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Abstract

Spectral risk objectives — also called L-risks — al-
low for learning systems to interpolate between
optimizing average-case performance (as in em-
pirical risk minimization) and worst-case perfor-
mance on a task. We develop LSVRG, a stochas-
tic algorithm to optimize these quantities by char-
acterizing their subdifferential and addressing
challenges such as biasedness of subgradient esti-
mates and non-smoothness of the objective. We
show theoretically and experimentally that out-of-
the-box approaches such as stochastic subgradi-
ent and dual averaging can be hindered by bias,
whereas our approach exhibits linear convergence.

1 INTRODUCTION

A cornerstone of machine learning is the empirical risk
minimization (ERM) problem, written

Rw) = - Zéi(w)] : (1)

min
weRd

where ¢;(w) quantifies loss on training example ¢ using
a model with weights w € R?. The objective (1) repre-
sents an often unquestioned modeling choice: to summarize
£1(w), ..., €, (w), the empirical sample of losses, using its
average. At first glance, this is a natural summary, inher-
iting both the statistical convenience of the sample mean
(Shalev-Shwartz and Ben-David, 2014) and the wide ar-
senal of optimization algorithms designed specifically for
finite sum objectives (Le Roux et al., 2012; Defazio et al.,
2014; Johnson and Zhang, 2013; Reddi et al., 2016). How-
ever, as modern learning systems are deployed in critical
domain applications such as energy planning (Guigues and
Sagastizébal, 2013), materials engineering (Yeh, 2006), and
financial regulation (He et al., 2022), safe and reliable per-
formance in “worst-case” scenarios is paramount.
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This imperative can be modeled by alternate risk measures
(statistical functionals of the loss distribution), particularly
those that encapsulate the behavior of the distribution’s
upper tail. We investigate objectives of the form

i :Rcr = z‘g i ) 2
min |\ Ro(w) ;0 (i) (w) )
where £(y(w) < ... < £,)(w) are the order statistics of
the losses, and 0 < 07 < --- < g, < 11is a sequence of
non-decreasing weights satisfying Z?zl o; = 1, called the
spectrum of R,.

The expression (2) is called an L-estimator (Shorack, 2017,
Maurer et al., 2021) for a generic linear combination of
order statistics and an L-risk when the ordered elements are
losses incurred on a training set (Maurer et al., 2021; Khim
et al., 2020). The o;’s allow the practitioner to interpolate
between the average-case (o; = 1/n Vi) and worst-case
(o, = 1) performance on the training set. Such objectives
have garnered a flurry of recent interest in machine learning
(Fan et al., 2017; Williamson and Menon, 2019; Khim et al.,
2020; Maurer et al., 2021; Holland and Mehdi Haress, 2022;
Leqi et al., 2019; Lee et al., 2020; Kawaguchi and Lu, 2020).

Despite their increasing adoption, however, optimization
approaches have relied on using the full-batch or stochas-
tic subgradient method out-of-the-box (Fan et al., 2017;
Kawaguchi and Lu, 2020; Laguel et al., 2020; Levy et al.,
2020), both enduring considerable limitations. The per-
iteration complexity of full-batch methods is O(n) func-
tion/gradient evaluations and O(nlogn) elementary oper-
ations (as we discuss in Prop. 2). For stochastic? variants,
unbiased estimates of any subgradient, while needing only
O(1) gradient evaluations, still need O(n) function calls
and O(nlogn) elementary operations, yielding the same
per-iteration complexity as the full-batch method in auto-
matic differentiation frameworks. A number of methods
abandon convergence to the minimal L-risk altogether and
resort to O(1)-time stochastic subgradient updates, but are
biased (Kawaguchi and Lu, 2020; Levy et al., 2020).
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2We use the term “stochastic” to include both streaming algo-
rithms in which fresh samples from the data-generating distribution
are provided at each iterate, and incremental algorithms, in which
multiple passes are made over a fixed dataset.
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Given the relevance of stochastic training algorithms to ma-
chine learning, the question remains whether there exist
optimization algorithms that converge to the minimum L-
risk while needing only O(1) gradient calls per iteration. In
Sec. 2, we show the consistency of the empirical L-risks
for their population counterparts. In Sec. 3, we characterize
the subdifferential and continuity properties of L-risks as a
function of the underlying losses and quantify the bias of
current stochastic approaches. We propose LSVRG, an algo-
rithm that converges linearly to a smoothed approximation
of the L-risk requiring O(1) function/gradient evaluations
and O(logn) elementary operations per iteration. Finally,
we demonstrate superior convergence of LSVRG experimen-
tally on the non-smooth objective via numerical evaluations
in Sec. 4, with concluding remarks in Sec. 5.

Related Work Risk measures have been studied exten-
sively in quantitative finance (Artzner et al., 1999; Follmer
and Schied, 2002; Rockafellar and Uryasev, 2013; Acerbi
and Tasche, 2002; Pflug and Ruszczynski, 2005; Kuhn et al.,
2019), convex analysis (Rockafellar and Royset, 2014; Ben-
Tal and Teboulle, 2007), and distributionally robust learn-
ing (Sarykalin et al., 2008; Guigues and Sagastizabal, 2013;
Fan et al., 2017; Hu et al., 2018; Lee and Raginsky, 2018;
Duchi and Namkoong, 2019; Laguel et al., 2020; Chen and
Paschalidis, 2020; Li et al., 2021). We refer to He et al.
(2022) for a review of the axiomatic theory of risk mea-
sures and Shapiro et al. (2014, Chap. 6) for applications to
optimization.

A number of recent works study L-risks, with a focus on
statistical properties. The works Khim et al. (2020) and
Maurer et al. (2021) provide classical statistical learning
bounds for L-risk objectives and the latter focuses on unsu-
pervised tasks like clustering. Holland and Mehdi Haress
(2022) present a derivative-free learning procedure for gen-
eral L-risk problems in the fully stochastic/streaming setting.
A particular risk measure called the superquantile or con-
ditional value-at-risk (CVaR), has recently received careful
attention in the learning setting (Curi et al., 2020; Levy
et al., 2020; Laguel et al., 2020, 2021). Other risk measures
include cumulative prospect theory (CPT) measures and
optimized certainty equivalent (OCE) measures (Leqi et al.,
2019; Lee et al., 2020).

Fan et al. (2017) and Kawaguchi and Lu (2020) study batch
and stochastic optimization algorithms respectively for the
“average top-k” loss, which is exactly equivalent to the su-
perquantile. We instead focus on developing incremental
algorithms, akin to those for ERM (Mairal, 2014; Le Roux
etal., 2012; Defazio et al., 2014; Shalev-Shwartz and Zhang,
2013; Johnson and Zhang, 2013), which apply to all L-risks.
We aim to find algorithms that operate on non-smooth ob-
jectives, a fixed training set, and require only a constant
number of function value and gradient computations per
iterate.

2 SPECTRAL RISK MEASURES

In this section, we relate the empirical quantity (2) to its
population counterpart, justifying its use as an estimator for
n sufficiently large. To achieve this, we will write L-risks as
functionals of an empirical cumulative distribution function
(CDF), and show that it consistently estimates the value of
the same functional applied to a population CDF.

Notation Let {Di,...,D,} be an i.i.d. sample from a
distribution P over a sample space D. Let / : R x D — R
be a loss function consuming model weights w € R¢ and
D-valued training example D (e.g., a feature-label pair).
We denote the training loss as ¢;(w) := ¢(w, D;) for short.
Let Z; := {(w,D;) fori € {1,...,n}. It follows that
{Z1,...,Z,} is areal-valued i.i.d. sample whose CDF is
denoted by F', and the L-risk (2) reads

R (w) = Zaiﬁ(i) (w) = ZUiZ(i)7 3)
=1 =1

where Z(1) < ... < Z,) are order statistics of {Z;};" ;.

We describe subsequent results as if {Z;}" ; are arbitrary
real-valued random variables drawn i.i.d. from CDF F’, keep-
ing in mind that in our case, these refer to losses on data
instances D; under parameter vector w.

Spectral Risk Measures We rewrite the L-risk (3) as
a functional of the CDF known as a spectral risk mea-
sure (Acerbi and Tasche, 2002). To do this, let F},(z) :=
LS 1 1(—oo,2] (Z;) denote the (random) empirical CDF
of the sample and define the empirical quantile function
(or inverse CDF) as F,,;1(t) := inf{z : F,(z) > t} for
t € (0,1). The population quantile function is defined
similarly as F~1(¢) := inf{z : F(z) > t}. The empiri-
cal quantile function can be written in terms of the order
statistics as I, ! (t) = Z([,17), as seen in Fig. 1 (top left).
Notice in particular that when ¢ € (%, %) , we have that
F;1(t) = Z(;), where end-points are chosen to make F), *
left continuous.

The spectrum o of an L-risk is typically defined as a dis-
cretization of a probability density s on (0, 1), such that

(Zi/_nl)/n s(t) dt, so that it need not be redefined for
every n. Examples of spectra for various risk measures are
shown in Fig. 1 (bottom), in which the value of o; is equal
to the area of the shaded region immediately under it. The
associated formulae are in Tab. 1. The superquantile with
parameter g € (0, 1) has enjoyed much attention in quanti-
tative finance and more recently, machine learning (Laguel
et al., 2021), the extremile with parameter > 1 has been
introduced by (Daouia et al., 2019) as an alternative risk
measure, and the exponential spectral risk measure (ESRM)
with parameter p > 0 is used in futures clearinghouse mar-
gin requirements (Cotter and Dowd, 2006).

g; =
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Figure 1: Top Left: Empirical CDF F,, and quantile function F,, ! of Zy,---,Z,;. Top Right: Comparison of two
distribution in CDFs (F and G) as well as quantile functions (¥ ~! and G~'). Bottom: Continuous spectra s(t) and their

discretization (o1, . . ., 05) for various risk measures.

Given both the construction of s and F,; ! we can rewrite
the L-risk (3) as

where L; [G] := fol s(t)G~1(t) dt is called a spectral risk
measure with spectrum s applied to CDF G. It stands to
reason that L [F},] converges to L, [F] in an appropriate
sense. This convergence is governed by the Wasserstein
distance between the empirical and population distribution,
which we briefly recall here.

Wasserstein Distances For two probability distributions 1
and v on R, the 1-Wasserstein distance W1 (u, /) between
1 and v is defined by

inf

Wi(p,v) =
1) yEI(p,

/Ifﬂ—yl dy(z,y),
v) Jr

where II(u, v) is the set of couplings (or joint distributions)
with marginals being p and v. It is a metric on the space of
probability distributions on R. If " and G are the CDFs as-
sociated with p and v, respectively, it is known (e.g., Bobkov
and Ledoux, 2019, Thm. 2.10) that W7 (i, v) quantifies the

disagreement in either the CDF or quantile functions, i.e.,
1
Wiluo) = [ F0 - 6] o
0
“+ o0

- [ re-cele @
In contrast, other statistical divergences such as the Cramer
von Mises criterion [* |F,(z) — F(z)| dF(z) and
the Kolmogorov-Smirnoff statistic sup,cp | Fr(2) — F(2)]
only measure the disagreement in CDFs, as illustrated in
Fig. 1 (top right). The relation (4) is used to prove the up-
coming Prop. 3, along with the consistency result below.

Proposition 1. Assume that E|Z|P < oo for some p > 2
and that ||s|| . := sup,¢ g 1) [5(t)| < 0o. Then,

2 (p ) 7
L I

E |L; [F,] — Ls [F]| ~

Proof Sketch. By boundedness of s and (4),

E |L, [Fy] — L [F] |”

=E

<l & ([ 1 - P d)

— 00
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Apply the triangle inequality on L?(P) to obtain

\/E </+°°Fn<z> P o )
/m VE |Fu(z
— 12 /_ VFRI-FE)

2

F(z)]*dz

where the last step uses that for any 2 € R, we have
nF,(z) ~ Binom (n,F(z)) and compute its variance.
The remainder of the proof uses elementary concentra-

tion inequalities to bound f T JF )(1— ))dz (see

Appx. A).

Prop. 1 operates in general conditions that are of particular
importance in optimization. To put this in context, a number
of works provide non-asymptotic uniform learning bounds
on spectral (and related) risks (Maurer et al., 2021; Khim
et al., 2020; Lee et al., 2020). However, these approaches re-
quire boundedness of the random variable of interest, which
eliminates any potential application to heavy-tailed losses.
Asymptotic approaches proceed by assuming Lipschitz con-
tinuity of the spectrum s (Shao, 1989), the trimming of s
(ie. s(t) =0forallt € [0,0) U(1— v, 1] with0 < oo < 1)
(Shorack, 2017; Shao, 1989), or bounded derivatives of the
population quantile function F~! (Xiang, 1995). The g¢-
superquantile does not even have a continuous spectrum,
whereas the spectrum of the r-extremile is not Lipschitz
for 1 < r < 2. Because s must be non-decreasing to
achieve convexity (as we discuss in the upcoming Prop. 2),
trimming the upper tail of s is not reflective of practice.
Finally, because losses such as the square loss or logistic
loss can grow to infinity, the derivative F'~1(¢) as t — oo
cannot be assumed to be bounded. Prop. 1 only requires
that the population losses satisfy a moment condition and
holds without trimming or assumptions of boundedness or
Lipschitz continuity on the spectrum. Other recent works
employ concentration of the empirical measure in Wasser-
stein distance to give concentration inequalities for spectral
risk measures under sub-Gaussian conditions and moment
conditions similar to ours (Prashanth and Bhat, 2022; Bhat
and Prashanth, 2019; Pandey et al., 2019).

3 OPTIMIZATION ALGORITHMS

We now consider the optimization of the regularized empiri-
cal L-risk objective, for u > 0,

Ro(w) + for R, (

Z ol (w). (5

H 2
S

with0<o1 <...0, <1, ZZ 1 0; = 1 and ¢; convex.

Risk s(0) L,[F)
Uniform 1 E[Z]
: 1.1 (t _
g-Superquantile [‘i%]é) E[Z|Z > F~(q)]
r-Extremile rt*=1 E[maxp_1, ., Zx]
pESRM  eelen N/A

Table 1: Common spectral risk measures, with spectra s(t),
interpretation of the L-statistics Ls[F] for F' the CDF of Z.

Convexity and Subdifferential As in ERM, the function
R, is convex as long as each /; is convex, as we see next.
Let Of denote the subdifferential of a convex function f
and aSy + bSs = {as; + bsy : s1 € S1, s2 € S} denote
the Minkowski sum of sets S7, So with weights a, b € R.

Proposition 2. If(y,. .., {, are convex, the function R, is
also convex, with subdifferential

OR,(w) = conv U 2": 00l (w) |

meargsort(£(w)) =1

where argsort ({(w)) = {7 : Lr1)(w) < ... < Lrgny(w)}.
Moreover, if each f is G-Lipschitz continuous, R, is also
G-Lipschitz continuous.

Convexity crucially relies on o;’s being non-decreasing. If
each /¢; is differentiable, the function R, is differentiable
almost everywhere, as argsort (/(w)) is a singleton at al-
most all w € R?. The objective can be non-differentiable
at vectors w € R¢ leading up to ties in the losses such as

&(w) = éj(w) for ¢ 75 j

Computing Subgradients Prop. 2 also gives us a simple
recipe to retrieve some g € R, (w) with a differentiable
programming framework like JAX (Frostig et al., 2018) or
PyTorch (Paszke et al., 2019): (i) compute the losses ¢;(w),
(ii) sort the losses to get £r(1)(w), ..., {x(n) (w), (iii) com-
pute the weighted sum of the sorted losses ) _; 0l (;)(w),
and (iv) access g = ), 0,V (;)(w) at the sorting given
by 7 using automatic differentiation. We can write this in
PyTorch as:

1 = compute_losses (w)

1 _ord = torch.sort (1) [0]

risk = torch.dot (sigmas, 1_ord)
g = torch.autograd.grad(risk, w) [0]

The dependence of the sorting permutation 7 on w is not
recorded in the computation graph. Multiple options for 7
occur with probability zero if the losses are continuous ran-
dom variables, though if they do, we select one arbitrarily.

Stochastic Subgradient Method (SGD) A baseline ap-
proach is the stochastic subgradient method displayed in
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Algorithm 1 Stochastic Subgradient Method (SGD)

Algorithm 2 LSVRG

Require: Number of iterates 7', minibatch size m, learning
rate sequence (1*))7_,, spectrum s, oracles (¢;)_, and
(V4;)1,, regularization p > 0.

. Initialize w(®) = 0 € RY, ‘
: Compute 671, ..., 6y, Where ¢ := f(Jj/_wI)/m s(t) dt.
:fort=0,....,T—1do

Sample without replacement (41, ..., i
Select 7 € argsort (£;, (w®), ..., ¢;

t m P
Set U7(n) - Z " vglwm ( t)).
Set w(t+1) = (1 — n® p)w® — n(%,ﬁ?.
_ T—
: return 0(7) = L 5717 Lap®),

Algorithm 1; we refer to this as (minibatch) SGD for conve-
nience. Given a minibatch size m, the method discretizes
the spectrum s into m bins (line 2) instead of n (as in objec-
tive (5)). We then sample m indices {i1, ..., i, } randomly
sampled from {1, ...,n} (line 4). We retrieve a sorting per-
mutation 7 : [m] — [m] satisfying ¢; < ... </{;
(line 5) and use it to compute the update direction v,(,tb) (line
6). While the per-iteration cost is m gradient evaluations
and O(md) time complexity, Algorithm 1 can fail to min-
imize the true objective R, for non-uniform s due to the
bias of the minibatch estimate. For instance, at the extreme
m = 1, notice that 61 = 6, = 1 and the subgradient esti-
mate corresponds to V¢;(w) for some 4. This is an unbiased
gradient estimate of the ERM objective rather than R,,, re-
ducing the algorithm to standard SGD. For non-uniform s,
the bias can only be fully avoided at m = n, recovering the

full batch subgradient method.

SGD Analysis Let u(t) := 1(g,1) (t) be the uniform density
n (0, 1), which is also the spectrum of the expected value.
We have the following convergence guarantee.

¢, are G-Lipschitz con-
T) of Alg. 1

Proposition 3. If the losses (1, ...,
tinuous, diﬁ‘erentiable, and convex, the output @'

with nt) = (t+1) satisfies

E {TRM (a@)] — Ry (w)

n—m  2G*(1+logT)
< V20, B .
< 2V2C.5, m(n—1) * uT
bias term optimization term

forw*=argmin,,cga Ro, (W), Cs=sup,¢ 9,1y [8(t) —u(t)
and B, = SUPy ||, <G/ p DAXi=1,....n [4;(w)| < oo. The
expectation is taken over the sampling of each minibatch.

’

In Prop. 3, notice that the bias term can be reduced by
decreasing C; (by pushing s closer to uniformity, hence
ERM), decreasing B,, (by increasing the regularization pa-
rameter p), or decreasing (n — m)/(mn) (by increasing
the minibatch size). The optimization term is standard for

Require: Number of iterations 7', loss functions (¢;)"_;
and their gradient oracles, initial point w(%), learning
rate 7, sorting update frequency N, spectrum (o)1,
probability of checkpointing ¢*, regularization p

1. fort=0,....,T —1do

2 ift{ mod N = 0 then > Update weights
3 Select 7 € argsort (& (w®), ..., £, (w®).

4 Update A(Y) = (o,-1(;))1 ;.

5: else

6: A =\,

7 Sample ¢; ~ Unif([0, 1]).

8 ift mod N =0orq¢ < q*then > Checkpoint
9: Set w®) = w(®),
10: g =" ADvr @),
11: else
12: w® = @1 and g¥) = glt—b,

13: Sample i; ~ Unif([n]).

14 v® = n)\gf)VEit (w®) — n)\gf)VEit (@) + g®.
15 w = (1 — np)w® —nu®.,

16: return w(")

SGD on convex, Lipschitz objectives with strongly convex
regularizers.

Proof Sketch. Given a minibatch iy, ..., 4y, let £; (w) <

. < 4, (w) be the order statistics of the losses. De-
fine ng,(wz = Z;ﬂ:r jli.; (w). Consider the surrogate
objective Rs(w) = E[Rs(w) | w], where the expecta-
tion is taken over the randomness in the minibatch indices
i1,...,%m. We observe that the update directions v,(ﬁ) of
Algorithm 1 are unbiased estimates for a subgradient in
ORs(w®). For Rs ,(w) = Rg (w) + & |[w|2, after enough
iterations, we have

IR&VH('LD(T)) ~ min R; &.u(W)
weRd

with error quantified by the optimization term. Letting
W= {w e R?: ||lw|, < G/u}, we also show that

Rs p(w) — min Rs nlw

it Ro,u (1) & Rou(w) — min R,y (1)

w'eW

for any w € W, quantified by the bias term. After showing
that the minimizers of R, , and R; , over R? as well as
wT) are contained in W, we sum the two errors to give the
final result. O

LSVRG Algorithm To circumvent the per-iteration cost
of full batch algorithms, we consider adapting the SVRG
method (Johnson and Zhang, 2013) for ERM to account
for the ordering of the losses, leading to the LSVRG algo-
rithm presented in Alg. 2. Overall, the algorithm consists of
considering the objective 7" | 0;(;)(w) + pljwl]|3/2 as a
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weighted average = 37" | (no—1()0i(w) + pllw]|3/2) for
7 € argsort(¢(w)) and to run epochs of a -SVRG (Hof-
mann et al., 2015) algorithm on an objective of the form
IS (nos-1(iyli(w) + pl|wl|3/2) for # the ordering of
losses computed at some regular checkpoints.

Concretely, with frequency NV starting with the first iterate,
we compute (i) the n losses at the current iterate to define a
vector of weights A(*) associated to the empirical ordered
statistics at that point in lines 3 and 4, and (ii) store the
current iterate as a checkpoint w(®) together with the average
gradients of the losses g(*) at that checkpoint in lines 9
and 10. In addition, with probability ¢* at each iteration
we update the checkpoint w*) and the associated average
gradients g(*) as per rule of line 8, without updating the
weights A(*). The main iteration of the algorithm in lines 14
and 15 is a variance-reduced gradient step akin to SVRG
on an objective of the form 2 3™ | (nA;4;(w) + pl|wl|3/2)
where A = A\(*) are the current weights.

LSVRG Analysis To account for the non-differentiability
of the sorting operation in the convergence analysis, we
analyze a variant of the LSVRG algorithm that operates
on the smooth approximation h,q of the empirical L-risk
h(l) = Y21, oil(;) for | € R", defined using a strongly
convex function €2 as (Nesterov, 2005; Beck and Teboulle,
2012)

huo(l) == max {zT/\f QM) },

AeP(o

where P(o) = {A = Tlo : 1I1 = 1,I"1 = 1,11 €
[0,1]™*™} is the permutahedron generated by o. The
original L-risk is obtained as v — 0 since h(l) =
maxcp(os) IT); this follows from the o;’s being non-
decreasing. The implementation of the smooth approxima-
tion of the empirical L-statistic and its gradient is given
by solving an isotonic regression problem at a cost of
O(nlogn) elementary computations; see Appx. D.

The resulting smooth surrogate of (5) is
H 2
Rmmvﬂ(w) = huo (ﬁ(w)) + 9 llwl], (6)

for {(w) = ({1(w),...,¢,(w)). The smoothed version
of LSVRG we analyze computes the weights in line 4 as
MY = Vh,q(f(w®1)). Note that this update recovers
the original one in Algorithm 2 as v — 0 when the losses
£;(w®) are unique. Under appropriate smoothness assump-
tions and choice of the smoothing parameter v, this vari-
ant of LSVRG converges linearly to the minimizer of the
smoothed objective.

Theorem 4. Consider the smooth objective (6) where each
L; is convex, G-Lipschitz continuous and L-smooth, and
Q\) = |A = 1/n|3/2. Consider the sequence (w'®))
generated by the smoothed variant of LSVRG with inputs
v>4nG?/u, N = 4(n + 8k), n = 2/((n + 8k)u) where
& = no, L/u+ 1is a condition number. We have that w®

converges to w* = argmin,,cga Ro . vo(w) as

E[lw®™ —w*|| < (1/2)" w® - w"|
for k € N. Consequently, LSVRG can produce a point w
satisfying (E || — w*[))? < ein

T < Cln+ m)log (u® —w3/e)

gradient evaluations, where C' is an absolute constant.

Proof Sketch. Consider

ZA i lel

so that R, 0(w) = maxyep(s) P(w, ). We inter-
pret Algorithm 2 as trying to find the unique saddle
point (w*, \*) of ® by alternating the updates A\(*) =

argmaxep(,) ®(w™,A) and w1 ~ wh =

V),

arg min,, ®(w, A\(*)) using N steps of g-SVRG. An error
analysis of the latter yields

B+ — w0 < 2wl D)
where E;, denotes an expectation conditioned on the sigma-
algebra generated by w(*), Smoothness and strong convexi-
ty/concavity of ® gives

oDt < Y28 0 _xep < 2
1 v

— ™ —w*].

Putting these together with the triangle inequality and
nG?/(uv) < 1/4 completes the proof. O

The approximation error induced by the smooth approx-
imation can be controlled by the smoothing coefficient
v. For any non-negative, strongly convex, decomposable
(QN) = X" w(\;)) function ©Q we have 0 < R, ,(w) —
Reo.pva(w) < vQ(o). The quantity (o) can then itself be
bounded in terms of a divergence of s to the uniform distri-
bution. In particular, using a centered negative entropy as
Q, we have (o) < KL(s||lu), Kullback-Leibler divergence
from s to u. On the other hand, using a centered squared
Euclidean norm as in Thm. 4, we get Q(o) < x2(s||u)/n,
the y2-divergence. See Appx. D for details. In summary, if
a point @ is an €/2-accurate minimizer of the smoothed ob-
jective, ie., Ry o (W) — ming,epa Ry v0(w) < e, then
itis a e/2 + vx?(s||u)/n-approximate one on the original
non-smooth objective when choosing €2 as in Thm. 4. This
smoothing error vanishes when considering s = u, as in
ERM.

Combining the smoothing error with the requirement v >
O(nG? /1) of Thm. 4, we get an end-to-end bound on the
original non-smooth objective when & > G2x?(s||u)/pu.
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Figure 2: The suboptimality gap (Equation (7)) for various
optimization algorithms on the mean, superquantile, extrem-
ile, and ESRM risk measures. The x-axis shows the number
of effective passes through the data. Five seed trajectories
are plotted translucently for every algorithm.

However, as we show empirically in Appx. G, smoothing
has a minimal impact on the empirical behavior of LSVRG.
While the non-smoothness of the empirical L-risk is an
obstacle for the theoretical convergence of LSVRG, this non-
smoothness may not impact the empirical behavior. Indeed,
if the minimizer of the objective has distinct loss values,
then the objective is locally smooth around the minimizer.

Time Complexity In practice, we consider simply taking
N =nand ¢* = 0 to simplify the hyperparameter choices
and reduce the overall time complexity. In that case, the
time complexity of LSVRG is O(d) per iteration with 2
gradient evaluations, which is identical to the number of
gradient calls of the biased subgradient method with batch
size m = 2. LSVRG also requires n gradient evaluations
and sorting at the start of an epoch, contributing an addi-
tional O(nd + nlogn) elementary operations. This per-
epoch complexity is nearly identical to vanilla SVRG in the
ERM case. LSVRG, like vanilla SVRG, also requires an
additional storage of O(d) to store g € 9R, ,(w") as
compared to the stochastic subgradient method. Run times
are evaluated experimentally in Appx. G.

4 EXPERIMENTAL RESULTS

We compare the performance of minibatch SGD and
LSVRG on benchmark datasets and study their bias and
variance properties in a number of supervised and unsuper-
vised learning tasks. Experimental details can be found in
Appx. F, with additional experiments with varied hyperpa-
rameters can be found in Appx. G.

4.1 Regression

We consider 4 regression datasets:

* simulated: a synthetic task of predicting observa-
tions generated from a noisy linear model.

* yacht: prediction of the residuary resistance of a
sailing yacht based on its physical attributes (Tsanas
and Xifara, 2012).

* energy: prediction of the cooling load of a building
based on its physical attributes (Baressi Segota et al.,
2020).

* concrete: prediction of the compressive strength
of a concrete type based on its physical and chemical
attributes (Yeh, 2006).

We use the squared loss under a linear model and aim to min-
imize the regularized objective (5) where the spectra s are
obtained from the empirical mean, superquantile (¢ = 0.5),
extremile (r = 2), and ESRM (p = 1) of the losses. Both
training curves and test losses for other values of (g, 7, p)
are shown in Appx. G, which follow similar trends.

In addition to minibatch SGD, we consider another bi-
ased method, stochastic regularized dual averaging (SRDA)
(Xiao, 2009), both with a batch size of 64. We compare
them with LSVRG, by plotting in Fig. 2 the suboptimality,
defined as

gqa(w(t))
R (w(®))

o(w”)

o (w*)

suboptimality gap, := ?; @)
We find that LSVRG (without smoothing) exhibits empirical
linear convergence for the ERM, extremile, and ESRM. It
often vastly outperforms SGD and SRDA, which exhibit
sublinear convergence. On the superquantile, LSVRG ex-
hibits the same sublinear convergence as SGD, suggesting
that the discontinuity of the spectrum can yield additional
challenges in optimization. Overall, LSVRG is the best or
close to the best algorithm across all tasks.

LSVRG relies on the hypothesis that the sorted order of
losses stabilize as iterates w(®) get close to the optimum.
We see from Fig. 3 that there is a clear phase change af-
ter which disagreements between the true and estimated
ordering are visually unnoticeable. The exception to this
is the superquantile, where the sorting does not stabilize
within 64 epochs. This corroborates the apparent hardness
of optimizing the superquantile in Fig. 2.

4.2 Classification

Image Classification The iWildCam challenge dataset
(Beery et al., 2020) contains natural images from wilderness
sites with distribution shifts arising from diverse camera
angles, backgrounds, and relative animal frequencies. We
take a subsample of n = 20, 000 data points from classes
with at least 100 examples after removing the “background
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Figure 3: Sorting sensitivity for simulated dataset (n = 800) along epochs (z-axis) of LSVRG applied each spectral risk
objective. Each heatmap shows the vector of disagreements between sorting permutations 7 at each epoch of Algorithm 2.
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Figure 4: Top: Differences in the p-th quantile of the loss
distribution for the ERM solution and the L-Risk solution on
the iWildCam test set. Bottom: Training curves for SGD,
SRDA, and L-SVRG for different L-Risks on iWildCam
training set.

image” class. For each data point, we compute the penulti-
mate layer of a ResNet50 neural network that is pre-trained
on ImageNet (see Appx. F for further details). The result-
ing vectors are reduced in dimension by PCA, after which
the convex optimization problem considered is multinomial
logistic regression with the reduced vectors as inputs. As in
regression, the training curves in the bottom row of Fig. 4
indicate that SGD and SRDA fail to converge due to bias
and variance. Letting wgrMm be the approximate solution
of ERM, whereas wiry is the approximate solution of an
L-Risk minimization problem other than ERM, the top row
plots the following against p:

C(tnp]) (WErM) = £(Tnp)) (Wirm)

3 i (erm) ’

that is, the difference in the p-th quantile of the test loss of
wgrm and the p-th quantile of the test loss of W gy, normal-
ized by the mean test loss of ERM. Because logistic loss
measures the negative logarithm of the probability that the
model assigns to the correct label, tail events for this loss
amount to a model exhibiting high confidence for a set of
incorrect labels. The median test loss (p = 0.5) is similar

Difference in p-th Test Loss Quantiles of ERM and L-Risk Minimizers

Extremile ESRM
-t 1o 0 1w 0T 107 1o ST T
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Figure 5: Top: Differences in the p-th quantile of the loss
distribution for the ERM solution and the L-Risk solution on
the emot ion test set. Bottom: Training curves for SGD,
SRDA, and L-SVRG for different L-Risks on emotion
training set.

between the L-risk minimizers and standard ERM. How-
ever, for p > 0.5, the ERM solution can make predictions
with much higher losses. Comparing various L-risks, we
find that the superquantile controls tail error at very high
quantiles (p > 0.95), but generally underperforms for the
rest of the loss distribution. The extremile and ESRM on the
other hand, have generally better performance than ERM
throughout the loss distribution. We also plot the quantile
differences for the regression tasks in Appx. G.

Crucially, we find that the large n regime exacerbates the
bias issues when the epoch length is set to n. We instead
use a smaller epoch length of 100, and plot suboptimality
against the number of gradient evaluations in Fig. 4 to ensure
a fair comparison. Each epoch is defined as the number of
gradient evaluations in SGD or SRDA, which is 100m =
6,400.

Text Classification The emotion dataset (Saravia et al.,
2018) contains English Twitter messages with six basic
emotions: anger, fear, joy, love, sadness, and surprise, which
comprise six classes for classification. In this example, we
split the n = 16, 000 training examples into two random
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Figure 6: Robust clustering with L-statistics in the presence
of outliers. Top: synthetic data, Bottom: MNIST digits.

subsets of size 8,000. The first is used to fine-tune each
layer of a BERT neural network using the ERM objective
on multinomial logistic loss (a non-convex optimization
problem) for 2 epochs. The backbone of this network is then
used as a fixed embedding function applied to the remaining
subset of 8, 000 points. After dimension reduction by PCA,
a linear model is trained using the L-Risk objective to map
to the final predictions. The reason for fine-tuning is that
we found that using the embeddings from the pre-trained
BERT model result in instability in training if the classes
are not well-separated by the embeddings. After improving
the embeddings, a large epoch length of 1,000 could be
used for LSVRG. The results are plotted in Fig. 5. Similar
to the image classification setting, we find that on the test
examples, the ERM minimizer incurs large losses in the
upper tail. Here, the superquantile, extremile, and ESRM all
exhibit similar, stable behavior. Both examples demonstrate
two ways to adapt LSVRG, designed specifically for convex
objectives, to the non-convex regime.

4.3 Clustering

We also explore an unsupervised clustering approach
from Maurer et al. (2021) on synthetic data and real data.
We seek to cluster n points x1, ..., x, into k clusters with
centers C' = (cy, ..., ck) by minimizing a weighted aver-
age of the distances of each point to its closest center, i.e.,
problems of the form

n

i iéi Cvf
CglRldnxki:la,()( ), for

k
£;(C) = min Zz x; — cill?.
()= min 3zl — ol

—
21=1 7

Taking o; = 1/n, we retrieve the usual objective mini-
mized by k-means. Maurer et al. (2021) propose to take
o; non-uniform to mitigate the effect of outliers in the data.

Specifically, we consider o; = |, (ZZ/IL 1)/n s(t)dt for a trun-
cated spectrum s, (t) = 179 4)(%)/q or a risk-seeking version
of the extremile, s,.(t) = r(1 — ¢)". In addition, Maurer
et al. (2021) optimize the clustering objective by alternating
k-means iterations and sorting the resulting losses. Instead,
we apply minibatch SGD from Algorithm 1 with a constant
stepsize found by grid search and a batch size of 64.

Synthetic data. We generate a dataset of three Gaussian
clouds of 100 points each and an additional set of 100 out-
liers (top left in Fig. 6). We compare the accuracy of cluster-
ing 300 new inlier points with different spectra. We observe
in Fig. 6 (top right) that the minibatch estimates of the sub-
gradient of the truncated or extremile spectra are sufficient
to reach a perfect 100% accuracy, while vanilla k-means
with its uniform spectrum leads to poor performance due to
outliers.

MNIST data. We consider distinguishing between the dig-
its 1 and 3 from the MNIST dataset (LeCun et al., 1998) by
clustering the images of a training set composed of 1000
samples of 1 and 3 each and additional 125 outliers for each
other digit. We test the clustering procedure on the images
of 1 and 3 digits from the MNIST test set. We see from
Fig. 6 (bottom right) that minibatch SGD with a batch size of
256 achieves 97.3% for the truncated spectrum and 97.8%
for the extremile spectrum versus 96.3% for the uniform
spectrum. Even in terms of convergence speed for different
spectra, we observe that extremile > truncated > uniform.
Finally, Fig. 6 (bottom left) shows us that the centers com-
puted with the extremile spectrum are clear representatives
of these digits while taking a uniform spectrum leads to
more blurry representatives, as shown in Appx. F.

S CONCLUSION

L-risks, based on spectral risk measures, span an entire spec-
trum of learning objectives such as the ERM objective, the
superquantile-based objective, and other distributionally ro-
bust ones. We presented LSVRG, a stochastic optimization
algorithm for minimizing L-risks, and analyzed its conver-
gence properties alongside biased minibatch SGD. Estab-
lishing the regular subdifferential in the non-convex setting
and studying the robustness properties of L-risk minimizers
are interesting venues for future work.

Acknowledgements. This work was supported by NSF
DMS-2023166, CCF-2019844, DMS-2052239, DMS-
2134012, DMS-2133244, NIH, CIFAR-LMB, and faculty
research awards. Part of this work was done while Zaid Har-
chaoui was visiting the Simons Institute for the Theory of
Computing, and while Krishna Pillutla and Vincent Roulet
were at the University of Washington.



Stochastic Optimization for Spectral Risk Measures

References

C. Acerbi and D. Tasche. On the coherence of expected
shortfall. Journal of Banking & Finance, 26(7):1487—
1503, 2002.

P. Artzner, F. Delbaen, E. Jean-Marc, and D. Heath. Co-
herent Measures of Risk. Mathematical Finance, 9:203 —
228,07 1999.

F. Bach. Learning Theory from First Principles. The MIT
Press, 2023.

S. Baressi Segota, N. Andelic, J. Kudlacek, and R. Cep. Ar-
tificial neural network for predicting values of residuary
resistance per unit weight of displacement. Journal of
Maritime & Transportation Science, 57, 2020.

A. Beck and M. Teboulle. Smoothing and first order meth-
ods: A unified framework. SIAM Journal on Optimiza-
tion, 22(2):557-580, 2012.

S. Beery, E. Cole, and A. Gjoka. The iwildcam 2020 com-
petition dataset. arXiv preprint arXiv:2004.10340, 2020.

A. Ben-Tal and M. Teboulle. An old-new concept of con-
vex risk measures: The optimized certainty equivalent.
Mathematical Finance, 17:449—476, 2007.

M. J. Best, N. Chakravarti, and V. A. Ubhaya. Minimizing
Separable Convex Functions Subject to Simple Chain
Constraints. SIAM Journal on Optimization, 10(3):658—
672, 2000.

S. P. Bhat and L. A. Prashanth. Concentration of risk mea-
sures: A Wasserstein distance approach. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc.,
2019.

M. Blondel, O. Teboul, Q. Berthet, and J. Djolonga. Fast
differentiable sorting and ranking. In International Con-
ference on Machine Learning, pages 950-959, 2020.

S. G. Bobkov and M. Ledoux. One-Dimensional Empirical
Measures, Order Statistics, and Kantorovich Transport
Distances. Memoirs of the American Mathematical Soci-

ety, 2019.

R. Chen and I. C. Paschalidis. Distributionally Robust Learn-
ing. Foundations and Trends® in Optimization, 4(1-2):
1-243, 2020.

J. Cotter and K. Dowd. Extreme Spectral Risk Measures:
An Application to Futures Clearinghouse Margin Require-
ments. Journal of Banking & Finance, 30(12):3469-3485,
2006.

S. Curi, K. Y. Levy, S. Jegelka, and A. Krause. Adaptive
Sampling for Stochastic Risk-Averse Learning. In Neural
Information Processing Systems, volume 33, 2020.

A. Daouia, L. Gijbels, and G. Stupfler. Extremiles: A New
Perspective on Asymmetric Least Squares. Journal of the

American Statistical Association, 114(527):1366—1381,
2019.

A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A
Fast Incremental Gradient Method With Support for Non-
Strongly Convex Composite Objectives. In Neural Infor-
mation Processing Systems, volume 27, 2014.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
Imagenet: A large-scale hierarchical image database. In
2009 IEEE conference on computer vision and pattern
recognition, pages 248-255. leee, 2009.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, 2019.

J. C. Duchi and H. Namkoong. Variance-based Regular-
ization with Convex Objectives. Journal of Machine
Learning Research, 20(68):1-55, 2019.

Y. Fan, S. Lyu, Y. Ying, and B. Hu. Learning with Average
Top-k Loss. In Neural Information Processing Systems,
volume 30, 2017.

H. Follmer and A. Schied. Convex measures of risk and
trading constraints. Finance Stochastics, 6(4):429-447,
2002.

R. Frostig, M. J. Johnson, and C. Leary. Compiling machine
learning programs via high-level tracing. Systems for
Machine Learning, 4(9), 2018.

V. Guigues and C. A. Sagastizdbal. Risk-averse feasible
policies for large-scale multistage stochastic linear pro-
grams. Mathematical Programming, 138(1-2):167-198,
2013.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
770-778, 2016. doi: 10.1109/CVPR.2016.90.

X. D. He, S. Kou, and X. Peng. Risk Measures: Robustness,
Elicitability, and Backtesting. Annual Review of Statistics
and Its Application, 9(1), 2022.

A. Henzi, A. M6sching, and L. Diimbgen. Accelerating the
pool-adjacent-violators algorithm for isotonic distribu-
tional regression. Methodology and computing in applied
probability, pages 1-13, 2022.

J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis
and Minimization Algorithms. Springer, 1993.

T. Hofmann, A. Lucchi, S. Lacoste-Julien, and
B. McWilliams. Variance Reduced Stochastic
Gradient Descent with Neighbors. Neural Information
Processing Systems, 28, 2015.

M. J. Holland and E. Mehdi Haress. Spectral risk-based
learning using unbounded losses. In International Con-



Ronak Mehta, Vincent Roulet, Krishna Pillutla, Lang Liu, Zaid Harchaoui

ference on Artificial Intelligence and Statistics, volume
151, pages 1871-1886, 2022.

W. Hu, G. Niu, I. Sato, and M. Sugiyama. Does distribution-
ally robust supervised learning give robust classifiers? In
International Conference on Machine Learning, pages
2029-2037, 2018.

R. Johnson and T. Zhang. Accelerating stochastic gradient
descent using predictive variance reduction. In Neural
Information Processing Systems, volume 26, 2013.

K. Kawaguchi and H. Lu. Ordered SGD: A new stochastic
optimization framework for empirical risk minimization.
In International Conference on Artificial Intelligence and
Statistics, volume 108, pages 669-679, 2020.

J. Khim, L. Leqi, A. Prasad, and P. Ravikumar. Uniform
Convergence of Rank-weighted Learning. In Interna-
tional Conference on Machine Learning, volume 119,
pages 5254-5263, 2020.

D. Kuhn, P. M. Esfahani, V. A. Nguyen, and S. Shafieezadeh-
Abadeh. Wasserstein Distributionally Robust Optimiza-
tion: Theory and Applications in Machine Learning. In
Operations Research & Management Science in the Age
of Analytics, pages 130-166. INFORMS, 2019.

Y. Laguel, J. Malick, and Z. Harchaoui. First-Order Opti-
mization for Superquantile-Based Supervised Learning.
In IEEE International Workshop on Machine Learning
for Signal Processing, pages 1-6, 09 2020.

Y. Laguel, K. Pillutla, J. Malick, and Z. Harchaoui. Su-
perquantiles at Work: Machine Learning Applications
and Efficient Subgradient Computation. Sez-Valued and
Variational Analysis, 2021.

N. Le Roux, M. Schmidt, and F. Bach. A Stochastic Gra-
dient Method with an Exponential Convergence Rate for
Finite Training Sets. In Neural Information Processing
Systems, volume 25, 2012.

Y. LeCun, C. Cortes, and B. Christopher. MNIST hand-
written digit database. http://yann.lecun.com/exdb/mnist/,
1998.

J. Lee and M. Raginsky. Minimax Statistical Learning with
Wasserstein distances. In Neural Information Processing
Systems, volume 31, pages 2687-2696, 2018.

J. Lee, S. Park, and J. Shin. Learning Bounds for Risk-
sensitive Learning. In Neural Information Processing
Systems, volume 33, pages 13867-13879, 2020.

L. Leqi, A. Prasad, and P. K. Ravikumar. On Human-
Aligned Risk Minimization. In Neural Information Pro-
cessing Systems, volume 32, 2019.

D. Levy, Y. Carmon, J. Duchi, and A. Sidford. Large-
Scale Methods for Distributionally Robust Optimization.
In Neural Information Processing Systems, volume 33,
2020.

T. Li, A. Beirami, M. Sanjabi, and V. Smith. Tilted Empiri-
cal Risk Minimization. In International Conference on
Learning Representations, 2021.

C. H. Lim and S. J. Wright. Efficient Bregman Projec-
tions onto the Permutahedron and Related Polytopes. In
International Conference on Artificial Intelligence and
Statistics, pages 1205-1213, 2016.

J. Mairal. Incremental Majorization-Minimization Opti-
mization with Application to Large-Scale Machine Learn-
ing. SIAM Journal on Optimization, 25, 02 2014.

A. Maurer, D. A. Parletta, A. Paudice, and M. Pontil. Robust
Unsupervised Learning via L-statistic Minimization. In
International Conference on Machine Learning, pages

7524-7533, 2021.

Y. Nesterov. Smooth minimization of non-smooth functions.
Mathematical programming, 103(1):127-152, 2005.

A. K. Pandey, L. A. Prashanth, and S. P. Bhat. Estimation of
spectral risk measures. In AAAI Conference on Artificial
Intelligence, 2019.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
and S. Chintala. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Neural Informa-
tion Processing Systems, volume 32, pages 8024-8035.
Curran Associates Inc., 2019.

G. C. Pflug and A. Ruszczyfiski. Measuring Risk for Income
Streams. Computational Optimization and Applications,
32(1):161-178, 2005.

L. A. Prashanth and S. P. Bhat. A Wasserstein distance
approach for concentration of empirical risk estimates.
Journal of Machine Learning Research, 23(238):1-61,
2022.

S. J. Reddi, S. Sra, B. Péczos, and A. Smola. Fast incremen-
tal method for smooth nonconvex optimization. In /IEEE
55th Conference on Decision and Control (CDC), pages
1971-1977, 2016.

R. T. Rockafellar and J. O. Royset. Random variables,
monotone relations, and convex analysis. Mathematical
Programming, 148(1-2):297-331, 2014.

R. T. Rockafellar and S. Uryasev. The fundamental risk
quadrangle in risk management, optimization and statis-
tical estimation. Surveys in Operations Research and
Management Science, 18:33-53, 2013.

E. Saravia, H.-C. T. Liu, Y.-H. Huang, J. Wu, and Y.-S.
Chen. CARER: Contextualized affect representations
for emotion recognition. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language
Processing, pages 3687-3697, Brussels, Belgium, Oct.-
Nov. 2018. Association for Computational Linguistics.



Stochastic Optimization for Spectral Risk Measures

S. Sarykalin, G. Serraino, and S. Uryasev. Value-at-Risk vs.
Conditional Value-at-Risk in Risk Management and Opti-
mization. In State-of-the-art decision-making tools in the
information-intensive age, pages 270-294. INFORMS,
2008.

S. Shalev-Shwartz and S. Ben-David. Understanding Ma-
chine Learning: From Theory to Algorithms. Cambridge
University Press, 2014.

S. Shalev-Shwartz and T. Zhang. Stochastic Dual Coordi-
nate Ascent Methods for Regularized Loss. Journal of
Machine Learning Research, 14(1):567-599, 2013.

J. Shao. Functional calculus and asymptotic theory for
statistical analysis. Statistics & Probability Letters, 8(5):
397-405, 1989.

A. Shapiro, D. Dentcheva, and A. Ruszczynski. Lectures on
Stochastic Programming - Modeling and Theory, Second
Edition, volume 16. SIAM, 2014.

G. Shorack. Probability for Statisticians. Springer Texts in
Statistics, 2017.

A. Tsanas and A. Xifara. Accurate quantitative estimation
of energy performance of residential buildings using sta-
tistical machine learning tools. Energy and Buildings, 49:
560-567, 2012.

R. Williamson and A. Menon. Fairness Risk Measures. In
International Conference on Machine Learning, pages
6786-6797, 2019.

X. Xiang. A note on the bias of L-estimators and a bias
reduction procedure. Statistics & Probability Letters, 23
(2):123-127, 1995.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a
Novel Image Dataset for Benchmarking Machine Learn-
ing Algorithms. arXiv Preprint, 2017.

L. Xiao. Dual Averaging Method for Regularized Stochastic
Learning and Online Optimization. In Neural Information
Processing Systems, volume 22, 2009.

I. Yeh. Analysis of Strength of Concrete Using Design of
Experiments and Neural Networks. Journal of Materials
in Civil Engineering, 18, 2006.



Ronak Mehta, Vincent Roulet, Krishna Pillutla, Lang Liu, Zaid Harchaoui

Appendix

In the appendices, we give the proofs of consistency (Prop. 1) in Appx. A and the variational properties of the objective
(Prop. 2) in Appx. B. Appx. C contains the analysis of bias SGD (Prop. 3). Appx. E contains the analysis of LSVRG
(Thm. 4), with necessary background in Appx. D. We then give describe the experimental setup in detail (Appx. F) and give
some additional numerical results (Appx. G).
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A CONSISTENCY OF THE EMPIRICAL SPECTRAL RISK

We first recall the setting of Prop. 1. Let (Q2,F,P) denote a common probability space, upon which we consider an
iid. sample {Z, ..., Z,} with each Z; : Q@ — R being (F, B(R))-measurable, where B(R) denotes the Borel sets on the
real line. Each shares a common cumulative distribution function (CDF) F and quantile function F'~! given by

F(z):=P [Zfl ((—oqz])] and F~1(t) :=inf {z : F(2) > t}.

Similarly, define the empirical CDF and quantile functions by
1< 1 :
F.(z;w) = — g l(—oo,s] (Zi(w)) and F; " (t;w) = inf {z : Fy(2;w0) > t}.
n
i=1

Construct the random variables F,,(2) : w + F,,(z;w) and F,,; 1 (t) : w + F, }(t;w). Here, z € Rand ¢ € (0, 1), and the
infimum is always attained (Bobkov and Ledoux, 2019, Page 83). We can ensure measurability of F; 1 (¢) by taking the
infimum only over z € Q. All expected values will be taken with respect to (£, F,P) and will be denoted by E. For s a
probability density function (PDF) on (0, 1), the L-functional L with spectrum s is defined as

1
L,[F] := /O s(t) - F~1(t) dt. ®)

We first establish that (8) is well-defined, using a well-known result of quantile functions.

Proposition 5. (Bobkov and Ledoux, 2019, Proposition A.1) Let Z be a random variable and let F be its cumulative
distribution function. If U is a random variable distributed uniformly in (0, 1), then the random variable F~'(U) has F as
its distribution function. In particular,

1
E|Z|? :/ |[F~1(t)|" at
0

when the left hand side is finite.
Lemma 6. Let s be bounded, and E |Z;| < oo. Then |L[F]| < cc.

Proof. Let [|s||, := supse(o,1 [s(t)] < oo. Write

1 1 1 1 Prop. 5
ILs[F]| = /O s(t) - F (lf)dt‘<||8||m-/O [F W] dt < sl ElZ1] < oo

We restate Prop. 1 below.
Proposition 1. Assume that E|Z|” < oo for some p > 2 and that ||s|| , := sup,¢(g,1) |5(t)| < 0o. Then,

20512 (25) E(1Z7)
2 _ Isllse (322 ) El1217] |

E L [F,] — L, [F]| -

The proof is summarized by the following steps.
2
1. By boundedness of the spectrum, we have that E [L, [F,,] — L, [F]|*> < ||sHZO ‘E {(fol |[Fo1(t) — F~1(1)] dt) } .

2. Using the triangle inequality on L?(IP) and relationships between quantile functions and CDFs, we relate

\/IE {( SHES ) - FL(0) dtﬂ to the quantity - [+ \/F()(1 = F(2)) d=.

3. We then use elementary concentration inequalities to bound fj;o VF(z)(1 - F(2))dz by \@I%]E [|Z|p]l/p.
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The following theorem details how the L' distance between the quantile functions of two probability distributions is equal
to the L' distance between the corresponding CDFs.

Theorem 7 (Theorem 2.10 of Bobkov and Ledoux (2019)). Let u, v be two probability distributions on R with associated
CDF F and G, respectively, with quantile functions F~1(t) := inf{z € R: F(2) >t} and G~! ;== inf{z € R: G(2) > t}.
Given that v and v have finite first moment, i.e., [ |z| du(z) < oo and [ |z| dv(z) < oo, we have that

Wilnr) = [P - G@la= [ 10 - 6] a

where both the left and right hand sides are finite.

Next, we ensure that the L' distance between F; —! and F,, is a square-integrable random variable.

Lemma 8. Assume that E |Z,|> < oco. Then, the random variable V,,( fo |E — F~Y(t)| dt is well-defined,
and E[V?] < o0.

Proof. For any particular realization w € €2, write

— ‘/01 |E7 (tw) — F7H(1)| dt

1
< / |Fn_1(t;w) - F_l(t)|2 dt Jensen’s inequality
<2/| Yt w)| dt+2/|F H* dt
fZ\Z )P+ 2E |2, Prop. 5.
Then, E[V;2] < 4E | Z;|?, completing the proof. O

The next lemma applies the above theorem to bound the expected distance between empirical and population quantile
functions in terms of the population CDF, expanding upon remarks made on page 20 of Bobkov and Ledoux (2019).

Lemma 9. Assume that E|Z,|> < co. Then,

1 2 ~+o0
1
- ro)a) | <o [ VFOT- -
([ | N
where the right hand side is permitted to be infinite.

Proof. By Lem. 8 we have that

2
=E [V}] < o, 9

E [(/01 |E () — FH(1)] dt>

so that the left hand side is well-defined and finite. By Thm. 7, we also have that fol |Fn’ Yt w) — Ffl(t)| dt =
[ |Fu(z;w) — F(2)| dz, indicating with (9) that the random variable

w /_OO |F(z;w) — F(2)| dz € L*(P).
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By the triangle inequality on L?(IP), we have that

JE l(/ol |Fl(8) — F-1(1)] dtﬂ = \IIE (/m |Fu(z) — F(2)] dzﬂ
_ H / FEle|

g[ 11F(2) = F)lll ooy d2

_ /: \/E [1Ea(e) — F()] a.

Next, notice that for fixed z € R, nF,,(z) ~ Binom(n, F'(z)), so that

E [|Fa(2) - F(2)| = Var [F, (2)] = —H——22,

completing the proof. U

The final lemma bounds the right hand side of Lem. 9.
Lemma 10. Consider a random variable Z with c.d.f. F. If Z satisfies E [| Z|'] < oo for p > 2, then

CVEG- PG < Ve (2 ) Bz

Proof. By definition, [*_+/F(2)(1 — F(z))dz = limq—4o0 [*, /F(2)(1 — F(2)) dz. Denote ¢ = E[Z|")"/". For

any constant a > ¢ > 0, we have

[ VFEU-FEe = [ VREG- e+ [ VEEI- e
Oa\/mdqu/Oamdz
/Oa\/Wdz+/oa\/mdz
:/Oa\/IED(Zg—z)—i—\/P(Z>z)dz

Then, use that for any a,b > 0,

(Va+Vb)? =a+b+2Vab<2(a+b) = va+Vb<+\/2(a+b).

Using this, and that z > 0, we have

VP(Z < =2)+P(Z > 2) < V2(P(Z < —2) +P(Z > 2))
V2P(Z] > 2) + P(Z = —2))
V2(P(|Z] > 2) + B(1Z] = 2))

2P(|Z] > 2).

IA



Ronak Mehta, Vincent Roulet, Krishna Pillutla, Lang Liu, Zaid Harchaoui

Combining with the first display, we have that
/‘MF@G—F@ﬁMg/}VMZS—@+VMZ>@@
—a 0
< \@/ VE(|Z] > z)dz
0

@ P
<V2 / {/ min {1, cp} dz Markov’s inequality
0 z

:\/§(c+cp/2/ z_p/de).
(&

/a p2 g, al-p/2 _ Cl—p/2.
c 1- p/2

clfp/2
P21

/:)O VF(z)(1—F(2))dz = lim ’ VF(2)(1—-F(2))dz

a—oo J_

< lim \/§<c+cp/2/ zp/de)

Computing the integral yields

Because 1 — p/2 < 0, we have that lim,_, fca 2 P/2 4y — Combining the steps above, we obtain

Resubstituting ¢ = E [|Z|” ]1/ P completes the proof.
We now have the tools to prove Prop. 1.

Proof of Prop. 1. For a particular realization Z; (w), ..., Z, (w), we have that

mA&UwH—MUW=(ASU%E?@MNM—ASQVF”@N4

[ st (5 0 - ) a

IN

1
sup ()] [ |F M 6w) - P70 e
te(0,1) 0

1
nww-A F (5w) — F\(1)] dt.

We then take the square and expectation.

1 2
EHLS [Fn] — L, [F]|2 < HS”io E [( 0 ’Frjl(t) _Fil(t)| dt> ‘|

Islze ([ -
< : F(2)(1-F(z))dz Lem. 9
n — 00
2|5/ 2 2
< 2islle 792) E[|Z|"]F . Lem. 10
n pP—
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B CONVEXITY AND SUBDIFFERENTIAL PROPERTIES

Recall the expression of the empirical L-statistics

w) =Y il (w). (10)
i=1

where 0 < o1 < --- < gy, E?:l o; = 1, each ¢; : R? — R is a function representing performance of model weights w
on training instance ¢, and for a vector [ € R", we denote [ <. < l (n) its ordered coefficients. We recall Prop. 2 and
present its proof.

Proposition 2. If {1, ..., {, are convex, the function R, is also convex, with subdifferential
OR,(w) = conv U Z 00l (w) |
meargsort(£(w)) i=1

where argsort (((w)) = {7 : £rq1)(w) < ... < lr(n)(w)}. Moreover, if each {; is G-Lipschitz continuous, R, is also
G-Lipschitz contmuous

Proof. Since the coefficients o = (01, ..., 0,,) are non-decreasing, the function R,; can be written as the maximum over all
possible permutations of the losses, i.e.,

Ro(w) = 7{%%)( - O—lgﬂ'(l)( w) = 7{2%)( On=1(i )£ (w),
where II,, is the set of permutations of {1,...,n}. Forany w € IL,, w — ;" ; 0r—1(;/i(w) is a convex combination of

convex functions, hence it is convex. Since the pointwise maximum of convex functions is convex, R, is convex.

The pointwise maximum f = max;— . n f; of N convex functions { f;}7_, has a subdifferential defined by 0 f(x) =
conV U carg max{ s, (z)} 9.f3 (%) where conv(A) denotes the convex hull of a set A (Hiriart-Urruty and Lemaréchal, 1993,
Lemma 4.4.1). Letting N = nl!, consider the finite set of convex functions {f, : = € II,} with each f; : w —
> 1 0ilr(iy(w). The subdifferential of fr is dfr(w) = Y1 | 0;0r(;)(w), where the sum is to be understood as a
Minkowski sum of sets (Hiriart-Urruty and Lemaréchal, 1993, Lemma 4.4.1). Hence, the subdifferential of R, (w) is defined
by

OR,(w) = conv U Ofr(w) | = conv U Z 00l (w) | ,

mEarg max fr(w) meargsort(£(w)) i=

where we used that argsort (((w)) = argmax, > ;| 0l (w) whenoy < -+ < oy,.

Finally if all ¢; are G-Lipschitz continuous, i.e., have G-bounded subgradients, then for any permutation 7 of {1,...,n},
any g € Y, 00Lr(;)(w) is bounded by G as a convex combination of G-bounded vectors. Hence any g € OR,(w) is
bounded by G as a convex combination of G-bounded vectors. The function R,, is then convex with subgradients bounded
by G, hence it is G-Lipschitz continuous.

O
C BIASED SGD CONVERGENCE ANALYSIS
Recall the regularized L-risk considered
. H 2
lrurélﬂgdﬂzg(w)—&—§||w||2 for R, ( Zal (i) (w (11)
where f > 0,0 <01 < --- < gy, E?:l o; = 1, each ¢; : RY — R is a function representing performance of model

weights w on training instance 7 and £(1)(w) < ... < £(;,)(w). In the following, we consider G-Lipschtiz continuous convex
losses. The aim of this section is to prove the following proposition.
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Proposition 3. If the losses {1, ..., {,, are G-Lipschitz continuous, differentiable, and convex, the output w'T) of Alg. I with

o t1+1) satisfies

n(t) =

E [Rou (#7)] = Rop(w)
n—m 2G?*(1 +logT)
m(n—1) uT

bias term optimization term

<2V20,B,

for w*=argmin,,cps Ry, (W), Cs=supse (g 1) |5(t) —u(t)
expectation is taken over the sampling of each minibatch.

s and By, = SUDy ||, <c/p MaXi=1,...,n [l;(w)] < oco. The

The proof will proceed in three parts, which comprise the next three subsections. The final subsection proves the main result.

1. The convexity and G-Lipschitz continuity of the losses is used to analyze the convergence of Alg. 1 on a surrogate
objective for which there is no bias.

2. We then establish a uniform bias bound between the surrogate function and the original function over a set W C R<.

3. We then relate the suboptimality gap of the surrogate objective to the suboptimality of the original objective by using
the bias bound and establishing that the iterates and minimizers are contained in W.

C.1 SGD Analysis for Convex, Lipschitz Loss and Strongly Convex Regularizer

We present first a generic convergence result for stochastic subgradient algorithms such as Alg. 1 applied to regularized
non-smooth functions in Lem. 11, which is a minor adaptation of Bach (2023, Theorem 5.5).
Lemma 11. Consider a G-Lipschitz continuous, convex function f : R? — R and a regularization pl| - ||2 for u > 0
defining an objective of the form f,(w) = f(w) + p||w||3/2. Given a an initial point w®) = 0 € R? consider iterates of
the form, fort > 0,

wtD = ® — OO 4 pw®),

for v a random vector whose distribution depends only on w™® satisfying E [v(t) | w(t)} € af(w(t)) and Hv(t) H2 <G,

and n™) > 0. Consider outputting after T iterations the estimate w'T) = % ZtT:_Ol w®. Provided that n®) = ﬁ this
estimate satisfies
_ o 2G*(1 +1logT
Bl (00)] — fufur) < 201 8T)
wr

Sfor w* = argmin  cpa f,(w), where the expectation is taken over the sequence w®, o wTD,
Proof. Write the expansion

2 2 2

Hw<t+1> _wtl| = me —wr|| =2 <U<t> + pw® w® — w> + (2 Hv(t) + paw® (12)

2 2 2

Because ||w(0) ||2 =1|0[l, < G/p, |v®P]| < G and w*+1) can be expressed as a convex combination of w® and —v(®) /pu,

that is,
1
wttD — (1-— n(t),u)w(t) + ﬂ(t)ﬂ (_uv(t)> ,

we can conclude by induction that Hw(t) ||2 < G/uforallt =0,...,T — 1 when 7y < 1, which is satisfied for our

choice of n*). Thus, (n®)?|[v® + pw® Hz < (n)? - 4G?. Taking the conditional expectation of v(*) given w(®) of (12)
yields

2
E [mel) W - 2n®) <]E [vm | w(t)} + uw®, w® — w> + (p®)24G2. (13)

?) w(t)} < u® —ur
2
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Because E [v®) | w®] € 0f(w®), we have that E [v®) | w®] + pw® € 9f,(w®), and by the yi-strong convexity of
fu, we have

2

_ <]E {vu) | w(t)] + pw®, w® — w*> <_ <f (W®) — £, (w* ) _ g me Wt

which, substituted into (13) gives

2

E {Hw(wl) —w*

2 2

N w<t>] < (1=n0p) [0 —w|” =20 (Fu@®) = fulw?)) + 6®)16

1 1 2

2 = — (t) * (t) ®) 2
2 ((nm “) [ wi, T D“” ¢
1 2 2 2G?

z tH (t) — u(t+1E H (t1) _ (t) e
2(u w p(t+1) w w Q\w +N(t+1)

0 ..., w®, sumovert=0,...,T — 1, and divide by T to get

T-1 T-1
1 1 2G? 2G%(1 +logT)
72 fu@) | = fulw?) < < :
7 2 Sl ™)~ e S 73 G T

2

= fu(w?) = fu(w?)

_ (t+1) _
2 n(t)E [Hw

2

Take the expectation over the entire sequence w'

which combined with f, (0™)) < £ ZtT;Ol fu(w®) completes the proof. O

C.2 Bias Control
In this section, we control the bias term appearing in the convergence analysis. The following lemmas consider a set of real

numbers, representing losses at a single w € R%. Let x1, ..., x, € R be call the full batch, and let X1, ... X,, be a random
sample selected uniformly without replacement from {z1, ..., z,}, called the minibatch. Let

n 1 m
zg: a:z] T andlalm E ;{jg: a:ﬂ

3\'—‘

be the empirical CDFs, and let
F7Y(t) := inf {z : F,(z) >t} and F;}n(t) =inf{z: F,, n(z) > t}.

n

be the empirical quantile functions of the full batch and minibatch respectively. Similarly, let
= Z 0z, and fip m = Z Ox;
i=1 j=1

be the empirical measures of the full batch and minibatch, respectively, with §, indicating a Dirac point mass at x. Let
u(t) := 1(0,1) (t) be the uniform spectrum. Note that F;, ,,, and /iy, ,,, are random, since they depend on the random sample
X1, X

The first result shows that the minibatch L-risk is an unbiased estimator of the full batch L-risk for the case of the uniform
spectrum.

Lemma 12. We have that foranyn € N, m < n,
E [Lu [Fn,m]] =L, [Fn},

where the expectation is taken over the sampling of X1, ..., X,, without replacement.

Proof.

n

m 1 m 1 1 m 1
z_: 0| =E EZX]' :m > sz”:ﬁzxi:L“[F
= Jj=1 m j=1

11 <. <lpm

S\H
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Recall the definition of the 1-Wasserstein distance between probability measures p and v over R with finite first moment,
given by

Wilnr)i= it [ o=yl dy(e).
YEI(p,v) JR

where II(u, v) is the set of couplings (or joint distributions) with marginals being p and v.

Lemma 13. For any n € N, m < n the 1-Wasserstein distance between the empirical measures satisy

n—m
< = .
Eld«n [Wl(,U/n,m7/'L’ﬂ)] = 2m(n — 1) z:l’rll,ax,n |xz| ’

where E,,, -] denotes the expected value according to the sampling of X1, . .., X, without replacement from {x1, ..., x,}.

Proof. Note that both (i,, and any realization of f,, ,, have finite first moment. Then, we have that

B W3 n)] = B, | [ 1Fom(a) = Fo(o)] as Thin, 7

~ (B

R
< \/Eﬂn {(an(x) - F, (x))z} dz Jensen’s inequality
R

where the last line follows because F,, () is the expected value of F, (z) = & Z;”:l 1(—s0,z] (X;) (even when sampling
without replacement). Then, notice that due to the finite population sample correction when sampling without replacement,
we have that

Var [F, i (2)] =

and so

By, [Wi(fnms fin)] < ,/% /]R V@)1 = Fy(2)) da.

Next, because (., is a categorical distribution over a finite set, it has p-th moment for any p > 0. So, we may apply Lem. 10
to write

n

1/p
| VE@T=F@) < va-Ls (i > Ixilp> =VE max ol

i=1

completing the proof. O

Next, we can give the bias bound for an L-functional applied to (i, ,, and fi,,.

Lemma 14. Let IL; be an L-functional with spectrum s, and let u be the uniform spectrum. Then,

n—m
|E L [Fr,m]] — Ls[Fn]| < mn—1) |s — UHooizﬂllftfn |zil,
where the expectation is taken over the sampling of Xi,...,X,, without replacement, and |s—ul|,, =

SUPte(0,1) |s(t) — u(t)|-
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Proof. Write

|E [Ls [Fnm]] — Ls[Fn]| = [E [Ls[Fpm]] — Ls[Fn] — (B [Lu[Frm]] — Lu[F])] Lem. 12

= [ [ - (k0 - wan)]|

1
<E [ / (s(t) —u(t)) - (Fg}n(t) — F;l(t)dt) H Jensen’s inequality
0
<|ls—ulE [HF,;; o M Holder’s inequality
= [Is — ull oo E [W1 (kn,ms pin)] - Thm. 7
Applying Lem. 13 achieves the desired result. O
Next, consider the situation in which xy = ¢1(w), ..., x, = £,(w), i.e., the loss functions for each data point evaluated at

w, with X; = £;, (w) for the randomly samplied minibatch (i1, . ..,%,,). By defining

n

F,(z;w) := %Z 1 (4;(w) <) and F, (2 w) 1=

Z 1 (&j (w) < ;U) ,

we have that

This gives the following corollary.

Corollary 15. Given a minibatch (i1, ..., iy, ) sampled uniformly randomly without replacement from [n], define Rs(w) :=

> iy Gl (w), where £, (w) < ... < 4; (w) are the minibatch order statistics. It holds that

n—m
sup E[Rs(w) | w] — Ry (w)| < V2 s —ull | ———Bu,
o B Rs(w) ] = Ro(w)] < VELs — ul [ B

where BM = SUDy: || w||<G/pu,i€n] ‘ei(w” < 0.

Proof. For any w € R%, we have that

[E [Rg (w) | w] = Ro(w)] = | [Ls [Frm (5 w)]] = Lis[Fn (5 w)]

/[ n—m

Take the supremum for {w : ||w||, < G/u} on both sides. Because each ¢; is continuous, so is max;—1 ... » [¢;(w)|. Because
the supremum is taken over a compact set (the ball of radius G/ ), it is finite. O

C.3 Proof of Main Result

Proposition 3. If the losses (1, ..., {,, are G-Lipschitz continuous, differentiable, and convex, the output ™) of Alg. I with
n® = ﬁ satisfies

E [Rou (@T))] = Rl
n—m 2G?(1+logT)
m(n—1) + uT

bias term optimization term

< 2V2C,B,

for w*=argmin,,cps Ry, (W), Cs=supyse (g 1) |5(t) —u(t)
expectation is taken over the sampling of each minibatch.

s and By, = SUDy, ||, <c/p MaXi=1,...n [l;(w)] < oco. The
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Proof. Define the surrogate function
Ro(w) :=E [Rg(w) [w] =B | > 5545, (w) | w]
j=1

where the expectation is taken over sampling the minibatch (i1, . . ., i,,). The expectation is over a discrete distribution on a
finite set, so it is a well-defined function of w. We now establish the properties of R required to apply the generic analysis
of the stochastic subgradient method given in Lem. 11 with f = R5 and v®) = Z;”:l 6V, (w). This choice of Rs is
clearly convex, and because v(*) is a subgradient of R, E [U(t) | w(t)] is a subgradient of Rs. Given the G-Lipschitzness
of each /;, we have that R is also G-Lipschitz by Prop. 2, and thus so is Rs. Then, letting 3?;,7 p(w) == R (w) + & llw
applying Lem. 11 gives

2
2

E (R (@T))] = Rop (67) < 2GQ(ZqugT°7 (14)

where w* = arg min , cga 51&, » (w). We must now pass this result regarding Rs. . to a similar one regarding R, ,,. Define

W= {w € R?: |w||, < G/p}. We first establish that w*, w* € W, so that

Iréi]de Ro (W) = 5}1&1&7 Rép. (w) and J}Iélﬂéld Rop (W) = lrurél% Rop (). (15)

The subdifferentials of 3_%&7 » and R, ,, are given by
ORs (W) = ORs(w) + pw = {g + pw : g € ORs(w)},
ORo (W) = ORy (w) + pw = {g + pw : g € OR,(w)}.
Then, by optimality,
g+ pw* =0and g+ pw* =0

< (1= [w®

1
L, va
2 "

for some g* € OR,(w*) and § € ORs(w*), yielding that w*,w* € W because ||g*|,,[|gll, < G. Next, note that
[w®]], < G/pforanyt =0,...,T. To see this, observe that ||w(?||, = [|0]l, < G/u, andif ||w ]|, < G/p, then
1 G
o] = H(1 1 ® ) 4 ® (-M) <8
2 H 2 2 M
if np < 1, which is satisfied for n(*) = 1/(ut). By convexity of W, this means that w(*) € W. Given that w*, w*,
and @7 are contained in ‘W, if we can show that R, and R are close on this set, then optimizing R should also
result in a near-optimal value of R,. Assume there existed § > 0 such that sup,,cyy |Ro(w) — Rs(w)| = 6§ < oc. Then,
Ro (0™) < Rs (™)) + 6, and, for any w € W,

Ry () > Ry (w) =8 = — min (R (w) + & Jwl}) < - min (Rs (w) + & Jwll3) +4, (16)
giving
2 [ (57)] - i 0) =8 s (57)] - iy 0
<26 +E Ry, (07)] - min Ry, (w) (16)
— 2% +E [3@;,,“ (u—,m” — min Ry, (w) (15)
§25+2G%22}%75. (14)

Establishing the existence of such a § and showing 2§ < 2v/2C,B 1y / % completes the proof. This is accomplished by
Cor. 15, which gives

20 =2 sup |Rs(w) =Ry ()| =2 sup  [E[Ro(w) | w] = Ro(w)] < 2v2|s —ull, \/WBM,
wew w:||lwl|, <G/ p m(n—1)

the desired result. O
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D SMOOTHING THE EMPIRICAL SPECTRAL RISK MEASURE

Recall that we consider objectives of the form (ignoring the regularization part)
w) = il (w), A7)
i=1

where o; are the weights associated with the discretization of a spectral risk, i.e., o; = | L s(t)dt for s : (0,1) — [0, 400)

non-decreasing and such that fo t)dt = 1.

We can rewrite problems (17) as minimizing a composition
Ro(w) = h(0(w)) with h(l Z oil@ and L(w) = (L(w), ..., la(w)).

Since the coefficients o; are not decreasing, the outer function s can be expressed as

h(l) = max Al
AEP (o)

where P(0) = {A\=1lo : 111 = 1,117 1 = 1,1I € [0, 1]**"} is the permutahedron associated with the weights o.

The function h is non-differentiable at points [ with ties. However, smooth approximations of h can be defined by means of
a strongly convex regularizer as presented by Nesterov (2005). For 2 strongly convex w.r.t. some norm || - || and v > 0, we
consider a smooth approximation of & defined by

hoa(l) == max {l A —=vQ(N)}, with Vh,o(l) = arg max {ZT)\ —vQ(\)}.
AEP AEP(0)

By standard convex duality arguments, the smooth approximation of h can also be written as the inf-convolution of h with
the convex conjugate of 1), i.e,

hua(l) = zrrel]g% {h(z) +vQ*((I — 2)/v)}, Vhya(l) = VQ*((I — z%)/v) for z* = argmin {h(z) + vQ*((l — 2)/v)}.

z€ER"
(18)
We consider the surrogate objective defined by

Rova(w) == hpa(f(w)), with hyq(l) = mg(};) {l A — V(A )} and {(w) = (b1 (w), ..., L, (w)). (19)

Note that for any v > 0, if the losses ¢; are convex, then the surrogate objective R, ¢ is also convex.

In the following, we recall the smoothness properties of the smooth approximation in Lem. 16, we present the approximation
incurred by the smoothing in terms of the spectrum in Lem. 17. We give the implementation of the gradient evaluation of
the smooth approximation for appropriate choices of regularizers in Sec. D.2.

D.1 Smoothing Properties and Approximation Bounds

We recall below the smoothness properties of h,q (1), see, e.g., (Nesterov, 2005; Beck and Teboulle, 2012) for detailed
proofs.

Lemma 16 (Smoothing properties). For any Q and v > 0, the smoothed h,q, is ||o||p-Lipschitz continuous w.rt. || - ||, for
anyp € {1,...} U{+oo}. For any Q) that is 1-strongly convex w.r.t. || - ||, the smoothed h,q, is 1/v smooth w.rt. to the dual
norm || - ||, i.e., for any 1,1’ va(l) = Vhuo ()] < T =1l /v.

Usual examples are @ = || - |[30r @ = H : A — > | X\; In \;, for which we have access to h,q by isotonic regression,
e.g., (Lim and Wright, 2016; Blondel et al., 2020). In the following, we consider such functions centered around their
minimizers in P (o) to get tighter approximation bounds. Namely, we define w,, = 1/n € P (o) and we consider

Q1 (\) = Dr(\un) = HN) — H(uy,) — VH(up) (A — uy) Z)\ log(n);), and (20)

1
(V) = S[IA = unll3. @)
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We have that €, is 1-strongly convex w.r.t. || - ||; and Q5 is 1-strongly convex w.r.t. || - ||2.

We can then consider optimizing the surrogate objective for 2 € {1, Q2}, defined by R, Lo (w) := hyo(¢(w)). Lem. 17
details the approximation done by considering the smoothed version of the objective.

Lemma 17 (Approximation bounds). For any strongly convex function () invariant by permutation and such that
infycp(s) Q(A) > 0, we have that for any v > 0, 1 € R™,

0 < h(l) = hua(l) < vQ(o)

If, in addition, Q) is decomposable as Q(\) = 3", w(\;) with w convex and o is the discretization of a function s such

that o; = ff;l s(t)dt, then
1
Qo) < n/ w (S(t)> dt.
0 n

hua(l) = sup {IATT—vQ\)} < sup A'1=h(),
AEP(0o) AEP(0)

Proof. One one hand, we have that

since infyep(5) 2(A) > 0. On the other hand, we have that

hua(l) = sup {ATT—vQN)}> sup {AT1} —v sup Q) =h()—v sup Q).
AEP (o) AEP (o) AEP(0o) AEP(0)

Hence, we have 0 < h(l) — hya(l) < vmaxycp(y) ©2(A). The maximum of a convex function €2 over a polytope P (o) is
attained at a corner. The corners of the permutahedron P (o) are permutations of o. Since 2 is permutation invariant, we
have that (o) = Q(n (o)) for any permutation 7. Thus, maxecp(r) 2(A) = (o), completing the proof of the first part.
For the second claim, we use Jensen’s inequality to get

i

Qo) = z:;w (/ s(t)dt) - ;w (/_ (sg)) ndt)

n

Sg[;w(éig))ndt:n/olw<ss)>dt.

Corollary 18. Foro; = fl’iil s(t)dt with s a spectrum such that fol s(t)dt = 1, and for any v > 0, | € R™, we have

n

0<h(l)—hua,(l) <vDg(o;u,) < V/O s(t) In s(t)dt := v KL(sju),

14

1
v 14
0< h1) = huou0) < o =l < g [ (st =170t 1= o (sl

where KL(s||u) and x?(s||u) denote respectively the Kullback-Leibler divergence and the Chi-square divergence between
the spectrum s and the uniform distribution u.

For example, we can derive the bounds for some specific choices of spectra.

1. (Superquantile) For s(t) = 12111 (t), with ¢ € [0, 1], we have X2(25||u) = 1% and KL(s[u) = —In(1 — g).
2. (Extremile) For s(t) = rt"~1, with r > 1, we have x?(s|u) = 52:)1) and KL(s[ju) =Inr+ 1 — 1.

The approximations bounds computed for h,q and h naturally apply for R, .o and R,, that is, for any w € R%, we have
0 < Ry (w) — Ry va(w) < vQ(0). This gives the following lemma mentioned in the main text.

Lemma 19. Consider the regularized objective R, ,(w) = R,(w) + pllw|3/2 for R, defined as in (17) by non-
decreasing non-negative coefficients o; summing up to 1 and n functions (¢;)?_,, and consider the smoothed approximation
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Algorithm 3 Pool Adjacent Violators (PAV) Algorithm for w;

1: Inputs: Number of coefficients n, coefficients (I;)7—; and (s;)}—; with s, = Ino;

2: Initialize P1 = {1}, P = (Pl), v = ll — 81 — lnn, L1 = ll, M1 = S1, d=1.

3: fori=2,...ndo

4 Set Pyy1 ={i}, P+ (P1,..., Pay1), Va1 =0l —s; —Inn, Lgy1 = l;, Mgy1 = s;andd =d + 1,
5 while d > 2 and vy_1 > vy do

6: Set vg_1 LSE(Ld_l, Ld) — LSE(Md_l, Md) —Inn

7

8

Set Lg_1 + LSE(Ld_l, Ld), My_q + LSE(]\fd_l7 Md)
Set P + (Ph...,Pd,lUPd)

9: Setd +d—1

10: Output: z € R™ such that z; = v, fori € Py, s € {1,...,d}.

Ro o (W) = Ro pa(w) + pllw||3/2 for Ry, defined as in (19) by v > 0 and a strongly convex function X invariant by
permutation and such that inf ¢ p(5) Q(A) > 0.

Ifw € R¥ is a e-accurate minimum of the smoothed regularized objective, i.e., Ry, ,o(1) — Miny,cpe Ry pvo(w) < e
then it is an € + v§)(o) accurate minimum of the original regularized objective R ,,, where upper-bounds of Qo) are
provided in Lem. 17 and Cor. 18.

Proof. Denote w* = arg min, cga Ry, (w). If 0 € R? satisfies Ry, () — ming,cge Ro,u0(w) < € then
Ro (@) = Ro,pu(w7) < R pv02(W) = Ropv0(w”) +1v02(0) < € 4+ v8(0)

where we used that 0 < R, ,(w) — Ry v0(w) < v§2(o) since Lem. 17 holds. O

D.2 Implementation

The implementation of the smoothing is based on considering the primal formulation of the smoothing given in (18) as an
isotonic regression problem and by calling a Pool Adjacent Violators (PAV) algorithm to solve it. It has been described in
detail by, e.g., Best et al. (2000); Lim and Wright (2016); Blondel et al. (2020); Henzi et al. (2022). For completeness, we
detail here the rationale behind the implementation. We then specify here the overall implementation of the gradient oracles
of the smooth approximations for the chosen regularizers €2; and (25 defined in (20) and (21) respectively.

Formulation as Isotonic Regression Problem Consider the primal problem (18) defining the smoothing approximation
with a decomposable function €2 such that Q(A\) = Y7 | w()\;), that is

hva(l) = min {h(z) +vQ*(( - 2)/v)} = min {; [oi2(i) + vw* (i — 2i)/v)] }
As shown by Blondel et al. (2020, Lemma 4), for any scalars l;,1;, z;, z; such that [; < [; and z; > z;, we have,
using the convexity of w* that w*(I; — z;) + w*(l; — z;) > w*(l; — z;) + w*(l; — 2;). Hence for z € R™ to minimize
v ((1 — 2)/v) = > vw*((li — z;)/v), the coordinates of z must be ordered in the same order as [. Since h(z) =
Py 0%(;) is independent of the ordering of the coordinates of z, we get that, given a permutation 7 of {1,...,n} such
that [, < ... <[, ,problem (18) is equivalent to

n

hoa(l) = Hel]}g% Z (032, + v ((l; — 2:)/v)) .
zﬁ%...gzrn =1

An oracle on the gradient of the smooth approximation is then given by arg maxycp () {I"A — vQ(A)} = Vh,o(l) with

Vhya(l) = V(1 - 2)/v) forz* = v(PAV,(I,/v)),-1, PAV,(I) = argmin » (z0; +w*(l; — 2)), (22)
Z1 %g-ﬂggzn =1
where PAV is the output of the Pool Adjacent Violators algorithm (Henzi et al., 2022; Lim and Wright, 2016; Best et al.,
2000) applied to the given isotonic regression problem.
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Algorithm 4 Pool Adjacent Violators (PAV) Algorithm for wq

1: Inputs: Number of coefficients n, coefficients (I;)7—; and (o;)}_,

2: Initialize P1 = {1}, P = (Pl), v = ll + 1/n — 01, Cl = ]., d=1.

3: fori=2,...ndo
Set Pyy1 = {Z}, P+ (Pl, R 7Pd+1>, Va1 = l; + l/n — 0, Cd+1 =landd=d+1,
while d > 2 and vy_1 > vy do

4
5
6: Set vg_1 < Ca-1vd-14Cavy
7
8

Ca—1+Cq
Set Cy_1 + Cy+ Cy_q
SetP < (Py,...,Py_1 UPy)
9: Setd < d—1
10: Output: z € R™ such that z; = v, fori € Py, s € {1,...,d}.

Pool Adjacent Violators Algorithm We briefly recall the rationale of the Pool Adjacent Violator algorithm whose
implementation for the choices of w; and w9 are given in Alg. 3 and Alg. 4 respectively, where we denote LSE(sg) =

In}, gexp(s;).

The Pool Adjacent Violators Algorithm is used to solve problems of the form

min Y fi(z) (23)

21<... <z, =1

for some set of functions F = (f;)"_,, which in our case (22) are given by f;(z;) = z;0; + w*(l; — z;).

If at the solution z*, the constraint 2] < 27, is active, then by definition, 2] = 2, ;. More generally if the constraint
zi < zj* is active for ¢ < j, then all constraints of the form z;; < z,j“ fork € {i,...,j — 1} are active, i.e., 2y, = z; for
all k € {4,...,7}. Overall the solution of (23) is characterized by a set of p < n coordinates v7, ... , U, and a partition
P* = (Pf,...,Py)of {1,...,n} into contiguous blocks P} = {bs_1 +1,...,bs} for0 =by < by < ... < b, = nsuch
that z; = v¥ ifi € {bs_1 +1,...,bs}. For any feasible candidate solution z we can define the corresponding partition P(z)
of {1,...,n} into contiguous blocks of coordinates. Conversely, given a partition P = {P;,..., Py} of {1,...,n} into
contiguous blocks, we can define a vector z(P) with constant blocks such that z; = Zp, = Avg(F, P;) for i € P; where
for a set of functions F = (f;)?_, and a subset S C {1,...,n}, we define the function Avg that computes the average
solution of the objective of the PAV algorithm on S, i.e.

Avg(F,8) = argmin » _ fi(2). (24)
2€R  es
The principle of the PAV algorithm is to compute the optimal contiguous partition of {1,...,n} corresponding to the

solution of (23) by adding one coordinate of the problem at a time and merging this coordinate with previously computed
blocks if the constraints are not satisfied. We refer to, e.g., (Best et al., 2000; Henzi et al., 2022) for a proof of the validity
of this strategy. Most importantly, the efficiency of the PAV algorithm relies on having access to a function, which, for
S, T C{1,...,n}, SNT = 0, is able to compute Avg(F,S UT) given appropriate stored values (Ls, M in Alg. 3
and v, C in Alg. 4). The algorithms presented in Alg. 3 and Alg. 4 are then based on the computation of Avg(F,S)
for the functions f; considered. Namely, denoting F,; = (fu.1,i)i1 for fu.1,i(2) = zios + w*(l; — 2:), $; = Ino; and
LSE(ss) = In)_, g exp(s;), we have

1
Avg(Fu,1,S) = LSE(ls) — LSE(ss) — Inn, Avg(Fu,.,S) = & > (zi+1/n—0y),
i€s
and merging two subsets of coordinates can be done in O(1) time given appropriate stored values as we have

Avg(Fo, 1, SUT) = LSE(LSE(ls), LSE(Ir)) — LSE(LSE(sg), LSE(s7)) — Inn

S| Av ‘FW%,S +TAV sz,;T
AVg(]:M,Z,SUT):|| 8( l|5>+||T| 8(Fuwats T)
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Algorithm 5 LSVRG with smoothing

Require: Number of iterations T, loss functions (¢;)?_; and their gradient oracles, initial point w0, regularization
parameter (i, learning rate 7, sorting update frequency N, probability of checkpointing ¢*.

1: foriteratet =0,...,7T — 1 do

2 if ¢ mod N = 0 then > Update weights (generalization of updating the sorting)
3 Update \() = arg MaxXyep (o) {Poies Aili(w®) — ||\ — u,[|3} computed using eq. (22) and Alg. 4.

4: else

5. AB) = \E-1)

6: Sample ¢; ~ Unif([0, 1])

7 ift mod N =0or¢ < q* then > Update batch gradient
8 Setw® = w® and g = " ADwe, (@),

9: else
10: w® = @1 and g¥) = glt—b,

11: Sample i; ~ Unif([n]).

12: v® = n)\gf)VEit (w®) — n)\gf)v&t (@) + g®).
13: w = (1 — np)w® —pu®,

14: return w(™)

E LSVRG CONVERGENCE ANALYSIS

E.1 Setup for the Convergence Analysis

Consider the optimization problem

min | R () = b (€) + 5 3], where hy (1) = max. {MTI= 2 I — a3} (25)
is the Lo-smoothing as defined in Appx. D where Q()\) = ||\ — u,||* /2. Here, 0y < --- < o, are given nonnegative

weights that sum to 1, P(o) is the permutahedron of o, p is a regularization parameter on the w’s, v is smoothing parameter
and u,, = 1,,/n denotes the uniform distribution over n items.

It is convenient to look at the saddle form

L 14
D, (w, A) = AT0w) + 5 Jwlls = 3 1A = a3 - 26)

Throughout, we make the following assumption:

Assumption 20. For each i € [n], w — {;(w) is convex, G-Lipschitz, and L-smooth.

We analyze LSVRG with smoothing, as given in Algorithm 5. It only differs from Algorithm 2 presented in the main paper
in line 3.

E.2 Convergence Analysis

Algorithm 5 can be interpreted as an algorithm that alternates exactly maximizing over A in @, (w, -) with w fixed and
minimizing ®, (-, \) with \ fixed using a particular variant of SVRG known as g-SVRG (Hofmann et al., 2015); see
Algorithm 8 for a review of g-SVRG.

Proposition 21. The iterates (wgt), )\(lt)) produced by Algorithm 5 and (wék), )\gk)) produced by Algorithm 6 with a given
starting point w'®), learning rate 1, weight update frequency (or inner loop length) N, and number of iterates T = KN
where K is the number of epochs of Algorithm 6 satisfy wék) = w§kN) and )\gk) = )\gkN) for each epoch k.

Proof. The two algorithms are equivalent iteration for iteration and the proof follows from pattern matching. O

Convergence Analysis We have the following rate when the smoothing parameter v > O(nG? /).
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Algorithm 6 LSVRG with smoothing: Rewriting

Require: Number of epochs K, number of SVRG steps N, loss functions (¢;)?_; and their gradient oracles, initial point

w(®), regularization parameter 1, learning rate 7, probability of checkpointing ¢*, smoothing coefficient v.
1: forepochk =0,..., K —1do
2: Compute \¥) = argmax, cp(,) P, (w*), ) using eq. (22) and Alg. 4.

32 Define I (w) := AP0 (w) + p[Jw))2 /2 fori € {1,...,n}.
4:  Compute w**t1) = g-SVRG (N, (@*Nn_ w® g, q*) using Algorithm 8.

5: return wf)

Theorem 1. Consider problem (25) satisfying Asm. 20. Suppose the smoothing parameter satisfies v > 4nG?/u. The
sequence of iterates produced by Algorithm 6 with inputs N = (n(1 + 8o, L/p) + 8)log(125/4), n = 2/(n(80maxL +
w) +8u) , ¢ = 1/n, satisfies

k
. . 1 x
Bl ~ e < (5) 10 -0l

where w* = argmin,,cga Ro 0 (W).

Consequently, Algorithm 6 (and hence Algorithm 5) can produce a point 1 satisfying (E [ — w*||,)? < ein
T < C(n(1 + 80,L/1) + 8) log (||w<°> - w*||2/e)
gradient evaluations, where C' is an absolute constant.

Proof. For each epoch k, Algorithm 6 runs g-SVRG on the function

S 8w where 7)) = APt w) + 2 o

i=1

1

oM (w) = @y (w0, AP) =

The aim of this step is to approximate w§<k+1) = argmin, s D, (w, )\(k)) with w(*+1), We start by quantifying this error.

Since P (o) is the permutahedron on o, we have that

o1 <min{\; : A€ P(0)} <max{\; : A€ P(0)} < o,.

D= n)\z(-k)éi +u |- ||§ /2 is noy, L + p-smooth and p-strongly convex, and its condition number
is & = (no, L/ + 1). Denote the sigma-algebra generated by w(*) as F,, we have from Thm. 2 that

Hence, we have that each E(.k)

(h+1) _ (k+1>H2 e H *h) _ <k+1>H2:iH h) _ <k+1>H2
E[Hw Wy Fr _4exp Fy——— w Wiy 55 w Wiy .
Therefore, Jensen’s inequality gives us

B [t -tV < gt —ut]. @)

Denote \* = arg maxycp(,) Pu(w*, A). Since @, (-, ) is strongly convex and @, (w, -) is strongly concave, we have
that strong duality holds, i.e., min, cgs max\cp (o) Py (w, A) = maxyep(,) Mingega @, (w, \) (e.g., Hiriart-Urruty and
Lemaréchal, 1993, Thm. VIL.4.3.1) Therefore, (w*, \*) is the unique saddle point of ®,,, so w* = argmin,,cra V. (w, A*).
Together with Lem. 4, this gives us

*

<

H“*(*k“) w’ (28)

Noe
1%

< VnG H)\(k) Y
i

. and H)\(’“)—)\*

o -
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From repeated invocations of the triangle inequality, we get,

o[-l <ot o] o o

§7 ! w®) — ) H + H (kL)

5 2
<! Hw(k) —wrll 28 ngfc-i-l) ot

) ) 2
D LN p® _ | 4 VPG HA(k) oy

) by 2

2
5 SUYV 2
z me —w|,

since we assumed v satisfies 6nG?/(5ur) < 3/10. Taking an expecation w.r.t. JF, and unrolling this completes the
proof. O

E.3 LSVRG Variants

Algorithm 7 gives a variant of the LSVRG algorithm that computes checkpoints and the sorting at regular intervals. For
simplicity, we visualize this algorithm as running in epochs. As in the usual SVRG algorithm for the ERM setting, we
compute the full-batch subgradient at the checkpoint wy, at the start of each epoch (line 3). This is used to define the
variance-reduced update in line 7. Note also that we consider sampling at each iteration an example ¢; distributed as
po (i) = P [iy = i] = oy; this is well-defined since o1, ..., 0;, defines a probability measure over {1,--- ,n}.

Algorithm 7 Epoch-based LSVRG with nonuniform sampling

Require: Number of iterates 1" per epoch, number of epochs K, regularization parameter j, learning rate 77, non-decreasing
probability mass function o = (o)}, loss functions (¢;)7— and their gradient oracles, initial point wy.
1: forepochk =0,1,2,..., K —1do
2 Select 7, € argsort (€ (k).
3 Gk = Dy 0V (i) (D).
4 w® = @y
3 for iterate t = 0,...,7 — 1 do
6: Sample iy ~ p,.
7 = Ve, i) (w®) = Vir, 5, (@r) + Gi.
8 w D = (1 — np)w® —nu®,
9 Set Wiy = w™.
10: return wy .

E.4 -SVRG Review

Consider the risk-neutral problem
1 n
==y
L2 b
=1

The g-SVRG is a variant of SVRG that updates the batch gradient with probability 1/m at each step, rather than once
every m steps like the usual version of SVRG (Hofmann et al., 2015). See Algorithm 8 for details. It has the following
convergence guarantee.

Theorem 2 (Hofmann et al., 2015, Lemma 3). Suppose each ¢; is L-smooth and pi-strongly convex. Then Algorithm 8 with
a learning rate ) = 2/ (8L + nu) and ¢* = 1/n produces a sequence (w'")) that satisfies

*2<5e t H (
—exp | — w
— 4 P 8k +n

where w* = arg min,, f(w) and k = L/ is the condition number.

2
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Algorithm 8 q-SVRG

Require: Number of iterations 7', loss functions (¢;)7_; and their gradient oracles, initial point w0, learning rate 7,
probability of checkpointing ¢*.

1 Setw(™Y = w® and gV = 2 371 | VI (w@)

2: foriteratet =0,...,7 — 1 do

3 Draw ¢; ~ Unif([0, 1])

4 if ¢ < ¢* then > Update the batch gradient
5: Setw® =w® and gV = L 3" Ve (w®)
6: else
7
8

w® =@t and g*) = gt=1

: Sample i, ~ Unif([ )
9 v = v, (w ) 5 (w(t)) +g®
10wt = o

11: return w(™

E.5 Technical Results

Note the following properties of the joint function ®, defined in (26).
Property 3. The following smoothness properties hold:

(a) Foreach X\ € P(c), V®, (-, A) is (L + p)-Lipschitz
(b) For eachw € RY, V@, (w, ) is v-Lipschitz.

(c) For eachw € R, V,,®,(w, ) is /nG-Lipschitz.

(d) For each A € P(c), Va®,(-, \) is \/nG-Lipschitz.

Proof. The result follows from the expressions
A) = Z AiVei(w) + pw and VP, (w,\) = l(w) — v(A —uy,).
(a) Forany w,w’ € R,

[V @y (w,A) = Vi @, (w', V]| < Z Ai [VEi(w) = Ve (w) ||y + pflw — '],
i=1
<Z>‘ Lw—w'lly+ plw—wl,
(L+M lw —w'lly,

as Y ., \; = 1for A € P(o).
(b) Forany A\, X € P(0),

IVa®y (w, A) = Va®y (w, X[l = [[PA = vX[ly = v [[]A = N, -

(c) Forany A\, \ € P(o),

2

zn:/\—/\’VE (w)

(V@ (w,\) — Vi@, (w, \') ||2—

2

<§]we m§j< —X)?
=1

SnGWA—XM-
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(d) For any w,w’ € R,
2 2
[VA®y (w, ) = Va®y (w, N[l = [[€(w) — £(w")]3

(€i(w) — £;(w"))

I

s
Il
—

2
G llw —w'll

I

s
Il
-

=nG |jw —w’Hé.
O

Lemma 4. Given closed, convex sets X C R% Y C RP, consider a continuously differentiable function f : X x Y — R
such that f(-,y) is p-strongly convex for ally € Y and V, f(x,-) is Ly ,-Lipschitz for each x € X. Then, the map
z*(y) = argmin ¢ x f(z,y) is well-defined and is L, ,,/ 1 Lipschitz.

Proof. The map z*(y) is well-defined because f(-,y) is strongly convex and X is closed, convex. Consider two points
y1,Y2 € Y and let 2; = z*(y;) be the corresponding z-values. From the first order optimality conditions of f(-, ;) and
f (-, y2) respectively, we have

<fo($17y1)a To — I1> Z 07 and <Va:f($27y2)a xr1 — l‘2> Z 0. (29)

Using the co-coercivity property () of the strong convexity of f(-,y), we have,

(%)

pllzr — 22l < (Vof(@1,y2) — Vaf (22, y0), 21 — 22)
(29)
< <sz($1’y2),$l - .’IJ2>

9
< AVaf(w1,92) = Vo f(21,y1), 1 — 22)

< Ve f(x1,92) = Ve f (@, y0)| |21 — 22
< Loy llyr — w2l lo1 — 22| -

F EXPERIMENTAL DETAILS

Appx. F.1 describes the tasks, datasets, and preprocessing steps used in the experiments. Appx. F.2 reviews the objective
minimized (including regularization). Appx. F.3 describes the baseline methods compared. Appx. F.4 lists the hyperparame-
ters of each algorithm and describes how they are selected. Appx. F.5 describes the compute environment used to run the
experiments.

F.1 Task and Dataset Descriptions

We start by describing the tasks and datasets considered in the experiments as well as their preprocessing steps. For each
task, we consider an input x € X, a feature map ¢ : X — R, and an output space Y. For regression, we have Y = R and
for classification, we have Y = {1,...,C}, where C is the number of classes. We make predictions with a linear model
x +— w' ¢(r), where w € R? is the parameter vector to be optimized over. We consider the square loss between these
predictions and the target y;:

li(w) = %(yi —w'¢(x:))”.

for regression, and the multinomial logistic loss

li(w) = —logpy, (x;; w), where py, (z;;w) ==
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Dataset d Thrain Thest Source
simulated 10 800 200 n/a
yacht 6 244 62 UCI

energy 8 614 154 UCI
concrete 8 824 206 UCI
iwildCam 157 20,000 5,000 WILDS
emotion 45 8,000 2000 DAIR-AI

Table 2: Benchmark dataset descriptions.

for classification. Each input feature ¢;(z) for j = 1,--- , d is standardized to zero mean and unit variance (as are the
targets y; in regression). We now describe the datasets considered. The size and dimensionality of the resulting datasets are
summarized in Tab. 2.

(a) simulated: This regression task entails prediction of a synthetic, real-valued response based on d-dimensional
real vectors. The dataset is generated by sampling the inputs x1, ..., z,, and true parameter vector w* from the d-
dimensional standard normal distribution V' (0, I;) for n = 1000 and d = 10, and the noise €y, ..., €, € N (0, 1). Then,
Yi = w'x; + ¢ fori = 1,...,n. The feature map ¢ is taken to be the identity.

(b) yvacht: This regression task entails prediction of the residuary resistance of a sailing yacht based on its physical
attributes (Tsanas and Xifara, 2012). Each input = € X is a sailing yacht and the feature map ¢(z) € R? lists d = 6
geometric attributes such as the length-beam ratio.

(c) energy: This regression task entails prediction of the cooling load of a building based on its physical attributes
(Baressi Segota et al., 2020). Each input z € X is a building and the feature map ¢(x) € R? lists d = 8 structural
attributes such as the surface area, height, etc.

(d) concrete: This regression task entails prediction of the compressive strength of a concrete type based on its physical
and chemical attributes (Yeh, 2006). Each input x € X is a particular composition of concrete and the feature map
#(r) € R? lists d = 8 physical/chemical attributes such as amount of cement vs water.

(e) iwildCam: This classification task entails prediction of an animal present in an image captured by various wilderness
camera traps, with drastic variation in illumination, camera angle, background, vegetation, color, and relative animal
frequencies (Beery et al., 2020). Each input 2 € X is an image the feature map ¢(z) € R? for d = 189 is the output of
the sequence of the following operations.

* A ResNet50 neural network (He et al., 2016) that is pretrained on ImageNet (Deng et al., 2009) is applied to the
image x;, resulting in vector z}.

» The «}, ..., z), are normalized to have unit norm.

* Principle Components Analysis (PCA) is applied, resulting in d = 157 components that explain 99% of the
variance, resulting in vectors z// € R157.

» The a¥, ..., x! are standardized once again, giving ¢(z1), ..., d(z,).
(f) emotion: This classification task entails prediction of the emotional content of a sentence taken from English Twitter
archives (Saravia et al., 2018). Each input € X is an image the feature map ¢(z) € RY for d = 189 is the output of

the sequence of the following operations.

* A BERT neural network (Devlin et al., 2019) (fine-tuned on 8, 000 held-out examples) is applied to the text x;,
resulting in vector .

* The ', ...,z are standardized to have unit norm.

* Principle Components Analysis (PCA) is applied, resulting in d = 45 components that explain 99% of the variance,
resulting in vectors 2/ € R*5.

» The a¥, ..., x! are standardized once again, giving ¢(z1), ..., d(z,).
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F.2 Objective

In the experiments, we consider minimizing regularized ordered risk minimization problems of the form

. M 2
fRa o )
min (W) +3 Jwll3

where R, (w) = Zaié(i)(w),
i=1

where the coefficients ¢ are defined using the spectrum of the spectral risk measure in question. We consider the mean,
superquantile, extremile, and exponential spectral risk measure (ESRM), as defined in Sec. 2. The regularization parameter
( is chosen as 1/n in the experiments presented in the main text, whereas other choices of p are shown in Appx. G. By
adding a regularization || - |3 to the objective, the LSVRG algorithm is modified by considering a direction of the form
vg)g = 'Ulgi))n,reg + paw®, where Ur(lto)n,reg = g is the direction presented in line 10 of Algorithm 7. All algorithms are
initialized with w(®) = 0.

F.3 Baseline Methods

The baseline methods described below rely on a stochastic subgradient estimate, or a random quantity g(*) that estimates
VR, (w®) if R, is differentiable at w(*) and a subgradient of R, (w(*)) otherwise. As described in Sec. 3, we use

g(t) = Z6JV€Z(J)(w(t)) (30)
j=1

for a minibatch {1, ..., i, } of size m with weights 6; = fi s(t)dt,and ¢;
(t)

the minibatch. We refer to the direction as g(t) = vy, in Algorithm 1.

being the ordered losses &-(1) <.../ n

im) 1

SGD We refer to the stochastic subgradient method as SGD. The update can be written as
wltD = () — n(g(t) + uw(t)),

where vy(,tl) is a stochastic estimate of the minibatch extremile subgradient (Equation (30)).

SRDA The stochastic regularized dual averaging (SRDA) (Xiao, 2009) update can be written as

(t4+1) ._ : T-t) , M 2 1 2
w = argminw + — |lw + —|w s
uined g 9 || Hz 277t” ||2

where gt} = Z:ZO g™ is the average of all stochastic subgradients (again computed by Equation (30)). Note that for
Q= -[3/2 and w(® = 0, Note that for w(® = 0,
1

a w4+ 1/tn
t

1
IO NS o S S
v ;Mt—i—l/ng

gt

WD — g

Thus, the SRDA solution at time ¢ + 1 can be seen as applying SGD with a constant learning rate of n = 1/(ut/n + ) (as
t refers to the value of only the last iteration). It is also seen that when ;1 = 0 (no statistical regularization), SRDA reduces
exactly to SGD.

F.4 Hyperparameter Selection

The fixed optimization hyperparameters include the minibatch size m = 64 (SGD, SRDA) and the epoch length N = n
(LSVRG). The statistical regularization parameter . = 1/n is shown in the main text, whereas training curves for
@ =0.1/n and u = 10/n are shown in Appx. G. Specifically, ¢ € {1,2,3,4,5} be a seed that determines the randomness
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for sampling the minibatch {i1,...,4,,} at each iteration of SGD and SRDA, i; at each iteration of LSVRG. Let T
be the total number of iterations for the algorithm, and denote the trajectory of iterates seeded by c using learning
rate i as s 73, wg;,) Then, define the quantity L(n) = = Z oy Ro (wc 1 ) The learning rate 7 is chosen in the set
{3x10741x1072,3x1073,1 x1072,3 x 1072,1 x 1071,3 x 1071,1 x 10°,3 x 10°} to minimize L(n) for each
algorithm. If any of the trajectories diverge, we consider L(n) = +oo. Note that R, is computed using the training set, as

we are selecting hyperparameters for optimization.

F.5 Compute Environment

All experiments were run on a workstation with Intel 19 processor (clock speed: 2.80GHz) with 32 virtual cores and 126G of
memory. We did not use GPUs for any experiments. Code used for this project was written in Python 3.

F.6 Experimental Details on Clustering

Recall that we consider clustering n points x1, ..., x, into k clusters with centers C = (c¢1,...,c;) by minimizing a
weighted average of the distances of each point to its closest center, i.e., problems of the form

n

min ol (C) for¥, = min Z ziillz; — ¢
CERdxk . i (z)( ) () zle{O 1}’“ w” i JH2
z; T1=1

We consider the weights o; to be the discretization of a spectrum s such that o; = [, s(t)d¢ with s being one of the

following examples:

1. uniform spectrum, s(t) = 1j,1j(t) which corresponds to a classical kmeans objective of the form
mingegaxe = Sor, 4;(C),

2. a truncated spectrum, s,(t) = 1jo,4(t)/q for ¢ € (0, 1) that seeks to only consider minimizing losses with small
enough values compared to the whole distribution,

3. an extremile spectrum s,.(t) = r(1 — ¢)" for > 1 that can be interpreted as minimizing the expected minimum of r
random variables distributed as the losses (Daouia et al., 2019).

We consider a stochastic subradient descent with constant stepsize with mini-batch estimates given by the empirical
L-statitics estimate on the mini-batches as described in Sec. 3.

F.6.1 Synthetic Data

As (Maurer et al., 2021) we consider as training data three cloud of Gaussians composed of 100 two dimensional points
each with variance 0.1 along both axis and centers (—3,0), (0,1) and (3, 0) respectively. We add 100 outliers sampled
from a Gaussian with variance 5 along both axis and center (—1, —5). The test set consists in points sampled from the
three aforementioned inlier Gaussians, 100 points per Gaussian. To test our method, we compute the number of correct
assignments of the test points in their associated cluster after relabeling the clusters to match the true labeling. Namely, the
groups found by a method may be correct but instead of labeling the first cloud of points by 1 the method may have assigned
the label 1 to the second group and 2 to the first group for example, so we first find the permutation of the labels that leads to
the highest accuracy.

We used mini-batches of size 64, a learning rate of 1 found by grid-search on log-10 scale, a uniform spectrum, a truncated
spectrum with parameter ¢ = 0.75 or an extremile spectrum with » = 5 and we initialize the centers at 0. In Fig. 7 we
present the estimated centers found for each spectrum as well as the training and test losses and the training and test
accuracies, where for the training accuracy we only consider the assignment of the inlier points.

F.6.2 Clustering Digits Images

We consider forming a subset of the MNIST dataset (LeCun et al., 1998) of 28 x 28 black and white images of handwritten
digits by selecting 1000 images of the digit 1, 1000 images of the digit 3 each and 125 images of each other digit in
{0,...,9}\ {1, 3} for a total of 2000 inlier examples and 1000 outlier examples. The images are standardized pixel by
pixel. Our goal is to cluster the samples from 1 and 3 correctly even in the presence of outliers. We test our estimated centers
on all images of the digits 1 and 3 from the test set of the MNIST database, that is, as in the synthetic experiment we test
whether our estimated centers lead to the correct assignments of the test images in their respective group.
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Figure 7: Clustering synthetic data points in the presence of outliers.

We consider mini-batches of size 256, a learning rate of 0.1 found by grid-search on a log-10 scale, a uniform spectrum, a
truncated spectrum with parameter ¢ = 0.66 or an extremile spectrum with » = 2 and we initialize the centers at 0. In Fig. 8
we present the estimated centers found for each spectrum as well as the training and test losses and the training and test
accuracies, where for the training accuracy we only consider the assignment of the inlier points.

F.6.3 Clustering Images of Clothes

As Maurer et al. (2021) we also consider clustering images of clothes from the dataset FashionMNIST (Xiao et al., 2017)
that consist in 28 x 28 black and white images of 10 clases of clothing such as: t-shirt, trouser, pullover, dress, coat, sandal,
shirt, sneaker, bag, ankle boot. The images are standardized pixel by pixel. We form a training set composed of 1000 images
of trousers, 1000 images of sneakers, and 250 images of each of the other classes for a total of 2000 inliers and 2000 outliers.
Our goal is to cluster teh trousers and the sneakers in the presence of the outliers. To test our estimators we use all images of
trousers and sneakers from the test set of the FashionMNIST dataset.

We consider mini-batches of size 64, a learning rate of 1. found by grid-search on a log-10 scale, a uniform spectrum, a
truncated spectrum with parameter ¢ = 0.5 or an extremile spectrum with 7 = 5 and we initialize the centers at 0. In Fig. 9
we present the estimated centers found for each spectrum as well as the training and test losses and the training and test
accuracies, where for the training accuracy we only consider the assignment of the inlier points.

Note that compared to Maurer et al. (2021) we obtain 100% accuracy of these methods on the test set. An approach by
stochastic subgradient may be less sensitive to the initialization (performed with K-means++ by Maurer et al. (2021)).

G ADDITIONAL EXPERIMENTS

Optimization Effect of Varying Regularization Parameter We demonstrate the robustness of the algorithm comparison
with respect to the statistical regularization parameter . Hyperparameters are selected in accordance with Appx. F.4.
Fig. 10, Fig. 11, and Fig. 12 show the suboptimality trajectories for 4 = 1/n, 10/n, and 0.1/n, respectively. The same
rankings of algorithms result from each of the three figures, that LSVRG generally outperforms SGD and SRDA.

Optimization Effect of Varying Risk Parameter We demonstrate the robustness of the algorithm comparison with respect
to the statistical regularization parameter y. Hyperparameters are selected in accordance with Appx. F.4. Fig. 13, Fig. 14,
and Fig. 15 show the suboptimality trajectories for (g, r, p) set to (0.25,1.5,0.5), (0.5,2, 1), and (0.75, 2.5, 2), respectively.
The same rankings of algorithms result from each of the three figures, that LSVRG generally outperforms SGD and SRDA.
It should be noted that for the 0.75-superquantile, LSVRG suffers from slow convergence and is outperformed by SGD and
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Figure 9: Clustering images of clothes in the presence of outliers.
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Figure 10: The suboptimality gap (base 10) for various optimization algorithms on spectral risk objectives for 1 = 1/n. The
x-axis shows the number of effective passes through the data.

SRDA, suggesting that the superquantile is a particularly difficult learning objective.

Statistical Effect of Varying Risk Parameter We inspect how the test losses of the L-risk minimizers behave compared to
the corresponding ERM solutions. Letting wgry be the approximate solution of ERM, whereas wj gy is the approximate
solution of an L-Risk minimization problem other than ERM, Fig. 16, Fig. 17, and Fig. 18 plot the following against p:

C(rnpy) (WErM) = L(fnp]) (WLrM) 5 (31)

that is, the difference in the p-th quantile of the test loss of wgry and the p-th quantile of the test loss of wyry. The plots are
in order of “easy”, “medium”, and “hard” values of the risk parameters, corresponding to (g, r, p) being (0.25,1.5,0.5),
(0.5,2,1), and (0.75, 2.5, 2), respectively. The medium settings are shown primarily in the main text. The median test loss
(p = 0.5) is similar between the L-risk minimizers and standard ERM across risk parameters. However, for p > 0.5, the
ERM solution can make predictions with much higher loss, indicating that the tail is not controlled. The superquantile at
parameters ¢ = 0.5 generally fails to control test risk, even substantially underperforms in comparison to ERM in energy.
On the other hand, the extremile and ESRM convincingly dominate ERM in the region (0.9, 1) of the empirical quantile

function for each of the risk parameters, with the extremile having a more pronounced effect.

Comparison between Smoothed and Non-smooth LSVRG We compare the implementation of LSVRG with smoothing
presented in Alg. 5 to the non-smooth epoch-based implementation of LSVRG presented in Alg. 7. We consider the datasets
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Figure 11: The suboptimality gap (base 10) for various optimization algorithms on spectral risk objectives for u = 10/n.
The x-axis shows the number of effective passes through the data.

simulated, yacht, energy and concrete presented in Appx. F.1 and spectral risk measure objectives (2) defined
by the empirical superquantile (¢ = 0.5), extremile ( = 2), and ESRM (p = 1) of the losses, plus an Z% regularization term
of magnitude 1/n.

We implemented the smoothed LSVRG algorithm (Alg. 5) with N = n, ¢* = 0 and a smoothing given by either a centered
negative entropy regularizer {2, or a centered square Euclidean norm €25, with €23 and €25 from Eq. (21). We consider using
a smoothing coefficient of vy = 1073 for Q; and vo = n10~3 for 2 (using the fact that the approximation done by 25 has
an approximation error of x?(s||u)/n as detailed in Appx. D). On the vertical axis we consider is the suboptimality gap

w)—R, (w* *
% for w* computed by L-BFGS.

In Fig. 19, we observe that the non-smooth and smooth implementations of LSVRG generally match. For the ERM objective,
this observation was expected since the permutahedron associated with the vector u,, = 1/n reduces to {u,, } since all entries
of u,, are equal. Hence the maximization defining the smooth approximations h,q given in Appx. D have a maximizer
independent of the values of the losses and naturally given by u,, such that the smooth approximation of & reduces exactly to
h for any choice of v and €. For the other spectral risk measures, we observe some discrepancies between the non-smooth
and the smooth implementations with the smooth implementation giving generally smoother curves as it is the case for
the superquantile on the simulated dataset or the ESRM on the concrete dataset. However, such differences are
not observed for, e.g., the superquantile on the yacht, energy, concrete datasets or the extremile and the ESRM
objectives on the simulated and yacht datasets. Overall these experiments suggest that the non-smooth nature of
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Figure 12: The suboptimality gap (base 10) for various optimization algorithms on spectral risk objectives for © = 0.1/n.
The x-axis shows the number of effective passes through the data.

the problem has moderate impact on the performance of LSVRG. This behavior may be explained by the fact that the
non-smoothness of the losses only intervene if the minimizer of the objective produces a vector of losses with ties which
may not happen in practice. In addition note, that the negative entropy or the squared Euclidean smoothing generally give
the same results (after appropriately scaling the smoothing coefficient of {2, by n as suggested by the approximation errors
given in Cor. 18 (Appx. D).

In Fig. 19, we also consider Alg. 5 with N = 2n, ¢* = 1/n and the same smoothing method as presented above. We
scaled the horizontal axis by multiplying all algorithms by the total number of calls to the gradient oracles of the losses
such that LSVRG in Alg. 7 is scaled by a factor 2 while Alg. 5 is scaled by a factor p > 2. We observe that the non-smooth
implementation of LSVRG in Alg. 7 compares generally on par or better than the implementation of Alg. 5 after taking into
account the total number of passes over the data, except for the ESRM risk on concrete and the extremile on yacht.

Run Time Experiments Fig. 20 contains plots of optimizer runtimes in each of the datasets considered. The values are
calculated using the t ime module in Python 3 with logging disabled on the compute environment described in Appx. E.5.
The two variants of LSVRG trade off run time for precision, as their suboptimality achieves ~ 1 order of magnitude
improvement on yacht, up to ~ 4 orders of magnitude improvement on concrete over the SGD and SRDA baseline.
SGD and SRDA also run ~ 2 orders of magnitude faster across datasets, but fail to converge due to both bias and variance.
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Figure 13: The suboptimality gap (base 10) for various optimization algorithms on ERM, g-superquantile, r-extremile, and
p-ESRM objectives for(q, r, p) set to (0.25,1.5,0.5). The z-axis shows the number of effective passes through the data.
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Figure 14: The suboptimality gap (base 10) for various optimization algorithms on ERM, g-superquantile, r-extremile, and
p-ESRM objectives for(q, r, p) set to (0.5,2, 1). The z-axis shows the number of effective passes through the data.
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Figure 15: The suboptimality gap (base 10) for various optimization algorithms on ERM, g-superquantile, r-extremile, and
p-ESRM objectives for(q, r, p) set to (0.75,2.5, 2). The z-axis shows the number of effective passes through the data.
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ERM Loss Quantiles — L-Risk Loss Quantiles
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Figure 16: The difference between the empirical quantile function given by £(1)(grm), - - - , £(n) (Werm) and the empirical
quantile function of an L-risk minimizer £(1) (Wrrm), - - -, £(n) (WLrM), Where the L-risk is the g-superquantile (left column),
r-extremile (middle column), or p-exponential spectral risk measure (right column). Each row represents a dataset out of
simulated, yacht, energy, and concrete. Here, (¢, 7, p) = (0.25,1.5,0.5), constituting L-risks that are “close” to
ERM.
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Figure 17: The difference between the empirical quantile function given by £(1)(Wgrm), - - - , £(n) (WerM) and the empirical
quantile function of an L-risk minimizer £y (Wrrm), - - -, () (WLrM), Where the L-risk is the g-superquantile (left column),
r-extremile (middle column), or p-exponential spectral risk measure (right column). Each row represents a dataset out of
simulated, yacht, energy, and concrete. Here, (¢,7,p) = (0.5,2, 1), constituting L-risks that are “moderately
far” from ERM.
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Figure 18: The difference between the empirical quantile function given by £(1)(Wgrm), - - - , £(n) (Werm) and the empirical
quantile function of an L-risk minimizer £y (Wrrm), - - -, () (WLrM), Where the L-risk is the g-superquantile (left column),
r-extremile (middle column), or p-exponential spectral risk measure (right column). Each row represents a dataset
out of simulated, yacht, energy, and concrete. Here, (¢,7,p) = (0.75,2.5,2), constituting L-risks that are
“significantly far” from ERM.
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Figure 19: Comparison of the non-smooth implementation of LSVRG in Alg. 7 and the smoothed implementation of
LSVRG in Alg. 5 with N = n, ¢* = 0, and with a centered non-negative entropy smoothing function 2; and v; = 1072 or
a centered Euclidean smoothing function Q, with v5 = n1072 (see eq. (21) for the exact definitions of O, (2y).
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Figure 20: Algorithm run time of SGD, SRDA, and LSVRG optimizers on fives datasets (rows) and four objectives
(columns). The y-axis plots the suboptimality in log scale, whereas the x-axis contains wall time in seconds in log scale.
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