang
Department of Mathematics School of Computing
University of California, Los Angeles University of Utah
minchen@math.ucla.edu yin.yang@utah.edu
Craig Schroeder Chenfanfu Jiang
Department of Computer Science and Engineering Department of Mathematics
University of California, Riverside University of California, Los Angeles
craigs@cs.ucr.edu cffjiang@math.ucla.edu
Abstract

In this paper, we propose a neural network-based approach for learning to represent
the behavior of plastic solid materials ranging from rubber and metal to sand and
snow. Unlike elastic forces such as spring forces, these plastic forces do not result
from the positional gradient of any potential energy, imposing great challenges on
the stability and flexibility of their simulation. Our method effectively resolves this
issue by learning a generalizable plastic energy whose derivative closely matches
the analytical behavior of plastic forces. Our method, for the first time, enables
the simulation of a wide range of arbitrary elasticity-plasticity combinations using
time step-independent, unconditionally stable optimization-based time integrators.
We demonstrate the efficacy of our method by learning and producing challenging
2D and 3D effects of metal, sand, and snow with complex dynamics.

1 Introduction

Combining machine learning with physical simulations has recently attracted a lot of attention. A vast
amount of existing research adopts an end-to-end approach, where the specific underlying computa-
tional physics system is treated as a black box [46, 41]. Harnessing the power of neural networks, this
research has been successfully applied in computer animation [10], multibody systems [3, 6, 59, 12],
human musculature simulation [20], computational fluid dynamics [4, 13], and non-linear contin-
uum mechanics [5]. An alternative direction is represented by physics-informed neural networks
(PINN) [44, 21], where in its original form, the residual of a partial differential equation is directly
used as the loss function so that the network training is a physics-aware learning process. PINN
becomes powerful when the design space of the input to the network can be parameterized, which
accelerates both the roll-out and the inverse optimization process [51]. Another noteworthy category
is learning the physical modeling where the machine can either help increase the model resolution in
a coarser grid [24], inject nonlinearity to a linear model [37], or apply a learnable model reduction to
reduce the system degrees-of-freedom (DOF) for acceleration [47, 48].
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Despite its great success, training a neural network to replace a traditional simulator is not always
the preferred choice. This is partially due to the challenges in the trained model’s generality and
portability. For example, a trained model on a particle-based deformable body solver (such as the
Material Point Method (MPM [19]) cannot be directly applied to the mesh-based Finite Element
Method (FEM) [49], while in traditional continuum mechanics, the constitutive model that describes
the relationship between force and deformation is an independent module from the underlying
geometric description or simulation scheme. Indeed, by simply switching the constitutive model and
applying minor changes to the existing and general simulation pipeline, a wide range of materials
can be simulated in the same framework, ranging from sand [42, 9, 23, 52] and metal [39], to snow
[15, 57, 35] and glacier [58].

Many elastic materials, including those represented by mass-spring systems [2] and common hypere-
lastic solids [50], are usually governed by analytical elastic potential energy functions in terms of the
deformation. These models are well fitted to experiments and proven to be simple, accurate, and pre-
dictive. Although most of these energy functions are highly nonlinear and non-convex, reformulating
the dynamic simulation process as a numerical optimization problem and solving it using projected
Newton and line search can guarantee global convergence to a solution [28]. Beyond hyperelasticity,
plasticity is much more challenging. The mechanical response of plastic materials imposes extra
difficulties in the implementation as it is path-dependant and non-smooth. One common handling
of plasticity is the return mapping algorithm, which applies the effects of plastic deformation to the
elastic forces. However, this leads to asymmetrical force derivatives, which eliminate the possibility
of integrating the plasticity into the energy function in a single optimization and complicates the
pipeline. In the recent work of Energetic Consistent Inelasticity (ECI) [34], the plasticity is analyt-
ically modeled as an energy functional, and the simulation can be formulated as an optimization
problem just like simulating pure elastic materials. However, their analytical derivation only works
for St.Venant-Kirchhoff (StVK) elasticity with the von-Mises plasticity.

In this work, we propose PlasticityNet, a neural network-based approach for learning an energy-
based force that locally approximates elastic forces with plasticity models and is compatible with
optimization time integrators. PlasticityNet framework supports any combinations of elastic models
and plastic models and works with both MPM and FEM discretizations. With optimization time
integrators, we demonstrate that our framework can simulate vast types of plasticities, such as metal,
sand, and snow, with large time step sizes.

2 Related work

Classic Plasticity Models The classic plastic models utilized the geometry information of the plas-
ticity and are available for many applications. In the computer graphics community, researchers have
followed mechanical literature on the Drucker-Prager elastoplasticity model [42, 9], and developed
particle-based simulations of dry [23] and wet [52] sand. Extending a similar Cam-Clay plasticity
model, snow avalanches [15, 35], glacier calving [58] and food fracturing [57] are also captured
with high visual plausibility as well as physical accuracy. For metals and dough-like materials,
the von-Mises plasticity model [39] is usually adopted, while [56, 18] presented its anisotropic
extensions. Still, the implementation of these models in modern, optimization-based simulators is
cumbersome due to the non-integrable forces. Recently, [34] proposed an elastoplastic energy of
von-Mises plasticity under StVK elasticity for optimization time integrator, which can be viewed
as a special-case analytical solution to our framework under the same combination of elasticity and
plasticity. But our framework works for arbitrary combinations.

Data-Driven Plasticity Models The machine learning approach has been used to find new plastic
models using large sets of measurements and parameters, outperforming many long-standing hand-
crafted models. The macro-level constitutive relationship is learned from the results of the micro-level
simulations [40, 45]. A similar approach is applied in [53] to learn anisotropic hyperelasticity, where
additional geometrical information is included in the input. PINN can also be applied in plastic model
finding from experimental measurements [1, 54, 25], where the loss includes the stress and Hessian,
to infer stress with more accuracy in the implicit simulators. However, there does not exist any prior
work, to the best of the author’s knowledge, that tried to find variational form for arbitrary plasticity
model.



Optimization Time Integration The optimization time integrators have advantages in terms
of stability under large deformations and large time step sizes. Many of the nonlinear systems
of equations that arise from implicit simulation can be integrated to get equivalent optimization
problems, which allow robust optimization techniques to be applied. The MPM simulator in this
work is based on [14], which formulated the backward Euler time integration with hyperelastic
materials as a minimization problem. [30] and [55] also explored domain decompositions and
hiearachical preconditioners to improve robustness and efficiency. The FEM simulator in this work is
based on Incremental Potential Contact (IPC) [29], which proposed a variational form for frictional
contacts. Their optimization-based frictional contact framework was also extended to codimensional
objects [31], rigid bodies [11, 26], articulated multibodies [7], reduced elastic solids [27], embedded
interfaces [60], and FEM-MPM coupled domains [33].

3 Background

3.1 Optimization Time Integration

In this section, we briefly introduce the optimization time integration for elastodynamics simulations
with the Material Point Method (MPM) and the Finite Element Method (FEM). We refer the readers
to [28] and [14] for more details.

FEM discretizes the simulation domain as unstructured meshes (e.g., triangle meshes in 2D), while in
MPM, a point cloud composed of material particles is used to discretize the domain. While FEM
directly uses the mesh nodes as the simulation degrees-of-freedom (DOF), MPM transfers its particle
state to a uniform background grid, whose nodes are used as the DOFs for the integration of forces
[19]. Robust simulation of elastodynamics can be achieved via implicit time integration, which
updates the nodal positions (X) or velocities (v) step by step based on the previous physical states. To
step from ¢" to "1 = ¢" 4+ At with time step size At, with implicit Euler time integration rule, one
needs to solve a nonlinear system of equations

MV — (v 4 gAt)) = AT (1)

Here v is the velocity DOF formed by concatenating all nodal velocity vectors, similarly concatenated,
M is the mass matrix, g is the gravitational acceleration vector, and f is the internal force vector.
Without plasticity, the internal force on a node ¢ can be calculated as
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where ¢ iterates the surrounding elements/particles of node i in FEM/MPM, V;]O is the initial volume
of the element/particle, F = (I + AtVv)F" (MPM) or F = Vx" + AtVv (FEM) is the deformation
gradient, which measures deformation from the undeformed state to the deformed state, and P is the
first-Piola Kirchhoff stress, which describes the internal force per unit area within a material. Vw;,
is the gradient of the weight function on node 7 evaluated on an element/particle center. The weight
function is for transferring physical quantities between the elements/particles and the mesh/grid
nodes. Unlike FEM, the last time step is used in MPM as the reference configuration, and so Vw;, is

calculated as F;LTVU)Z].

When there exists an energy density function ¥ such that P(F) = %—‘g, solving Equation 1 is equivalent
to solving the following optimization problem

Vi = argmin, o[- (v + AN + 30 VIR(R,). 3)
q

This formulation is more favored because with line search methods, convergence to a local minimum
of Equation 3 can be guaranteed even when simulating challenging cases with stiff materials or large
time step sizes. After solving for the velocity v**!, FEM directly updates mesh nodal positions
as x" 1 = x" + Atv™*+!, while for MPM, the velocity on the grid node is interpolated to particle
locations for particle advection. The background grid is reset at the beginning of each time step,
which allows MPM to benefit from the conveniences of a regular grid and a mesh-free formulation at
the cost of some accuracy loss due to the transfers between the grid and particles.

3.2 Return Mapping for Plasticity



With plasticity, objects can undergo both plastic and elastic deformations, Plastic Region .-~ .
and the deformation gradient at the current time step can be decomposed

as P -
Frtl — pEnt1pPa+l @) Elastic Reglon;‘

based on the finite strain theory. Here F©*" ! encodes the permanent

plastic deformation of the rest shape, and FE 1 s the elastic defor- Z(FET)
mation that results in effective elastic forces. In theory, F&" 1 s con- ‘ '
strained within certain elastic regions. Computation-wise, an elastic
predictor FZ" = F"T1(FF™)~1 can be computed first by assuming
FPrtl — P £ FE is outside the elastic region, it will be projected
back onto the boundary of the region to obtain F¥" ! = Z(F¥'") (Fig-
ure 1). This projection Z is called a return mapping. Within this framework, the implicit elastoplastic
nodal force can be computed as [34]

S - FE Str

Figure 1: An illustration
of a return mapping.
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where 7(F) = P(F)F ' is the Kirchoff stress. The above forces are integrable only if 7(Z(F))F~ "
can be represented as the gradient of some energy function:

ov
OF
Most combinations of elastic constitutive models and plastic return mappings do not satisfy this
integrability condition because the Jacobian field of the right-hand side is asymmetrical. Note that
directly feeding Z(F) into an elastic potential does not form a potential energy for the elastoplastic
forces defined in Equation 5. [34] only found one specific combination such that an elastoplastic

potential energy exists. Thus, it remains challenging to simulate versatile plastic behaviors with
optimization time integrators and achieve robust performance.

T(Z(F)F . (6)

4 PlasticityNet

We propose PlasticityNet, a neural network-based elastoplastic model that finds a family of local
potential energies whose negative gradients can approximate the elastoplastic forces within a small
neighborhood so that plasticity can be conveniently simulated using optimization time integrators.
The model architecture is illustrate in Figure 2. Specifically, instead of finding a global energy
function ¥ (F), we search for an energy U(F, Fy), parameterized by F, such that

ov ov

o (- Fo)lp=k, = T(2(Fo))Fy ", and o (F.Fo) ~ T(Z(F)F . (7
To exactly enforce the first equality, we propose the following linear correction:

y(F,Fo) = NNy(F,Fo) — (VENN(Fo, Fy) — 7(Z(Fo))F; ') ©F. (8)
Here A ® B = A;;B;; = tr(ATB) is the matrix inner product. It can be verified that

0% (F,Fo)|p—r, = 7(Z(Fo))Fy .

Then we only need to focus on the approximation part in Equation 7. We design the training loss
function for our neural network as

0o g by - r(2E)FT|

£(6) = ErEr ||

9

F

During training, F is only sampled near F. Please refer to Section 5.1 for details.



4.1 Hardening of Plasticity

ing, the elastic region will expand by a certain amount whenever FE R, — 1)
falls in the plastic region. To account for hardening, the return mapping h
Z(F, h) and the energy ¥y (F,F, h) will depend on an extra hardening

state h, which controls the shape of the elastic region. This hardening

Hardening effects are widely observed in metals and snow. With harden- r}

2
state is a function of F. However, to maintain integrability with respect to RS \\)J 0 R
F, we approximately update i based on F(, which is assumed to be close .
to F. Figure 2: An overview of

PlasticityNet. It is a map

2d°+1
4.2 Optimization Time Integration with PlasticityNet from R toR.

Fixed-Point Iteration The gradient of our learned elastoplastic potential energy Wy (F,Fy) only
approximates the effective stresses locally near F. To approach the accurate solution of Equation 1
with elastoplastic forces, we apply a fixed-point iteration on Fy, to let it converge to F" 7. Specifically,
we solve a sequence of optimization problems

. 1 . .
v LI = aremin, SV =" +gAt)m+ > VIWy(Fy, ) hd), forj=0,1,2,..., (10)
q

treating the concatenated deformation gradients F}, and hardening states h as constants, which are
only updated before each optimization as F}) = F(v"™17) and h = h(Fy). At convergence, we will
obtain the true solution of Equation 1. In practice, a few number of fixed-point iterations can already
generate high-quality results.

Stability Regularizer We augment our learned potential with an extra quadratic regularizer to
stabilize the simulation especially when the material is stiff or the time step size is large:

1
Uy(F,Fg) = NNy(F,Fy) — (VEN N (Fo,Fg) — T(Z(FO))FST) OF + §/L||F - F()H%—‘ an

Here 1 is the shear modulus of the material that Uy is learning. Note that this extra term is added
after the model is trained instead of during the training. This extra term does not change the gradient
at Fy, so it will not change the fixed point of Procedure 10. Please see Section 5.3 for a comparison
between simulations with and without this regularizer.

4.3 Learning Volume-Preserving Return Mapping €2

. . . . . Elastic Regi
The return mapping Z required by PlasticityNet can be either given N

analytically or learned. Note that with different combinations of ’
many practical elasticity and plasticity models, the return mapping /
may not have a closed-form solution, and the projection can only be

performed by solving a nonlinear system of equations. /é/ 9/ €1

Here we provide a simple approach to learn a volume-preserving /
return mapping, which ensures that det(Z(F)) = det(F). For /
isotropic materials, the projection can be performed in the diag-

onal space, i.e., with F = UDiag(X)V ' being the singular value
decomposition of F; the projection is only needed for 3. In the Figure .33 Volume-preserving
diagonal space, a volume-preserving path is a straight line in the projection.

Hencky strain (defined as € = log(X)) space, which is perpen-

dicular to the diagonal line. The direction of the projection path

is € = € — sum(e)1. The volume-preserving projection in the Hencky strain can be unified by
H=e€¢- 57‘%' for some 07y, with Z=(X) = exp(H) and Z(F) = UDiag(Z>)V . An illustration
is shown in Figure 3.

The elastic region is usually represented by an implicit function y(X) < 0. We can use a neural
network to predict §, where the training leverages the differentiability of the implicit representation
for the elastic region boundary. The volume-preserving path usually has two intersections with the
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Figure 4: Training losses of our 2D models.

elastic region boundary. To eliminate this ambiguity, we clamp the output of the neural network with
a maximum ||€||. We define our neural-network-based return mapping on the diagonal space as:

exp(e — Svo75), ¥(2) >0,

) y <o P

070() = min{NNo(2), €]},  25(Z) = {

The training loss function for a single 3 is defined as

; 2 + max —|le
5(259){3529 (X2))? 4+ max{dyy(X) — ||&||, 0}, zgzg W)

Here, the first term is to pull the points outside the elastic region back onto the boundary. The second
term is to avoid these points to be always projected onto the diagonal due to the clamping in 6-yy. To
account for hardening, we only need to let the § network accept an extra hardening state variable h:
87v0(2, h) = min{NNy(X, ), ||€||}. The learned return mapping is then ready to be used by our
PlasticityNet.

S Experiments

We show examples to demonstrate the capability of our PlasticityNet in learning versatile plasticity
models. Our physical simulators are implemented using C++, and we applied PyTorch to learn the
potential energies, which are then loaded into our simulators with TorchScript. All our potential
energies are trained as multilayer perceptrons using the Adam optimizer [22] on a single Nvidia RTX
3090 GPU. Please see Appendix A.1 for more training details. All ground-truth data are generated
using standard explicit time integration with analytical plasticity returning mapping under small time
step sizes for stability. With our PlasticityNet, we can robustly simulate elastoplastic behaviors with
much larger time step sizes using optimization time integrators.

5.1 Training

The training of PlasticityNet only requires the return mapping (either given analytically or pre-trained)
for the plasticity model and the Kirchhoff stress for the underlying elasticity model. There is no need
for extra labeled data. At each epoch, we will sample a new batch of (F, Fo, h). The sampling of

deformation gradients is based on its singular value decomposition F = U Diag(E)VT, with U, V
being two rotation matrices. To sample F and Fy so that their singular values are close to each other,
we set Fy = Ry Diag(e€)Ry and F = R3 Diag(e€+9€)Ry, where € is a randomly sampled vector, de
is a random perturbation, and R;’s are randomly sampled rotation matrices. The hardening state is
sampled uniformly from an appropriate range depending on the plasticity model. Please see Appendix
A.2 for definitions of hardening states and their range selections. In this work, we uniformly sample
€ from [—1,1]%, §e from [—0.1,0.1]? for sand plasticity and metal plasticity, and [—0.2, 0.2]? for the
snow plasticity. The training loss curves of our 2D models are shown in Figure 4.

5.2 Testing on 2D Simulations

In this section, explicit time integrators are used to generate the ground-truth data for the validation
of the optimization time integrators with PlasticityNet on multiple 2D experiments. The quantitative
comparisons are plotted in Figure 5. We additionally include the computational costs in Table 1. We
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Figure 5: (a) (b) The intersection-over-union (IOU) [17] measure between the ground truth and our
results. The IOUs are computed using the mass distributions on the MPM grid. (¢) The average FEM
nodal position difference. Note that the bounding box of the 2D metal frame is 0.1m x 0.18m.

Table 1: Computational costs of 2D experiments.

Experiment Ours Explicit

Time step (s) s/frame Time step (s)  s/frame
Sand le-3 12.58 le-5 6.20
Snow le-3 35.56 le-5 6.78
Von-Mises Metal le-2 1.08 le-5 5.39
Neohookean Metal le-2 1.03 le-5 7.88
MPM-FEM Coupling  1e-3 38.90 le-6 184.58

remark that the main objective of our work is not to surpass the performance of the existing simulation
of every constitutive model, but to provide a methodology that enables the usage of implicit plasticity

in an optimization time integration framework.

Sand Plasticity We start by learning the elastoplas-
tic model of dry sand (Figure 6). The model com-
bination is St. Venant-Kirchhoff (StVK) elasticity,
and the closed-form Drucker Prager plasticity return
mapping [23] (See Appendix A.2.1). In this example,
we simulate a column of sand falling onto the ground
under gravity with MPM. Our method generates vi-
sually identical results compared to the ground truth,
both with the same time step size and a 100 x larger
time step size. The quantitative comparison between
our results and the ground truth is shown in Figure 5a.
Note that there is no hardening mechanism in this

Ground truth (dt = le-5s)

Ours (dt = le-5s)

Ours (dt = le-3s)

Figure 6: Sand plasticity.

plasticity model, so our PlasticityNet does not need the hardening state in its input.

Snow Plasticity with Hardening Snow is an
elastoplastic material that can become stiffer under
compression. Essentially, this is the effect of hard-
ening where its elastic region get expanded. The
variation in the stiffness across the snow body makes
it easily fracture. Here we simulate a snowball hitting
the ground in the MPM simulator (Figure 7). We use
Neo-Hookean elasticity with the closed-form non-
associative Cam-Clay plasticity return mapping [15]
(See Appendix A.2.2). Our method generates similar
results compared to the ground truth when using the
same time step size. The quantitative comparison of

Ground truth (dt = le-5s)

Ours (dt = le-5s)

Ours (dt = 1e-3s)

Figure 7: Snow plasticity with hardening.

our results and the ground truth is shown in Figure 5b. Our framework remains stable even under
much larger time step sizes. However, more numerical damping artifacts are introduced as the time
step size increases, which results in slightly different behaviors compared to the ground truth.



Metal Plasticity with Hardening Metal is another COM-  c— Ground truth (E = 1¢7 Pa, dt = le-55)
mon plastic material with hardening. In this example, we : e —

train PlasticityNet to learn metal plasticity with the StVK
elasticity and the closed-form von-Mises plasticity return
mapping [39]. (See Appendix A.2.3) We simulate a metal — s—— Ours (E = 1¢7 Pa, dt = le-5)
frame compressed by a rigid plate in the FEM simulator N Py

(Figure 8), where the Incremental Potential Contact (IPC)
[29] is used to handle the frictional contact between the
solids. When we run the explicit time integration to gen- = _______ Ours(E=1cl0Pa, dt=1c-25)
erate ground truth, we have to decrease Young’s modulus ' =

to enable using large enough time step sizes so that the
simulation can be finished in practical time. Our method
with the original setting generates visually identical re- Figure 8: Metal plasticity with harden-
sults using a much large time step size. The quantitative ing.

comparison of our result and the ground truth is shown in

Figure 5c.

Metal Plasticity Return Mapping Here we show an , ey — 4
example simulated using PlasticityNet with a learned von- \
Mises plasticity return mapping. The underlying elasticity — —
is neo-Hookean, instead of the StVK model in the last ex-
ample (See Appendix A.2.4). Note that for Neo-Hookean
material, there is no closed-form solution available for
the von-Mises return mapping. In this case, a nonlinear
optimization problem will need to be solved to perform the return mapping for every element/particle
in every time step, which could severely slow down the standard explicit time integration. Using
the same parameters as the metal compression experiments above, we show that PlasticityNet with
learned plasticity return mapping under neo-Hookean elasticity can generate qualitatively similar
results (Figure 9) to those from PlasticityNet with closed-form return mapping under the StVK
elasticity.

Figure 9: Learned metal plasticity return
mapping with neo-Hookean elasticity.

MPM-FEM Coupling PlasticityNet enables the sim- Explicit (dt = le-6s)
ulation of plastic materials in the MPM-FEM coupling

framework BFEMP [33], where only pure elasticity was —m

supported. When simulating with explicit BFEMP, the Ours (dt = le-3s)
time step size required by stability is the minimum be- ;

tween MPM step size upperbound and FEM step size —w
upperbound. Here we show an example where a stiff FEM
elastic body falls onto MPM sand (Figure 10), where the
implicit BFEMP can use a time step size 1000x larger than
the explicit BFEMP and achieves an approximately 5x
speedup in wall-clock time. We also remark that when the time step size is small (as is required
to keep the explicit time integration stable in this case), MPM suffers from excessive numerical
damping due to the significant amount of particle-grid transfers. This is a known issue of explicit
MPM simulations.

Figure 10: Two-way coupling between
FEM elasticity and MPM sand plasticity.

Different Energy Representations Here we include some different energy representations we
investigated (Figure 11), whose inaccurate results motivated us to develop our final representation
Equation 8. These experiments are all conducted on the 2D sand column collapse example. The
first straightforward idea is to find a globally defined neural energy function ¥ (F) = Wy (F) that
solves Equation 6, where 6 is the parameter of the neural network. Note that it is theoretically
unachievable to train a global potential energy function because the right hand side of Equation 6 is not
integrable in the plastic region. But it is still worth trying to explore an approximation by minimizing

2
L(0) = Eg H %(F) —T(Z(F)F~ " H . However, the experiment shows that this formulation makes
I

the sand column behave like an elastic body. It is also noteworthy that the sand column cannot even
maintain the rest shape at the first frame: it erroneously shrinks suddenly and jumps off the ground.
Additional insight is provided by realizing that a linear correction is necessary to exactly vanish stress
when the deformation gradient is the identity; so we experiment with U(F) = ¥y(F) — VyUy(I).



U(F) = Uy(F) U(F) = Uy(F) - VpWUy(I) U(F, Fy) = Vy(F, Fy) — Ve¥e(I, Fy)

Figure 11: Ablation studies on different energy representations.

3D Sand

3D Snow

| 3D Metal

Figure 13: 3D simulations with sand plasticity, snow palsticity and metal plasticity.

This formulation unfortunately also leads to an insufficient capture of plasticity, giving an elastic and
visually distinct incorrect result. These observations motivate us to investigate a family of potential
energies to solve Equation 6 locally. We first use U(F,Fy) = ¥y(F,Fy) — VyUy(I,Fy) and train
with the loss function in Equation 9. The simulation captures certain plastic behaviors when the
deformation is small, but the result quickly deviates from the ground truth when the deformation
becomes larger. Finally, we come up with Equation 8 to achieve the nice results in Figure 6.

5.3 Ablation Studies

Stability Regularizer As an ablation study for the stabil-
ity regularizer in Equation 11, we compare the simulations
with and without the regularizer on two 2D examples (Fig-
ure 12). Without the regularizer, the metal frame can not
even stay in its original rest configuration after the first
time step. In the sand example, particles in the highlighted ) Lo
regions tend to separate from the sand column in a non- Figure 12: The regularizer significantly
physical manner. These demonstrate that our regularizer 1mproves the stability of the simulation.
significantly improves the stability of the simulation.

Non-regularized ~ Regularized Non-regularized  Regularized

AVJRR

5.4 Testing on 3D Simulations

Extending PlasticityNet to support 3D simulation is straightforward. We only need to increase the
dimension of the inputs to the PlasticityNet. To improve the expressiveness of the network, we also
increase the dimension of hidden variables. Here we demonstrate the 3D versions of our 2D examples
with similar physical parameters in Figure 13: 3D sand plasticity, 3D snow plasticity, and 3D metal
plasticity. The 3D metal is simulated with At = 10~2, and for sand and snow, we use At = 10~ 35
to satisfy the CFL condition [8] in MPM, preventing the particles from traveling farther than the grid
cell spacing in a single time step.

6 Conclusion

We proposed PlasticityNet, a neural network-based elastoplastic model learning framework that is
agnostic to spatial discretizations. PlasticityNet represents the elastoplastic forces as the positional



gradients of learned potential energies, so that optimization time integration could be applied to
achieve robust and efficient simulation at large time step sizes. We demonstrated that low-level
components in traditional physical simulation frameworks can be substituted with neural networks
to obtain desired numerical properties that benefit the computation. Notably, this also avoids
tedious analytical derivations or expensive nonlinear root-findings without significantly sacrificing the
accuracy. We believe our work can inspire more research that applies machine learning to physical
simulation in the bottom-up style, maintaining fundamental physical properties and applicability to
general scenarios.

Limitations and Future Work There are several limitations of our framework. (1) We cannot
guarantee our fixed-point iteration will converge for arbitrary scenes. It is theoretically valuable to
explore under what conditions the fixed-point can converge and what loss functions can accelerate
the convergence. (2) Although the regularizer added during the simulation improves the stability
of the simulation without changing the solution at convergence, it may introduce some artificial
viscosity because the regularized energy penalizes deformations away from Fy. Running more
fixed-point iterations can alleviate this issue. It will also be interesting to explore adaptive weighting
mechanisms for the regularizer, or convert this soft regularizer into a hard constraint. (3) We do
not consider the Hessian of the learned plastic energy in our training. Since we use second-order
methods to perform optimization time integration, the properties of the Hessian matrices may have an
impact on the convergence of the optimization method. Although the Jacobian matrices of the target
gradients are asymmetric, it may be helpful if the Hessian of our learned elastoplastic energy can
approximate them so that the stiffness of the material can be more accurately resolved. (4) Principled
physical assumptions of the learned potential energies by PlasticityNet, such as lower-boundedness
and convexity, are not enforced. It is interesting to explore whether enforcing these energy properties
would positively influence the convergence of the optimizations and fixed-point iterations. (5) A
trained PlasticityNet can be directly re-scaled to accommodate a different Young’s modulus, but it
needs to be re-trained for materials with different Poisson’s ratio or plasticity parameters. It is an
important future work to let our model more easily generalize to different parameters. For example,
these parameters can become extra inputs to the neural network. The generalized energy can also be
integrated into differentiable simulators [16, 43] to solve many inverse problems [38, 36, 32].
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A Appendix

A.1 Network Architecture

All our models are using the Multilayer Perceptron (MLP) architecture with Swiss activation functions
(z sigmoid(z)) except the output layer. They are trained using ADAM optimizer with the same
parameters: initial learning rate o = 0.01, decay rate v = 0.95, decay step 1000. The dataset
is generated during the training process with random sampling, as discussed in Section 5.1, and
the batch size is 2! for all cases. The models are all trained with 20000 epochs. The detailed
architectures for each model is listed in Table 2.

A.2 Technical Details on Plasticity Models

We focus on isotropic materials, where the elasticity and plasticity can both be described in the
diagonal space without loss of generality. Given the polar singular value decomposition of the
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Table 2: Network Architectures and Training Details

Model MLP layers

Sand (StVK+Drucker-Prager) [8,32,32,32,1]
Snow (Neohooken+NACC) [9,32,32,32,1]

Metal (StVK+von-Mises) [9,32,32,32,1]

Sand 3D [18,64,64,64,1]
Metal 3D (StVK+von-Mises)  [19,64,64,64,1]
Snow 3D [19,64,64,64,1]

deformation gradient F = U Diag(Z)VT, the Kirchhoff stress 7 and the return mapping Z can both
be computed solely by X as 7> and Z*, and then restored to the full space via 7 = U Diag(-rE)VT
and Z = UDiag(Z E)VT. In the following sections, we will omit the superscript X and only discuss

the models in the diagonal space.

Here is a list of the material parameters that will be mentioned in the following sections:

Notation Meaning Relation to (F, v)
E Young’s modulus  /

v Poisson’s ratio /

I Shear modulus w= ﬁ

A Lamé modulus A= Wgﬁ
K Bulk modulus K= 30—

A.2.1 Sand Plasticity

We use StVK elasticity and Drucker-Prager plasticity for sand simulations [23].

The Kirchhoff stress 7 of StVK elasticity is defined as

€ = log(X),
7 = 2p€ + Asum(e)l.

The elastic region is characterised in the stress space as:

_sun(m)y (15)

asum(t) + || sum(7)

_ 2 2sing¢y
where o = /55—~ 47
fus

6

and ¢y is the friction angle. In our sand

examples, ¢y is set to
shown in Figure 14.

. The elastic region in the stress space is

The return mapping for the Drucker-Prager plasticity is

1 sum(e) > 0
Z(Z)=<(X dy < 0,andsum(e) <0, (16)
exp (€ — dv ”2”) otherwise

where v = ||€]| + a@lz\-ﬂgilsum(e)_

A.2.2 Snow Plasticity

We use neo-Hookean elasticity and non-associative Cam-Clay
(NACC) plasticity for snow simulations [57].
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Figure 14: Drucker-Prager
plasticity’s elastic region in
the stress space.



The Kirchhoff stress of neo-Hookean elasticity is
J = det Diag(3),

b =X?,
-~ b
— dev(b) = b — sz( )y,
- K
T =pJ ib+ + 5 (2 =1L

The elastic region of NACC is characterized by
y(p,q) = > (L +28) + M*(p+ Bpo)(p —po) <0,  (18)

where
M—d /6 \f 251r.1¢f
3 —singy
=5 (19)

Q—MJ"\/ ||b||

po = K sinh( fmax{ a,0}).

&, B, ¢ are the parameters of plasticity and « is the hardening state.

The elastic region in the stress space is shown in Figure 15. In our
snow examples, { = 0.5, 3 = 0.3 and ¢y = 7.
The return mapping is defined as
(1— 2o )=
(1 + 2pm|n )7%
Z(E)=1%

)

2 ~
J—d [ =2M?(p+Bpo)(p—po) b 1
Hd (Gfd)(lpi2§) Po) > + d Sum(b)l

o))
T2
/lpmin
T

,,’,pmax
’p
Figure 15: NACC plasticity’s

elastic region in the stress
space.

P > Pmax = Po,

P < Pmin = _ﬁp07

y(p,q) <0, (20)
Otherwise

Please refer to [57] for the hardening state update procedure, which is controlled by the simulator.
For PlasticityNet, we set h = min{c, 0} as the hardening state input. During the training, we sample

h € [—0.5,0] for 2D snow and h € [—1, 0] for 3D snow.

A.2.3 Metal Plasticity under StVK Elasticity

We use StVK elasticity and von-Mises plasticity for metal simulations [23]. This combination

provides a closed-form return mapping projection.
The elastic region is characterized by
1
|I= — p sum(7)|| — 7y <0, (21)

where 7, controls the radius of the yield surface in the stress space
(Figure 16).

The return mapping for the von-Mises plasticity is defined as

22 |7 — g sum(7)| — 7, <0
Z(®) = {exp (e — 67”§”), Otherwise » (22)

where dy = ||€||F — ﬂ

Under hardening, 7y is updated with
T =T+ 2088y, (23)
where ¢ is the hardening coefﬁcient.

We use h = IX as the hardening state input to our PlasticityNet.

2p
During the training, h is sampled from [0, 1].
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A.2.4 Metal Plasticity under Neo-Hookean Elasticity

The combination of neo-Hookean elasticity and von-Mises plasticity does not have a closed-form
return mapping, we thereby use this combination for the task of learning metal plasticity return
mapping. The Kirchhoff stress of neo-Hookean elasticity is given by

7 =pu(B* —1)+ Mog J1. (24)

The implicit representation of the elastic region we used in the training of the return mapping is given
by
1
y(B,h) = |7 = < sum(r)|* — (2ph)*, (25)

During training, h is sampled from [0, 1].
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