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Abstract

Interpretable time series prediction is crucial for
safety-critical areas such as healthcare and au-
tonomous driving. Most existing methods fo-
cus on interpreting predictions by assigning im-
portant scores to segments of time series. In
this paper, we take a different and more chal-
lenging route and aim at developing a self-
interpretable model, dubbed Counterfactual Time
Series (CounTS), which generates counterfactual
and actionable explanations for time series pre-
dictions. Specifically, we formalize the prob-
lem of time series counterfactual explanations,
establish associated evaluation protocols, and pro-
pose a variational Bayesian deep learning model
equipped with counterfactual inference capabil-
ity of time series abduction, action, and pre-
diction. Compared with state-of-the-art base-
lines, our self-interpretable model can generate
better counterfactual explanations while main-
taining comparable prediction accuracy. Code
will be available at https://github.com/Wang-ML-
Lab/self-interpretable-time-series.

1. Introduction
Deep learning (DL) has become increasingly prevalent, and
there is naturally a growing need for understanding DL pre-
dictions in many decision-making area, such as healthcare
diagnosis and public policy-making. The high-stake nature
of these areas means that these DL predictions are con-
sidered trustworthy only when they can be well explained.
Meanwhile, time-series data has been frequently used in
these areas (Zhao et al., 2021; Jin et al., 2022; Yang et al.,
2022), but it is always challenging to explain a time-series
prediction due to the nature of temporal dependency and
varying patterns over time. Moreover, time-series data often
comes with confounding variables that affect both the input
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and output, making it even harder to explain predictions
from DL models.

On the other hand, many existing explanation methods are
based on assigning importance scores for different parts
of the input to explain model predictions (Ribeiro et al.,
2016; Lundberg & Lee, 2017b; Chen et al., 2018; Wang
et al., 2019b; Weinberger et al., 2020; Plumb et al., 2020).
However, understanding the contribution of different input
parts are usually not sufficiently informative for decision
making: people often want to know what changes made to
the input could have lead to a specific (desirable) prediction
(Wachter et al., 2017b; Goyal et al., 2019; Nemirovsky et al.,
2022). We call such changed input that could have shifted
the prediction to a specific target actionable counterfactual
explanations. Below we provide an example in the context
of time series.

Example 1 (Actionable Counterfactual Explanation).
Suppose there is a model that takes as input a time se-
ries of breathing signal x ∈ RT from a subject of age
u = 60 to predict the corresponding sleep stage as ypred =

‘Awake’ ∈ {‘Awake’, ‘Light Sleep’, ‘Deep Sleep’}. Typical
methods assign importance scores to each entry of x to
explain the prediction. However, they do not provide action-
able counterfactual explanations on how to modify x to xcf

such that the prediction can change to ycf = ‘Deep Sleep’.
An ideal method with such capability could provide more
information on why the model make specific predictions.

Actionable counterfactual explanations help people under-
stand how to achieve a counterfactual (target) output by
modifying the current model input. However, such expla-
nations may not be sufficiently informative in practice, es-
pecially under the causal effect of confounding variables
which are often immutable. Specifically, some variables can
hardly be changed once its value has been determined, and
suggesting changing such variables are both meaningless
and infeasible (e.g., a patient age and gender when modeling
medical time series). This leads to a stronger requirement:
a good explanation should make as few changes as possible
on immutable variables; we call such explanations feasible
counterfactual explanations. Below we provide an example
in the context of time series.

Example 2 (Feasible Counterfactual Explanation). In Ex-
ample 1, age u is a confounder that affects both x and
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y since elderly people (i.e., larger u) are more likely to
have irregular breathing x and more ‘Awake’ time (i.e.,
y = ‘Awake’) at night. To generate a counterfactual ex-
planation to change ypred to ‘Deep Sleep’, typical methods
tend to suggest decreasing the age u from 60 to 50, which
is infeasible (since age cannot be changed in practice). An
ideal method would first infer the age u and search for a
feasible counterfactual explanation xcf that could change
ypred to ‘Deep Sleep’ while keeping u unchanged.

In this paper, we propose a self-interpretable time se-
ries prediction model, dubbed Counterfactual Time Series
(CounTS), which can both (1) perform time series predic-
tions and (2) provide actionable and feasible counterfactual
explanations for its predictions. Under common causal struc-
ture assumptions, our method is guaranteed to identify the
causal effect between the input and output in the presence
of exogenous (confounding) variables, thereby improving
the generated counterfactual explanations’ feasibility. Our
contribution is summarized as follows:

• We identify the actionability and feasibility require-
ments for generating counterfactual explanations for
time series models and develop the first general self-
interpretable method, dubbed CounTS, that satisfies
such requirements.

• We provide theoretical guarantees that CounTS can
identify the causal effect between the time series input
and output in the presence of exogenous (confounding)
variables, thereby improving feasibility in the gener-
ated explanations.

• Experiments on both synthetic and real-world datasets
show that compared to state-of-the-art methods,
CounTS significantly improves performance for gener-
ating counterfactual explanations while still maintain-
ing comparable prediction accuracy.

2. Related Work
Interpretation Methods for Neural Networks. Various
attribution-based interpretation methods have been proposed
in recent years. Some methods focused on local interpreta-
tion (Ribeiro et al., 2016; Lundberg & Lee, 2017b; Plumb
et al., 2018; Chen et al., 2018; Wang et al., 2019b) while
others are designed for global interpretation (Ghorbani et al.,
2019; Natesan Ramamurthy et al., 2020). The main idea
is to assign attribution, or importance scores, to the input
features in terms of their impact on the prediction (output).
For example, such importance scores can be computed us-
ing gradients of the prediction with respect to the input
(Selvaraju et al., 2017; Lundberg & Lee, 2017a; Shrikumar
et al., 2017; Sundararajan et al., 2017). Some interpretation
methods are specialized for time series data; these include

perturbation-based (Pan et al., 2021), rule-based (Rajapak-
sha & Bergmeir, 2022), and attention-based methods (Heo
et al., 2018; Lim et al., 2021). One typical method, Feature
Importance in Time (FIT), evaluates the importance of the
input data based on the temporal distribution shift and un-
explained distribution shift (Tonekaboni et al., 2020). How-
ever, these methods can only produce importance scores
of the input features for the current prediction and there-
fore cannot generate counterfactual explanations (see Sec. 5
and Appendix D for empirical results).

Counterfactual Explanations for Time Series Models.
There also works that generate counterfactual explanations
for time series models. (Dhaou et al., 2021) proposed an
association-rule algorithm to explain time series prediction
by finding the frequent pairs of timestamps and generat-
ing counterfactual examples. (Nemirovsky et al., 2022)
proposed a general explanation framework that generates
counterfactual examples using residual generative adver-
sarial networks (RGAN); it can be adapted for time series
models. However, these works either fail to generate realis-
tic counterfactual explanations (due to discretization error)
or fail to generate feasible counterfactual explanations for
time series models. In contrast, our CounTS as a principled
variational causal method (Wang et al., 2020; Mao et al.,
2021b; Gupta et al., 2021) can naturally generate realistic
and feasible counterfactual explanations. Such advantages
are empirically verified in Sec. 5.

Bayesian Deep Learning and Variational Autoencoders.
Our work is also related to the broad categories of vari-
ational autoencoders (VAEs) (Kingma & Welling, 2013)
(which use inference networks to approximate posterior dis-
tributions) and Bayesian deep learning (BDL) (Wang et al.,
2015; Wang & Yeung, 2016; Wang, 2017; Huang et al.,
2019; Wang et al., 2019a; Wang & Yeung, 2020; Ding et al.,
2022) models (which use a deep component to process high-
dimensional signals and a task-specific/graphical compo-
nent to handle conditional/causal dependencies). (Lin et al.,
2022) proposed the first VAE-based model for generating
causal explanations for graph neural networks. (Louizos
et al., 2017; Pawlowski et al., 2020) proposed the first VAE-
based models for performing causal inference and estimat-
ing treatment effect. However, none of them addressed
the problem of counterfactual explanation, which involves
solving an inverse problem to obtain the optimal counterfac-
tual input. In contrast, our CounTS is the first VAE-based
model to address this challenge, with theoretical guaran-
tees and promising empirical results. From the perspective
of BDL (Wang & Yeung, 2016; 2020), CounTS uses deep
neural networks to process high-dimension signals (i.e., the
deep component in (Wang & Yeung, 2016)) and uses a
Bayesian network to handle the conditional/causal depen-
dencies among variables (i.e., the task-specific or graphical
component in (Wang & Yeung, 2016)). Therefore, CounTS

2



Self-Interpretable Time Series Prediction with Counterfactual Explanations

is also the first BDL model for generating counterfactual
explanations.

3. Preliminaries
Causal Model. Following the definition in (Pearl, 2009),
a causal model is described by a 3-tupple M = ⟨U, V, F ⟩.
U is a set of exogenous variables {u1, . . . , um} that is not
determined by any other variables in this causal model. V
is a set of endogenous variables {v1, . . . , vn} that are de-
termined by variables in U ∪ V . We assume the causal
model can be factorized according to a directed graph where
each node represents one variable. F is a set of functions
{f1, . . . , fn} describing the generative process of V :

vi = fi(pai, ui), i = 1, . . . , n,

where pai denotes direct parent nodes of vi.

Counterfactual Inference. Counterfactual inference is
interested in questions like “observing that X = x and Y =
y, what would be probability that Y = ycf if the input X
had been xcf?”. Formally, given a causal model ⟨U, V, F ⟩
where Y,X ∈ V , counterfactual inference proceeds in three
steps (Pearl, 2009):

1. Abduction. Calculate the posterior distribution of
u given the observation X = x and Y = y, i.e.,
P (u|X = x, Y = y).

2. Action. Perform causal intervention on the variable X ,
i.e., do(X = xcf ).

3. Prediction. Calculate the counterfactual probability
P (YX=xcf (u) = ycf ) with respect to the posterior
distribution of P (u|X = x, Y = y).

Putting the three steps together, we have

P (YX=xcf = ycf |X = x, Y = y)

=
∑

u
P (YX=xcf (u) = ycf )P (u|x, y),

where xcf can be an counterfactual explanation describing
what would have shifted the outcome Y from y to ycf .

4. Method
In this section, we formalize the problem of counterfactual
explanations for time series prediction and describe our
proposed method for the problem.

Problem Setting. We focus on generating counterfactual
explanations for predictions from time series models. We
assume the model takes as input a multivariate time series
xi ∈ RD×T and predicts the corresponding label yi, which
can be a categorical label, a real value, or a time series
yi ∈ RT . Given a specific input xi and the model’s pre-
diction ypred

i , our goal is to explain the model by finding
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Figure 1. Left: The causal graph and generative model for CounTS.
Right: Inference model for CounTS.

a counterfactual time series xcf
i ̸= xi that could have lead

the model to an alternative (counterfactual) prediction ycf
i .

4.1. Learning of CounTS

Causal Graph and Generative Model for CounTS. Our
self-interpretable model CounTS is based on the causal
graph in Fig. 1(left), where x ∈ RD×Tin is the input time
series, y is the label, z ∈ RHz×Tmid is the representation
of x, ul ∈ RHl×Tmid is the local exogenous variable, and
ug ∈ RHg is the global exogenous variable. Both ul and
ug are confounder variables; ul can take different values in
different time steps, while ug is shared across all time steps.

This causal graph assumes the following factorization of the
generative model pθ(y,ul,ug, z|x):

pθ(y,ul,ug, z|x) = pθ(ul,ug)pθ(z|ul,ug,x)pθ(y|ul,ug, z), (1)

where θ denotes the collection of parameters for the gen-
erative model, and pθ(ul,ug) = pθ(ul)pθ(ug). Here
pθ(z|ul,ug,x) and pθ(y|ul,ug, z) are the encoder and the
predictor, respectively. Specifically, we have

pθ(ul) = N (0, I), pθ(ug) = N (0, I),

pθ(z|ul,ug,x) = N (µz(ul,ug,x;θ), σz(ul,ug,x; θ)),

pθ(y|ul,ug, z) = N (µy(ul,ug, z;θ), σy(ul,ug, z;θ)),

where µz(·; ·), σz(·; ·), µy(·; ·), σy(·; ·) are neural networks
parameterized by θ. Note that for classification models the
predictor pθ(y|ul,ug, z) becomes a categorical distribution
Cat(fy(ul,ug, z;θ)), where fy(·; ·) is a neural network.

Inference Model for CounTS. We use an inference model
qϕ(y,ul,ug, z|x) to approximate the posterior distribution
of the latent variables, i.e., pθ(ul,ug, z|x). As shown
in Fig. 1(right), we factorize qϕ(y,ul,ug, z|x) as

qϕ(y,ul,ug, z|x) = qϕ(y|x)qϕ(ul,ug|x,y)qϕ(z|x,y), (2)
qϕ(ul,ug|x,y) = qϕ(ul|x,y)qϕ(ug|x,y) (3)

where ϕ is the collection of the inference model’s parame-
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ters, and . We parameterized each factor in Eqn. 2 as

qϕ(y|x) = N (µy(x;ϕ), σ
2
y(x;ϕ)),

qϕ(ul|x,y) = N (µul
(x,y;ϕ), σ2

ul
(x,y;ϕ)),

qϕ(ug|x,y) = N (µug
(x,y;ϕ), σ2

ug
(x,y;ϕ)),

qϕ(z|x,y) = N (µz(x,y;ϕ), σ
2
z(x,y;ϕ)),

where µ·(·; ·) and σ·(·; ·) denote neural networks with ϕ as
their parameters.

Evidence Lower Bound. Our CounTS uses the evi-
dence lower bound (ELBO) LELBO of the log likelihood
log p(y|x) as an objective to learn the generative and infer-
ence models. Maximizing the ELBO is equivalent to learn-
ing the optimal variational distribution qϕ(ul,ug, z|x) =∫
qϕ(y,ul,ug, z|x)dy that best approximates the posterior

distribution of the label and latent variables pθ(ul,ug, z|x).
Specifically, we have

LELBO = Eqϕ(y,ul,ug,z|x)[pθ(y,ul,ug, z|x)]
− Eqϕ(y,ul,ug,z|x)[qϕ(y,ul,ug, z|x)]. (4)

Note that different from typical ELBOs, we explic-
itly involves y and use qϕ(y,ul,ug, z|x) rather than
qϕ(ul,ug, z|x) (see Appendix A for details); this is to ex-
pose the factor qϕ(y|x) in Eqn. 2 to allow for additional
supervision on y (more details below). With the factor-
ization in Eqn. 1 and Eqn. 2, we can decompose Eqn. 4
as:

LELBO = Eqϕ(y|x)Eqϕ(ul,ug ,z|x,y)[pθ(y|ul,ug, z)] (5)

− Eqϕ(y,ul,ug |x)
[
KL[qϕ(z|x,y)||pθ(z|ul,ug,x)]

]
(6)

− Eqϕ(y|x)
[
KL[qϕ(ul,ug|x,y)||pθ(ul,ug)]

]
(7)

− Eqϕ(y|x)[qϕ(y|x)], (8)

where each term is computed with our neural network pa-
rameterization; Fig. 2(left) shows the network structure.
Below we briefly discuss the intuition of each term.

(1) Eqn. 5 predicts the label y using ul, ug , and z inferred
from x (y is marginalized out).

(2) Eqn. 6 regularizes the inference model qϕ(z|x,y) to
get closer to the generative model pθ(z|ul,ug,x).

(3) Eqn. 7 regularizes qϕ(ul,ug|x,y) using the prior dis-
tribution p(ul,ug).

(4) Eqn. 8 regularizes qϕ(y|x) by maximizing its entropy,
preventing it from collapsing to deterministic solutions.

Final Objective Function. Inspired by (Louizos et al.,
2017), we include an additional term (N is the training set
size)

Ly =
∑N

i=1
log q(yi|xi) (9)

to supervise q(y|x) using label y during training; this
helps produce more accurate estimation for ul, ug , z using

qϕ(ul,ug|x,y) and qϕ(z|x,y). The final objective function
then becomes

LCounTS = LELBO + λLy, (10)

where λ is a hyperparameter balancing both terms.

4.2. Inference Using CounTS

After learning both the generative model (Eqn. 1) and
the inference model (Eqn. 2) by maximizing LCounTS

in Eqn. 13, our self-interpretable CounTS can perform
inference to (1) make predictions on y using the yellow
branch in Fig. 2(left), and (2) generate counterfactual ex-
planation xcf for any target label ycf using the blue branch
in Fig. 2(right).

4.2.1. PREDICTION

We use the yellow branch in Fig. 2(left) to predict y. Specifi-
cally, given an input time series x, the encoder will first infer
the initial label y using qϕ(y|x) and then infer (ul,ug) and
z from x and y using qϕ(ul,ug, z|x,y). (ul,ug) and z are
then fed into the predictor pθ(y|ul,ug, z) to infer the final
label y. Formally, CounTS predict the label as

ypred = Eqϕ(y|x)Eqϕ(ul,ug,z|x,y)[pθ(y|ul,ug, z)]. (11)

Empirically, we find that directly using the means of qϕ(y|x)
and qϕ(ul,ug, z|x,y) as input to pθ(y|ul,ug, z) already
achieves satisfactory accuracy.

4.2.2. GENERATING COUNTERFACTUAL EXPLANATION

We use the blue branch in Fig. 2(right) to generate counter-
factual explanations via counterfactual inference. Our goal
is to find the optimal counterfactual explanation xcf defined
below.

Definition 4.1 (Optimal Counterfactual Explanation).
Given a factual observation x and prediction ypred, the op-
timal counterfactual explanation xcf for the counterfactual
outcome for ycf is

xcf = argmaxx′ p(Yx=x′(u) = ycf ),

where u = (ul,ug) and the counterfactual likelihood is
defined as

p(Yx=x′(u) = ycf ) (12)

=
∑
u

p
(
y = ycf |do

(
x = x′) ,u) p(u|x = x,y = ypred).

In words, we search for the optimal xcf that would have
shifted the model prediction from ypred to ycf while keep-
ing (ul,ug) unchanged. Since the definition of counterfac-
tual explanations in Definition 4.1 involves causal inference
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Figure 2. Network structure. We omit subscripts of pθ and qϕ for clarity. Left: CounTS makes predictions on y using the yellow branch.
Right: Given the current x and ypred, CounTS generates counterfactual explanation xcf for any target label ycf using the blue branch.

with the intervention on x, we need to first identify the causal
probability p(y = ycf |do(x = x′),u) using observational
probability, i.e., removing ‘do’ in the equation. The theorem
below shows that this is achievable.

Theorem 4.1 (Identifiability). Given the posterior distri-
bution of exogenous variable p(ul,ug|x,y), the effect of
action p(y = ycf |do(x = x′),ul,ug) can be identified
using Ep(z|x′,ul,ug)[p

(
ycf |z,ul,ug

)
].

See Appendix B.1 for the proof. With Theorem 4.1, we can
rewrite Eqn. 12 as

Lcf = Ep(u|x=x,y=ypred)Ep(z|x′,u)[p(y
cf |z,u)], (13)

where u = (ul,ug) and p(u|x = x,y = ypred) is ap-
proximated by qϕ(u|x = x,y = ypred). We use Monte
Carlo estimates to compute the expectation in Eqn. 12 and
Eqn. 13, iteratively compute the gradient ∂Lcf

∂x′ (via back-
propagation) to search for the optimal x′ in a way similar
to (Wang et al., 2019a; Mao et al., 2021a), and use it as xcf

(see the complete algorithm in Appendix B.2).

5. Experiments
In this section, we evaluate our CounTS and existing meth-
ods on two synthetic and three real-world datasets. For each
dataset, we evaluate different methods in terms of three
metrics: (1) prediction accuracy, (2) counterfactual accu-
racy, and (3) counterfactual change ratio, with the last one
as the most important metric. These metrics take different
forms for different datasets (see details in Sec. 5.2-5.4).

5.1. Baselines and Implementations

We compare our CounTS with state-of-the-art methods
for generating explanations for deep learning models, in-
cluding Regularized Gradient Descent (RGD) (Wachter
et al., 2017a), Gradient-weighted Class Activation Map-
ping (GradCAM) (Selvaraju et al., 2017), Gradient SHap-
ley Additive exPlanations (GradSHAP) (Lundberg & Lee,
2017a), Local Interpretable Model-agnostic Explanations
(LIME) (Ribeiro et al., 2016), Feature Importance in Time
(FIT) (Tonekaboni et al., 2020), Case-crossover APriori

Table 1. Results on the toy dataset. We mark the best result with
bold face and the second best results with underline.

CounteRGAN RGD GradCAM GradSHAP LIME FIT CAP CounTS (Ours)

Pred. Accuracy (%) ↑ ————————– 85.19 ————————– 83.26
CCR ↑ 1.25 1.21 1.09 1.13 1.2 1.15 0.97 1.33

Counterf. Accuracy (%) ↑ 78.75 77.96 - - - 45.62 - 70.28

(CAP) (Dhaou et al., 2021), and Counterfactual Resid-
ual Generative Adversarial Network (CounteRGAN) (Ne-
mirovsky et al., 2022) (see Appendix C.2 for more details).
Note that among these baselines, only RGD and CounteR-
GAN can generate actionable explanations. Other baselines,
including FIT (which is designed for time series models),
only provide importance scores as explanations; therefore
some evaluation metrics may not be applicable for them
(shown as ‘-’ in tables).

All methods above are implemented with PyTorch (Paszke
et al., 2019). For fair comparison, the prediction model in
all the baseline explanation methods has the same neural
network architecture as the inference module in our CounTS.
See the Appendix for more details on the architecture, train-
ing, and inference.

5.2. Toy Dataset

Dataset Description. We designed a toy dataset where
the label is affected by only part of the input. A good
counterfactual explanation should only modify this part of
the input while keeping the other part unchanged. Following
the causal graph in Fig. 1(left), we have input x ∈ R12 with
each entry independently sampled from N (µx, σ

2
x) and an

exogenous variable u ∈ R (as the confounder) sampled
from N (µu, σ

2
u). To indicate which part of x affects the

label, we introduce a mask vector m ∈ R12 with first 6
entries m1:6 set to 1 and the last 6 entries m7:12 set to 0.
We then generate z ∈ R12 as z = u · (m⊙ x) and the label
y ∼ Bern(σ(z⊤1 + u)) where σ is the sigmoid function.
Here x’s first 6 entries x1:6 is label-related and the last 6
entries x7:12 is label-agnostic.

Evaluation Metrics. We use three evaluation metrics:

• Prediction Accuracy. This is the percentage of time
series correctly predicted (ypred = y) in the test set.

• Counterfactual Accuracy. For a prediction model f ,
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Table 2. Results on the Spike dataset. We mark the best result
with bold face and the second best results with underline.

CounteRGAN RGD GradCAM GradSHAP LIME FIT CAP CounTS (Ours)

Pred. MSE ↓ ————————– 0.128 ————————– 0.117

CCR ↑ 2 Active 2.206 2.217 2.043 1.989 1.872 1.863 1.614 2.322
1 Active 0.705 0.683 0.654 0.615 0.473 0.55 0.497 0.730

Counterf. MSE ↓ 0.074 0.074 - - - 0.394 - 0.103

the generated counterfactual explanation xcf , and the
target label ycf , counterfactual accuracy is the percent-
age of time series where xcf successfully change the
model’s prediction to ycf (i.e., f(xcf ) = ycf ).

• Counterfactual Change Ratio (CCR). This measures
how well the counterfactual explanation xcf changes
the label-related input x1:6 while keeping the label-
agnostic input x7:12 unchanged. Formally we use the

average ratio of ∥xcf
1:6−x1:6∥1

∥xcf
7:12−x7:12∥1

across the test set.

Note that CCR is the most important metric among the three
since our main focus is to generate actionable and feasible
counterfactual explanations.

Quantitative Results. Table 1 compares our CounTS with
the baselines in terms of the three metrics. CounTS out-
performs all the baselines in terms of CCR with minimal
prediction accuracy loss. This shows that our CounTS suc-
cessfully identifies and fixes the exogenous variables u and
m to generate actionable and feasible counterfactual expla-
nations while still achieving prediction accuracy comparable
to baselines. Note that actionable methods (i.e., CounTS,
RGD, and CounteRGAN) outperforms importance score
methods (i.e., FIT, LIME, and GradSHAP). This is expected
because importance-score-based explanations can only ex-
plain the original prediction and therefore fail to infer what
change on x will shift the prediction from ypred to ycf .

Our counterfactual accuracy is lower than CounteRGAN
and RGD methods. This is reasonable since these base-
lines do not infer and fix the posterior distribution p(u|x,y)
and are therefore more flexible for the generator (or back-
propagation) to modify their input to push ypred closer to
the target ycf . However, such flexibility comes at the cost
of low feasibility, reflected in their poor CCR performance.

5.3. Spike Dataset

Dataset Description. Inspired by (Tonekaboni et al., 2020),
we construct the Spike synthetic dataset. In the dataset,
each time series contains 3 channel, i.e., x ∈ R3×T . Each
channel is a independent non–linear auto-regressive mov-
ing average (NARMA) sequence with randomly distributed
spikes. The label sequence y ∈ RT starts at 0; it may switch
to 1 as soon as there is a spike observed in any of the 3 chan-
nels and remain 1 until the last timestamp. A 3-dimensional
exogenous variable u ∈ {0, 1}3 determines whether the
spike in the channel can affect the final output; if so, we
say the channel is active. Each of the three entries in u,
i.e., is sampled independently from three different Bernoulli

distributions with parameters 0.8, 0.4, and 0, respectively
(see more details on the dataset in Appendix C.1).

Evaluation Metrics. We use three evaluation metrics:

• Prediction MSE. We use the mean square error (MSE)
1
N

∑N
i ∥ypred

i − yi∥22 to measure the prediction error
in the test set with N time series.

• Counterfactual MSE. Similar to Sec. 5.2, for a predic-
tion model f , the generated counterfactual explanation
xcf , and the target label ycf , counterfactual MSE is
defined as 1

N

∑N
i ∥f(xcf

i ))− ycf
i ∥22; it measures how

successfully xcf changes the model’s prediction to ycf .
• CCR. For a given input xi, we set the target counter-

factual label ycf
i by shifting ypred by 20 timestamps

to the right. If at timestamp t, there is a spike in an ac-
tive channel in xi triggering the output ypred

i to switch
from 0 to 1, an ideal counterfactual explanation xcf

i

should (1) suppress all spikes between [t, t+ 20), (2)
create a new spike at t + 20 timestamp in all active
channels of the original input xi, and (3) keep all in-
active channels unchanged. Therefore the counterfac-
tual change ratio can be defined as (with N time se-

ries): CCR = 1
N

∑N
i=1

∥mi⊙(xi−xcf
i )∥1

∥(1−mi)⊙(xi−xcf
i )∥1

, where

mi = [u,u, . . . ,u] ∈ R3×T repeats u in each time
step to mask inactive channels.

Note that the scale of CCR will depend on the number of
active channels, we therefore report our results for time
series with 1 and 2 active channels. Higher CCR indicates
better performance.

Quantitative Results. Table 2 shows the results for differ-
ent methods in the Spike. Similar to the toy dataset, our
CounTS outperforms all baselines in terms of CCR, and ac-
tionable methods (i.e., CounTS, RGD, and CounteRGAN)
outperforms importance score methods (i.e., FIT, LIME, and
GradSHAP) thanks to the former’s capability of modifying
the input to shift the prediction towards the counterfactual
target label.

Interestingly, besides promising performance in terms of
CCR, our CounTS can also improve prediction performance,
achieving lower prediction MSE. This is potentially due to
CounTS’s ability to model the exogenous variable u that
decides whether a spike in a specific channel affects the label
y. Similar to the toy datset, we notice both CounteRGAN
and RGD methods have lower counterfactual MSE (both at
0.074) than CounTS because they do not need to infer and
fix the exogenous variable u (i.e., the mask) and therefore
have more flexibility to modify the input x. Since both
CounteRGAN and RGD method are unaware of the mask,
they suffer from lower CCR and produce more unwanted
modification in inactive channels (more details below).

Qualitative Results. Fig. 3 shows an example time series as
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Figure 3. Qualitative results on the Spike dataset. Column 1 shows the original input x for CounTS, RGD, and CounteRGAN, respectively.
Column 2 shows the predictions ypred and counterfactual (target) labels ycf . The prediction for RGD and CounteRGAN are identical
since they use the same prediction model. Column 3 shows the counterfactual input xcf . Column 4 shows the changes on input, i.e.,
xcf − x. FIT cannot provide actionable explanations (see the importance score generated by FIT in Appendix D).

a case study. In this example, only channel 1 (blue) is active
and thus the spike in channel 1 at timestamp t = 16 will
flip the output y from 0 to 1. Both CounTS’s and RGD’s
predictions ypred (blue in Column 1) are very close to the
ground truth.

Following the evaluation protocol above, we set our coun-
terfactual (target) label ycf by shifting ypred by 20 times-
tamps to the right and padding 0s on the left (yellow). We
should expect an ideal counterfactual explanation to have
no spike in t = [16, 36) and a new spike at t = 36 in chan-
nel 1. Since channel 2 and 3 are inactive, there should not
be any changes. We can see all actionable methods (i.e.,
CounTS, CounteRGAN, and RGD) try to reduce the spikes
in t = [16, 36). However, CounteRGAN fails to remove
the spike at t = 29; both RGD and CounteRGAN makes
undesirable changes in inactive channels 2 and 3. Compared
to baselines, our CounTS shows a significant advantage at
inferring the active channel and suppressing the changes in
inactive channels. This demonstrates that CounTS is more
actionable and feasible than the existing time-series explana-
tion methods. Note that FIT is not an actionable explanation
method and therefore can only provide importance scores to
explain the current prediction ypred (see Appendix D Fig. 5
for details).

5.4. Real-World Datasets

Dataset Description. We evaluate our model on three
real-world medical datasets: Sleep Heart Health Study
(SHHS) (Quan et al., 1997), Multi-ethnic Study of

Table 3. Average CCR for both intra-dataset and cross-dataset
settings. The average CCR is calculated over 6 counterfactual
action settings (A→D, L→D, R→D, R→A, D→A, and L→A)
for every model and dataset setting. The last row are the average
CCR over all 6 dataset settings for every method.

CounteRGAN RGD GradCAM GradSHAP LIME FIT CAP CounTS (Ours)

→SOF 1.153 1.135 1.126 0.908 0.932 1.072 1.034 1.313
→SHHS 1.231 1.241 1.056 0.975 1.020 1.193 0.929 1.390
→MESA 1.285 1.188 1.031 1.025 1.007 1.142 1.031 1.377

SOF 1.126 1.088 0.887 0.996 1.078 1.053 0.963 1.281
SHHS 1.133 1.111 0.890 1.068 1.059 1.067 1.000 1.333
MESA 1.163 1.166 0.883 1.042 0.987 1.089 0.962 1.329

Average 1.182 1.155 0.979 1.002 1.014 1.103 0.987 1.337

Table 4. CCR for each counterfactual action setting in SHHS.
A→D L→D R→D R→A D→A L→A Average

CounteRGAN 1.119 1.144 1.055 1.298 1.125 1.059 1.133
RGD 1.006 1.130 0.985 1.180 1.155 1.201 1.111

GradCAM 0.882 0.790 0.859 0.954 0.882 0.977 0.890
GradSHAP 1.100 1.105 0.903 1.171 1.100 1.027 1.068

LIME 0.855 1.178 1.067 1.125 0.855 1.273 1.059
FIT 0.948 1.012 1.215 1.405 0.948 0.877 1.067
CAP 0.885 0.829 1.236 0.967 0.885 1.199 1.000

CounTS (Ours) 1.244 1.159 1.349 1.515 1.324 1.407 1.333

Atherosclerosis (MESA) (Zhang et al., 2018a), and Study of
Osteoporotic Fractures (SOF) (Cummings et al., 1990), each
containing subjects’ full-night breathing breathing signals.
The breathing signals are divided into 30-second segments;
each segment has one of the sleep stages (‘Awake’, ‘Light
Sleep’, ‘Deep Sleep’, ‘Rapid Eye Movement (REM)’) as
its label. In total, there are 2,651, 2,055 and 453 patients in
SHHS, MESA, and SOF, respectively, with an average of
1,043 breathing signal segments (approximately 8.7 hours).
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Corresponding to our causal graph in Fig. 1(left), x is the
original breathing signal, z is signal patterns (representation)
learned from the encoder, u can be ‘gender’, ‘age’, and
even ‘dataset index’ (‘dataset index’ will be used during
cross-dataset prediction; more details later), and y is the
sleep stage label. Intuitively, ‘gender’, ‘age’, and ‘dataset
index’ (due to different experiment instruments and signal
measurement) can have causal effect on both the breathing
signal patterns (subjects of different ages can have different
breathing frequencies and magnitudes) and sleep stages
(elderly subjects have less ‘Deep Sleep’ at night).

Evaluation Metrics. For brevity, we use abbreviations ‘A’,
‘R’, ‘L’, and ‘D’ to represent the four sleep stages ‘Awake’,
‘Rapid Eye Movement (REM)’, ‘Light Sleep’, ‘Deep Sleep’,
respectively. We use three evaluation metrics:

• Prediction Metric and Counterfactual Metric are
similar to those in the toy classification dataset.

• CCR. Since ground-truth confounders are not avail-
able in real-world datasets, we propose to compute
CCR on two consecutive 30-second segments with
different sleep stages. For example, given the two
segments [xi,1,xi,2] with the corresponding two pre-
dicted sleep stages [ypred

i,1 ,ypred
i,2 ] = [A,D], we set the

counterfactual labels [ycf
i,1,y

cf
i,2] = [A,A]; we refer

to this setting as D→A. An ideal counterfactual ex-
planation [xcf

i,1,x
cf
i,2] should shift the model prediction

from [A,D] to [A,A] while keeping the first segment
unchanged (i.e., smaller ∥xi,1 − xcf

i,1∥1). CCR can
therefore be computed as (with N segment pairs in the

test set): CCR = 1
N

∑N
i=1

∥xi,2−xcf
i,2∥1

∥xi,1−xcf
i,1∥1

.

In the experiments, we focus on cases where the target label
ycf
i,2 is either ‘Awake’ or ‘Deep Sleep’ (two extremes of

sleep stages), and evaluated 6 counterfactual action settings,
namely A→D, L→D, R→D, R→A, D→A, and L→A.

Cross-Dataset and Intra-Dataset Settings. Since the three
datasets are collected with different devices and procedures,
we consider the dataset index as an additional exogenous
variable in u, which has causal effect on both the learned
representation z and the sleep stage y. This leads to two dif-
ferent settings: the intra-dataset setting (without the dataset
index confounder) and the cross-dataset setting (with the
dataset index confounder).

• Intra-Dataset Setting. Training and test sets are from
same dataset, and we do not involve the dataset index
as part of the exogenous variable (confounder) u.

• Cross-Dataset Setting. We choose two of the datasets
as the source datasets, with the remaining one as the
target dataset (e.g., MESA+SHHS→SOF). We use all
source datasets (e.g., SHHS and MESA) and 10% of
the target dataset (e.g., SOF) as the training set and
use the remaining 90% of the target dataset as the test

Table 5. Prediction accuracy for both intra-dataset and cross-
dataset settings. All baselines (e.g., RGD, CounteRGAN, and
FIT) explain the same prediction model and therefore share the
same prediction accuracy. ‘→SHHS’ means ‘MESA+SOF→SHHS’
and similarly for ‘→MESA’ and ‘→SOF’.

Method →SOF →SHHS →MESA SOF SHHS MESA

All Baselines 0.702 0.747 0.768 0.729 0.801 0.813
CounTS (Ours) 0.719 0.753 0.741 0.732 0.789 0.799

Table 6. Average counterfactual accuracy for both intra-dataset
and cross-dataset settings. The average is calculated over all 6
counterfactual action settings.

→SOF →SHHS →MESA SOF SHHS MESA Average

RGD 0.913 0.887 0.907 0.862 0.907 0.892 0.895
CounteRGAN 0.897 0.868 0.880 0.844 0.888 0.868 0.874

FIT 0.331 0.327 0.346 0.248 0.322 0.294 0.311
CounTS (Ours) 0.916 0.887 0.889 0.852 0.903 0.887 0.889

set. We treat the dataset index as part of u, which is
predicted during both training and inference.

Quantitative Results. Table 3 shows the average CCR of
different methods for both intra-dataset and cross-dataset
settings. Results show that our CounTS outperforms the
baselines in all the dataset settings in terms of the average
CCR. This demonstrates CounTS’s capability of generating
feasible and actionable explanations in complex real-world
datasets. Table 4 shows the detailed CCR for each counter-
factual action setting in SHHS, where CounTS is leading in
almost all counterfactual action settings. Detailed results for
other datasets can be found in Table 7∼11 of Appendix D.

Table 5 shows the prediction accuracy for both intra-dataset
and cross-dataset settings. Similar to Table 1 and Table 2,
all baselines (e.g., RGD, CounteRGAN, and FIT) explain
the same prediction model and therefore share the same
prediction accuracy. Results show that CounTS achieves
prediction accuracy comparable to the original prediction
model. Table 6 shows the average counterfactual accuracy
for different dataset settings over 6 counterfactual action set-
tings. As in the toy and Spike datasets, RGD achieves higher
counterfactual accuracy because it does not need to infer
and fix the exogenous variable u and hence enjoys more
flexibility when modifying the input x; this often leads to
undesirable changes (e.g., breathing frequency and ampli-
tude which are related to the subject’s age), less feasible
counterfactual explanations, and therefore worse CCR per-
formance. In contrast, breathing frequency and amplitude
are potentially captured by ul and ug in CounTS and kept
unchanged (see qualitative results below). Detailed counter-
factual accuracy for every counterfactual action setting and
every dataset setting can be found in Appendix D.

Qualitative Analysis: Problem Setting. As some back-
ground on sleep staging, note that a patient’s breathing
signal will be much more periodic in ‘Deep Sleep’ than
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Figure 4. Example on real-world dataset from MESA intra-dataset
experiment. For this example, ypred is [D,A] and target ycf is
[D,D] since we assume ‘Deep Sleep’ and ‘Active’ have the most
different patterns. FIT cannot provide actionable explanations (see
the importance score generated by FIT in Appendix D).

in ‘Awake’. Fig. 4 shows an example time series from the
MESA dataset as a case study. It contains two consecutive
segments of breathing signals (60 seconds in total). The
first segment (0 ∼ 30 seconds) is regular and periodic, and
therefore both CounTS and baselines correctly predict its
label as ‘Deep Sleep’ (‘D’); the second segment (30 ∼ 60
seconds) is irregular and therefore both CounTS and base-
lines correctly predict its label as ‘Awake’ (‘A’). The goal is
to generate a counterfactual explanation such that the model
predicts the second segment as ‘Deep Sleep’.

Qualitative Analysis: Ideal Counterfactual Explanation.
Since a ‘Deep Sleep’ segment should be more periodic, an
ideal counterfactual explanation should keep the first seg-
ment (0 ∼ 30 seconds) unchanged and maintain its period-
icity, make the second segment (30 ∼ 60 seconds) more pe-
riodic (the pattern for ‘Deep Sleep’), and keep the breathing
frequency (number of breathing cycles) unchanged through-
out both segments (this is related to ”feasibility” since a
patient usually has the same breathing frequency during
‘Deep Sleep’).

Qualitative Analysis: Detailed Results. Fig. 4 compares
the generated counterfactual explanations from CounTS,
RGD, and CounteRGAN, and we can see that our CounTS’s
explanation is closer to the ideal case. Specifically:

1. The First 30-Second Segment: In the original breath-
ing signal, the first 30-second segment (0 ∼ 30 sec-
onds) is periodic and contains 7 breathing cycles (i.e.,
7 periods). Our CounTS managed to keep the first 30-
second segment signal mostly unchanged, maintaining
its periodicity and 7 breathing cycles. In contrast, RGD
changes the first segment to the point that its periodic-
ity is mostly lost. CounteRGAN can maintain the first
segment’s periodicity; however it increases the number

breathing cycles from 7 to 8, making it infeasible.
2. The Second 30-Second Segment: In the original

breathing signal, the second 30-second segment (30 ∼
60 seconds) is irregular since the patient is in the
‘Awake’ sleep stage. CounTS managed to make the
‘Awake’ (i.e., ‘Active’) signal much more periodic, suc-
cessfully steering the prediction to ‘Deep Sleep’. In
contrast, RGD and CounteRGAN failed to make the
second 30-second segment (30 ∼ 60 seconds) more
periodic.

3. Capturing and Maintaining Global Temporal Pat-
terns: Meanwhile, we can observe that CounTS’s ex-
planation in the second 30-second segment (30 ∼ 60
seconds) has a much more similar breathing frequency
(measured by the number of breathing cycles per
minute) with the first 30-second segment (0 ∼ 30
seconds), compared to RGD and CounteRGAN. This
observation shows that CounTS is capable of captur-
ing global temporal pattern (the breathing frequency
of the individual) and keeping such exogenous vari-
ables unchanged in its explanation thanks to the global
exogenous variable ug in our model.

6. Conclusion
In this paper, we identified the actionability and feasibility
requirements for time series models counterfactual expla-
nations and proposed the first self-interpretable time series
prediction model, CounTS, that satisfies both requirements.
Our theoretical analysis shows that CounTS is guaranteed
to identify the causal effect between time series input and
output in the presence of confounding variables, thereby
generating counterfactual explanations in the causal sense.
Empirical results showed that our method achieves competi-
tive prediction accuracy on time series data and is capable
of generating more actionable and feasible counterfactual
explanations. Interesting future work includes further re-
ducing the computation complexity during counterfactual
inference, handling uncertainty in the explanation (Mi et al.,
2022), and extending our method to multimodal data.
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Supplementary Material

A. Evidence Lower Bound
We can derive the evidence lower bound (ELBO) in Eqn. 4 as follows:

log p(y|x)

= log

∫
z

∫
u

p(y, z,u|x)dudz

≥ Eqϕ(u,z,y|x)

[
log

pθ(y,u, z|x)
qϕ(u, z,y|x)

]
= Eqϕ(u,z,y|x)

[
log

p(u)pθ(z|u,x)pθ(y|u, z)
qϕ(u, z,y|x)

]
= Eqϕ(y,ul,ug,z|x)[pθ(y,ul,ug, z|x)]− Eqϕ(y,ul,ug,z|x)[qϕ(y,ul,ug, z|x)]
= Eqϕ(u,z,y|x)[log p(u)] + Eqϕ(u,z,y|x)[log pθ(z|u,x)] + Eqϕ(u,z,y|x)[log pθ(y|u, z)]− Eqϕ(u,z,y|x)[log qϕ(u, z,y|x)]

B. More Details on Counterfactual Inference
B.1. Proof on Identifiability

Theorem B.1 (Identifiability). Given the posterior distribution of exogenous variable p(ul,ug|x,y), the effect of action
p(y = ycf |do(x = x′),ul,ug) can be identified using Ep(z|x′,ul,ug)p

(
ycf |z,ul,ug

)
.

Proof. With u = (ul,ug) and applying Rule 2 and 3 in do-calculus (Pearl, 2009), we have

p
(
ycf |do (x = x′) ,u

)
=

∫
z

p
(
ycf |z, do (x′) ,u

)
p (z|do (x′) ,u) dz

= Ep(z|do(x′),u)

[
p
(
ycf |z, do (x′) ,u

)]
Rule2
= Ep(z|x′,u)

[
p
(
ycf |do(z), do (x′) ,u

)]
Rule3
= Ep(z|x′,u)

[
p
(
ycf |do(z),u

)]
Rule2
= Ep(z|x′,u)

[
p
(
ycf |z,u

)]
, (14)

concluding the proof.

B.2. Counterfactual Explanation Algorithm

The pseudo-code for counterfactual explanation is shown in Algorithm 1.

C. More Details on Experiments
C.1. Details on Datasets

Spike Dataset. The generation process of the Spike dataset is summarized below:

We generate D = 3 independent channels of non–linear auto-regressive moving average (NARMA) time series data using
the following formula:

xd,t+1 = 0.5xd,t + 0.5xd,t

l−1∑
i=0

x(t− l) + 1.5u(t− (l − 1))u(t) + 0.5 + αdt (15)

for t = [1, . . . , 80], order l = 2, u ∼ N (0, 0.03), and αd is set differently for each channel (α1 = 0.1, α2 = 0.065 and
α3 = 0.003). We use d to index the 3 channels.
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Algorithm 1 Generating Counterfactual Explanations

Input: data x, threshold ϵ, number of samples n and m.
Sample ypred from qϕ(y|x).
Set a target counterfactual output ycf ̸= ypred

for i = 1 to m do
Sample ui from qϕ(u|x,y)
for j = 1 to n do

Sample zij ∼ pθ(z|x,ui)
Sample yij ∼ pθ(y|zij ,ui)

end for
end for
Calculate ycf =

∑
i

∑
j yij

n×m

Set xcf = x
while |y − ycf | ≥ ϵ do

Update xcf = xcf − λ∂|y−ycf |
∂xcf

end while
return xcf

θ = [0.8, 0.4, 0];

nd ∼ Bernoulli(θd);

md ∼ Bernoulli(θd);

ηd =

{
Poisson(λ = 2) 1 if (nd == 1)

0 otherwise

gd = Sample ([T ], ηd)

xd,t = xd,t + (κd,t + θd) where κd,t ∼ N (1, 0.3) ∀t ∈ gd

yt =

{
0 t ⩽ min (gd)where md = 1
1 otherwise

(16)

Real-World Datasets. The real-world datasets also include additional patient information such as age, gender and race. The
age range is [44, 90] for SHHS, [54, 95] for MESA and [71, 90] for SOF. In total, there are 2,651, 2,055 and 453 patients in
SHHS, MESA, and SOF, respectively, with an average of 1,043 breathing signal segments (approximately 8.7 hours).

C.2. Details on Baselines

We use the following five types of state-of-the-art baselines:

• Gradient-based methods. Regularized Gradient Descent (RGD) (Wachter et al., 2017a) directly models p(y|x) and
provide the explanation by modifying input with gradients along with L1 regularization; it is therefore it is an actionable
explanation method. Gradient-weighted Class Activation Mapping (GradCAM) (Selvaraju et al., 2017) is originally
designed to models with convolutional layers. We added convolutional layers to our model to adapt GradCAM for our
time series data. Gradient SHapley Additive exPlanations (GradSHAP) (Lundberg & Lee, 2017a) is a game theoretic
approach that uses the expectation of gradients to approximate the SHAP values.

• Perturbation-based method. Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro et al., 2016) is a local
interpretation approach based on the local linearity assumption and provides explanations by fitting the output of the
model given locally perturbed input.

• Distribution shift method. Feature Importance in Time (FIT) (Tonekaboni et al., 2020) is a time-series back-box
model explanation method that evaluates the importance of the input data based on the temporal distribution shift and
unexplained distribution shift.

• Association rule method. Case-crossover APriori (CAP) (Dhaou et al., 2021) applies association rule mining algorithm,
Apriori, to explore the causal relationship in time-series data.
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Figure 5. Qualitative results from FIT in the Spike dataset.
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Figure 6. Qualitative results on FIT in a MESA intra-dataset setting.

• Generative method. Counterfactual Residual Generative Adversarial Network (CounteRGAN) (Nemirovsky et al.,
2022) combines a Residual GAN (RGAN) and a classifier to generate counterfactual output. The generated residual
output is considered as the result of the do operation. CounteRGAN is an actionable explanation method.

D. Additional Results
Results on the Spike Dataset. Note that methods such as FIT are not an actionable explanation method. It cannot provide
counterfactual explanation xcf that could shift the model prediction from ypred to ycf ; it can only provide importance
scores to explain the current prediction ypred. Fig. 5 shows the importance scores produced by FIT to explain the same
model in Fig. 3 in the Spike dataset.

Results on Real-World Datasets. As FIT cannot provide actionable explanations, the importance scores produced by FIT
to explain the same model in Fig. 4 in real-world dataset are separately shown in Fig. 6.

Table 7∼11 show more detailed CCR results with different counterfactual action settings and dataset settings. Table 12
shows detailed counterfactual accuracy for each dataset settings and each counterfactual action settings.

Table 7. CCR for different counterfactual action settings (e.g., A→D means ‘Awake’→‘Deep Sleep’) in SOF.

A→D L→D R→D R→A D→A L→A Average

CounteRGAN 1.356 1.138 1.165 1.127 0.908 1.060 1.126
RGD 0.996 1.103 1.174 0.951 1.108 1.194 1.088

GradCAM 1.012 0.926 0.644 0.727 1.012 1.003 0.887
GradSHAP 0.843 1.177 1.219 0.913 0.843 0.981 0.996

LIME 1.220 0.857 1.095 0.936 1.220 1.139 1.078
FIT 1.064 1.150 1.169 1.202 1.064 0.667 1.053
CAP 0.989 0.952 1.019 1.139 0.989 0.689 0.963

CounTS (Ours) 1.179 1.161 1.240 1.475 1.245 1.387 1.281
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Table 8. CCR for different counterfactual action settings in SHHS+SOF→ MESA.

A→D L→D R→D R→A D→A L→A Average

CounteRGAN 1.381 1.379 1.068 1.373 1.355 1.158 1.285
RGD 1.226 1.130 1.089 1.215 1.177 1.293 1.188

GradCAM 1.056 1.014 0.743 1.218 1.056 1.101 1.031
GradSHAP 1.174 0.822 1.046 0.948 1.174 0.988 1.025

LIME 0.904 1.246 1.138 1.017 0.904 0.836 1.007
FIT 1.143 1.228 1.193 1.206 1.143 0.938 1.142
CAP 0.969 1.179 0.947 1.418 0.969 0.703 1.031

CounTS (Ours) 1.391 1.331 1.253 1.470 1.465 1.355 1.377

Table 9. CCR for different counterfactual action settings in MESA.

A→D L→D R→D R→A D→A L→A Average

CounteRGAN 1.183 1.345 1.160 1.117 0.974 1.200 1.163
RGD 1.159 1.088 1.149 1.204 1.190 1.207 1.166

GradCAM 1.078 0.790 0.419 0.954 1.078 0.977 0.883
GradSHAP 0.885 1.027 1.039 1.273 0.885 1.145 1.042

LIME 0.903 1.003 0.930 1.233 0.903 0.952 0.987
FIT 1.210 1.118 1.024 1.082 1.210 0.887 1.089
CAP 0.786 1.001 1.176 1.243 0.786 0.783 0.962

CounTS (Ours) 1.213 1.309 1.294 1.526 1.350 1.285 1.329

Table 10. CCR for different counterfactual action settings in MESA+SOF→SHHS.

A→D L→D R→D R→A D→A L→A Average

CounteRGAN 1.317 1.157 1.281 1.300 1.270 1.060 1.231
RGD 1.193 1.266 1.115 1.313 1.304 1.255 1.241

GradCAM 1.131 1.093 0.725 1.306 1.131 0.953 1.056
GradSHAP 1.025 0.910 1.092 0.886 1.025 0.910 0.975

LIME 1.018 1.092 1.118 0.944 1.018 0.930 1.020
FIT 1.270 1.259 1.105 1.263 1.270 0.991 1.193
CAP 0.994 0.819 1.033 0.953 0.994 0.777 0.929

CounTS (Ours) 1.301 1.452 1.167 1.560 1.417 1.443 1.390

Table 11. CCR for different counterfactual action settings in SHHS+MESA→SOF.

A→D L→D R→D R→A D→A L→A Average

CounteRGAN 1.210 1.050 1.034 1.403 1.065 1.248 1.153
RGD 1.183 0.993 1.015 1.260 1.155 1.201 1.135

GradCAM 1.108 1.018 1.020 1.215 1.108 1.286 1.126
GradSHAP 0.983 0.929 0.780 1.044 0.983 0.728 0.908

LIME 0.738 1.051 1.199 1.155 0.738 0.708 0.932
FIT 1.110 1.175 0.954 1.206 1.110 0.876 1.072
CAP 1.106 0.951 0.833 1.145 1.106 1.060 1.034

CounTS (Ours) 1.203 1.266 1.202 1.395 1.472 1.341 1.313
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Table 12. Couterfactual accuracy for each dataset settings and each counterfactual action settings.
Method A→D L→D R→D R→A D→A L→A Average

SHHS+MESA
↓

SOF

RGD 0.867 0.903 0.921 0.932 0.931 0.922 0.913
CounteRGAN 0.848 0.917 0.903 0.917 0.896 0.900 0.897

FIT 0.285 0.296 0.328 0.384 0.285 0.348 0.331
CounTS (Ours) 0.868 0.893 0.929 0.918 0.920 0.913 0.916

MESA+SOF
↓

SHHS

RGD 0.828 0.882 0.916 0.910 0.903 0.890 0.887
CounteRGAN 0.828 0.869 0.920 0.867 0.880 0.875 0.868

FIT 0.334 0.263 0.374 0.354 0.334 0.348 0.327
CounTS (Ours) 0.837 0.878 0.923 0.899 0.899 0.890 0.887

SHHS+SOF
↓

MESA

RGD 0.882 0.898 0.933 0.910 0.938 0.888 0.907
CounteRGAN 0.872 0.878 0.926 0.905 0.901 0.897 0.880

FIT 0.335 0.269 0.301 0.357 0.335 0.397 0.346
CounTS (Ours) 0.882 0.888 0.936 0.910 0.930 0.881 0.889

SOF

RGD 0.823 0.820 0.919 0.856 0.861 0.891 0.862
CounteRGAN 0.831 0.800 0.899 0.867 0.832 0.875 0.844

FIT 0.257 0.328 0.311 0.328 0.257 0.310 0.248
CounTS (Ours) 0.813 0.831 0.907 0.843 0.864 0.881 0.852

SHHS

RGD 0.880 0.892 0.940 0.944 0.887 0.900 0.907
CounteRGAN 0.841 0.854 0.916 0.913 0.888 0.875 0.888

FIT 0.335 0.272 0.353 0.337 0.335 0.348 0.322
CounTS (Ours) 0.868 0.880 0.930 0.931 0.875 0.889 0.903

MESA

RGD 0.846 0.888 0.912 0.907 0.909 0.888 0.892
CounteRGAN 0.828 0.869 0.920 0.867 0.880 0.875 0.868

FIT 0.290 0.316 0.320 0.307 0.290 0.301 0.294
CounTS (Ours) 0.837 0.878 0.903 0.899 0.899 0.890 0.887

17


