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Abstract

Spectral risk objectives ± also called L-risks ± al-

low for learning systems to interpolate between

optimizing average-case performance (as in em-

pirical risk minimization) and worst-case perfor-

mance on a task. We develop LSVRG, a stochas-

tic algorithm to optimize these quantities by char-

acterizing their subdifferential and addressing

challenges such as biasedness of subgradient esti-

mates and non-smoothness of the objective. We

show theoretically and experimentally that out-of-

the-box approaches such as stochastic subgradi-

ent and dual averaging can be hindered by bias,

whereas our approach exhibits linear convergence.

1 INTRODUCTION

A cornerstone of machine learning is the empirical risk

minimization (ERM) problem, written

min
w∈Rd

[

R(w) :=
1

n

n∑

i=1

ℓi(w)

]

, (1)

where ℓi(w) quantifies loss on training example i using

a model with weights w ∈ Rd. The objective (1) repre-

sents an often unquestioned modeling choice: to summarize

ℓ1(w), ..., ℓn(w), the empirical sample of losses, using its

average. At first glance, this is a natural summary, inher-

iting both the statistical convenience of the sample mean

(Shalev-Shwartz and Ben-David, 2014) and the wide ar-

senal of optimization algorithms designed specifically for

finite sum objectives (Le Roux et al., 2012; Defazio et al.,

2014; Johnson and Zhang, 2013; Reddi et al., 2016). How-

ever, as modern learning systems are deployed in critical

domain applications such as energy planning (Guigues and

SagastizÂabal, 2013), materials engineering (Yeh, 2006), and

financial regulation (He et al., 2022), safe and reliable per-

formance in ªworst-caseº scenarios is paramount.
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This imperative can be modeled by alternate risk measures

(statistical functionals of the loss distribution), particularly

those that encapsulate the behavior of the distribution’s

upper tail. We investigate objectives of the form

min
w∈Rd

[

Rσ(w) :=

n∑

i=1

σiℓ(i)(w)

]

, (2)

where ℓ(1)(w) ≤ ... ≤ ℓ(n)(w) are the order statistics of

the losses, and 0 ≤ σ1 ≤ · · · ≤ σn ≤ 1 is a sequence of

non-decreasing weights satisfying
∑n

i=1 σi = 1, called the

spectrum of Rσ .

The expression (2) is called an L-estimator (Shorack, 2017;

Maurer et al., 2021) for a generic linear combination of

order statistics and an L-risk when the ordered elements are

losses incurred on a training set (Maurer et al., 2021; Khim

et al., 2020). The σi’s allow the practitioner to interpolate

between the average-case (σi = 1/n ∀i) and worst-case

(σn = 1) performance on the training set. Such objectives

have garnered a flurry of recent interest in machine learning

(Fan et al., 2017; Williamson and Menon, 2019; Khim et al.,

2020; Maurer et al., 2021; Holland and Mehdi Haress, 2022;

Leqi et al., 2019; Lee et al., 2020; Kawaguchi and Lu, 2020).

Despite their increasing adoption, however, optimization

approaches have relied on using the full-batch or stochas-

tic subgradient method out-of-the-box (Fan et al., 2017;

Kawaguchi and Lu, 2020; Laguel et al., 2020; Levy et al.,

2020), both enduring considerable limitations. The per-

iteration complexity of full-batch methods is O(n) func-

tion/gradient evaluations and O(n log n) elementary oper-

ations (as we discuss in Prop. 2). For stochastic2 variants,

unbiased estimates of any subgradient, while needing only

O(1) gradient evaluations, still need O(n) function calls

and O(n log n) elementary operations, yielding the same

per-iteration complexity as the full-batch method in auto-

matic differentiation frameworks. A number of methods

abandon convergence to the minimal L-risk altogether and

resort to O(1)-time stochastic subgradient updates, but are

biased (Kawaguchi and Lu, 2020; Levy et al., 2020).

1Now at Google Research
2We use the term ªstochasticº to include both streaming algo-

rithms in which fresh samples from the data-generating distribution
are provided at each iterate, and incremental algorithms, in which
multiple passes are made over a fixed dataset.
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Given the relevance of stochastic training algorithms to ma-

chine learning, the question remains whether there exist

optimization algorithms that converge to the minimum L-

risk while needing only O(1) gradient calls per iteration. In

Sec. 2, we show the consistency of the empirical L-risks

for their population counterparts. In Sec. 3, we characterize

the subdifferential and continuity properties of L-risks as a

function of the underlying losses and quantify the bias of

current stochastic approaches. We propose LSVRG, an algo-

rithm that converges linearly to a smoothed approximation

of the L-risk requiring O(1) function/gradient evaluations

and O(log n) elementary operations per iteration. Finally,

we demonstrate superior convergence of LSVRG experimen-

tally on the non-smooth objective via numerical evaluations

in Sec. 4, with concluding remarks in Sec. 5.

Related Work Risk measures have been studied exten-

sively in quantitative finance (Artzner et al., 1999; FÈollmer

and Schied, 2002; Rockafellar and Uryasev, 2013; Acerbi

and Tasche, 2002; Pflug and RuszczyÂnski, 2005; Kuhn et al.,

2019), convex analysis (Rockafellar and Royset, 2014; Ben-

Tal and Teboulle, 2007), and distributionally robust learn-

ing (Sarykalin et al., 2008; Guigues and SagastizÂabal, 2013;

Fan et al., 2017; Hu et al., 2018; Lee and Raginsky, 2018;

Duchi and Namkoong, 2019; Laguel et al., 2020; Chen and

Paschalidis, 2020; Li et al., 2021). We refer to He et al.

(2022) for a review of the axiomatic theory of risk mea-

sures and Shapiro et al. (2014, Chap. 6) for applications to

optimization.

A number of recent works study L-risks, with a focus on

statistical properties. The works Khim et al. (2020) and

Maurer et al. (2021) provide classical statistical learning

bounds for L-risk objectives and the latter focuses on unsu-

pervised tasks like clustering. Holland and Mehdi Haress

(2022) present a derivative-free learning procedure for gen-

eral L-risk problems in the fully stochastic/streaming setting.

A particular risk measure called the superquantile or con-

ditional value-at-risk (CVaR), has recently received careful

attention in the learning setting (Curi et al., 2020; Levy

et al., 2020; Laguel et al., 2020, 2021). Other risk measures

include cumulative prospect theory (CPT) measures and

optimized certainty equivalent (OCE) measures (Leqi et al.,

2019; Lee et al., 2020).

Fan et al. (2017) and Kawaguchi and Lu (2020) study batch

and stochastic optimization algorithms respectively for the

ªaverage top-kº loss, which is exactly equivalent to the su-

perquantile. We instead focus on developing incremental

algorithms, akin to those for ERM (Mairal, 2014; Le Roux

et al., 2012; Defazio et al., 2014; Shalev-Shwartz and Zhang,

2013; Johnson and Zhang, 2013), which apply to all L-risks.

We aim to find algorithms that operate on non-smooth ob-

jectives, a fixed training set, and require only a constant

number of function value and gradient computations per

iterate.

2 SPECTRAL RISK MEASURES

In this section, we relate the empirical quantity (2) to its

population counterpart, justifying its use as an estimator for

n sufficiently large. To achieve this, we will write L-risks as

functionals of an empirical cumulative distribution function

(CDF), and show that it consistently estimates the value of

the same functional applied to a population CDF.

Notation Let {D1, . . . , Dn} be an i.i.d. sample from a

distribution P over a sample space D. Let ℓ : Rd ×D→ R

be a loss function consuming model weights w ∈ Rd and

D-valued training example D (e.g., a feature-label pair).

We denote the training loss as ℓi(w) := ℓ(w,Di) for short.

Let Zi := ℓ(w,Di) for i ∈ {1, . . . , n}. It follows that

{Z1, . . . , Zn} is a real-valued i.i.d. sample whose CDF is

denoted by F , and the L-risk (2) reads

Rσ(w) =
n∑

i=1

σiℓ(i)(w) =
n∑

i=1

σiZ(i), (3)

where Z(1) ≤ ... ≤ Z(n) are order statistics of {Zi}ni=1.

We describe subsequent results as if {Zi}ni=1 are arbitrary

real-valued random variables drawn i.i.d. from CDF F , keep-

ing in mind that in our case, these refer to losses on data

instances Di under parameter vector w.

Spectral Risk Measures We rewrite the L-risk (3) as

a functional of the CDF known as a spectral risk mea-

sure (Acerbi and Tasche, 2002). To do this, let Fn(z) :=
1
n

∑n
i=1 1(−∞,z] (Zi) denote the (random) empirical CDF

of the sample and define the empirical quantile function

(or inverse CDF) as F−1
n (t) := inf{z : Fn(z) ≥ t} for

t ∈ (0, 1). The population quantile function is defined

similarly as F−1(t) := inf{z : F (z) ≥ t}. The empiri-

cal quantile function can be written in terms of the order

statistics as F−1
n (t) = Z(⌈nt⌉), as seen in Fig. 1 (top left).

Notice in particular that when t ∈
(
i−1
n , i

n

)
, we have that

F−1
n (t) = Z(i), where end-points are chosen to make F−1

n

left continuous.

The spectrum σ of an L-risk is typically defined as a dis-

cretization of a probability density s on (0, 1), such that

σi =
∫ i/n

(i−1)/n
s(t) dt, so that it need not be redefined for

every n. Examples of spectra for various risk measures are

shown in Fig. 1 (bottom), in which the value of σi is equal

to the area of the shaded region immediately under it. The

associated formulae are in Tab. 1. The superquantile with

parameter q ∈ (0, 1) has enjoyed much attention in quanti-

tative finance and more recently, machine learning (Laguel

et al., 2021), the extremile with parameter r ≥ 1 has been

introduced by (Daouia et al., 2019) as an alternative risk

measure, and the exponential spectral risk measure (ESRM)

with parameter ρ > 0 is used in futures clearinghouse mar-

gin requirements (Cotter and Dowd, 2006).
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Figure 1: Top Left: Empirical CDF Fn and quantile function F−1
n of Z1, · · · , Z4. Top Right: Comparison of two

distribution in CDFs (F and G) as well as quantile functions (F−1 and G−1). Bottom: Continuous spectra s(t) and their

discretization (σ1, . . . , σ5) for various risk measures.

Given both the construction of s and F−1
n we can rewrite

the L-risk (3) as

Rσ(w) =
n∑

i=1

σiZ(i) =
n∑

i=1

(
∫ i/n

(i−1)/n

s(t) dt

)

Z(i)

=

n∑

i=1

(
∫ i/n

(i−1)/n

s(t) · Z(⌈nt⌉) dt

)

=

∫ 1

0

s(t) · F−1
n (t) dt =: Ls [Fn] ,

where Ls [G] :=
∫ 1

0
s(t)G−1(t) dt is called a spectral risk

measure with spectrum s applied to CDF G. It stands to

reason that Ls [Fn] converges to Ls [F ] in an appropriate

sense. This convergence is governed by the Wasserstein

distance between the empirical and population distribution,

which we briefly recall here.

Wasserstein Distances For two probability distributions µ
and ν on R, the 1-Wasserstein distance W1(µ, ν) between

µ and ν is defined by

W1(µ, ν) := inf
γ∈Π(µ,ν)

∫

R

|x− y| dγ(x, y),

where Π(µ, ν) is the set of couplings (or joint distributions)

with marginals being µ and ν. It is a metric on the space of

probability distributions on R. If F and G are the CDFs as-

sociated with µ and ν, respectively, it is known (e.g., Bobkov

and Ledoux, 2019, Thm. 2.10) that W1(µ, ν) quantifies the

disagreement in either the CDF or quantile functions, i.e.,

W1(µ, ν) =

∫ 1

0

∣
∣F−1(t)−G−1(t)

∣
∣ dt

=

∫ +∞

−∞
|F (z)−G(z)| dz. (4)

In contrast, other statistical divergences such as the Cramer

von Mises criterion
∫∞
−∞ |Fn(z)− F (z)| dF (z) and

the Kolmogorov-Smirnoff statistic supz∈R
|Fn(z)− F (z)|

only measure the disagreement in CDFs, as illustrated in

Fig. 1 (top right). The relation (4) is used to prove the up-

coming Prop. 3, along with the consistency result below.

Proposition 1. Assume that E |Z|p < ∞ for some p > 2
and that ∥s∥∞ := supt∈(0,1) |s(t)| <∞. Then,

E
∣
∣Ls [Fn]− Ls [F ]

∣
∣
2 ≤

2 ∥s∥2∞
(

p
p−2

)2

E [|Z|p]
2
p

n
.

Proof Sketch. By boundedness of s and (4),

E
∣
∣Ls [Fn]− Ls [F ]

∣
∣
2

= E

∣
∣
∣
∣

∫ 1

0

s(t) ·
(
F−1
n (t)− F−1(t)

)
dt

∣
∣
∣
∣

2

≤ ∥s∥2∞ · E
(∫ +∞

−∞
|Fn(z)− F (z)| dz

)2

.
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Apply the triangle inequality on L2(P) to obtain

√

E

(∫ +∞

−∞
|Fn(z)− F (z)| dz

)2

≤
∫ +∞

−∞

√

E |Fn(z)− F (z)|2 dz

= n−1/2

∫ +∞

−∞

√

F (z)(1− F (z)) dz,

where the last step uses that for any z ∈ R, we have

nFn(z) ∼ Binom (n, F (z)) and compute its variance.

The remainder of the proof uses elementary concentra-

tion inequalities to bound
∫ +∞
−∞

√

F (z)(1− F (z)) dz (see

Appx. A).

Prop. 1 operates in general conditions that are of particular

importance in optimization. To put this in context, a number

of works provide non-asymptotic uniform learning bounds

on spectral (and related) risks (Maurer et al., 2021; Khim

et al., 2020; Lee et al., 2020). However, these approaches re-

quire boundedness of the random variable of interest, which

eliminates any potential application to heavy-tailed losses.

Asymptotic approaches proceed by assuming Lipschitz con-

tinuity of the spectrum s (Shao, 1989), the trimming of s
(i.e. s(t) = 0 for all t ∈ [0, α)∪ (1−α, 1] with 0 < α ≤ 1)

(Shorack, 2017; Shao, 1989), or bounded derivatives of the

population quantile function F−1 (Xiang, 1995). The q-

superquantile does not even have a continuous spectrum,

whereas the spectrum of the r-extremile is not Lipschitz

for 1 ≤ r < 2. Because s must be non-decreasing to

achieve convexity (as we discuss in the upcoming Prop. 2),

trimming the upper tail of s is not reflective of practice.

Finally, because losses such as the square loss or logistic

loss can grow to infinity, the derivative F−1(t) as t → ∞
cannot be assumed to be bounded. Prop. 1 only requires

that the population losses satisfy a moment condition and

holds without trimming or assumptions of boundedness or

Lipschitz continuity on the spectrum. Other recent works

employ concentration of the empirical measure in Wasser-

stein distance to give concentration inequalities for spectral

risk measures under sub-Gaussian conditions and moment

conditions similar to ours (Prashanth and Bhat, 2022; Bhat

and Prashanth, 2019; Pandey et al., 2019).

3 OPTIMIZATION ALGORITHMS

We now consider the optimization of the regularized empiri-

cal L-risk objective, for µ > 0,

Rσ(w) +
µ

2
∥w∥22 for Rσ(w) =

n∑

i=1

σiℓ(i)(w). (5)

with 0 ≤ σ1 ≤ . . . σn ≤ 1,
∑n

i=1 σi = 1 and ℓi convex.

Risk s(t) Ls[F ]

Uniform 1 E[Z]

q-Superquantile
1[q,1](t)

1−q E[Z|Z ≥ F−1(q)]

r-Extremile rtr−1 E[maxk=1,...r Zk]

ρ-ESRM ρe−ρeρt

1−e−ρ N/A

Table 1: Common spectral risk measures, with spectra s(t),
interpretation of the L-statistics Ls[F ] for F the CDF of Z.

Convexity and Subdifferential As in ERM, the function

Rσ is convex as long as each ℓi is convex, as we see next.

Let ∂f denote the subdifferential of a convex function f
and aS1 + bS2 = {as1 + bs2 : s1 ∈ S1, s2 ∈ S2} denote

the Minkowski sum of sets S1, S2 with weights a, b ∈ R.

Proposition 2. If ℓ1, . . . , ℓn are convex, the function Rσ is

also convex, with subdifferential

∂Rσ(w) = conv




⋃

π∈argsort(ℓ(w))

n∑

i=1

σi∂ℓπ(i)(w)



 ,

where argsort (ℓ(w)) =
{
π : ℓπ(1)(w) ≤ ... ≤ ℓπ(n)(w)

}
.

Moreover, if each ℓi is G-Lipschitz continuous, Rσ is also

G-Lipschitz continuous.

Convexity crucially relies on σi’s being non-decreasing. If

each ℓi is differentiable, the function Rσ is differentiable

almost everywhere, as argsort (ℓ(w)) is a singleton at al-

most all w ∈ Rd. The objective can be non-differentiable

at vectors w ∈ Rd leading up to ties in the losses such as

ℓi(w) = ℓj(w) for i ̸= j.

Computing Subgradients Prop. 2 also gives us a simple

recipe to retrieve some g ∈ ∂Rσ(w) with a differentiable

programming framework like JAX (Frostig et al., 2018) or

PyTorch (Paszke et al., 2019): (i) compute the losses ℓi(w),
(ii) sort the losses to get ℓπ(1)(w), ..., ℓπ(n)(w), (iii) com-

pute the weighted sum of the sorted losses
∑

i σiℓπ(i)(w),
and (iv) access g =

∑

i σi∇ℓπ(i)(w) at the sorting given

by π using automatic differentiation. We can write this in

PyTorch as:

l = compute_losses(w)

l_ord = torch.sort(l)[0]

risk = torch.dot(sigmas, l_ord)

g = torch.autograd.grad(risk, w)[0]

The dependence of the sorting permutation π on w is not

recorded in the computation graph. Multiple options for π
occur with probability zero if the losses are continuous ran-

dom variables, though if they do, we select one arbitrarily.

Stochastic Subgradient Method (SGD) A baseline ap-

proach is the stochastic subgradient method displayed in
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Algorithm 1 Stochastic Subgradient Method (SGD)

Require: Number of iterates T , minibatch size m, learning

rate sequence (η(t))Tt=1, spectrum s, oracles (ℓi)
n
i=1 and

(∇ℓi)ni=1, regularization µ > 0.

1: Initialize w(0) = 0 ∈ Rd.

2: Compute σ̂1, ..., σ̂m, where σ̂j :=
∫ j/m

(j−1)/m
s(t) dt.

3: for t = 0, ..., T − 1 do

4: Sample without replacement (i1, ..., im)⊆[n].
5: Select π ∈ argsort

(
ℓi1(w

(t)), ..., ℓim(w(t))
)
.

6: Set v
(t)
m =

∑m
j=1 σ̂j∇ℓiπ(j)

(
w(t)

)
.

7: Set w(t+1) = (1− η(t)µ)w(t) − η(t)v
(t)
m .

8: return w̄(T ) = 1
T

∑T−1
t=0 w(t).

Algorithm 1; we refer to this as (minibatch) SGD for conve-

nience. Given a minibatch size m, the method discretizes

the spectrum s into m bins (line 2) instead of n (as in objec-

tive (5)). We then sample m indices {i1, ..., im} randomly

sampled from {1, ..., n} (line 4). We retrieve a sorting per-

mutation π : [m] → [m] satisfying ℓiπ(1)
≤ . . . ≤ ℓiπ(m)

(line 5) and use it to compute the update direction v
(t)
m (line

6). While the per-iteration cost is m gradient evaluations

and O(md) time complexity, Algorithm 1 can fail to min-

imize the true objective Rσ for non-uniform s due to the

bias of the minibatch estimate. For instance, at the extreme

m = 1, notice that σ̂1 = σ̂m = 1 and the subgradient esti-

mate corresponds to∇ℓi(w) for some i. This is an unbiased

gradient estimate of the ERM objective rather than Rσ, re-

ducing the algorithm to standard SGD. For non-uniform s,

the bias can only be fully avoided at m = n, recovering the

full batch subgradient method.

SGD Analysis Let u(t) := 1(0,1) (t) be the uniform density

on (0, 1), which is also the spectrum of the expected value.

We have the following convergence guarantee.

Proposition 3. If the losses ℓ1, ..., ℓn are G-Lipschitz con-

tinuous, differentiable, and convex, the output w̄(T ) of Alg. 1

with η(t) = 1
µ(t+1) satisfies

E

[

Rσ,µ

(

w̄(T )
)]

− Rσ,µ(w
∗)

≤ 2
√
2CsBµ

√
n−m

m(n− 1)
︸ ︷︷ ︸

bias term

+
2G2(1 + log T )

µT
︸ ︷︷ ︸

optimization term

.

for w∗=argminw∈Rd Rσ,µ(w), Cs=supt∈(0,1) |s(t)−u(t)|,
and Bµ = supw:∥w∥2≤G/µ maxi=1,...,n |ℓi(w)| < ∞. The

expectation is taken over the sampling of each minibatch.

In Prop. 3, notice that the bias term can be reduced by

decreasing Cs (by pushing s closer to uniformity, hence

ERM), decreasing Bµ (by increasing the regularization pa-

rameter µ), or decreasing (n − m)/(mn) (by increasing

the minibatch size). The optimization term is standard for

Algorithm 2 LSVRG

Require: Number of iterations T , loss functions (ℓi)
n
i=1

and their gradient oracles, initial point w(0), learning

rate η, sorting update frequency N , spectrum (σi)
n
i=1,

probability of checkpointing q∗, regularization µ
1: for t = 0, ..., T − 1 do

2: if t mod N = 0 then ▷ Update weights

3: Select π ∈ argsort
(
ℓ1(w

(t)), . . . , ℓn(w
(t)
)
.

4: Update λ(t) = (σπ−1(i))
n
i=1.

5: else

6: λ(t) = λ(t−1).

7: Sample qt ∼ Unif([0, 1]).
8: if t mod N = 0 or qt ≤ q∗ then ▷ Checkpoint

9: Set w̄(t) = w(t).

10: ḡ(t) =
∑n

i=1 λ
(t)
i ∇ℓi(w̄(t)).

11: else

12: w̄(t) = w̄(t−1) and ḡ(t) = ḡ(t−1).

13: Sample it ∼ Unif([n]).

14: v(t) = nλ
(t)
it
∇ℓit(w(t))−nλ

(t)
it
∇ℓit(w̄(t)) + ḡ(t).

15: w(t+1) = (1− ηµ)w(t) − ηv(t).

16: return w(T )

SGD on convex, Lipschitz objectives with strongly convex

regularizers.

Proof Sketch. Given a minibatch i1, . . . , im, let ℓi(1)(w) ≤
. . . ≤ ℓi(m)

(w) be the order statistics of the losses. De-

fine Rσ̂(w) :=
∑m

j=1 σ̂jℓi(j)(w). Consider the surrogate

objective R̄σ̂(w) := E [Rσ̂(w) | w], where the expecta-

tion is taken over the randomness in the minibatch indices

i1, . . . , im. We observe that the update directions v
(t)
m of

Algorithm 1 are unbiased estimates for a subgradient in

∂R̄σ̂(w
(t)). For R̄σ̂,µ(w) = R̄σ̂(w)+

µ
2 ∥w∥

2
2, after enough

iterations, we have

R̄σ̂,µ(w̄
(T )) ≈ min

w∈Rd
R̄σ̂,µ(w)

with error quantified by the optimization term. Letting

W = {w ∈ Rd : ∥w∥2 ≤ G/µ}, we also show that

R̄σ̂,µ(w)− min
w′∈W

R̄σ̂,µ(w
′) ≈ Rσ,µ(w)− min

w′∈W

Rσ,µ(w
′)

for any w ∈W, quantified by the bias term. After showing

that the minimizers of Rσ,µ and R̄σ̂,µ over Rd as well as

w(T ) are contained in W, we sum the two errors to give the

final result.

LSVRG Algorithm To circumvent the per-iteration cost

of full batch algorithms, we consider adapting the SVRG

method (Johnson and Zhang, 2013) for ERM to account

for the ordering of the losses, leading to the LSVRG algo-

rithm presented in Alg. 2. Overall, the algorithm consists of

considering the objective
∑n

i=1 σiℓ(i)(w) + µ∥w∥22/2 as a
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weighted average 1
n

∑n
i=1(nσπ−1(i)ℓi(w) + µ∥w∥22/2) for

π ∈ argsort(ℓ(w)) and to run epochs of a q-SVRG (Hof-

mann et al., 2015) algorithm on an objective of the form
1
n

∑n
i=1(nσπ̂−1(i)ℓi(w) + µ∥w∥22/2) for π̂ the ordering of

losses computed at some regular checkpoints.

Concretely, with frequency N starting with the first iterate,

we compute (i) the n losses at the current iterate to define a

vector of weights λ(t) associated to the empirical ordered

statistics at that point in lines 3 and 4, and (ii) store the

current iterate as a checkpoint w̄(t) together with the average

gradients of the losses ḡ(t) at that checkpoint in lines 9

and 10. In addition, with probability q∗ at each iteration

we update the checkpoint w̄(t) and the associated average

gradients ḡ(t) as per rule of line 8, without updating the

weights λ(t). The main iteration of the algorithm in lines 14

and 15 is a variance-reduced gradient step akin to SVRG

on an objective of the form 1
n

∑n
i=1(nλ̄iℓi(w) + µ∥w∥22/2)

where λ̄ = λ(t) are the current weights.

LSVRG Analysis To account for the non-differentiability

of the sorting operation in the convergence analysis, we

analyze a variant of the LSVRG algorithm that operates

on the smooth approximation hνΩ of the empirical L-risk

h(l) =
∑n

i=1 σil(i) for l ∈ Rn, defined using a strongly

convex function Ω as (Nesterov, 2005; Beck and Teboulle,

2012)

hνΩ(l) := max
λ∈P(σ)

{
l⊤λ− νΩ(λ)

}
,

where P(σ) = {λ = Πσ : Π1 = 1,Π⊤
1 = 1,Π ∈

[0, 1]n×n} is the permutahedron generated by σ. The

original L-risk is obtained as ν → 0 since h(l) =
maxλ∈P(σ) l

⊤λ; this follows from the σi’s being non-

decreasing. The implementation of the smooth approxima-

tion of the empirical L-statistic and its gradient is given

by solving an isotonic regression problem at a cost of

O(n log n) elementary computations; see Appx. D.

The resulting smooth surrogate of (5) is

Rσ,µ,νΩ(w) = hνΩ

(
ℓ(w)

)
+

µ

2
∥w∥2 , (6)

for ℓ(w) = (ℓ1(w), . . . , ℓn(w)). The smoothed version

of LSVRG we analyze computes the weights in line 4 as

λ(t) = ∇hνΩ(ℓ(w
(t−1))). Note that this update recovers

the original one in Algorithm 2 as ν → 0 when the losses

ℓi(w
(t)) are unique. Under appropriate smoothness assump-

tions and choice of the smoothing parameter ν, this vari-

ant of LSVRG converges linearly to the minimizer of the

smoothed objective.

Theorem 4. Consider the smooth objective (6) where each

ℓi is convex, G-Lipschitz continuous and L-smooth, and

Ω(λ) = ∥λ − 1/n∥22/2. Consider the sequence (w(t))
generated by the smoothed variant of LSVRG with inputs

ν ≥ 4nG2/µ, N = 4(n+ 8κ), η = 2/((n+ 8κ)µ) where

κ = nσnL/µ+ 1 is a condition number. We have that w(t)

converges to w∗ = argminw∈Rd Rσ,µ,νΩ(w) as

E∥w(kN) − w∗∥ ≤ (1/2)
k ∥w(0) − w∗∥

for k ∈ N. Consequently, LSVRG can produce a point ŵ
satisfying

(
E ∥ŵ − w∗∥)2 ≤ ϵ in

T ≤ C(n+ κ) log
(

∥w(0) − w∗∥22/ϵ
)

gradient evaluations, where C is an absolute constant.

Proof Sketch. Consider

Φ(w, λ) :=
n∑

i=1

λiℓi(w) +
µ

2
∥w∥2 − νΩ(λ) ,

so that Rσ,µ,νΩ(w) = maxλ∈P(σ) Φ(w, λ). We inter-

pret Algorithm 2 as trying to find the unique saddle

point (w∗, λ∗) of Φ by alternating the updates λ(k) =

argmaxλ∈P(σ) Φ(w
(k), λ) and w(k+1) ≈ w

(k+1)
∗ :=

argminw Φ(w, λ(k)) using N steps of q-SVRG. An error

analysis of the latter yields

Ek∥w(k+1) − w
(k+1)
∗ ∥ ≤ 1

5
∥w(k) − w

(k+1)
∗ ∥ ,

where Ek denotes an expectation conditioned on the sigma-

algebra generated by w(k). Smoothness and strong convexi-

ty/concavity of Φ gives

∥w(k+1)
∗ −w∗∥ ≤

√
nG

µ
∥λ(k)−λ∗∥ ≤ nG2

µν
∥w(k)−w∗∥ .

Putting these together with the triangle inequality and

nG2/(µν) ≤ 1/4 completes the proof.

The approximation error induced by the smooth approx-

imation can be controlled by the smoothing coefficient

ν. For any non-negative, strongly convex, decomposable

(Ω(λ) =
∑n

i=1 ω(λi)) function Ω we have 0 ≤ Rσ,µ(w)−
Rσ,µ,νΩ(w) ≤ νΩ(σ). The quantity Ω(σ) can then itself be

bounded in terms of a divergence of s to the uniform distri-

bution. In particular, using a centered negative entropy as

Ω, we have Ω(σ) ≤ KL(s∥u), Kullback-Leibler divergence

from s to u. On the other hand, using a centered squared

Euclidean norm as in Thm. 4, we get Ω(σ) ≤ χ2(s∥u)/n,

the χ2-divergence. See Appx. D for details. In summary, if

a point ŵ is an ε/2-accurate minimizer of the smoothed ob-

jective, i.e., Rσ,µ,νΩ(ŵ)−minw∈Rd Rσ,µ,νΩ(w) ≤ ε, then

it is a ε/2 + νχ2(s∥u)/n-approximate one on the original

non-smooth objective when choosing Ω as in Thm. 4. This

smoothing error vanishes when considering s = u, as in

ERM.

Combining the smoothing error with the requirement ν >
O(nG2/µ) of Thm. 4, we get an end-to-end bound on the

original non-smooth objective when ε > G2χ2(s∥u)/µ.
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Figure 2: The suboptimality gap (Equation (7)) for various

optimization algorithms on the mean, superquantile, extrem-

ile, and ESRM risk measures. The x-axis shows the number

of effective passes through the data. Five seed trajectories

are plotted translucently for every algorithm.

However, as we show empirically in Appx. G, smoothing

has a minimal impact on the empirical behavior of LSVRG.

While the non-smoothness of the empirical L-risk is an

obstacle for the theoretical convergence of LSVRG, this non-

smoothness may not impact the empirical behavior. Indeed,

if the minimizer of the objective has distinct loss values,

then the objective is locally smooth around the minimizer.

Time Complexity In practice, we consider simply taking

N = n and q∗ = 0 to simplify the hyperparameter choices

and reduce the overall time complexity. In that case, the

time complexity of LSVRG is O(d) per iteration with 2

gradient evaluations, which is identical to the number of

gradient calls of the biased subgradient method with batch

size m = 2. LSVRG also requires n gradient evaluations

and sorting at the start of an epoch, contributing an addi-

tional O(nd + n log n) elementary operations. This per-

epoch complexity is nearly identical to vanilla SVRG in the

ERM case. LSVRG, like vanilla SVRG, also requires an

additional storage of O(d) to store ḡ(t) ∈ ∂Rσ,µ(w̄
(t)) as

compared to the stochastic subgradient method. Run times

are evaluated experimentally in Appx. G.

4 EXPERIMENTAL RESULTS

We compare the performance of minibatch SGD and

LSVRG on benchmark datasets and study their bias and

variance properties in a number of supervised and unsuper-

vised learning tasks. Experimental details can be found in

Appx. F, with additional experiments with varied hyperpa-

rameters can be found in Appx. G.

4.1 Regression

We consider 4 regression datasets:

• simulated: a synthetic task of predicting observa-

tions generated from a noisy linear model.

• yacht: prediction of the residuary resistance of a

sailing yacht based on its physical attributes (Tsanas

and Xifara, 2012).

• energy: prediction of the cooling load of a building

based on its physical attributes (Baressi Segota et al.,

2020).

• concrete: prediction of the compressive strength

of a concrete type based on its physical and chemical

attributes (Yeh, 2006).

We use the squared loss under a linear model and aim to min-

imize the regularized objective (5) where the spectra s are

obtained from the empirical mean, superquantile (q = 0.5),

extremile (r = 2), and ESRM (ρ = 1) of the losses. Both

training curves and test losses for other values of (q, r, ρ)
are shown in Appx. G, which follow similar trends.

In addition to minibatch SGD, we consider another bi-

ased method, stochastic regularized dual averaging (SRDA)

(Xiao, 2009), both with a batch size of 64. We compare

them with LSVRG, by plotting in Fig. 2 the suboptimality,

defined as

suboptimality gapt :=
Rσ(w

(t))− Rσ(w
∗)

Rσ(w(0))− Rσ(w∗)
(7)

We find that LSVRG (without smoothing) exhibits empirical

linear convergence for the ERM, extremile, and ESRM. It

often vastly outperforms SGD and SRDA, which exhibit

sublinear convergence. On the superquantile, LSVRG ex-

hibits the same sublinear convergence as SGD, suggesting

that the discontinuity of the spectrum can yield additional

challenges in optimization. Overall, LSVRG is the best or

close to the best algorithm across all tasks.

LSVRG relies on the hypothesis that the sorted order of

losses stabilize as iterates w(t) get close to the optimum.

We see from Fig. 3 that there is a clear phase change af-

ter which disagreements between the true and estimated

ordering are visually unnoticeable. The exception to this

is the superquantile, where the sorting does not stabilize

within 64 epochs. This corroborates the apparent hardness

of optimizing the superquantile in Fig. 2.

4.2 Classification

Image Classification The iWildCam challenge dataset

(Beery et al., 2020) contains natural images from wilderness

sites with distribution shifts arising from diverse camera

angles, backgrounds, and relative animal frequencies. We

take a subsample of n = 20, 000 data points from classes

with at least 100 examples after removing the ªbackground
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Figure 4: Top: Differences in the p-th quantile of the loss

distribution for the ERM solution and the L-Risk solution on

the iWildCam test set. Bottom: Training curves for SGD,

SRDA, and L-SVRG for different L-Risks on iWildCam

training set.

imageº class. For each data point, we compute the penulti-

mate layer of a ResNet50 neural network that is pre-trained

on ImageNet (see Appx. F for further details). The result-

ing vectors are reduced in dimension by PCA, after which

the convex optimization problem considered is multinomial

logistic regression with the reduced vectors as inputs. As in

regression, the training curves in the bottom row of Fig. 4

indicate that SGD and SRDA fail to converge due to bias

and variance. Letting ŵERM be the approximate solution

of ERM, whereas ŵLRM is the approximate solution of an

L-Risk minimization problem other than ERM, the top row

plots the following against p:

ℓ(⌈np⌉) (ŵERM)− ℓ(⌈np⌉) (ŵLRM)
1
n

∑n
i=1 ℓi (ŵERM)

,

that is, the difference in the p-th quantile of the test loss of

ŵERM and the p-th quantile of the test loss of ŵLRM, normal-

ized by the mean test loss of ERM. Because logistic loss

measures the negative logarithm of the probability that the

model assigns to the correct label, tail events for this loss

amount to a model exhibiting high confidence for a set of

incorrect labels. The median test loss (p = 0.5) is similar
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Figure 5: Top: Differences in the p-th quantile of the loss

distribution for the ERM solution and the L-Risk solution on

the emotion test set. Bottom: Training curves for SGD,

SRDA, and L-SVRG for different L-Risks on emotion

training set.

between the L-risk minimizers and standard ERM. How-

ever, for p > 0.5, the ERM solution can make predictions

with much higher losses. Comparing various L-risks, we

find that the superquantile controls tail error at very high

quantiles (p > 0.95), but generally underperforms for the

rest of the loss distribution. The extremile and ESRM on the

other hand, have generally better performance than ERM

throughout the loss distribution. We also plot the quantile

differences for the regression tasks in Appx. G.

Crucially, we find that the large n regime exacerbates the

bias issues when the epoch length is set to n. We instead

use a smaller epoch length of 100, and plot suboptimality

against the number of gradient evaluations in Fig. 4 to ensure

a fair comparison. Each epoch is defined as the number of

gradient evaluations in SGD or SRDA, which is 100m =
6, 400.

Text Classification The emotion dataset (Saravia et al.,

2018) contains English Twitter messages with six basic

emotions: anger, fear, joy, love, sadness, and surprise, which

comprise six classes for classification. In this example, we

split the n = 16, 000 training examples into two random
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Figure 6: Robust clustering with L-statistics in the presence

of outliers. Top: synthetic data, Bottom: MNIST digits.

subsets of size 8, 000. The first is used to fine-tune each

layer of a BERT neural network using the ERM objective

on multinomial logistic loss (a non-convex optimization

problem) for 2 epochs. The backbone of this network is then

used as a fixed embedding function applied to the remaining

subset of 8, 000 points. After dimension reduction by PCA,

a linear model is trained using the L-Risk objective to map

to the final predictions. The reason for fine-tuning is that

we found that using the embeddings from the pre-trained

BERT model result in instability in training if the classes

are not well-separated by the embeddings. After improving

the embeddings, a large epoch length of 1, 000 could be

used for LSVRG. The results are plotted in Fig. 5. Similar

to the image classification setting, we find that on the test

examples, the ERM minimizer incurs large losses in the

upper tail. Here, the superquantile, extremile, and ESRM all

exhibit similar, stable behavior. Both examples demonstrate

two ways to adapt LSVRG, designed specifically for convex

objectives, to the non-convex regime.

4.3 Clustering

We also explore an unsupervised clustering approach

from Maurer et al. (2021) on synthetic data and real data.

We seek to cluster n points x1, . . . , xn into k clusters with

centers C = (c1, . . . , ck) by minimizing a weighted aver-

age of the distances of each point to its closest center, i.e.,

problems of the form

min
C∈Rd×k

n∑

i=1

σiℓ(i)(C), for

ℓi(C) = min
zi∈{0,1}k

z⊤

i 1=1

k∑

j=1

zij∥xi − cj∥22.

Taking σi = 1/n, we retrieve the usual objective mini-

mized by k-means. Maurer et al. (2021) propose to take

σi non-uniform to mitigate the effect of outliers in the data.

Specifically, we consider σi =
∫ i/n

(i−1)/n
s(t)dt for a trun-

cated spectrum sq(t) = 1[0,q](t)/q or a risk-seeking version

of the extremile, sr(t) = r(1 − t)r. In addition, Maurer

et al. (2021) optimize the clustering objective by alternating

k-means iterations and sorting the resulting losses. Instead,

we apply minibatch SGD from Algorithm 1 with a constant

stepsize found by grid search and a batch size of 64.

Synthetic data. We generate a dataset of three Gaussian

clouds of 100 points each and an additional set of 100 out-

liers (top left in Fig. 6). We compare the accuracy of cluster-

ing 300 new inlier points with different spectra. We observe

in Fig. 6 (top right) that the minibatch estimates of the sub-

gradient of the truncated or extremile spectra are sufficient

to reach a perfect 100% accuracy, while vanilla k-means

with its uniform spectrum leads to poor performance due to

outliers.

MNIST data. We consider distinguishing between the dig-

its 1 and 3 from the MNIST dataset (LeCun et al., 1998) by

clustering the images of a training set composed of 1000

samples of 1 and 3 each and additional 125 outliers for each

other digit. We test the clustering procedure on the images

of 1 and 3 digits from the MNIST test set. We see from

Fig. 6 (bottom right) that minibatch SGD with a batch size of

256 achieves 97.3% for the truncated spectrum and 97.8%
for the extremile spectrum versus 96.3% for the uniform

spectrum. Even in terms of convergence speed for different

spectra, we observe that extremile ≻ truncated ≻ uniform.

Finally, Fig. 6 (bottom left) shows us that the centers com-

puted with the extremile spectrum are clear representatives

of these digits while taking a uniform spectrum leads to

more blurry representatives, as shown in Appx. F.

5 CONCLUSION

L-risks, based on spectral risk measures, span an entire spec-

trum of learning objectives such as the ERM objective, the

superquantile-based objective, and other distributionally ro-

bust ones. We presented LSVRG, a stochastic optimization

algorithm for minimizing L-risks, and analyzed its conver-

gence properties alongside biased minibatch SGD. Estab-

lishing the regular subdifferential in the non-convex setting

and studying the robustness properties of L-risk minimizers

are interesting venues for future work.
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Appendix

In the appendices, we give the proofs of consistency (Prop. 1) in Appx. A and the variational properties of the objective
(Prop. 2) in Appx. B. Appx. C contains the analysis of bias SGD (Prop. 3). Appx. E contains the analysis of LSVRG
(Thm. 4), with necessary background in Appx. D. We then give describe the experimental setup in detail (Appx. F) and give
some additional numerical results (Appx. G).
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A CONSISTENCY OF THE EMPIRICAL SPECTRAL RISK

We first recall the setting of Prop. 1. Let (Ω,F,P) denote a common probability space, upon which we consider an

i.i.d. sample {Z1, . . . , Zn} with each Zi : Ω→ R being (F,B(R))-measurable, where B(R) denotes the Borel sets on the

real line. Each shares a common cumulative distribution function (CDF) F and quantile function F−1 given by

F (z) := P
[
Z−1
1 ((−∞, z])

]
and F−1(t) := inf {z : F (z) ≥ t} .

Similarly, define the empirical CDF and quantile functions by

Fn(z;ω) :=
1

n

n∑

i=1

1(−∞,z] (Zi(ω)) and F−1
n (t;ω) := inf {z : Fn(z;ω) ≥ t} .

Construct the random variables Fn(z) : ω 7→ Fn(z;ω) and F−1
n (t) : ω 7→ F−1

n (t;ω). Here, z ∈ R and t ∈ (0, 1), and the

infimum is always attained (Bobkov and Ledoux, 2019, Page 83). We can ensure measurability of F−1
n (t) by taking the

infimum only over z ∈ Q. All expected values will be taken with respect to (Ω,F,P) and will be denoted by E. For s a

probability density function (PDF) on (0, 1), the L-functional Ls with spectrum s is defined as

Ls[F ] :=

∫ 1

0

s(t) · F−1(t) dt. (8)

We first establish that (8) is well-defined, using a well-known result of quantile functions.

Proposition 5. (Bobkov and Ledoux, 2019, Proposition A.1) Let Z be a random variable and let F be its cumulative

distribution function. If U is a random variable distributed uniformly in (0, 1), then the random variable F−1(U) has F as

its distribution function. In particular,

E |Z|p =

∫ 1

0

∣
∣F−1(t)

∣
∣
p

dt

when the left hand side is finite.

Lemma 6. Let s be bounded, and E |Z1| <∞. Then |Ls[F ]| <∞.

Proof. Let ∥s∥∞ := supt∈(0,1) |s(t)| <∞. Write

|Ls[F ]| =
∣
∣
∣
∣

∫ 1

0

s(t) · F−1(t) dt

∣
∣
∣
∣
≤ ∥s∥∞ ·

∫ 1

0

∣
∣F−1(t)

∣
∣ dt

Prop. 5

≤ ∥s∥∞ E |Z1| <∞.

We restate Prop. 1 below.

Proposition 1. Assume that E |Z|p <∞ for some p > 2 and that ∥s∥∞ := supt∈(0,1) |s(t)| <∞. Then,

E
∣
∣Ls [Fn]− Ls [F ]

∣
∣
2 ≤

2 ∥s∥2∞
(

p
p−2

)2

E [|Z|p]
2
p

n
.

The proof is summarized by the following steps.

1. By boundedness of the spectrum, we have that E |Ls [Fn]− Ls [F ]|2 ≤ ∥s∥2∞ · E
[(∫ 1

0

∣
∣F−1

n (t)− F−1(t)
∣
∣ dt
)2
]

.

2. Using the triangle inequality on L2(P) and relationships between quantile functions and CDFs, we relate
√

E

[(∫ 1

0

∣
∣F−1

n (t)− F−1(t)
∣
∣ dt
)2
]

to the quantity 1√
n

∫ +∞
−∞

√

F (z)(1− F (z)) dz.

3. We then use elementary concentration inequalities to bound
∫ +∞
−∞

√

F (z)(1− F (z)) dz by
√
2 p
p−2E [|Z|p]1/p.
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The following theorem details how the L1 distance between the quantile functions of two probability distributions is equal

to the L1 distance between the corresponding CDFs.

Theorem 7 (Theorem 2.10 of Bobkov and Ledoux (2019)). Let µ, ν be two probability distributions on R with associated

CDF F and G, respectively, with quantile functions F−1(t) := inf{z ∈ R : F (z) ≥ t} and G−1 := inf{z ∈ R : G(z) ≥ t}.
Given that µ and ν have finite first moment, i.e.,

∫
|z| dµ(z) <∞ and

∫
|z| dν(z) <∞, we have that

W1(µ, ν) =

∫ ∞

−∞
|F (z)−G(z)| dz =

∫ 1

0

∣
∣F−1(t)−G−1(t)

∣
∣ dt,

where both the left and right hand sides are finite.

Next, we ensure that the L1 distance between F−1
n and Fn is a square-integrable random variable.

Lemma 8. Assume that E |Z1|2 <∞. Then, the random variable Vn(ω) :=
∫ 1

0

∣
∣F−1

n (t;ω)− F−1(t)
∣
∣ dt is well-defined,

and E[V 2
n ] <∞.

Proof. For any particular realization ω ∈ Ω, write

|Vn(ω)|2 =

∣
∣
∣
∣

∫ 1

0

∣
∣F−1

n (t;ω)− F−1(t)
∣
∣ dt

∣
∣
∣
∣

2

≤
∫ 1

0

∣
∣F−1

n (t;ω)− F−1(t)
∣
∣
2

dt Jensen’s inequality

≤ 2

∫ 1

0

∣
∣F−1

n (t;ω)
∣
∣
2

dt+ 2

∫ 1

0

∣
∣F−1(t)

∣
∣
2

dt

=
2

n

n∑

i=1

|Zi(ω)|2 + 2E |Z1|2 Prop. 5.

Then, E[V 2
n ] ≤ 4E |Z1|2, completing the proof.

The next lemma applies the above theorem to bound the expected distance between empirical and population quantile

functions in terms of the population CDF, expanding upon remarks made on page 20 of Bobkov and Ledoux (2019).

Lemma 9. Assume that E |Z1|2 <∞. Then,

√
√
√
√E

[(∫ 1

0

∣
∣F−1

n (t)− F−1(t)
∣
∣ dt

)2
]

≤ 1√
n

∫ +∞

−∞

√

F (z)(1− F (z)) dz,

where the right hand side is permitted to be infinite.

Proof. By Lem. 8 we have that

E

[(∫ 1

0

∣
∣F−1

n (t)− F−1(t)
∣
∣ dt

)2
]

= E
[
V 2
n

]
<∞, (9)

so that the left hand side is well-defined and finite. By Thm. 7, we also have that
∫ 1

0

∣
∣F−1

n (t;ω)− F−1(t)
∣
∣ dt =

∫∞
−∞ |Fn(z;ω)− F (z)| dz, indicating with (9) that the random variable

ω 7→
∫ ∞

−∞
|Fn(z;ω)− F (z)| dz ∈ L2(P).
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By the triangle inequality on L2(P), we have that

√
√
√
√E

[(∫ 1

0

∣
∣F−1

n (t)− F−1(t)
∣
∣ dt

)2
]

=

√
√
√
√E

[(∫ ∞

−∞
|Fn(z)− F (z)| dz

)2
]

=

∥
∥
∥
∥

∫ ∞

−∞
|Fn(z)− F (z)| dz

∥
∥
∥
∥
L2(P)

≤
∫ ∞

−∞
∥|Fn(z)− F (z)|∥L2(P) dz

=

∫ ∞

−∞

√

E

[

|Fn(z)− F (z)|2
]

dz.

Next, notice that for fixed z ∈ R, nFn(z) ∼ Binom(n, F (z)), so that

E

[

|Fn(z)− F (z)|2
]

= Var [Fn(z)] =
F (z) (1− F (z))

n
,

completing the proof.

The final lemma bounds the right hand side of Lem. 9.

Lemma 10. Consider a random variable Z with c.d.f. F . If Z satisfies E [|Z|p] <∞ for p > 2, then

∫ +∞

−∞

√

F (z)(1− F (z)) dz ≤
√
2

(
p

p− 2

)

E [|Z|p]
1
p .

Proof. By definition,
∫∞
−∞

√

F (z)(1− F (z)) dz = lima→+∞
∫ a

−a

√

F (z)(1− F (z)) dz. Denote c = E [|Z|p]1/p. For

any constant a ≥ c > 0, we have

∫ a

−a

√

F (z)(1− F (z)) dz =

∫ 0

−a

√

F (z)(1− F (z)) dz +

∫ a

0

√

F (z)(1− F (z)) dz

≤
∫ 0

−a

√

F (z) dz +

∫ a

0

√

(1− F (z)) dz

=

∫ 0

−a

√

P(Z ≤ z) dz +

∫ a

0

√

P(Z > z) dz

=

∫ a

0

√

P(Z ≤ −z) +
√

P(Z > z) dz.

Then, use that for any a, b ≥ 0,

(
√
a+
√
b)2 = a+ b+ 2

√
ab ≤ 2(a+ b) =⇒ √

a+
√
b ≤

√

2(a+ b).

Using this, and that z ≥ 0, we have

√

P(Z ≤ −z) +
√

P(Z > z) ≤
√

2(P(Z ≤ −z) + P(Z > z))

=
√

2(P(|Z| > z) + P(Z = −z))
≤
√

2(P(|Z| > z) + P(|Z| = z))

=
√

2P(|Z| ≥ z).
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Combining with the first display, we have that

∫ a

−a

√

F (z)(1− F (z)) dz ≤
∫ a

0

√

P(Z ≤ −z) +
√

P(Z > z) dz

≤
√
2

∫ a

0

√

P(|Z| ≥ z) dz

≤
√
2

∫ a

0

√

min

{

1,
cp

zp

}

dz Markov’s inequality

=
√
2

(

c+ cp/2
∫ a

c

z−p/2 dz

)

.

Computing the integral yields

∫ a

c

z−p/2 dz =
a1−p/2 − c1−p/2

1− p/2
.

Because 1− p/2 < 0, we have that lima→∞
∫ a

c
z−p/2 dz = c1−p/2

p/2−1 . Combining the steps above, we obtain

∫ ∞

−∞

√

F (z)(1− F (z)) dz = lim
a→∞

∫ a

−a

√

F (z)(1− F (z)) dz

≤ lim
a→∞

√
2

(

c+ cp/2
∫ a

c

z−p/2 dz

)

=
√
2c

(

1 +
1

p/2− 1

)

=
√
2

pc

p− 2
.

Resubstituting c = E [|Z|p]1/p completes the proof.

We now have the tools to prove Prop. 1.

Proof of Prop. 1. For a particular realization Z1(ω), ..., Zn(ω), we have that

|Ls [Fn(·;ω)]− Ls [F ]| =
∣
∣
∣
∣

∫ 1

0

s(t) · F−1
n (t;ω) dt−

∫ 1

0

s(t) · F−1(t) dt

∣
∣
∣
∣

=

∣
∣
∣
∣

∫ 1

0

s(t) ·
(
F−1
n (t;ω)− F−1(t)

)
dt

∣
∣
∣
∣

≤ sup
t∈(0,1)

|s(t)| ·
∫ 1

0

∣
∣F−1

n (t;ω)− F−1(t)
∣
∣ dt

= ∥s∥∞ ·
∫ 1

0

∣
∣F−1

n (t;ω)− F−1(t)
∣
∣ dt.

We then take the square and expectation.

E |Ls [Fn]− Ls [F ]|2 ≤ ∥s∥2∞ · E
[(∫ 1

0

∣
∣F−1

n (t)− F−1(t)
∣
∣ dt

)2
]

≤ ∥s∥
2
∞

n
·
(∫ +∞

−∞

√

F (z)(1− F (z)) dz

)2

Lem. 9

≤ 2 ∥s∥2∞
n

(
p

p− 2

)2

E [|Z|p]
2
p . Lem. 10
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B CONVEXITY AND SUBDIFFERENTIAL PROPERTIES

Recall the expression of the empirical L-statistics

Rσ(w) :=

n∑

i=1

σiℓ(i)(w). (10)

where 0 ≤ σ1 ≤ · · · ≤ σn,
∑n

i=1 σi = 1, each ℓi : R
d → R is a function representing performance of model weights w

on training instance i, and for a vector l ∈ Rn, we denote l(1) ≤ . . . ≤ l(n) its ordered coefficients. We recall Prop. 2 and

present its proof.

Proposition 2. If ℓ1, . . . , ℓn are convex, the function Rσ is also convex, with subdifferential

∂Rσ(w) = conv




⋃

π∈argsort(ℓ(w))

n∑

i=1

σi∂ℓπ(i)(w)



 ,

where argsort (ℓ(w)) =
{
π : ℓπ(1)(w) ≤ ... ≤ ℓπ(n)(w)

}
. Moreover, if each ℓi is G-Lipschitz continuous, Rσ is also

G-Lipschitz continuous.

Proof. Since the coefficients σ = (σ1, . . . , σn) are non-decreasing, the function Rσ can be written as the maximum over all

possible permutations of the losses, i.e.,

Rσ(w) = max
π∈Πn

n∑

i=1

σiℓπ(i)(w) = max
π∈Πn

n∑

i=1

σπ−1(i)ℓi(w),

where Πn is the set of permutations of {1, . . . , n}. For any π ∈ Πn, w 7→∑n
i=1 σπ−1(i)ℓi(w) is a convex combination of

convex functions, hence it is convex. Since the pointwise maximum of convex functions is convex, Rσ is convex.

The pointwise maximum f = maxj=1,...,N fj of N convex functions {fj}Nj=1 has a subdifferential defined by ∂f(x) =
conv

⋃

j∈argmax{fj(x)} ∂fj(x) where conv(A) denotes the convex hull of a set A (Hiriart-Urruty and LemarÂechal, 1993,

Lemma 4.4.1). Letting N = n!, consider the finite set of convex functions {fπ : π ∈ Πn} with each fπ : w 7→
∑n

i=1 σiℓπ(i)(w). The subdifferential of fπ is ∂fπ(w) =
∑n

i=1 σi∂ℓπ(i)(w), where the sum is to be understood as a

Minkowski sum of sets (Hiriart-Urruty and LemarÂechal, 1993, Lemma 4.4.1). Hence, the subdifferential of Rσ(w) is defined

by

∂Rσ(w) = conv




⋃

π∈argmax fπ(w)

∂fπ(w)



 = conv




⋃

π∈argsort(ℓ(w))

n∑

i=1

σi∂ℓπ(i)(w)



 ,

where we used that argsort (ℓ(w)) = argmaxπ
∑n

i=1 σiℓπ(i)(w) when σ1 ≤ · · · ≤ σn.

Finally if all ℓi are G-Lipschitz continuous, i.e., have G-bounded subgradients, then for any permutation π of {1, . . . , n},
any g ∈∑n

i=1 σi∂ℓπ(i)(w) is bounded by G as a convex combination of G-bounded vectors. Hence any g ∈ ∂Rσ(w) is

bounded by G as a convex combination of G-bounded vectors. The function Rσ is then convex with subgradients bounded

by G, hence it is G-Lipschitz continuous.

C BIASED SGD CONVERGENCE ANALYSIS

Recall the regularized L-risk considered

min
w∈Rd

Rσ(w) +
µ

2
∥w∥22 for Rσ(w) =

n∑

i=1

σiℓ(i)(w), (11)

where µ > 0, 0 ≤ σ1 ≤ · · · ≤ σn,
∑n

i=1 σi = 1, each ℓi : R
d → R is a function representing performance of model

weights w on training instance i and ℓ(1)(w) ≤ ... ≤ ℓ(n)(w). In the following, we consider G-Lipschtiz continuous convex

losses. The aim of this section is to prove the following proposition.
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Proposition 3. If the losses ℓ1, ..., ℓn are G-Lipschitz continuous, differentiable, and convex, the output w̄(T ) of Alg. 1 with

η(t) = 1
µ(t+1) satisfies

E

[

Rσ,µ

(

w̄(T )
)]

− Rσ,µ(w
∗)

≤ 2
√
2CsBµ

√
n−m

m(n− 1)
︸ ︷︷ ︸

bias term

+
2G2(1 + log T )

µT
︸ ︷︷ ︸

optimization term

.

for w∗=argminw∈Rd Rσ,µ(w), Cs=supt∈(0,1) |s(t)−u(t)|, and Bµ = supw:∥w∥2≤G/µ maxi=1,...,n |ℓi(w)| < ∞. The

expectation is taken over the sampling of each minibatch.

The proof will proceed in three parts, which comprise the next three subsections. The final subsection proves the main result.

1. The convexity and G-Lipschitz continuity of the losses is used to analyze the convergence of Alg. 1 on a surrogate

objective for which there is no bias.

2. We then establish a uniform bias bound between the surrogate function and the original function over a set W ⊆ Rd.

3. We then relate the suboptimality gap of the surrogate objective to the suboptimality of the original objective by using

the bias bound and establishing that the iterates and minimizers are contained in W.

C.1 SGD Analysis for Convex, Lipschitz Loss and Strongly Convex Regularizer

We present first a generic convergence result for stochastic subgradient algorithms such as Alg. 1 applied to regularized

non-smooth functions in Lem. 11, which is a minor adaptation of Bach (2023, Theorem 5.5).

Lemma 11. Consider a G-Lipschitz continuous, convex function f : Rd → R and a regularization µ∥ · ∥22 for µ > 0
defining an objective of the form fµ(w) = f(w) + µ∥w∥22/2. Given a an initial point w(0) = 0 ∈ Rd consider iterates of

the form, for t ≥ 0,

w(t+1) = w(t) − η(t)(v(t) + µw(t)),

for v(t) a random vector whose distribution depends only on w(t) satisfying E
[
v(t) | w(t)

]
∈ ∂f(w(t)) and

∥
∥v(t)

∥
∥
2
≤ G,

and η(t) > 0. Consider outputting after T iterations the estimate w̄(T ) = 1
T

∑T−1
t=0 w(t). Provided that η(t) = 1

µ(t+1) , this

estimate satisfies

E[fµ(w̄
(T ))]− fµ(w

∗) ≤ 2G2(1 + log T )

µT
,

for w∗ = argminw∈Rd fµ(w), where the expectation is taken over the sequence w(1), . . . , w(T−1).

Proof. Write the expansion

∥
∥
∥w(t+1) − w∗

∥
∥
∥

2

2
=
∥
∥
∥w(t) − w∗

∥
∥
∥

2

2
− 2η(t)

〈

v(t) + µw(t), w(t) − w∗
〉

+ (η(t))2
∥
∥
∥v(t) + µw(t)

∥
∥
∥

2

2
. (12)

Because
∥
∥w(0)

∥
∥
2
= ∥0∥2 ≤ G/µ, ∥v(t)∥ ≤ G and w(t+1) can be expressed as a convex combination of w(t) and −v(t)/µ,

that is,

w(t+1) = (1− η(t)µ)w(t) + η(t)µ

(

− 1

µ
v(t)
)

,

we can conclude by induction that
∥
∥w(t)

∥
∥
2
≤ G/µ for all t = 0, . . . , T − 1 when η(t)µ ≤ 1, which is satisfied for our

choice of η(t). Thus, (η(t))2
∥
∥v(t) + µw(t)

∥
∥
2

2
≤ (η(t))2 · 4G2. Taking the conditional expectation of v(t) given w(t) of (12)

yields

E

[∥
∥
∥w(t+1) − w∗

∥
∥
∥

2

2
| w(t)

]

≤
∥
∥
∥w(t) − w∗

∥
∥
∥

2

2
− 2η(t)

〈

E

[

v(t) | w(t)
]

+ µw(t), w(t) − w∗
〉

+ (η(t))24G2. (13)
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Because E
[
v(t) | w(t)

]
∈ ∂f(w(t)), we have that E

[
v(t) | w(t)

]
+ µw(t) ∈ ∂fµ(w

(t)), and by the µ-strong convexity of

fµ, we have

−
〈

E

[

v(t) | w(t)
]

+ µw(t), w(t) − w∗
〉

≤ −
(

fµ(w
(t))− fµ(w

∗)
)

− µ

2

∥
∥
∥w(t) − w∗

∥
∥
∥

2

2
,

which, substituted into (13) gives

E

[∥
∥
∥w(t+1) − w∗

∥
∥
∥

2

2
| w(t)

]

≤
(

1− η(t)µ
)∥
∥
∥w(t) − w∗

∥
∥
∥

2

2
− 2η(t)

(

fµ(w
(t))− fµ(w

∗)
)

+ (η(t))24G2

=⇒ fµ(w
(t))− fµ(w

∗) ≤ 1

2

((
1

η(t)
− µ

)∥
∥
∥w(t) − w∗

∥
∥
∥

2

2
− 1

η(t)
E

[∥
∥
∥w(t+1) − w∗

∥
∥
∥

2

2
| w(t)

])

+ 2η(t)G2

=
1

2

(

µt
∥
∥
∥w(t) − w∗

∥
∥
∥

2

2
− µ(t+ 1)E

[∥
∥
∥w(t+1) − w∗

∥
∥
∥

2

2
| w(t)

])

+
2G2

µ(t+ 1)
.

Take the expectation over the entire sequence w(0), . . . , w(t), sum over t = 0, . . . , T − 1, and divide by T to get

E

[

1

T

T−1∑

t=0

fµ(w
(t))

]

− fµ(w
∗) ≤ 1

T

T−1∑

t=0

2G2

µ(t+ 1)
≤ 2G2(1 + log T )

µT
,

which combined with fµ(w̄
(T )) ≤ 1

T

∑T−1
t=0 fµ(w

(t)) completes the proof.

C.2 Bias Control

In this section, we control the bias term appearing in the convergence analysis. The following lemmas consider a set of real

numbers, representing losses at a single w ∈ Rd. Let x1, . . . , xn ∈ R be call the full batch, and let X1, . . . Xm be a random

sample selected uniformly without replacement from {x1, . . . , xn}, called the minibatch. Let

Fn(x) :=
1

n

n∑

i=1

1(−∞,x] (xi) and Fn,m(x) :=
1

m

m∑

j=1

1(−∞,x] (Xj)

be the empirical CDFs, and let

F−1
n (t) := inf {x : Fn(x) ≥ t} and F−1

n,m(t) := inf {x : Fn,m(x) ≥ t} .

be the empirical quantile functions of the full batch and minibatch respectively. Similarly, let

µn :=

n∑

i=1

δxi and µn,m =

m∑

j=1

δXj

be the empirical measures of the full batch and minibatch, respectively, with δx indicating a Dirac point mass at x. Let

u(t) := 1(0,1) (t) be the uniform spectrum. Note that Fn,m and µn,m are random, since they depend on the random sample

X1, . . . , Xm.

The first result shows that the minibatch L-risk is an unbiased estimator of the full batch L-risk for the case of the uniform

spectrum.

Lemma 12. We have that for any n ∈ N, m ≤ n,

E [Lu[Fn,m]] = Lu[Fn],

where the expectation is taken over the sampling of X1, . . . , Xm without replacement.

Proof.

E [Lu[Fn,m]] = E




1

m

m∑

j=1

X(j)



 = E




1

m

m∑

j=1

Xj



 =
1
(
n
m

)

∑

i1<...<im

1

m

m∑

j=1

xij =
1

n

n∑

i=1

xi = Lu[Fn].
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Recall the definition of the 1-Wasserstein distance between probability measures µ and ν over R with finite first moment,

given by

W1(µ, ν) := inf
γ∈Π(µ,ν)

∫

R

|x− y| dγ(x, y),

where Π(µ, ν) is the set of couplings (or joint distributions) with marginals being µ and ν.

Lemma 13. For any n ∈ N,m ≤ n the 1-Wasserstein distance between the empirical measures satisy

Eµn [W1(µn,m, µn)] ≤
√

2
n−m

m(n− 1)
max

i=1,...,n
|xi| ,

where Eµn
[·] denotes the expected value according to the sampling of X1, . . . , Xm without replacement from {x1, . . . , xn}.

Proof. Note that both µn and any realization of µn,m have finite first moment. Then, we have that

Eµn [W1(µn,m, µn)] = Eµn

[∫

R

|Fn,m(x)− Fn(x)| dx

]

Thm. 7

=

∫

R

Eµn [|Fn,m(x)− Fn(x)|] dx

≤
∫

R

√

Eµn

[

(Fn,m(x)− Fn(x))
2
]

dx Jensen’s inequality

=

∫

R

√

Var [Fn,m(x)] dx,

where the last line follows because Fn(x) is the expected value of Fn,m(x) = 1
m

∑m
j=1 1(−∞,x] (Xj) (even when sampling

without replacement). Then, notice that due to the finite population sample correction when sampling without replacement,

we have that

Var [Fn,m(x)] =
n−m

m(n− 1)
Fn(x)(1− Fn(x)),

and so

Eµn [W1(µn,m, µn)] ≤
√

n−m

m(n− 1)

∫

R

√

Fn(x)(1− Fn(x)) dx.

Next, because µn is a categorical distribution over a finite set, it has p-th moment for any p > 0. So, we may apply Lem. 10

to write

∫

R

√

Fn(x)(1− Fn(x)) ≤
√
2

p

p− 2

(

1

n

n∑

i=1

|xi|p
)1/p

p→∞→
√
2 max
i=1,...,n

|xi| ,

completing the proof.

Next, we can give the bias bound for an L-functional applied to µn,m and µn.

Lemma 14. Let Ls be an L-functional with spectrum s, and let u be the uniform spectrum. Then,

|E [Ls[Fn,m]]− Ls[Fn]| ≤
√

2
n−m

m(n− 1)
∥s− u∥∞ max

i=1,...,n
|xi| ,

where the expectation is taken over the sampling of X1, . . . , Xm without replacement, and ∥s− u∥∞ =
supt∈(0,1) |s(t)− u(t)|.
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Proof. Write

|E [Ls[Fn,m]]− Ls[Fn]| = |E [Ls[Fn,m]]− Ls[Fn]− (E [Lu[Fn,m]]− Lu[Fn])| Lem. 12

=

∣
∣
∣
∣
E

[∫ 1

0

(s(t)− u(t)) ·
(
F−1
n,m(t)− F−1

n (t) dt
)
]∣
∣
∣
∣

≤ E

[∣
∣
∣
∣

∫ 1

0

(s(t)− u(t)) ·
(
F−1
n,m(t)− F−1

n (t) dt
)
∣
∣
∣
∣

]

Jensen’s inequality

≤ ∥s− u∥∞ E

[∥
∥F−1

n,m − F−1
n

∥
∥
1

]

HÈolder’s inequality

= ∥s− u∥∞ E [W1 (µn,m, µn)] . Thm. 7

Applying Lem. 13 achieves the desired result.

Next, consider the situation in which x1 = ℓ1(w), . . . , xn = ℓn(w), i.e., the loss functions for each data point evaluated at

w, with Xj = ℓij (w) for the randomly samplied minibatch (i1, . . . , im). By defining

Fn(x;w) :=
1

n

n∑

i=1

1 (ℓi(w) ≤ x) and Fn,m(x;w) :=
1

m

m∑

j=1

1
(
ℓij (w) ≤ x

)
,

we have that

Rσ(w) = Ls[Fn(·;w)] and Rσ̂(w) := Ls[Fn,m(·;w)].

This gives the following corollary.

Corollary 15. Given a minibatch (i1, . . . , im) sampled uniformly randomly without replacement from [n], define Rσ̂(w) :=∑m
j=1 σ̂jℓi(j)(w), where ℓi(1)(w) ≤ . . . ≤ ℓi(m)

(w) are the minibatch order statistics. It holds that

sup
w:∥w∥2≤G/µ

|E [Rσ̂(w) | w]− Rσ(w)| ≤
√
2 ∥s− u∥∞

√
n−m

m(n− 1)
Bµ,

where Bµ = supw:∥w∥≤G/µ,i∈[n] |ℓi(w)| <∞.

Proof. For any w ∈ Rd, we have that

|E [Rσ̂(w) | w]− Rσ(w)| = |E [Ls[Fn,m(·;w)]]− Ls[Fn(·;w)]|

≤
√
2 ∥s− u∥∞

√
n−m

m(n− 1)
max

i=1,...,n
|ℓi(w)| Lem. 14.

Take the supremum for {w : ∥w∥2 ≤ G/µ} on both sides. Because each ℓi is continuous, so is maxi=1,...,n |ℓi(w)|. Because

the supremum is taken over a compact set (the ball of radius G/µ), it is finite.

C.3 Proof of Main Result

Proposition 3. If the losses ℓ1, ..., ℓn are G-Lipschitz continuous, differentiable, and convex, the output w̄(T ) of Alg. 1 with

η(t) = 1
µ(t+1) satisfies

E

[

Rσ,µ

(

w̄(T )
)]

− Rσ,µ(w
∗)

≤ 2
√
2CsBµ

√
n−m

m(n− 1)
︸ ︷︷ ︸

bias term

+
2G2(1 + log T )

µT
︸ ︷︷ ︸

optimization term

.

for w∗=argminw∈Rd Rσ,µ(w), Cs=supt∈(0,1) |s(t)−u(t)|, and Bµ = supw:∥w∥2≤G/µ maxi=1,...,n |ℓi(w)| < ∞. The

expectation is taken over the sampling of each minibatch.



Ronak Mehta, Vincent Roulet, Krishna Pillutla, Lang Liu, Zaid Harchaoui

Proof. Define the surrogate function

R̄σ̂(w) := E [Rσ̂(w) | w] = E





m∑

j=1

σ̂jℓi(j)(w) | w



 ,

where the expectation is taken over sampling the minibatch (i1, . . . , im). The expectation is over a discrete distribution on a

finite set, so it is a well-defined function of w. We now establish the properties of R̄σ̂ required to apply the generic analysis

of the stochastic subgradient method given in Lem. 11 with f = R̄σ̂ and v(t) =
∑m

j=1 σ̂j∇ℓi(j)(w). This choice of R̄σ̂ is

clearly convex, and because v(t) is a subgradient of Rσ̂, E
[
v(t) | w(t)

]
is a subgradient of R̄σ̂. Given the G-Lipschitzness

of each ℓi, we have that Rσ̂ is also G-Lipschitz by Prop. 2, and thus so is R̄σ̂ . Then, letting R̄σ̂,µ(w) := R̄σ̂(w) +
µ
2 ∥w∥

2
2,

applying Lem. 11 gives

E

[

R̄σ̂,µ

(

w̄(T )
)]

− R̄σ̂,µ (w̄
∗) ≤ 2G2(1 + log T )

µT
, (14)

where w̄∗ = argminw∈Rd R̄σ̂,µ (w). We must now pass this result regarding R̄σ̂,µ to a similar one regarding Rσ,µ. Define

W := {w ∈ Rd : ∥w∥2 ≤ G/µ}. We first establish that w∗, w̄∗ ∈W, so that

min
w∈Rd

R̄σ̂,µ (w) = min
w∈W

R̄σ̂,µ (w) and min
w∈Rd

Rσ,µ (w) = min
w∈W

Rσ,µ (w) . (15)

The subdifferentials of R̄σ̂,µ and Rσ,µ are given by

∂R̄σ̂,µ(w) = ∂R̄σ̂(w) + µw = {g + µw : g ∈ ∂R̄σ̂(w)},
∂Rσ,µ(w) = ∂Rσ(w) + µw = {g + µw : g ∈ ∂Rσ(w)}.

Then, by optimality,

g∗ + µw∗ = 0 and ḡ + µw̄∗ = 0

for some g∗ ∈ ∂Rσ(w
∗) and ḡ ∈ ∂R̄σ̂(w̄

∗), yielding that w∗, w̄∗ ∈ W because ∥g∗∥2 , ∥ḡ∥2 ≤ G. Next, note that
∥
∥w(t)

∥
∥
2
≤ G/µ for any t = 0, . . . , T . To see this, observe that

∥
∥w(0)

∥
∥
2
= ∥0∥2 ≤ G/µ, and if

∥
∥w(t)

∥
∥
2
≤ G/µ, then

∥
∥
∥w(t+1)

∥
∥
∥
2
=

∥
∥
∥
∥
(1− η(t)µ)w(t) + η(t)µ

(

− 1

µ
v(t)
)∥
∥
∥
∥
2

≤ (1− η(t)µ)
∥
∥
∥w(t)

∥
∥
∥
2
+ η(t)µ

∥
∥
∥
∥

1

µ
v(t)
∥
∥
∥
∥
2

≤ G

µ

if η(t)µ ≤ 1, which is satisfied for η(t) = 1/(µt). By convexity of W, this means that w̄(T ) ∈ W. Given that w̄∗, w∗,
and w̄(T ) are contained in W, if we can show that Rσ and R̄σ̂ are close on this set, then optimizing R̄σ̂ should also

result in a near-optimal value of Rσ. Assume there existed δ > 0 such that supw∈W

∣
∣Rσ(w)− R̄σ̂(w)

∣
∣ = δ <∞. Then,

Rσ

(
w̄(T )

)
≤ R̄σ̂

(
w̄(T )

)
+ δ, and, for any w ∈W,

Rσ (w) ≥ R̄σ̂ (w)− δ =⇒ − min
w∈W

(

Rσ (w) +
µ

2
∥w∥22

)

≤ − min
w∈W

(

R̄σ̂ (w) +
µ

2
∥w∥22

)

+ δ, (16)

giving

E

[

Rσ,µ

(

w̄(T )
)]

− min
w∈Rd

Rσ,µ (w) = E

[

Rσ,µ

(

w̄(T )
)]

− min
w∈W

Rσ,µ (w) (15)

≤ 2δ + E

[

R̄σ̂,µ

(

w̄(T )
)]

− min
w∈W

R̄σ̂,µ (w) (16)

= 2δ + E

[

R̄σ̂,µ

(

w̄(T )
)]

− min
w∈Rd

R̄σ̂,µ (w) (15)

≤ 2δ +
2G2(1 + log T )

µT
. (14)

Establishing the existence of such a δ and showing 2δ ≤ 2
√
2CsBµ

√
n−m

m(n−1) completes the proof. This is accomplished by

Cor. 15, which gives

2δ = 2 sup
w∈W

∣
∣R̄σ̂(w)− Rσ(w)

∣
∣ = 2 sup

w:∥w∥2≤G/µ

|E [Rσ̂(w) | w]− Rσ(w)| ≤ 2
√
2 ∥s− u∥∞

√
n−m

m(n− 1)
Bµ,

the desired result.
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D SMOOTHING THE EMPIRICAL SPECTRAL RISK MEASURE

Recall that we consider objectives of the form (ignoring the regularization part)

Rσ(w) =

n∑

i=1

σiℓ(i)(w), (17)

where σi are the weights associated with the discretization of a spectral risk, i.e., σi =
∫ i

n
i−1
n

s(t)dt for s : (0, 1)→ [0,+∞)

non-decreasing and such that
∫ 1

0
s(t)dt = 1.

We can rewrite problems (17) as minimizing a composition

Rσ(w) = h(ℓ(w)) with h(l) =

n∑

i=1

σil(i) and ℓ(w) = (ℓ1(w), . . . , ℓn(w)).

Since the coefficients σi are not decreasing, the outer function h can be expressed as

h(l) = max
λ∈P(σ)

λ⊤l

where P(σ) = {λ = Πσ : Π1 = 1,Π⊤
1 = 1,Π ∈ [0, 1]n×n} is the permutahedron associated with the weights σ.

The function h is non-differentiable at points l with ties. However, smooth approximations of h can be defined by means of

a strongly convex regularizer as presented by Nesterov (2005). For Ω strongly convex w.r.t. some norm ∥ · ∥ and ν ≥ 0, we

consider a smooth approximation of h defined by

hνΩ(l) := max
λ∈P(σ)

{
l⊤λ− νΩ(λ)

}
, with ∇hνΩ(l) = argmax

λ∈P(σ)

{
l⊤λ− νΩ(λ)

}
.

By standard convex duality arguments, the smooth approximation of h can also be written as the inf-convolution of h with

the convex conjugate of νΩ, i.e,

hνΩ(l) = min
z∈Rn

{h(z) + νΩ⋆((l − z)/ν)} , ∇hνΩ(l) = ∇Ω⋆((l − z∗)/ν) for z∗ = argmin
z∈Rn

{h(z) + νΩ⋆((l − z)/ν)} .
(18)

We consider the surrogate objective defined by

Rσ,νΩ(w) := hνΩ(ℓ(w)),with hνΩ(l) := max
λ∈P(σ)

{
l⊤λ− νΩ(λ)

}
and ℓ(w) = (ℓ1(w), . . . , ℓn(w)). (19)

Note that for any ν ≥ 0, if the losses ℓi are convex, then the surrogate objective Rσ,νΩ is also convex.

In the following, we recall the smoothness properties of the smooth approximation in Lem. 16, we present the approximation

incurred by the smoothing in terms of the spectrum in Lem. 17. We give the implementation of the gradient evaluation of

the smooth approximation for appropriate choices of regularizers in Sec. D.2.

D.1 Smoothing Properties and Approximation Bounds

We recall below the smoothness properties of hνΩ(l), see, e.g., (Nesterov, 2005; Beck and Teboulle, 2012) for detailed

proofs.

Lemma 16 (Smoothing properties). For any Ω and ν > 0, the smoothed hνΩ is ∥σ∥p-Lipschitz continuous w.r.t. ∥ · ∥p for

any p ∈ {1, . . .} ∪ {+∞}. For any Ω that is 1-strongly convex w.r.t. ∥ · ∥, the smoothed hνΩ is 1/ν smooth w.r.t. to the dual

norm ∥ · ∥∗, i.e., for any l, l′ ∈ Rn, ∥∇hνΩ(l)−∇hνΩ(l
′)∥ ≤ ∥l − l′∥∗/ν.

Usual examples are Ω = ∥ · ∥22 or Ω = H : λ 7→∑n
i=1 λi lnλi, for which we have access to hνΩ by isotonic regression,

e.g., (Lim and Wright, 2016; Blondel et al., 2020). In the following, we consider such functions centered around their

minimizers in P(σ) to get tighter approximation bounds. Namely, we define un = 1/n ∈ P(σ) and we consider

Ω1(λ) = DH(λ;un) := H(λ)−H(un)−∇H(un)
⊤(λ− un) =

n∑

i=1

λi log(nλi), and (20)

Ω2(λ) =
1

2
∥λ− un∥22. (21)
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We have that Ω1 is 1-strongly convex w.r.t. ∥ · ∥1 and Ω2 is 1-strongly convex w.r.t. ∥ · ∥2.

We can then consider optimizing the surrogate objective for Ω ∈ {Ω1,Ω2}, defined by Rσ,νΩ(w) := hνΩ(ℓ(w)). Lem. 17

details the approximation done by considering the smoothed version of the objective.

Lemma 17 (Approximation bounds). For any strongly convex function Ω invariant by permutation and such that

infλ∈P(σ) Ω(λ) ≥ 0, we have that for any ν ≥ 0, l ∈ Rn,

0 ≤ h(l)− hνΩ(l) ≤ νΩ(σ)

If, in addition, Ω is decomposable as Ω(λ) =
∑n

i=1 ω(λi) with ω convex and σ is the discretization of a function s such

that σi =
∫ i

n
i−1
n

s(t)dt, then

Ω(σ) ≤ n

∫ 1

0

ω

(
s(t)

n

)

dt.

Proof. One one hand, we have that

hνΩ(l) = sup
λ∈P(σ)

{λ⊤l − νΩ(λ)} ≤ sup
λ∈P(σ)

λ⊤l = h(l),

since infλ∈P(σ) Ω(λ) ≥ 0. On the other hand, we have that

hνΩ(l) = sup
λ∈P(σ)

{λ⊤l − νΩ(λ)} ≥ sup
λ∈P(σ)

{λ⊤l} − ν sup
λ∈P(σ)

Ω(λ) = h(l)− ν sup
λ∈P(σ)

Ω(λ).

Hence, we have 0 ≤ h(l)− hνΩ(l) ≤ νmaxλ∈P(σ) Ω(λ). The maximum of a convex function Ω over a polytope P(σ) is

attained at a corner. The corners of the permutahedron P(σ) are permutations of σ. Since Ω is permutation invariant, we

have that Ω(σ) = Ω(π(σ)) for any permutation π. Thus, maxλ∈P(σ) Ω(λ) = Ω(σ), completing the proof of the first part.

For the second claim, we use Jensen’s inequality to get

Ω(σ) =

n∑

i=1

ω

(
∫ i

n

i−1
n

s(t)dt

)

=

n∑

i=1

ω

(
∫ i

n

i−1
n

(
s(t)

n

)

n dt

)

≤
n∑

i=1

∫ i
n

i−1
n

ω

(
s(t)

n

)

n dt = n

∫ 1

0

ω

(
s(t)

n

)

dt.

Corollary 18. For σi =
∫ i

n
i−1
n

s(t)dt with s a spectrum such that
∫ 1

0
s(t)dt = 1, and for any ν ≥ 0, l ∈ Rn, we have

0 ≤ h(l)− hνΩ1
(l) ≤ νDH(σ;un) ≤ ν

∫ 1

0

s(t) ln s(t)dt := νKL(s∥u),

0 ≤ h(l)− hνΩ2
(l) ≤ ν

2
∥σ − un∥22 ≤

ν

2n

∫ 1

0

(s(t)− 1)2dt :=
ν

2n
χ2(s∥u),

where KL(s∥u) and χ2(s∥u) denote respectively the Kullback-Leibler divergence and the Chi-square divergence between

the spectrum s and the uniform distribution u.

For example, we can derive the bounds for some specific choices of spectra.

1. (Superquantile) For s(t) = 1
1−q1[q,1](t), with q ∈ [0, 1], we have χ2(s∥u) = q

1−q and KL(s∥u) = − ln(1− q).

2. (Extremile) For s(t) = rtr−1, with r ≥ 1, we have χ2(s∥u) = (r−1)2

(2r−1) and KL(s∥u) = ln r + 1
r − 1.

The approximations bounds computed for hνΩ and h naturally apply for Rσ,νΩ and Rσ, that is, for any w ∈ Rd, we have

0 ≤ Rσ(w)− Rσ,νΩ(w) ≤ νΩ(σ). This gives the following lemma mentioned in the main text.

Lemma 19. Consider the regularized objective Rσ,µ(w) = Rσ(w) + µ∥w∥22/2 for Rσ defined as in (17) by non-

decreasing non-negative coefficients σi summing up to 1 and n functions (ℓi)
n
i=1, and consider the smoothed approximation
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Algorithm 3 Pool Adjacent Violators (PAV) Algorithm for ω1

1: Inputs: Number of coefficients n, coefficients (li)
n
i=1 and (si)

n
i=1 with si = lnσi

2: Initialize P1 = {1}, P = (P1), v1 = l1 − s1 − lnn, L1 = l1, M1 = s1, d = 1.

3: for i = 2, . . . n do

4: Set Pd+1 = {i}, P ← (P1, . . . , Pd+1), vd+1 = li − si − lnn, Ld+1 = li, Md+1 = si and d = d+ 1,

5: while d ≥ 2 and vd−1 ≥ vd do

6: Set vd−1 ← LSE(Ld−1, Ld)− LSE(Md−1,Md)− lnn
7: Set Ld−1 ← LSE(Ld−1, Ld), Md−1 ← LSE(Md−1,Md)
8: Set P ← (P1, . . . , Pd−1 ∪ Pd)
9: Set d← d− 1

10: Output: z ∈ Rn such that zi = vs for i ∈ Ps, s ∈ {1, . . . , d}.

Rσ,µ,νΩ(w) = Rσ,νΩ(w) + µ∥w∥22/2 for Rσ,νΩ defined as in (19) by ν > 0 and a strongly convex function Ω invariant by

permutation and such that infλ∈P(σ) Ω(λ) ≥ 0.

If ŵ ∈ Rd is a ε-accurate minimum of the smoothed regularized objective, i.e., Rσ,µ,νΩ(ŵ)−minw∈Rd Rσ,µ,νΩ(w) ≤ ε
then it is an ε + νΩ(σ) accurate minimum of the original regularized objective Rσ,µ, where upper-bounds of Ω(σ) are

provided in Lem. 17 and Cor. 18.

Proof. Denote w∗ = argminw∈Rd Rσ,µ(w). If ŵ ∈ Rd satisfies Rσ,µ,νΩ(ŵ)−minw∈Rd Rσ,µ,νΩ(w) ≤ ε then

Rσ,µ(ŵ)− Rσ,µ(w
∗) ≤ Rσ,µ,νΩ(ŵ)− Rσ,µ,νΩ(w

∗) + νΩ(σ) ≤ ε+ νΩ(σ)

where we used that 0 ≤ Rσ,µ(w)− Rσ,µ,νΩ(w) ≤ νΩ(σ) since Lem. 17 holds.

D.2 Implementation

The implementation of the smoothing is based on considering the primal formulation of the smoothing given in (18) as an

isotonic regression problem and by calling a Pool Adjacent Violators (PAV) algorithm to solve it. It has been described in

detail by, e.g., Best et al. (2000); Lim and Wright (2016); Blondel et al. (2020); Henzi et al. (2022). For completeness, we

detail here the rationale behind the implementation. We then specify here the overall implementation of the gradient oracles

of the smooth approximations for the chosen regularizers Ω1 and Ω2 defined in (20) and (21) respectively.

Formulation as Isotonic Regression Problem Consider the primal problem (18) defining the smoothing approximation

with a decomposable function Ω such that Ω(λ) =
∑n

i=1 ω(λi), that is

hνΩ(l) = min
z∈Rn

{h(z) + νΩ⋆((l − z)/ν)} = min
z∈Rn

{
n∑

i=1

[
σiz(i) + νω⋆((li − zi)/ν)

]

}

As shown by Blondel et al. (2020, Lemma 4), for any scalars li, lj , zi, zj such that li ≤ lj and zi ≥ zj , we have,

using the convexity of ω∗ that ω⋆(li − zi) + ω⋆(lj − zj) ≥ ω⋆(li − zj) + ω⋆(lj − zi). Hence for z ∈ Rn to minimize

νΩ⋆((l − z)/ν) =
∑n

i=1 νω
⋆((li − zi)/ν), the coordinates of z must be ordered in the same order as l. Since h(z) =

∑n
i=1 σiz(i) is independent of the ordering of the coordinates of z, we get that, given a permutation τ of {1, . . . , n} such

that lτ1 ≤ . . . ≤ lτn , problem (18) is equivalent to

hνΩ(l) = min
z∈R

n

zτ1≤...≤zτn

n∑

i=1

(σizτi + νω⋆((li − zi)/ν)) .

An oracle on the gradient of the smooth approximation is then given by argmaxλ∈P(σ)

{
l⊤λ− νΩ(λ)

}
= ∇hνΩ(l) with

∇hνΩ(l) = ∇Ω⋆((l − z∗)/ν) for z∗ = ν(PAVω(lτ/ν))τ−1 , PAVω(l) = argmin
z∈R

n

z1≤...≤zn

n∑

i=1

(ziσi + ω⋆(li − zi)) , (22)

where PAV is the output of the Pool Adjacent Violators algorithm (Henzi et al., 2022; Lim and Wright, 2016; Best et al.,

2000) applied to the given isotonic regression problem.
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Algorithm 4 Pool Adjacent Violators (PAV) Algorithm for ω2

1: Inputs: Number of coefficients n, coefficients (li)
n
i=1 and (σi)

n
i=1

2: Initialize P1 = {1}, P = (P1), v1 = l1 + 1/n− σ1, C1 = 1, d = 1.

3: for i = 2, . . . n do

4: Set Pd+1 = {i}, P ← (P1, . . . , Pd+1), vd+1 = li + 1/n− σi, Cd+1 = 1 and d = d+ 1,

5: while d ≥ 2 and vd−1 ≥ vd do

6: Set vd−1 ← Cd−1vd−1+Cdvd
Cd−1+Cd

7: Set Cd−1 ← Cd + Cd−1

8: Set P ← (P1, . . . , Pd−1 ∪ Pd)
9: Set d← d− 1

10: Output: z ∈ Rn such that zi = vs for i ∈ Ps, s ∈ {1, . . . , d}.

Pool Adjacent Violators Algorithm We briefly recall the rationale of the Pool Adjacent Violator algorithm whose

implementation for the choices of ω1 and ω2 are given in Alg. 3 and Alg. 4 respectively, where we denote LSE(sS) =
ln
∑

i∈S exp(si).

The Pool Adjacent Violators Algorithm is used to solve problems of the form

min
z∈R

n

z1≤...≤zn

n∑

i=1

fi(zi) (23)

for some set of functions F = (fi)
n
i=1, which in our case (22) are given by fi(zi) = ziσi + ω⋆(li − zi).

If at the solution z∗, the constraint z∗i ≤ z∗i+1 is active, then by definition, z∗i = z∗i+1. More generally if the constraint

z∗i ≤ z∗j is active for i < j, then all constraints of the form z∗k ≤ z∗k+1 for k ∈ {i, . . . , j − 1} are active, i.e., z∗k = z∗i for

all k ∈ {i, . . . , j}. Overall the solution of (23) is characterized by a set of p ≤ n coordinates v∗1 , . . . , v
∗
p and a partition

P∗ = (P ∗
1 , . . . , P

∗
p ) of {1, . . . , n} into contiguous blocks P ∗

s = {bs−1 + 1, . . . , bs} for 0 = b0 < b1 < . . . < bp = n such

that z∗i = v∗s if i ∈ {bs−1 +1, . . . , bs}. For any feasible candidate solution z we can define the corresponding partition P(z)
of {1, . . . , n} into contiguous blocks of coordinates. Conversely, given a partition P = {P1, . . . , Pp} of {1, . . . , n} into

contiguous blocks, we can define a vector z(P) with constant blocks such that zi = z̄Ps = Avg(F , Ps) for i ∈ Ps where

for a set of functions F = (fi)
n
i=1 and a subset S ⊂ {1, . . . , n}, we define the function Avg that computes the average

solution of the objective of the PAV algorithm on S, i.e.

Avg(F , S) = argmin
z∈R

∑

i∈S

fi(z). (24)

The principle of the PAV algorithm is to compute the optimal contiguous partition of {1, . . . , n} corresponding to the

solution of (23) by adding one coordinate of the problem at a time and merging this coordinate with previously computed

blocks if the constraints are not satisfied. We refer to, e.g., (Best et al., 2000; Henzi et al., 2022) for a proof of the validity

of this strategy. Most importantly, the efficiency of the PAV algorithm relies on having access to a function, which, for

S, T ⊆ {1, . . . , n}, S ∩ T = ∅, is able to compute Avg(F , S ∪ T ) given appropriate stored values (Ls, Ms in Alg. 3

and vs, Cs in Alg. 4). The algorithms presented in Alg. 3 and Alg. 4 are then based on the computation of Avg(F , S)
for the functions fi considered. Namely, denoting Fω,l = (fω,l,i)

n
i=1 for fω,l,i(zi) = ziσi + ω⋆(li − zi), si = lnσi and

LSE(sS) = ln
∑

i∈S exp(si), we have

Avg(Fω1,l, S) = LSE(lS)− LSE(sS)− lnn, Avg(Fω2,l, S) =
1

|S|
∑

i∈S

(zi + 1/n− σi),

and merging two subsets of coordinates can be done in O(1) time given appropriate stored values as we have

Avg(Fω1,l, S ∪ T ) = LSE(LSE(lS),LSE(lT ))− LSE(LSE(sS),LSE(sT ))− lnn

Avg(Fω2,l, S ∪ T ) =
|S|Avg(Fω2,l, S) + |T |Avg(Fω2,l, T )

|S|+ |T | .
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Algorithm 5 LSVRG with smoothing

Require: Number of iterations T , loss functions (ℓi)
n
i=1 and their gradient oracles, initial point w(0), regularization

parameter µ, learning rate η, sorting update frequency N , probability of checkpointing q∗.

1: for iterate t = 0, ..., T − 1 do

2: if t mod N = 0 then ▷ Update weights (generalization of updating the sorting)

3: Update λ(t) = argmaxλ∈P(σ)

{∑n
i=1 λiℓi(w

(t))− ν
2∥λ− un∥22

}
computed using eq. (22) and Alg. 4.

4: else

5: λ(t) = λ(t−1)

6: Sample qt ∼ Unif([0, 1])
7: if t mod N = 0 or qt ≤ q∗ then ▷ Update batch gradient

8: Set w̄(t) = w(t) and ḡ(t) =
∑n

i=1 λ
(t)
i ∇ℓi(w̄(t)).

9: else

10: w̄(t) = w̄(t−1) and ḡ(t) = ḡ(t−1).

11: Sample it ∼ Unif([n]).

12: v(t) = nλ
(t)
it
∇ℓit(w(t))− nλ

(t)
it
∇ℓit(w̄(t)) + ḡ(t).

13: w(t+1) = (1− ηµ)w(t) − ηv(t).

14: return w(T )

E LSVRG CONVERGENCE ANALYSIS

E.1 Setup for the Convergence Analysis

Consider the optimization problem

min
w

[

Rσ,µ,ν(w) := hν

(
ℓ(w)) +

µ

2
∥w∥22

]

, where hν(l) = max
λ∈P(σ)

{

λ⊤l − ν

2
∥λ− un∥22

}

(25)

is the L2-smoothing as defined in Appx. D where Ω(λ) = ∥λ− un∥2 /2. Here, σ1 ≤ · · · ≤ σn are given nonnegative

weights that sum to 1, P(σ) is the permutahedron of σ, µ is a regularization parameter on the w’s, ν is smoothing parameter

and un = 1n/n denotes the uniform distribution over n items.

It is convenient to look at the saddle form

Φν(w, λ) := λ⊤ℓ(w) +
µ

2
∥w∥22 −

ν

2
∥λ− un∥22 . (26)

Throughout, we make the following assumption:

Assumption 20. For each i ∈ [n], w 7→ ℓi(w) is convex, G-Lipschitz, and L-smooth.

We analyze LSVRG with smoothing, as given in Algorithm 5. It only differs from Algorithm 2 presented in the main paper

in line 3.

E.2 Convergence Analysis

Algorithm 5 can be interpreted as an algorithm that alternates exactly maximizing over λ in Φν(w, ·) with w fixed and

minimizing Φν(·, λ) with λ fixed using a particular variant of SVRG known as q-SVRG (Hofmann et al., 2015); see

Algorithm 8 for a review of q-SVRG.

Proposition 21. The iterates (w
(t)
1 , λ

(t)
1 ) produced by Algorithm 5 and (w

(k)
2 , λ

(k)
2 ) produced by Algorithm 6 with a given

starting point w(0), learning rate η, weight update frequency (or inner loop length) N , and number of iterates T = KN

where K is the number of epochs of Algorithm 6 satisfy w
(k)
2 = w

(kN)
1 and λ

(k)
2 = λ

(kN)
1 for each epoch k.

Proof. The two algorithms are equivalent iteration for iteration and the proof follows from pattern matching.

Convergence Analysis We have the following rate when the smoothing parameter ν > O(nG2/µ).
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Algorithm 6 LSVRG with smoothing: Rewriting

Require: Number of epochs K, number of SVRG steps N , loss functions (ℓi)
n
i=1 and their gradient oracles, initial point

w(0), regularization parameter µ, learning rate η, probability of checkpointing q∗, smoothing coefficient ν.

1: for epoch k = 0, ...,K − 1 do

2: Compute λ(k) = argmaxλ∈P(σ) Φν(w
(k), λ) using eq. (22) and Alg. 4.

3: Define ℓ̃
(k)
i (w) := nλ

(k)
i ℓi(w) + µ ∥w∥22 /2 for i ∈ {1, . . . , n}.

4: Compute w(k+1) = q-SVRG
(

N, (ℓ̃
(k)
i )ni=1, w

(k), η, q∗
)

using Algorithm 8.

5: return w(K)

Theorem 1. Consider problem (25) satisfying Asm. 20. Suppose the smoothing parameter satisfies ν ≥ 4nG2/µ. The

sequence of iterates produced by Algorithm 6 with inputs N = (n(1 + 8σnL/µ) + 8) log(125/4), η = 2/(n(8σmaxL +
µ) + 8µ) , q∗ = 1/n, satisfies

E∥w(k) − w∗∥2 ≤
(
1

2

)k

∥w(0) − w∗∥2 ,

where w∗ = argminw∈Rd Rσ,µ,ν(w).

Consequently, Algorithm 6 (and hence Algorithm 5) can produce a point ŵ satisfying
(
E ∥ŵ − w∗∥2)2 ≤ ϵ in

T ≤ C(n(1 + 8σnL/µ) + 8) log
(

∥w(0) − w∗∥2/ϵ
)

gradient evaluations, where C is an absolute constant.

Proof. For each epoch k, Algorithm 6 runs q-SVRG on the function

φ(k)(w) := Φν(w, λ
(k)) =

1

n

n∑

i=1

ℓ̃
(k)
i (w) where ℓ̃

(k)
i (w) = nλ

(k)
i ℓi(w) +

µ

2
∥w∥2 .

The aim of this step is to approximate w
(k+1)
∗ = argminw∈Rd Φν(w, λ

(k)) with w(k+1). We start by quantifying this error.

Since P(σ) is the permutahedron on σ, we have that

σ1 ≤ min {λi : λ ∈ P(σ)} ≤ max {λi : λ ∈ P(σ)} ≤ σn.

Hence, we have that each ℓ̃
(k)
i = nλ

(k)
i ℓi + µ ∥·∥22 /2 is nσnL+ µ-smooth and µ-strongly convex, and its condition number

is κ = (nσnL/µ+ 1). Denote the sigma-algebra generated by w(k) as Fk, we have from Thm. 2 that

E

[∥
∥
∥w(k+1) − w

(k+1)
∗

∥
∥
∥

2
∣
∣
∣
∣
Fk

]

≤ 5

4
exp

(

− N

8κ+ n

)∥
∥
∥w(k) − w

(k+1)
∗

∥
∥
∥

2

=
1

25

∥
∥
∥w(k) − w

(k+1)
∗

∥
∥
∥

2

.

Therefore, Jensen’s inequality gives us

E

[∥
∥
∥w(k+1) − w

(k+1)
∗

∥
∥
∥

∣
∣
∣Fk

]

≤ 1

5

∥
∥
∥w(k) − w

(k+1)
∗

∥
∥
∥ . (27)

Denote λ∗ = argmaxλ∈P(σ) Φν(w
∗, λ). Since Φν(·, λ) is strongly convex and Φν(w, ·) is strongly concave, we have

that strong duality holds, i.e., minw∈Rd maxλ∈P(σ) Φν(w, λ) = maxλ∈P(σ) minw∈Rd Φν(w, λ) (e.g., Hiriart-Urruty and

LemarÂechal, 1993, Thm. VII.4.3.1) Therefore, (w∗, λ∗) is the unique saddle point of Φν , so w∗ = argminw∈Rd Φν(w, λ
∗).

Together with Lem. 4, this gives us

∥
∥
∥w

(k+1)
∗ − w∗

∥
∥
∥ ≤

√
nG

µ

∥
∥
∥λ(k) − λ∗

∥
∥
∥ , and

∥
∥
∥λ(k) − λ∗

∥
∥
∥ ≤

√
nG

ν

∥
∥
∥w(k) − w∗

∥
∥
∥ . (28)
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From repeated invocations of the triangle inequality, we get,

E

[∥
∥
∥w(k+1) − w∗

∥
∥
∥

∣
∣
∣Fk

]

≤ E

[∥
∥
∥w(k+1) − w

(k+1)
∗

∥
∥
∥

∣
∣
∣Fk

]

+
∥
∥
∥w

(k+1)
∗ − w∗

∥
∥
∥

(27)

≤ 1

5

∥
∥
∥w(k) − w

(k+1)
∗

∥
∥
∥
2
+
∥
∥
∥w

(k+1)
∗ − w∗

∥
∥
∥
2

≤ 1

5

∥
∥
∥w(k) − w∗

∥
∥
∥
2
+

6

5

∥
∥
∥w

(k+1)
∗ − w∗

∥
∥
∥
2

(28)

≤ 1

5

∥
∥
∥w(k) − w∗

∥
∥
∥
2
+

6
√
nG

5µ

∥
∥
∥λ(k) − λ∗

∥
∥
∥
2

(28)

≤
(
1

5
+

6nG2

5µν

)∥
∥
∥w(k) − w∗

∥
∥
∥
2

≤ 1

2

∥
∥
∥w(k) − w∗

∥
∥
∥ ,

since we assumed ν satisfies 6nG2/(5µν) ≤ 3/10. Taking an expecation w.r.t. Fk and unrolling this completes the

proof.

E.3 LSVRG Variants

Algorithm 7 gives a variant of the LSVRG algorithm that computes checkpoints and the sorting at regular intervals. For

simplicity, we visualize this algorithm as running in epochs. As in the usual SVRG algorithm for the ERM setting, we

compute the full-batch subgradient at the checkpoint w̄k at the start of each epoch (line 3). This is used to define the

variance-reduced update in line 7. Note also that we consider sampling at each iteration an example it distributed as

pσ(i) = P [it = i] = σi; this is well-defined since σ1, ..., σn defines a probability measure over {1, · · · , n}.

Algorithm 7 Epoch-based LSVRG with nonuniform sampling

Require: Number of iterates T per epoch, number of epochs K, regularization parameter µ, learning rate η, non-decreasing

probability mass function σ = (σi)
n
i=1, loss functions (ℓi)

n
i=1 and their gradient oracles, initial point w̄0.

1: for epoch k = 0, 1, 2, ...,K − 1 do

2: Select πk ∈ argsort (ℓ (w̄k)).
3: ḡk =

∑n
i=1 σi∇ℓπk(i)(w̄k).

4: w(0) = w̄k.

5: for iterate t = 0, ..., T − 1 do

6: Sample it ∼ pσ .

7: v(t) = ∇ℓπk(it)(w
(t))−∇ℓπk(it)(w̄k) + ḡk.

8: w(t+1) = (1− ηµ)w(t) − ηv(t).

9: Set w̄k+1 = w(T ).

10: return w̄K .

E.4 q-SVRG Review

Consider the risk-neutral problem

f(w) =
1

n

n∑

i=1

ℓi(w) .

The q-SVRG is a variant of SVRG that updates the batch gradient with probability 1/m at each step, rather than once

every m steps like the usual version of SVRG (Hofmann et al., 2015). See Algorithm 8 for details. It has the following

convergence guarantee.

Theorem 2 (Hofmann et al., 2015, Lemma 3). Suppose each ℓi is L-smooth and µ-strongly convex. Then Algorithm 8 with

a learning rate η = 2/(8L+ nµ) and q∗ = 1/n produces a sequence (w(t)) that satisfies

E

∥
∥
∥w(t) − w∗

∥
∥
∥

2

≤ 5

4
exp

(

− t

8κ+ n

)∥
∥
∥w(0) − w∗

∥
∥
∥

2

,

where w∗ = argminw f(w) and κ = L/µ is the condition number.
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Algorithm 8 q-SVRG

Require: Number of iterations T , loss functions (ℓi)
n
i=1 and their gradient oracles, initial point w(0), learning rate η,

probability of checkpointing q∗.

1: Set w̄(−1) = w(0) and ḡ(−1) = 1
n

∑n
i=1∇ℓi(w(0))

2: for iterate t = 0, ..., T − 1 do

3: Draw qt ∼ Unif([0, 1])
4: if qt ≤ q∗ then ▷ Update the batch gradient

5: Set w̄(t) = w(t) and ḡ(t) = 1
n

∑n
i=1∇ℓi(w(t))

6: else

7: w̄(t) = w̄(t−1) and ḡ(t) = ḡ(t−1)

8: Sample it ∼ Unif([n])
9: v(t) = ∇ℓit(w(t))−∇ℓit(w̄(t)) + ḡ(t)

10: w(t+1) = w(t) − ηv(t)

11: return w(T )

E.5 Technical Results

Note the following properties of the joint function Φν defined in (26).

Property 3. The following smoothness properties hold:

(a) For each λ ∈ P(σ), ∇wΦν(·, λ) is (L+ µ)-Lipschitz

(b) For each w ∈ Rd, ∇λΦν(w, ·) is ν-Lipschitz.

(c) For each w ∈ Rd, ∇wΦν(w, ·) is
√
nG-Lipschitz.

(d) For each λ ∈ P(σ), ∇λΦν(·, λ) is
√
nG-Lipschitz.

Proof. The result follows from the expressions

∇wΦν(w, λ) =
n∑

i=1

λi∇ℓi(w) + µw and ∇λΦν(w, λ) = ℓ(w)− ν(λ− un) .

(a) For any w,w′ ∈ Rd,

∥∇wΦν(w, λ)−∇wΦν(w
′, λ)∥2 ≤

n∑

i=1

λi ∥∇ℓi(w)−∇ℓi(w′)∥2 + µ ∥w − w′∥2

≤
n∑

i=1

λiL ∥w − w′∥2 + µ ∥w − w′∥2

≤ (L+ µ) ∥w − w′∥2 ,

as
∑n

i=1 λi = 1 for λ ∈ P(σ).
(b) For any λ, λ′ ∈ P(σ),

∥∇λΦν(w, λ)−∇λΦν(w, λ
′)∥2 = ∥νλ− νλ′∥2 = ν ∥λ− λ′∥2 .

(c) For any λ, λ′ ∈ P(σ),

∥∇wΦν(w, λ)−∇wΦν(w, λ
′)∥22 =

∥
∥
∥
∥
∥

n∑

i=1

(λi − λ′
i)∇ℓi(w)

∥
∥
∥
∥
∥

2

2

≤
n∑

i=1

∥∇ℓi(w)∥22
n∑

i=1

(λi − λ′
i)

2

≤ nG2 ∥λ− λ′∥22 .
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(d) For any w,w′ ∈ Rd,

∥∇λΦν(w, λ)−∇λΦν(w, λ
′)∥22 = ∥ℓ(w)− ℓ(w′)∥22

=

n∑

i=1

(ℓi(w)− ℓi(w
′))

2
2

≤
n∑

i=1

G ∥w − w′∥22

= nG ∥w − w′∥22 .

Lemma 4. Given closed, convex sets X ⊂ Rd, Y ⊂ Rp, consider a continuously differentiable function f : X × Y → R

such that f(·, y) is µ-strongly convex for all y ∈ Y and ∇xf(x, ·) is Lx,y-Lipschitz for each x ∈ X . Then, the map

x∗(y) = argminx∈X f(x, y) is well-defined and is Lx,y/µ Lipschitz.

Proof. The map x∗(y) is well-defined because f(·, y) is strongly convex and X is closed, convex. Consider two points

y1, y2 ∈ Y and let xi = x∗(yi) be the corresponding x-values. From the first order optimality conditions of f(·, y1) and

f(·, y2) respectively, we have

⟨∇xf(x1, y1), x2 − x1⟩ ≥ 0, and ⟨∇xf(x2, y2), x1 − x2⟩ ≥ 0 . (29)

Using the co-coercivity property (∗) of the strong convexity of f(·, y), we have,

µ ∥x1 − x2∥2
(∗)
≤ ⟨∇xf(x1, y2)−∇xf(x2, y2), x1 − x2⟩
(29)

≤ ⟨∇xf(x1, y2), x1 − x2⟩
(29)

≤ ⟨∇xf(x1, y2)−∇xf(x1, y1), x1 − x2⟩
≤ ∥∇xf(x1, y2)−∇xf(x1, y1)∥ ∥x1 − x2∥
≤ Lx,y ∥y1 − y2∥ ∥x1 − x2∥ .

F EXPERIMENTAL DETAILS

Appx. F.1 describes the tasks, datasets, and preprocessing steps used in the experiments. Appx. F.2 reviews the objective

minimized (including regularization). Appx. F.3 describes the baseline methods compared. Appx. F.4 lists the hyperparame-

ters of each algorithm and describes how they are selected. Appx. F.5 describes the compute environment used to run the

experiments.

F.1 Task and Dataset Descriptions

We start by describing the tasks and datasets considered in the experiments as well as their preprocessing steps. For each

task, we consider an input x ∈ X, a feature map ϕ : X→ Rd, and an output space Y. For regression, we have Y = R and

for classification, we have Y = {1, . . . , C}, where C is the number of classes. We make predictions with a linear model

x 7→ w⊤ϕ(x), where w ∈ Rd is the parameter vector to be optimized over. We consider the square loss between these

predictions and the target yi:

ℓi(w) =
1

2
(yi − w⊤ϕ(xi))

2 .

for regression, and the multinomial logistic loss

ℓi(w) = − log pyi
(xi;w), where pyi

(xi;w) :=
exp

(
w⊤

·yxi

)

∑C
y′=1 exp

(

w⊤
·y′xi

) , w ∈ Rd×C
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Dataset d ntrain ntest Source

simulated 10 800 200 n/a

yacht 6 244 62 UCI

energy 8 614 154 UCI

concrete 8 824 206 UCI

iWildCam 157 20,000 5,000 WILDS

emotion 45 8,000 2000 DAIR-AI

Table 2: Benchmark dataset descriptions.

for classification. Each input feature ϕj(x) for j = 1, · · · , d is standardized to zero mean and unit variance (as are the

targets yi in regression). We now describe the datasets considered. The size and dimensionality of the resulting datasets are

summarized in Tab. 2.

(a) simulated: This regression task entails prediction of a synthetic, real-valued response based on d-dimensional

real vectors. The dataset is generated by sampling the inputs x1, ..., xn and true parameter vector w∗ from the d-

dimensional standard normal distribution N (0, Id) for n = 1000 and d = 10, and the noise ϵ1, ..., ϵn ∈ N (0, 1). Then,

yi = w⊤xi + ϵi for i = 1, ..., n. The feature map ϕ is taken to be the identity.

(b) yacht: This regression task entails prediction of the residuary resistance of a sailing yacht based on its physical

attributes (Tsanas and Xifara, 2012). Each input x ∈ X is a sailing yacht and the feature map ϕ(x) ∈ Rd lists d = 6
geometric attributes such as the length-beam ratio.

(c) energy: This regression task entails prediction of the cooling load of a building based on its physical attributes

(Baressi Segota et al., 2020). Each input x ∈ X is a building and the feature map ϕ(x) ∈ Rd lists d = 8 structural

attributes such as the surface area, height, etc.

(d) concrete: This regression task entails prediction of the compressive strength of a concrete type based on its physical

and chemical attributes (Yeh, 2006). Each input x ∈ X is a particular composition of concrete and the feature map

ϕ(x) ∈ Rd lists d = 8 physical/chemical attributes such as amount of cement vs water.

(e) iWildCam: This classification task entails prediction of an animal present in an image captured by various wilderness

camera traps, with drastic variation in illumination, camera angle, background, vegetation, color, and relative animal

frequencies (Beery et al., 2020). Each input x ∈ X is an image the feature map ϕ(x) ∈ Rd for d = 189 is the output of

the sequence of the following operations.

• A ResNet50 neural network (He et al., 2016) that is pretrained on ImageNet (Deng et al., 2009) is applied to the

image xi, resulting in vector x′
i.

• The x′
1, . . . , x

′
n are normalized to have unit norm.

• Principle Components Analysis (PCA) is applied, resulting in d = 157 components that explain 99% of the

variance, resulting in vectors x′′
i ∈ R157.

• The x′′
1 , . . . , x

′′
n are standardized once again, giving ϕ(x1), . . . , ϕ(xn).

(f) emotion: This classification task entails prediction of the emotional content of a sentence taken from English Twitter

archives (Saravia et al., 2018). Each input x ∈ X is an image the feature map ϕ(x) ∈ Rd for d = 189 is the output of

the sequence of the following operations.

• A BERT neural network (Devlin et al., 2019) (fine-tuned on 8, 000 held-out examples) is applied to the text xi,

resulting in vector x′
i.

• The x′
1, . . . , x

′
n are standardized to have unit norm.

• Principle Components Analysis (PCA) is applied, resulting in d = 45 components that explain 99% of the variance,

resulting in vectors x′′
i ∈ R45.

• The x′′
1 , . . . , x

′′
n are standardized once again, giving ϕ(x1), . . . , ϕ(xn).
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F.2 Objective

In the experiments, we consider minimizing regularized ordered risk minimization problems of the form

min
w∈Rd

Rσ(w) +
µ

2
∥w∥22,

where Rσ(w) =
n∑

i=1

σiℓ(i)(w),

where the coefficients σ are defined using the spectrum of the spectral risk measure in question. We consider the mean,

superquantile, extremile, and exponential spectral risk measure (ESRM), as defined in Sec. 2. The regularization parameter

µ is chosen as 1/n in the experiments presented in the main text, whereas other choices of µ are shown in Appx. G. By

adding a regularization ∥ · ∥22 to the objective, the LSVRG algorithm is modified by considering a direction of the form

v
(t)
reg = v

(t)
non reg + µw(t), where v

(t)
non reg = ḡ(t) is the direction presented in line 10 of Algorithm 7. All algorithms are

initialized with w(0) = 0.

F.3 Baseline Methods

The baseline methods described below rely on a stochastic subgradient estimate, or a random quantity g(t) that estimates

∇Rσ(w
(t)) if Rσ is differentiable at w(t) and a subgradient of ∂Rσ(w

(t)) otherwise. As described in Sec. 3, we use

g(t) :=

m∑

j=1

σ̂j∇ℓi(j)(w(t)) (30)

for a minibatch {i1, ..., im} of size m with weights σ̂j =
∫ j

m
j−1
m

s(t) dt, and ℓi(j) being the ordered losses ℓi(1) ≤ . . . ℓi(m)
in

the minibatch. We refer to the direction as g(t) = v
(t)
m in Algorithm 1.

SGD We refer to the stochastic subgradient method as SGD. The update can be written as

w(t+1) := w(t) − η(g(t) + µw(t)),

where v
(t)
m is a stochastic estimate of the minibatch extremile subgradient (Equation (30)).

SRDA The stochastic regularized dual averaging (SRDA) (Xiao, 2009) update can be written as

w(t+1) := argmin
w∈Rd

w⊤ḡ(t) +
µ

2
∥w∥22 +

1

2ηt
∥w∥22,

where ḡ(t) =
∑t

i=0 g
(i) is the average of all stochastic subgradients (again computed by Equation (30)). Note that for

Ω = ∥ · ∥22/2 and w(0) = 0, Note that for w(0) = 0,

w(t+1) = 0− 1

µ+ 1/tη
ḡ(t)

= w(0) −
t∑

s=0

1

µt+ 1/η
g(s).

Thus, the SRDA solution at time t+ 1 can be seen as applying SGD with a constant learning rate of η = 1/(µt/n+ β) (as

t refers to the value of only the last iteration). It is also seen that when µ = 0 (no statistical regularization), SRDA reduces

exactly to SGD.

F.4 Hyperparameter Selection

The fixed optimization hyperparameters include the minibatch size m = 64 (SGD, SRDA) and the epoch length N = n
(LSVRG). The statistical regularization parameter µ = 1/n is shown in the main text, whereas training curves for

µ = 0.1/n and µ = 10/n are shown in Appx. G. Specifically, c ∈ {1, 2, 3, 4, 5} be a seed that determines the randomness
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for sampling the minibatch {i1, ..., im} at each iteration of SGD and SRDA, it at each iteration of LSVRG. Let T
be the total number of iterations for the algorithm, and denote the trajectory of iterates seeded by c using learning

rate η as w
(1)
c,η , ..., w

(T )
c,η . Then, define the quantity L(η) = 1

5

∑5
c=1 Rσ(w

(T )
c,η ). The learning rate η is chosen in the set

{3 × 10−4, 1 × 10−3, 3 × 10−3, 1 × 10−2, 3 × 10−2, 1 × 10−1, 3 × 10−1, 1 × 100, 3 × 100} to minimize L(η) for each

algorithm. If any of the trajectories diverge, we consider L(η) = +∞. Note that Rσ is computed using the training set, as

we are selecting hyperparameters for optimization.

F.5 Compute Environment

All experiments were run on a workstation with Intel i9 processor (clock speed: 2.80GHz) with 32 virtual cores and 126G of

memory. We did not use GPUs for any experiments. Code used for this project was written in Python 3.

F.6 Experimental Details on Clustering

Recall that we consider clustering n points x1, . . . , xn into k clusters with centers C = (c1, . . . , ck) by minimizing a

weighted average of the distances of each point to its closest center, i.e., problems of the form

min
C∈Rd×k

n∑

i=1

σiℓ(i)(C) for ℓi(C) = min
zi∈{0,1}k

z⊤

i 1=1

k∑

j=1

zij∥xi − cj∥22.

We consider the weights σi to be the discretization of a spectrum s such that σi =
∫ i

n
i−1
n

s(t)dt with s being one of the

following examples:

1. uniform spectrum, s(t) = 1[0,1](t) which corresponds to a classical kmeans objective of the form

minC∈Rd×k
1
n

∑n
i=1 ℓi(C),

2. a truncated spectrum, sq(t) = 1[0,q](t)/q for q ∈ (0, 1) that seeks to only consider minimizing losses with small

enough values compared to the whole distribution,

3. an extremile spectrum sr(t) = r(1− t)r for r ≥ 1 that can be interpreted as minimizing the expected minimum of r
random variables distributed as the losses (Daouia et al., 2019).

We consider a stochastic subradient descent with constant stepsize with mini-batch estimates given by the empirical

L-statitics estimate on the mini-batches as described in Sec. 3.

F.6.1 Synthetic Data

As (Maurer et al., 2021) we consider as training data three cloud of Gaussians composed of 100 two dimensional points

each with variance 0.1 along both axis and centers (−3, 0), (0, 1) and (3, 0) respectively. We add 100 outliers sampled

from a Gaussian with variance 5 along both axis and center (−1,−5). The test set consists in points sampled from the

three aforementioned inlier Gaussians, 100 points per Gaussian. To test our method, we compute the number of correct

assignments of the test points in their associated cluster after relabeling the clusters to match the true labeling. Namely, the

groups found by a method may be correct but instead of labeling the first cloud of points by 1 the method may have assigned

the label 1 to the second group and 2 to the first group for example, so we first find the permutation of the labels that leads to

the highest accuracy.

We used mini-batches of size 64, a learning rate of 1 found by grid-search on log-10 scale, a uniform spectrum, a truncated

spectrum with parameter q = 0.75 or an extremile spectrum with r = 5 and we initialize the centers at 0. In Fig. 7 we

present the estimated centers found for each spectrum as well as the training and test losses and the training and test

accuracies, where for the training accuracy we only consider the assignment of the inlier points.

F.6.2 Clustering Digits Images

We consider forming a subset of the MNIST dataset (LeCun et al., 1998) of 28× 28 black and white images of handwritten

digits by selecting 1000 images of the digit 1, 1000 images of the digit 3 each and 125 images of each other digit in

{0, . . . , 9} \ {1, 3} for a total of 2000 inlier examples and 1000 outlier examples. The images are standardized pixel by

pixel. Our goal is to cluster the samples from 1 and 3 correctly even in the presence of outliers. We test our estimated centers

on all images of the digits 1 and 3 from the test set of the MNIST database, that is, as in the synthetic experiment we test

whether our estimated centers lead to the correct assignments of the test images in their respective group.
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Figure 7: Clustering synthetic data points in the presence of outliers.

We consider mini-batches of size 256, a learning rate of 0.1 found by grid-search on a log-10 scale, a uniform spectrum, a

truncated spectrum with parameter q = 0.66 or an extremile spectrum with r = 2 and we initialize the centers at 0. In Fig. 8

we present the estimated centers found for each spectrum as well as the training and test losses and the training and test

accuracies, where for the training accuracy we only consider the assignment of the inlier points.

F.6.3 Clustering Images of Clothes

As Maurer et al. (2021) we also consider clustering images of clothes from the dataset FashionMNIST (Xiao et al., 2017)

that consist in 28× 28 black and white images of 10 clases of clothing such as: t-shirt, trouser, pullover, dress, coat, sandal,

shirt, sneaker, bag, ankle boot. The images are standardized pixel by pixel. We form a training set composed of 1000 images

of trousers, 1000 images of sneakers, and 250 images of each of the other classes for a total of 2000 inliers and 2000 outliers.

Our goal is to cluster teh trousers and the sneakers in the presence of the outliers. To test our estimators we use all images of

trousers and sneakers from the test set of the FashionMNIST dataset.

We consider mini-batches of size 64, a learning rate of 1. found by grid-search on a log-10 scale, a uniform spectrum, a

truncated spectrum with parameter q = 0.5 or an extremile spectrum with r = 5 and we initialize the centers at 0. In Fig. 9

we present the estimated centers found for each spectrum as well as the training and test losses and the training and test

accuracies, where for the training accuracy we only consider the assignment of the inlier points.

Note that compared to Maurer et al. (2021) we obtain 100% accuracy of these methods on the test set. An approach by

stochastic subgradient may be less sensitive to the initialization (performed with K-means++ by Maurer et al. (2021)).

G ADDITIONAL EXPERIMENTS

Optimization Effect of Varying Regularization Parameter We demonstrate the robustness of the algorithm comparison

with respect to the statistical regularization parameter µ. Hyperparameters are selected in accordance with Appx. F.4.

Fig. 10, Fig. 11, and Fig. 12 show the suboptimality trajectories for µ = 1/n, 10/n, and 0.1/n, respectively. The same

rankings of algorithms result from each of the three figures, that LSVRG generally outperforms SGD and SRDA.

Optimization Effect of Varying Risk Parameter We demonstrate the robustness of the algorithm comparison with respect

to the statistical regularization parameter µ. Hyperparameters are selected in accordance with Appx. F.4. Fig. 13, Fig. 14,

and Fig. 15 show the suboptimality trajectories for (q, r, ρ) set to (0.25, 1.5, 0.5), (0.5, 2, 1), and (0.75, 2.5, 2), respectively.

The same rankings of algorithms result from each of the three figures, that LSVRG generally outperforms SGD and SRDA.

It should be noted that for the 0.75-superquantile, LSVRG suffers from slow convergence and is outperformed by SGD and
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Figure 10: The suboptimality gap (base 10) for various optimization algorithms on spectral risk objectives for µ = 1/n. The

x-axis shows the number of effective passes through the data.

SRDA, suggesting that the superquantile is a particularly difficult learning objective.

Statistical Effect of Varying Risk Parameter We inspect how the test losses of the L-risk minimizers behave compared to

the corresponding ERM solutions. Letting ŵERM be the approximate solution of ERM, whereas ŵLRM is the approximate

solution of an L-Risk minimization problem other than ERM, Fig. 16, Fig. 17, and Fig. 18 plot the following against p:

ℓ(⌈np⌉) (ŵERM)− ℓ(⌈np⌉) (ŵLRM) , (31)

that is, the difference in the p-th quantile of the test loss of ŵERM and the p-th quantile of the test loss of ŵLRM. The plots are

in order of ªeasyº, ªmediumº, and ªhardº values of the risk parameters, corresponding to (q, r, ρ) being (0.25, 1.5, 0.5),
(0.5, 2, 1), and (0.75, 2.5, 2), respectively. The medium settings are shown primarily in the main text. The median test loss

(p = 0.5) is similar between the L-risk minimizers and standard ERM across risk parameters. However, for p > 0.5, the

ERM solution can make predictions with much higher loss, indicating that the tail is not controlled. The superquantile at

parameters q = 0.5 generally fails to control test risk, even substantially underperforms in comparison to ERM in energy.

On the other hand, the extremile and ESRM convincingly dominate ERM in the region (0.9, 1) of the empirical quantile

function for each of the risk parameters, with the extremile having a more pronounced effect.

Comparison between Smoothed and Non-smooth LSVRG We compare the implementation of LSVRG with smoothing

presented in Alg. 5 to the non-smooth epoch-based implementation of LSVRG presented in Alg. 7. We consider the datasets
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Figure 11: The suboptimality gap (base 10) for various optimization algorithms on spectral risk objectives for µ = 10/n.

The x-axis shows the number of effective passes through the data.

simulated, yacht, energy and concrete presented in Appx. F.1 and spectral risk measure objectives (2) defined

by the empirical superquantile (q = 0.5), extremile (r = 2), and ESRM (ρ = 1) of the losses, plus an ℓ22 regularization term

of magnitude 1/n.

We implemented the smoothed LSVRG algorithm (Alg. 5) with N = n, q∗ = 0 and a smoothing given by either a centered

negative entropy regularizer Ω1 or a centered square Euclidean norm Ω2, with Ω1 and Ω2 from Eq. (21). We consider using

a smoothing coefficient of ν1 = 10−3 for Ω1 and ν2 = n10−3 for Ω2 (using the fact that the approximation done by Ω2 has

an approximation error of χ2(s||u)/n as detailed in Appx. D). On the vertical axis we consider is the suboptimality gap
Rσ(w

(t))−Rσ(w
∗)

Rσ(w(0))−Rσ(w∗)
for w∗ computed by L-BFGS.

In Fig. 19, we observe that the non-smooth and smooth implementations of LSVRG generally match. For the ERM objective,

this observation was expected since the permutahedron associated with the vector un = 1/n reduces to {un} since all entries

of un are equal. Hence the maximization defining the smooth approximations hνΩ given in Appx. D have a maximizer

independent of the values of the losses and naturally given by un such that the smooth approximation of h reduces exactly to

h for any choice of ν and Ω. For the other spectral risk measures, we observe some discrepancies between the non-smooth

and the smooth implementations with the smooth implementation giving generally smoother curves as it is the case for

the superquantile on the simulated dataset or the ESRM on the concrete dataset. However, such differences are

not observed for, e.g., the superquantile on the yacht, energy, concrete datasets or the extremile and the ESRM

objectives on the simulated and yacht datasets. Overall these experiments suggest that the non-smooth nature of
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Figure 12: The suboptimality gap (base 10) for various optimization algorithms on spectral risk objectives for µ = 0.1/n.

The x-axis shows the number of effective passes through the data.

the problem has moderate impact on the performance of LSVRG. This behavior may be explained by the fact that the

non-smoothness of the losses only intervene if the minimizer of the objective produces a vector of losses with ties which

may not happen in practice. In addition note, that the negative entropy or the squared Euclidean smoothing generally give

the same results (after appropriately scaling the smoothing coefficient of Ω2 by n as suggested by the approximation errors

given in Cor. 18 (Appx. D).

In Fig. 19, we also consider Alg. 5 with N = 2n, q∗ = 1/n and the same smoothing method as presented above. We

scaled the horizontal axis by multiplying all algorithms by the total number of calls to the gradient oracles of the losses

such that LSVRG in Alg. 7 is scaled by a factor 2 while Alg. 5 is scaled by a factor ρ ≥ 2. We observe that the non-smooth

implementation of LSVRG in Alg. 7 compares generally on par or better than the implementation of Alg. 5 after taking into

account the total number of passes over the data, except for the ESRM risk on concrete and the extremile on yacht.

Run Time Experiments Fig. 20 contains plots of optimizer runtimes in each of the datasets considered. The values are

calculated using the time module in Python 3 with logging disabled on the compute environment described in Appx. F.5.

The two variants of LSVRG trade off run time for precision, as their suboptimality achieves ∼ 1 order of magnitude

improvement on yacht, up to ∼ 4 orders of magnitude improvement on concrete over the SGD and SRDA baseline.

SGD and SRDA also run ∼ 2 orders of magnitude faster across datasets, but fail to converge due to both bias and variance.
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Figure 13: The suboptimality gap (base 10) for various optimization algorithms on ERM, q-superquantile, r-extremile, and

ρ-ESRM objectives for(q, r, ρ) set to (0.25, 1.5, 0.5). The x-axis shows the number of effective passes through the data.



Stochastic Optimization for Spectral Risk Measures

10
−7

10
−4

10
−1

si
m
ul
at
ed

ERM

10
−4

10
−2

10
0

0.5-Superquantile

10
−7

10
−4

10
−1

2-Extremile

10
−7

10
−4

10
−1

1-ESRM

10
−3

10
−1

ya
ch
t

10
−3

10
−2

10
−1

10
0

10
−3

10
−1

10
−3

10
−1

10
−5

10
−3

10
−1

en
er
gy

10
−3

10
−2

10
−1

10
0

10
−3

10
−1

10
−3

10
−1

0 20 40 60

Epoch

10
−7

10
−5

10
−3

10
−1

co
nc
re
te

0 20 40 60

Epoch

10
−3

10
−2

10
−1

10
0

0 20 40 60

Epoch

10
−4

10
−2

10
0

0 20 40 60

Epoch

10
−7

10
−4

10
−1

SGD SRDA LSVRG (Non-Uniform) LSVRG (Uniform)

Figure 14: The suboptimality gap (base 10) for various optimization algorithms on ERM, q-superquantile, r-extremile, and

ρ-ESRM objectives for(q, r, ρ) set to (0.5, 2, 1). The x-axis shows the number of effective passes through the data.
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Figure 15: The suboptimality gap (base 10) for various optimization algorithms on ERM, q-superquantile, r-extremile, and

ρ-ESRM objectives for(q, r, ρ) set to (0.75, 2.5, 2). The x-axis shows the number of effective passes through the data.
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Figure 16: The difference between the empirical quantile function given by ℓ(1)(ŵERM), . . . , ℓ(n)(ŵERM) and the empirical

quantile function of an L-risk minimizer ℓ(1)(ŵLRM), . . . , ℓ(n)(ŵLRM), where the L-risk is the q-superquantile (left column),

r-extremile (middle column), or ρ-exponential spectral risk measure (right column). Each row represents a dataset out of

simulated, yacht, energy, and concrete. Here, (q, r, ρ) = (0.25, 1.5, 0.5), constituting L-risks that are ªcloseº to

ERM.
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Figure 17: The difference between the empirical quantile function given by ℓ(1)(ŵERM), . . . , ℓ(n)(ŵERM) and the empirical

quantile function of an L-risk minimizer ℓ(1)(ŵLRM), . . . , ℓ(n)(ŵLRM), where the L-risk is the q-superquantile (left column),

r-extremile (middle column), or ρ-exponential spectral risk measure (right column). Each row represents a dataset out of

simulated, yacht, energy, and concrete. Here, (q, r, ρ) = (0.5, 2, 1), constituting L-risks that are ªmoderately

farº from ERM.
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Figure 18: The difference between the empirical quantile function given by ℓ(1)(ŵERM), . . . , ℓ(n)(ŵERM) and the empirical

quantile function of an L-risk minimizer ℓ(1)(ŵLRM), . . . , ℓ(n)(ŵLRM), where the L-risk is the q-superquantile (left column),

r-extremile (middle column), or ρ-exponential spectral risk measure (right column). Each row represents a dataset

out of simulated, yacht, energy, and concrete. Here, (q, r, ρ) = (0.75, 2.5, 2), constituting L-risks that are

ªsignificantly farº from ERM.
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Figure 19: Comparison of the non-smooth implementation of LSVRG in Alg. 7 and the smoothed implementation of

LSVRG in Alg. 5 with N = n, q∗ = 0, and with a centered non-negative entropy smoothing function Ω1 and ν1 = 10−3 or

a centered Euclidean smoothing function Ω2 with ν2 = n10−3 (see eq. (21) for the exact definitions of Ω1,Ω2).
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Figure 20: Algorithm run time of SGD, SRDA, and LSVRG optimizers on fives datasets (rows) and four objectives

(columns). The y-axis plots the suboptimality in log scale, whereas the x-axis contains wall time in seconds in log scale.
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