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Abstract

Interpretable time series prediction is crucial for
safety-critical areas such as healthcare and au-
tonomous driving. Most existing methods fo-
cus on interpreting predictions by assigning im-
portant scores to segments of time series. In
this paper, we take a different and more chal-
lenging route and aim at developing a self-
interpretable model, dubbed Counterfactual Time
Series (CounTS), which generates counterfactual
and actionable explanations for time series pre-
dictions. Specifically, we formalize the prob-
lem of time series counterfactual explanations,
establish associated evaluation protocols, and pro-
pose a variational Bayesian deep learning model
equipped with counterfactual inference capabil-
ity of time series abduction, action, and pre-
diction. Compared with state-of-the-art base-
lines, our self-interpretable model can generate
better counterfactual explanations while main-
taining comparable prediction accuracy. Code
will be available at https://github.com/Wang-ML-
Lab/self-interpretable-time-series.

1. Introduction

Deep learning (DL) has become increasingly prevalent, and
there is naturally a growing need for understanding DL pre-
dictions in many decision-making area, such as healthcare
diagnosis and public policy-making. The high-stake nature
of these areas means that these DL predictions are con-
sidered trustworthy only when they can be well explained.
Meanwhile, time-series data has been frequently used in
these areas (Zhao et al., 2021; Jin et al., 2022; Yang et al.,
2022), but it is always challenging to explain a time-series
prediction due to the nature of temporal dependency and
varying patterns over time. Moreover, time-series data often
comes with confounding variables that affect both the input
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and output, making it even harder to explain predictions
from DL models.

On the other hand, many existing explanation methods are
based on assigning importance scores for different parts
of the input to explain model predictions (Ribeiro et al.,
2016; Lundberg & Lee, 2017b; Chen et al., 2018; Wang
et al., 2019b; Weinberger et al., 2020; Plumb et al., 2020).
However, understanding the contribution of different input
parts are usually not sufficiently informative for decision
making: people often want to know what changes made to
the input could have lead to a specific (desirable) prediction
(Wachter et al., 2017b; Goyal et al., 2019; Nemirovsky et al.,
2022). We call such changed input that could have shifted
the prediction to a specific target actionable counterfactual
explanations. Below we provide an example in the context
of time series.

Example 1 (Actionable Counterfactual Explanation).
Suppose there is a model that takes as input a time se-
ries of breathing signal x € RT from a subject of age
u = 60 to predict the corresponding sleep stage as yP"*% =
‘Awake’ € {‘Awake’, ‘Light Sleep’, ‘Deep Sleep’}. Typical
methods assign importance scores to each entry of X to
explain the prediction. However, they do not provide action-
able counterfactual explanations on how to modify x to x°f
such that the prediction can change to yf = ‘Deep Sleep’.
An ideal method with such capability could provide more
information on why the model make specific predictions.

Actionable counterfactual explanations help people under-
stand how to achieve a counterfactual (target) output by
modifying the current model input. However, such expla-
nations may not be sufficiently informative in practice, es-
pecially under the causal effect of confounding variables
which are often immutable. Specifically, some variables can
hardly be changed once its value has been determined, and
suggesting changing such variables are both meaningless
and infeasible (e.g., a patient age and gender when modeling
medical time series). This leads to a stronger requirement:
a good explanation should make as few changes as possible
on immutable variables; we call such explanations feasible
counterfactual explanations. Below we provide an example
in the context of time series.

Example 2 (Feasible Counterfactual Explanation). In Ex-
ample 1, age u is a confounder that affects both x and
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y since elderly people (i.e., larger u) are more likely to
have irregular breathing x and more ‘Awake’ time (i.e.,
y = ‘Awake’) at night. To generate a counterfactual ex-
planation to change yP"°% to ‘Deep Sleep’, typical methods
tend to suggest decreasing the age u from 60 to 50, which
is infeasible (since age cannot be changed in practice). An
ideal method would first infer the age u and search for a
feasible counterfactual explanation x°¥ that could change
yP"¢4 to ‘Deep Sleep’ while keeping u unchanged.

In this paper, we propose a self-interpretable time se-
ries prediction model, dubbed Counterfactual Time Series
(CounTS), which can both (1) perform time series predic-
tions and (2) provide actionable and feasible counterfactual
explanations for its predictions. Under common causal struc-
ture assumptions, our method is guaranteed to identify the
causal effect between the input and output in the presence
of exogenous (confounding) variables, thereby improving
the generated counterfactual explanations’ feasibility. Our
contribution is summarized as follows:

* We identify the actionability and feasibility require-
ments for generating counterfactual explanations for
time series models and develop the first general self-
interpretable method, dubbed CounTsS, that satisfies
such requirements.

* We provide theoretical guarantees that CounTS can
identify the causal effect between the time series input
and output in the presence of exogenous (confounding)
variables, thereby improving feasibility in the gener-
ated explanations.

» Experiments on both synthetic and real-world datasets
show that compared to state-of-the-art methods,
CounTS significantly improves performance for gener-
ating counterfactual explanations while still maintain-
ing comparable prediction accuracy.

2. Related Work

Interpretation Methods for Neural Networks. Various
attribution-based interpretation methods have been proposed
in recent years. Some methods focused on local interpreta-
tion (Ribeiro et al., 2016; Lundberg & Lee, 2017b; Plumb
et al., 2018; Chen et al., 2018; Wang et al., 2019b) while
others are designed for global interpretation (Ghorbani et al.,
2019; Natesan Ramamurthy et al., 2020). The main idea
is to assign attribution, or importance scores, to the input
features in terms of their impact on the prediction (output).
For example, such importance scores can be computed us-
ing gradients of the prediction with respect to the input
(Selvaraju et al., 2017; Lundberg & Lee, 2017a; Shrikumar
et al., 2017; Sundararajan et al., 2017). Some interpretation
methods are specialized for time series data; these include

perturbation-based (Pan et al., 2021), rule-based (Rajapak-
sha & Bergmeir, 2022), and attention-based methods (Heo
etal., 2018; Lim et al., 2021). One typical method, Feature
Importance in Time (FIT), evaluates the importance of the
input data based on the temporal distribution shift and un-
explained distribution shift (Tonekaboni et al., 2020). How-
ever, these methods can only produce importance scores
of the input features for the current prediction and there-
fore cannot generate counterfactual explanations (see Sec. 5
and Appendix D for empirical results).

Counterfactual Explanations for Time Series Models.
There also works that generate counterfactual explanations
for time series models. (Dhaou et al., 2021) proposed an
association-rule algorithm to explain time series prediction
by finding the frequent pairs of timestamps and generat-
ing counterfactual examples. (Nemirovsky et al., 2022)
proposed a general explanation framework that generates
counterfactual examples using residual generative adver-
sarial networks (RGAN); it can be adapted for time series
models. However, these works either fail to generate realis-
tic counterfactual explanations (due to discretization error)
or fail to generate feasible counterfactual explanations for
time series models. In contrast, our CounTS as a principled
variational causal method (Wang et al., 2020; Mao et al.,
2021b; Gupta et al., 2021) can naturally generate realistic
and feasible counterfactual explanations. Such advantages
are empirically verified in Sec. 5.

Bayesian Deep Learning and Variational Autoencoders.
Our work is also related to the broad categories of vari-
ational autoencoders (VAEs) (Kingma & Welling, 2013)
(which use inference networks to approximate posterior dis-
tributions) and Bayesian deep learning (BDL) (Wang et al.,
2015; Wang & Yeung, 2016; Wang, 2017; Huang et al.,
2019; Wang et al., 2019a; Wang & Yeung, 2020; Ding et al.,
2022) models (which use a deep component to process high-
dimensional signals and a task-specific/graphical compo-
nent to handle conditional/causal dependencies). (Lin et al.,
2022) proposed the first VAE-based model for generating
causal explanations for graph neural networks. (Louizos
et al., 2017; Pawlowski et al., 2020) proposed the first VAE-
based models for performing causal inference and estimat-
ing treatment effect. However, none of them addressed
the problem of counterfactual explanation, which involves
solving an inverse problem to obtain the optimal counterfac-
tual input. In contrast, our CounTsS is the first VAE-based
model to address this challenge, with theoretical guaran-
tees and promising empirical results. From the perspective
of BDL (Wang & Yeung, 2016; 2020), CounTS uses deep
neural networks to process high-dimension signals (i.e., the
deep component in (Wang & Yeung, 2016)) and uses a
Bayesian network to handle the conditional/causal depen-
dencies among variables (i.e., the task-specific or graphical
component in (Wang & Yeung, 2016)). Therefore, CounTS
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is also the first BDL model for generating cot
explanations.

3. Preliminaries

Causal Model. Following the definition in (P

a causal model is described by a 3-tupple M =

U is a set of exogenous variables {u1, ..., Um
determined by any other variables in this cause

is a set of endogenous variables {v1,...,v,} wa are ue-
termined by variables in U U V. We assume the causal
model can be factorized according to a directed graph where
each node represents one variable. F'is a set of functions
{f1,.-., fn} describing the generative process of V:

U = fi(paiaui)ai = 1a"'7na

where pa; denotes direct parent nodes of v;.

Counterfactual Inference. Counterfactual inference is
interested in questions like “observing that X = x and Y =
y, what would be probability that Y = y°f if the input X
had been x¢/?”. Formally, given a causal model (U, V, F')
where Y, X € V, counterfactual inference proceeds in three
steps (Pearl, 2009):

1. Abduction. Calculate the posterior distribution of
u given the observation X = x and Y = y, ie.,
PulX =z,Y =y).

2. Action. Perform causal intervention on the variable X,
ie., do(X = z¢°f).

3. Prediction. Calculate the counterfactual probability
P(Yx—ger(u) = yT) with respect to the posterior
distribution of P(u|X = z,Y = y).

Putting the three steps together, we have
P(Yx_per =y X =2,Y =)
=3 P(¥x_per () = y*) Plule.y).

where 2°/ can be an counterfactual explanation describing
what would have shifted the outcome Y from y to 3¢/ .

4. Method

In this section, we formalize the problem of counterfactual
explanations for time series prediction and describe our
proposed method for the problem.

Problem Setting. We focus on generating counterfactual
explanations for predictions from time series models. We
assume the model takes as input a multivariate time series
x; € RPXT and predicts the corresponding label y;, which
can be a categorical label, a real value, or a time series
y: € RT. Given a specific input x; and the model’s pre-
diction y?"*, our goal is to explain the model by finding

2

Figure 1. Left: The causal graph and generative model for CounTS.
Right: Inference model for CounTS.

a counterfactual time series xff # x; that could have lead
the model to an alternative (counterfactual) prediction yff .

4.1. Learning of CounTS

Causal Graph and Generative Model for CounTS. Our
self-interpretable model CounTS is based on the causal
graph in Fig. 1(left), where x € RP*Tin is the input time
series, y is the label, z € RH:=xTmid g the representation
of x, u; € Rf1xTmid ig the local exogenous variable, and
u, € R is the global exogenous variable. Both u; and
u, are confounder variables; u; can take different values in
different time steps, while uy is shared across all time steps.

This causal graph assumes the following factorization of the
generative model py (y, u;, ug, z|x):

po(y, u, ug, z|x) = pe(ur, ug)pe(zlur, ug, x)pe (ylur, ug,z), (1)

where 0 denotes the collection of parameters for the gen-
erative model, and py(u;,uy) = po(uw;)pe(uy). Here
po(z|uy, ug, x) and py(y|u;, u,, z) are the encoder and the
predictor, respectively. Specifically, we have

pG(ul) = N(OaI)a pé‘(ug) = N(Oal)a
pg(z|ul,ug,x) :N(Uz(ulaugv)(;0)7Uz(ulaug7x§ 0))7
p@(Y|ulaugaZ) = N(/J/y(u17ug,Z;B),Uy(UZ,ug7Z;0)),

where g, (+;-), 02(+;+), py (+; +), oy (+; -) are neural networks
parameterized by 6. Note that for classification models the
predictor pg(y|u;, ug,z) becomes a categorical distribution
Cat(fy(u;,ug,2;0)), where f,(-;-) is a neural network.

Inference Model for CounTS. We use an inference model
¢4(y,u;, ug, z|x) to approximate the posterior distribution
of the latent variables, i.e., pg(u;, ug,z|x). As shown
in Fig. 1(right), we factorize ¢4(y, u;, ug, z|x) as

46 (¥, w3, ug, z|x) = 4 (¥1%)q¢ (0, ug|x, y)qe(zlx,y), (2)
qd)(ul;ug'Xa Y) = qqf)(ul‘X: Y)Q¢(ug|X7 y) (3)

where ¢ is the collection of the inference model’s parame-
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ters, and . We parameterized each factor in Eqn. 2 as

4o (y|%) = N (y (x; 8), 05 (x; ),
Gp(w|x,y) = N (p, (X, 55 ), 00, (%, y; 9)),
4o (ug|%,y) = N (ptu, (%, 55 ), 00 (%, 55 9)),

0s(2|%,y) = N (n=(x,y; 8), 02 (%, ¥; 9)),
)

where p.(+; ) and o.(+; -) denote neural networks with ¢ as
their parameters.

Evidence Lower Bound. Our CounTS uses the evi-
dence lower bound (ELBO) Lg g0 of the log likelihood
log p(y|x) as an objective to learn the generative and infer-
ence models. Maximizing the ELBO is equivalent to learn-
ing the optimal variational distribution ¢, (u;, uy, z|x) =
J 44(y,w;,uy,z|x)dy that best approximates the posterior
distribution of the label and latent variables py (u;, ug, z|x).
Specifically, we have

£ELBO = Eq(;)(y,ul,ug,z\x) [p9 (Ya u;, ug, Z|X)]
- ]Eq¢(y,ul,ug7z|x) [q¢(ya u;, ug, Z|X)]' (4)

Note that different from typical ELBOs, we explic-
itly involves y and use g4(y,u;, uy,z|x) rather than
¢s(uy, ug, z|x) (see Appendix A for details); this is to ex-
pose the factor g, (y|x) in Eqn. 2 to allow for additional
supervision on y (more details below). With the factor-
ization in Eqn. 1 and Eqn. 2, we can decompose Eqn. 4
as:

Lrrso = Eoy(yixEay uug.zlix.y) [Po (v, ug,2)] - (5)
— B, (v u,ug 150 [K Llgs (2%, ¥)|[po (z|ui, ug, )] (6)
—Eq, (v [K Llgo(w, uglx, y)||po(ur, uy)]] @)
— Eq, vix [90 (¥ %)), 8)

where each term is computed with our neural network pa-
rameterization; Fig. 2(left) shows the network structure.
Below we briefly discuss the intuition of each term.

(1) Eqn. 5 predicts the label y using u;, ug, and z inferred
from x (y is marginalized out).

(2) Eqn. 6 regularizes the inference model ¢, (z|x,y) to
get closer to the generative model pg(z|u;, uy, x).

(3) Eqn. 7 regularizes g, (u;, uy|x,y) using the prior dis-
tribution p(u;, ug).

(4) Eqn. 8 regularizes ¢, (y|x) by maximizing its entropy,
preventing it from collapsing to deterministic solutions.

Final Objective Function. Inspired by (Louizos et al.,
2017), we include an additional term (/V is the training set
size)

£,=y

to supervise ¢(y|x) using label y during training; this
helps produce more accurate estimation for u;, ug, z using

| log q(yilxi) Q)

¢s(u;, uglx,y) and g4 (z|x, y). The final objective function
then becomes

LcounTs = LELBO + ALy, (10)

where ) is a hyperparameter balancing both terms.

4.2. Inference Using CounTS

After learning both the generative model (Eqn. 1) and
the inference model (Eqn. 2) by maximizing LcounTs
in Eqn. 13, our self-interpretable CounTS can perform
inference to (1) make predictions on y using the yellow
branch in Fig. 2(left), and (2) generate counterfactual ex-
planation x¢7 for any target label y/ using the blue branch
in Fig. 2(right).

4.2.1. PREDICTION

We use the yellow branch in Fig. 2(left) to predict y. Specifi-
cally, given an input time series X, the encoder will first infer
the initial label y using g4 (y|x) and then infer (u;, uy) and
z from x and y using g, (u;, ugy, z|x,y). (0, u,) and z are
then fed into the predictor py (y|u;, ug, z) to infer the final
label y. Formally, CounTS predict the label as

pred __

Y7 = Eqy (v Bq, (i zixy) [P0 (Y, ug, 2)]. - (11)

Empirically, we find that directly using the means of ¢, (y|x)
and gy (uy, uy,2|x,y) as input to pe(y|u;, ug,z) already
achieves satisfactory accuracy.

4.2.2. GENERATING COUNTERFACTUAL EXPLANATION

We use the blue branch in Fig. 2(right) to generate counter-
factual explanations via counterfactual inference. Our goal
is to find the optimal counterfactual explanation x/ defined
below.

Definition 4.1 (Optimal Counterfactual Explanation).
Given a factual observation x and prediction yP"%, the op-
timal counterfactual explanation x°! for the counterfactual
outcome for y°f is

xef — argmax,, p(Yyx—x (1) = ycf)’

where u = (w;,uy) and the counterfactual likelihood is
defined as

P(Yaeeser (u) = y/) (12)

=> (y =y |do (x =
u

x') 7U) plulx = x,y = y"*%).

In words, we search for the optimal x¢f that would have
shifted the model prediction from y?"¢¢ to y°/ while keep-
ing (u;, uy) unchanged. Since the definition of counterfac-
tual explanations in Definition 4.1 involves causal inference
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p(zlx, u)
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Figure 2. Network structure. We omit subscripts of pg and g for clarity. Left: CounTS makes predictions on y using the yellow branch.
Right: Given the current x and y?"¢, CounT$ generates counterfactual explanation x°% for any target label y¥ using the blue branch.

with the intervention on x, we need to first identify the causal
probability p(y = y/|do(x = x), u) using observational
probability, i.e., removing ‘do’ in the equation. The theorem
below shows that this is achievable.

Theorem 4.1 (Identifiability). Given the posterior distri-
bution of exogenous variable p(u;,uy|x,y), the effect of
action p(y = y/|do(x = x'),w;,u,) can be identified
using By (zx/ u; u,) [P (ycf|z, uy, ug)].

See Appendix B.1 for the proof. With Theorem 4.1, we can
rewrite Eqn. 12 as

£cf = IEp(u|x:x,y:)r11""'fd)]Ep(z|x/,u) [p(ny ‘Za u)]7 (13)

where u = (u;,u,) and p(ujx = x,y = y?"*) is ap-
proximated by g, (ulx = x,y = y?"*?). We use Monte
Carlo estimates to compute the expectation in Eqn. 12 and
Eqn. 13, iteratively compute the gradient aéc):,f (via back-
propagation) to search for the optimal x’ in a way similar
to (Wang et al., 2019a; Mao et al., 2021a), and use it as x¢f

(see the complete algorithm in Appendix B.2).

5. Experiments

In this section, we evaluate our CounTS and existing meth-
ods on two synthetic and three real-world datasets. For each
dataset, we evaluate different methods in terms of three
metrics: (1) prediction accuracy, (2) counterfactual accu-
racy, and (3) counterfactual change ratio, with the last one
as the most important metric. These metrics take different
forms for different datasets (see details in Sec. 5.2-5.4).

5.1. Baselines and Implementations

We compare our CounTS with state-of-the-art methods
for generating explanations for deep learning models, in-
cluding Regularized Gradient Descent (RGD) (Wachter
et al., 2017a), Gradient-weighted Class Activation Map-
ping (GradCAM) (Selvaraju et al., 2017), Gradient SHap-
ley Additive exPlanations (GradSHAP) (Lundberg & Lee,
2017a), Local Interpretable Model-agnostic Explanations
(LIME) (Ribeiro et al., 2016), Feature Importance in Time
(FIT) (Tonekaboni et al., 2020), Case-crossover APriori

Table 1. Results on the toy dataset. We mark the best result with
bold face and the second best results with underline.
CounteRGAN RGD GradCAM GradSHAP LIME FIT CAP CounTS (Ours)

Pred. Accuracy (%) t 85.19 83.26
CCR 7T 1.25 1.21 1.09 113 1.2 115 097 133
Counterf. Accuracy (%) T 78.75 77.96 - - - 4562 - 70.28

(CAP) (Dhaou et al., 2021), and Counterfactual Resid-
ual Generative Adversarial Network (CounteRGAN) (Ne-
mirovsky et al., 2022) (see Appendix C.2 for more details).
Note that among these baselines, only RGD and CounteR-
GAN can generate actionable explanations. Other baselines,
including FIT (which is designed for time series models),
only provide importance scores as explanations; therefore
some evaluation metrics may not be applicable for them
(shown as ‘-’ in tables).

All methods above are implemented with PyTorch (Paszke
et al., 2019). For fair comparison, the prediction model in
all the baseline explanation methods has the same neural
network architecture as the inference module in our CounTS.
See the Appendix for more details on the architecture, train-
ing, and inference.

5.2. Toy Dataset

Dataset Description. We designed a toy dataset where
the label is affected by only part of the input. A good
counterfactual explanation should only modify this part of
the input while keeping the other part unchanged. Following
the causal graph in Fig. 1(left), we have input x € R2 with
each entry independently sampled from A (y,, 02) and an
exogenous variable u € R (as the confounder) sampled
from N (1, 02). To indicate which part of x affects the
label, we introduce a mask vector m € R!?2 with first 6
entries my.g set to 1 and the last 6 entries my.1 set to 0.
We then generate z € R!? as z = u - (m ® x) and the label
y ~ Bern(o(z'1 + u)) where o is the sigmoid function.
Here x’s first 6 entries x;.¢ is label-related and the last 6
entries X7.12 is label-agnostic.

Evaluation Metrics. We use three evaluation metrics:

e Prediction Accuracy. This is the percentage of time
series correctly predicted (yP"¢? = y) in the test set.
¢ Counterfactual Accuracy. For a prediction model f,
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Table 2. Results on the Spike dataset. We mark the best result
with bold face and the second best results with underline.

CounteRGAN RGD GradCAM GradSHAP LIME FIT CAP CounTS (Ours)

Pred. MSE | 0.128 0.117
Ccrp  2Adive 2206 2217 2043 1989 1872 1.863 1.614 2322
IActive 0705 0683 0654 0615 0473 055 0497  0.730

Counterf. MSE | 0074 0074 - - 0394 - 0.103

the generated counterfactual explanation x°f, and the
target label y°/, counterfactual accuracy is the percent-
age of time series where x°/ successfully change the
model’s prediction to y°f (i.e., f(x°/) = y°f).

¢ Counterfactual Change Ratio (CCR). This measures
how well the counterfactual explanation x°/ changes
the label-related input x;.¢ while keeping the label-
agnostic input x7.12 unchanged. Formally we use the

=161

= across the test set.
lIx7!12 =712l

average ratio of

Note that CCR is the most important metric among the three
since our main focus is to generate actionable and feasible
counterfactual explanations.

Quantitative Results. Table 1 compares our CounTS with
the baselines in terms of the three metrics. CounTS out-
performs all the baselines in terms of CCR with minimal
prediction accuracy loss. This shows that our CounTS suc-
cessfully identifies and fixes the exogenous variables » and
m to generate actionable and feasible counterfactual expla-
nations while still achieving prediction accuracy comparable
to baselines. Note that actionable methods (i.e., CounTS,
RGD, and CounteRGAN) outperforms importance score
methods (i.e., FIT, LIME, and GradSHAP). This is expected
because importance-score-based explanations can only ex-
plain the original prediction and therefore fail to infer what
change on x will shift the prediction from 3P"? to y¢7.

Our counterfactual accuracy is lower than CounteRGAN
and RGD methods. This is reasonable since these base-
lines do not infer and fix the posterior distribution p(u|x,y)
and are therefore more flexible for the generator (or back-
propagation) to modify their input to push y?"*? closer to
the target y(’f . However, such flexibility comes at the cost
of low feasibility, reflected in their poor CCR performance.

5.3. Spike Dataset

Dataset Description. Inspired by (Tonekaboni et al., 2020),
we construct the Spike synthetic dataset. In the dataset,
each time series contains 3 channel, i.e., x € R®*”. Each
channel is a independent non-linear auto-regressive mov-
ing average (NARMA) sequence with randomly distributed
spikes. The label sequence y € R starts at 0; it may switch
to 1 as soon as there is a spike observed in any of the 3 chan-
nels and remain 1 until the last timestamp. A 3-dimensional
exogenous variable u € {0,1}3 determines whether the
spike in the channel can affect the final output; if so, we
say the channel is active. Each of the three entries in u,
i.e., is sampled independently from three different Bernoulli

distributions with parameters 0.8, 0.4, and 0, respectively
(see more details on the dataset in Appendix C.1).

Evaluation Metrics. We use three evaluation metrics:

¢ Prediction MSE. We use the mean square error (MSE)
1 N . pred 2 ..
~ 2 Ilyi™ " = yill5 to measure the prediction error
in the test set with N time series.

* Counterfactual MSE. Similar to Sec. 5.2, for a predic-
tion model f, the generated counterfactual explanation
x¢f . and the tar%et label y°/, counterfactual MSE is
defined as & >°; 1 £(x)) — y¥/|12; it measures how
successfully x°/ changes the model’s prediction to ¢/ .

* CCR. For a given input x;, we set the target counter-
factual label yf‘f by shifting y?"*? by 20 timestamps
to the right. If at timestamp ¢, there is a spike in an ac-
tive channel in x; triggering the output y*™*? to switch
from O to 1, an ideal counterfactual explanation xff

should (1) suppress all spikes between [t, ¢ + 20), (2)

create a new spike at ¢ + 20 timestamp in all active

channels of the original input x;, and (3) keep all in-
active channels unchanged. Therefore the counterfac-
tual change ratio can be defined as (with N time se-

. _ 1N mieGa x|
ries): COR = 5 3 int Ja—mo(m-=NlL”

m; = [u,u,...,u] € R3*7 repeats u in each time
step to mask inactive channels.

where

Note that the scale of CCR will depend on the number of
active channels, we therefore report our results for time
series with 1 and 2 active channels. Higher CCR indicates
better performance.

Quantitative Results. Table 2 shows the results for differ-
ent methods in the Spike. Similar to the toy dataset, our
CounTS outperforms all baselines in terms of CCR, and ac-
tionable methods (i.e., CounTS, RGD, and CounteRGAN)
outperforms importance score methods (i.e., FIT, LIME, and
GradSHAP) thanks to the former’s capability of modifying
the input to shift the prediction towards the counterfactual
target label.

Interestingly, besides promising performance in terms of
CCR, our CounTsS can also improve prediction performance,
achieving lower prediction MSE. This is potentially due to
CounTS’s ability to model the exogenous variable u that
decides whether a spike in a specific channel affects the label
y. Similar to the toy datset, we notice both CounteRGAN
and RGD methods have lower counterfactual MSE (both at
0.074) than CounTS because they do not need to infer and
fix the exogenous variable u (i.e., the mask) and therefore
have more flexibility to modify the input x. Since both
CounteRGAN and RGD method are unaware of the mask,
they suffer from lower CCR and produce more unwanted
modification in inactive channels (more details below).

Qualitative Results. Fig. 3 shows an example time series as
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Figure 3. Qualitative results on the Spike dataset. Column 1 shows the original input x for CounTS, RGD, and CounteRGAN, respectively.

Column 2 shows the predictions y?"¢¢

and counterfactual (target) labels y°f. The prediction for RGD and CounteRGAN are identical

since they use the same prediction model. Column 3 shows the counterfactual input x°/. Column 4 shows the changes on input, i.e.,
x°f — x. FIT cannot provide actionable explanations (see the importance score generated by FIT in Appendix D).

a case study. In this example, only channel 1 (blue) is active
and thus the spike in channel 1 at timestamp ¢t = 16 will
flip the output y from 0 to 1. Both CounTS’s and RGD’s
predictions y?"*? (blue in Column 1) are very close to the
ground truth.

Following the evaluation protocol above, we set our coun-
terfactual (target) label y°/ by shifting y?"¢ by 20 times-
tamps to the right and padding Os on the left (yellow). We
should expect an ideal counterfactual explanation to have
no spike in ¢ = [16, 36) and a new spike at ¢ = 36 in chan-
nel 1. Since channel 2 and 3 are inactive, there should not
be any changes. We can see all actionable methods (i.e.,
CounTS, CounteRGAN, and RGD) try to reduce the spikes
int = [16,36). However, CounteRGAN fails to remove
the spike at ¢ = 29; both RGD and CounteRGAN makes
undesirable changes in inactive channels 2 and 3. Compared
to baselines, our CounTS shows a significant advantage at
inferring the active channel and suppressing the changes in
inactive channels. This demonstrates that CounTS is more
actionable and feasible than the existing time-series explana-
tion methods. Note that FIT is not an actionable explanation
method and therefore can only provide importance scores to
explain the current prediction y?"*? (see Appendix D Fig. 5
for details).

5.4. Real-World Datasets

Dataset Description. We evaluate our model on three
real-world medical datasets: Sleep Heart Health Study
(SHHS) (Quan et al., 1997), Multi-ethnic Study of

Table 3. Average CCR for both intra-dataset and cross-dataset
settings. The average CCR is calculated over 6 counterfactual
action settings (A—D, L—D, R—D, R—A, D—A, and L—A)
for every model and dataset setting. The last row are the average
CCR over all 6 dataset settings for every method.

CounteRGAN RGD GradCAM GradSHAP LIME FIT CAP CounTS (Ours)

—SOF 1.153 1.135  1.126 0.908 0.932 1.072 1.034 1313
—SHHS 1.231 1.241 1.056 0.975 1.020 1.193 0.929 1.390
—MESA 1.285 1.188  1.031 1.025 1.007 1.142 1.031 1.377
SOF 1.126 1.088  0.887 0.996 1.078 1.053 0.963 1.281
SHHS 1.133 1.111  0.890 1.068 1.059 1.067 1.000 1.333
MESA 1.163 1.166  0.883 1.042 0.987 1.089 0.962 1.329
Average 1.182 1.155 0979 1.002 1.014 1.103 0.987 1.337

Table 4. CCR for each counterfactual action setting in SHHS.

A—-D L—-D R—»D R—A D—A L—A Average
CounteRGAN  1.119 1.144 1.055 1.298 1.125 1.059  1.133
RGD 1.006 1.130 0985 1.180 1.155 1.201 1.111
GradCAM 0.882 0.790 0.859 0954 0.882 0977  0.890
GradSHAP 1.100 1.105 0903 1.171 1.100 1.027 1.068
LIME 0855 1178 1.067 1.125 0855 1.273  1.059
FIT 0948 1.012 1215 1405 0.948 0.877 1.067
CAP 0.885 0.829 1.236 0.967 0.885 1.199 1.000
CounTS (Ours) 1.244 1.159 1349 1.515 1.324 1407 1.333

Atherosclerosis (MESA) (Zhang et al., 2018a), and Study of
Osteoporotic Fractures (SOF) (Cummings et al., 1990), each
containing subjects’ full-night breathing breathing signals.
The breathing signals are divided into 30-second segments;
each segment has one of the sleep stages (‘Awake’, ‘Light
Sleep’, ‘Deep Sleep’, ‘Rapid Eye Movement (REM)’) as
its label. In total, there are 2,651, 2,055 and 453 patients in
SHHS, MESA, and SOF, respectively, with an average of
1,043 breathing signal segments (approximately 8.7 hours).
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Corresponding to our causal graph in Fig. 1(left), x is the
original breathing signal, z is signal patterns (representation)
learned from the encoder, u can be ‘gender’, ‘age’, and
even ‘dataset index’ (‘dataset index’ will be used during
cross-dataset prediction; more details later), and y is the
sleep stage label. Intuitively, ‘gender’, ‘age’, and ‘dataset
index’ (due to different experiment instruments and signal
measurement) can have causal effect on both the breathing
signal patterns (subjects of different ages can have different
breathing frequencies and magnitudes) and sleep stages
(elderly subjects have less ‘Deep Sleep’ at night).

Evaluation Metrics. For brevity, we use abbreviations ‘A’,
‘R’, ‘L, and ‘D’ to represent the four sleep stages ‘Awake’,
‘Rapid Eye Movement (REM)’, ‘Light Sleep’, ‘Deep Sleep’,
respectively. We use three evaluation metrics:

e Prediction Metric and Counterfactual Metric are
similar to those in the toy classification dataset.

* CCR. Since ground-truth confounders are not avail-
able in real-world datasets, we propose to compute
CCR on two consecutive 30-second segments with
different sleep stages. For example, given the two
segments [X; 1,X; 2] with the corresponding two pre-
dicted sleep stages [y} ned, y; 4] = [A, D], we set the

counterfactual labels [yfﬁ,yf’;] = [A, A]; we refer
to this setting as D—A. An ideal counterfactual ex-
cf cf

planation [x;”;, x;"] should shift the model prediction
from [A, D] to [A, A] while keeping the first segment
unchanged (i.e., smaller ||x; 1 — xfﬁ”l). CCR can
therefore be computed as (with [NV segment pairs in the

testset): COR = & 37

RN EOREA T

llx:,2—x5% Il

In the experiments, we focus on cases where the target label
yfé is either ‘Awake’ or ‘Deep Sleep’ (two extremes of
sleep stages), and evaluated 6 counterfactual action settings,

namely A—D, L—D, R—D, R—A, D—A, and L—A.

Cross-Dataset and Intra-Dataset Settings. Since the three
datasets are collected with different devices and procedures,
we consider the dataset index as an additional exogenous
variable in u, which has causal effect on both the learned
representation z and the sleep stage y. This leads to two dif-
ferent settings: the intra-dataset setting (without the dataset
index confounder) and the cross-dataset setting (with the
dataset index confounder).

¢ Intra-Dataset Setting. Training and test sets are from
same dataset, and we do not involve the dataset index
as part of the exogenous variable (confounder) u.

¢ Cross-Dataset Setting. We choose two of the datasets
as the source datasets, with the remaining one as the
target dataset (e.g., MESA+SHHS—SOF). We use all
source datasets (e.g., SHHS and MESA) and 10% of
the target dataset (e.g., SOF) as the training set and
use the remaining 90% of the target dataset as the test

Table 5. Prediction accuracy for both intra-dataset and cross-
dataset settings. All baselines (e.g., RGD, CounteRGAN, and
FIT) explain the same prediction model and therefore share the
same prediction accuracy. ‘—SHHS’ means ‘MESA+SOF —SHHS’
and similarly for ‘—+MESA’ and ‘—SOF".

Method —+SOF —SHHS —MESA SOF SHHS MESA
All Baselines 0.702  0.747  0.768 0.729 0.801 0.813
CounTS (Ours) 0.719 0.753  0.741 0.732 0.789 0.799

Table 6. Average counterfactual accuracy for both intra-dataset
and cross-dataset settings. The average is calculated over all 6
counterfactual action settings.

—SOF —-SHHS —MESA SOF SHHS MESA Average

RGD 0913 0.887 0.907 0.862 0.907 0.892 0.895
CounteRGAN 0.897 0.868  0.880 0.844 0.888 0.868 0.874
FIT 0.331 0.327 0346 0.248 0.322 0.294 0.311

CounTS (Ours) 0.916 0.887  0.889 0.852 0.903 0.887 0.889

set. We treat the dataset index as part of u, which is
predicted during both training and inference.

Quantitative Results. Table 3 shows the average CCR of
different methods for both intra-dataset and cross-dataset
settings. Results show that our CounTS outperforms the
baselines in all the dataset settings in terms of the average
CCR. This demonstrates CounTS’s capability of generating
feasible and actionable explanations in complex real-world
datasets. Table 4 shows the detailed CCR for each counter-
factual action setting in SHHS, where CounTS is leading in
almost all counterfactual action settings. Detailed results for
other datasets can be found in Table 7~11 of Appendix D.

Table 5 shows the prediction accuracy for both intra-dataset
and cross-dataset settings. Similar to Table 1 and Table 2,
all baselines (e.g., RGD, CounteRGAN, and FIT) explain
the same prediction model and therefore share the same
prediction accuracy. Results show that CounTS achieves
prediction accuracy comparable to the original prediction
model. Table 6 shows the average counterfactual accuracy
for different dataset settings over 6 counterfactual action set-
tings. As in the toy and Spike datasets, RGD achieves higher
counterfactual accuracy because it does not need to infer
and fix the exogenous variable u and hence enjoys more
flexibility when modifying the input x; this often leads to
undesirable changes (e.g., breathing frequency and ampli-
tude which are related to the subject’s age), less feasible
counterfactual explanations, and therefore worse CCR per-
formance. In contrast, breathing frequency and amplitude
are potentially captured by u; and u, in CounTS and kept
unchanged (see qualitative results below). Detailed counter-
factual accuracy for every counterfactual action setting and
every dataset setting can be found in Appendix D.

Qualitative Analysis: Problem Setting. As some back-
ground on sleep staging, note that a patient’s breathing
signal will be much more periodic in ‘Deep Sleep’ than
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Figure 4. Example on real-world dataset from MESA intra-dataset
experiment. For this example, y’”e‘i is [D,A] and target ycf is
[D,D] since we assume ‘Deep Sleep’ and ‘Active’ have the most
different patterns. FIT cannot provide actionable explanations (see
the importance score generated by FIT in Appendix D).

in ‘Awake’. Fig. 4 shows an example time series from the
MESA dataset as a case study. It contains two consecutive
segments of breathing signals (60 seconds in total). The
first segment (0 ~ 30 seconds) is regular and periodic, and
therefore both CounTS and baselines correctly predict its
label as ‘Deep Sleep’ (‘D’); the second segment (30 ~ 60
seconds) is irregular and therefore both CounTS and base-
lines correctly predict its label as ‘Awake’ (‘A’). The goal is
to generate a counterfactual explanation such that the model
predicts the second segment as ‘Deep Sleep’.

Qualitative Analysis: Ideal Counterfactual Explanation.
Since a ‘Deep Sleep’ segment should be more periodic, an
ideal counterfactual explanation should keep the first seg-
ment (0 ~ 30 seconds) unchanged and maintain its period-
icity, make the second segment (30 ~ 60 seconds) more pe-
riodic (the pattern for ‘Deep Sleep’), and keep the breathing
frequency (number of breathing cycles) unchanged through-
out both segments (this is related to “feasibility” since a
patient usually has the same breathing frequency during
‘Deep Sleep’).

Qualitative Analysis: Detailed Results. Fig. 4 compares
the generated counterfactual explanations from CounTsS,
RGD, and CounteRGAN, and we can see that our CounTS’s
explanation is closer to the ideal case. Specifically:

1. The First 30-Second Segment: In the original breath-
ing signal, the first 30-second segment (0 ~ 30 sec-
onds) is periodic and contains 7 breathing cycles (i.e.,
7 periods). Our CounTS managed to keep the first 30-
second segment signal mostly unchanged, maintaining
its periodicity and 7 breathing cycles. In contrast, RGD
changes the first segment to the point that its periodic-
ity is mostly lost. CounteRGAN can maintain the first
segment’s periodicity; however it increases the number

breathing cycles from 7 to 8, making it infeasible.

2. The Second 30-Second Segment: In the original
breathing signal, the second 30-second segment (30 ~
60 seconds) is irregular since the patient is in the
‘Awake’ sleep stage. CounTS managed to make the
‘Awake’ (i.e., ‘Active’) signal much more periodic, suc-
cessfully steering the prediction to ‘Deep Sleep’. In
contrast, RGD and CounteRGAN failed to make the
second 30-second segment (30 ~ 60 seconds) more
periodic.

3. Capturing and Maintaining Global Temporal Pat-
terns: Meanwhile, we can observe that CounTS’s ex-
planation in the second 30-second segment (30 ~ 60
seconds) has a much more similar breathing frequency
(measured by the number of breathing cycles per
minute) with the first 30-second segment (0 ~ 30
seconds), compared to RGD and CounteRGAN. This
observation shows that CounTS is capable of captur-
ing global temporal pattern (the breathing frequency
of the individual) and keeping such exogenous vari-
ables unchanged in its explanation thanks to the global
exogenous variable u, in our model.

6. Conclusion

In this paper, we identified the actionability and feasibility
requirements for time series models counterfactual expla-
nations and proposed the first self-interpretable time series
prediction model, CounTsS, that satisfies both requirements.
Our theoretical analysis shows that CounTsS is guaranteed
to identify the causal effect between time series input and
output in the presence of confounding variables, thereby
generating counterfactual explanations in the causal sense.
Empirical results showed that our method achieves competi-
tive prediction accuracy on time series data and is capable
of generating more actionable and feasible counterfactual
explanations. Interesting future work includes further re-
ducing the computation complexity during counterfactual
inference, handling uncertainty in the explanation (Mi et al.,
2022), and extending our method to multimodal data.
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Supplementary Material

A. Evidence Lower Bound

We can derive the evidence lower bound (ELBO) in Eqn. 4 as follows:

log p(y|x)

log// p(y, z, u|x)dudz

po(y, u,z|x)
> Eg, (uz.ylx) [l ® Go(0,2,y[x)
p(w)ps (zu, x)ps (y|u, 2)
- 1
q¢(‘-l,zvb"|x) |:Og q(z;(uyz,y'X)

= ]Eq¢(y7ul,ug7z|x) [pe (y7 u;, ug, Z|X)] - IEq,ls(y7ul,ug7z|x) [Q(b(y, u, ug, Z‘X)]
= Eq¢(u,z,y|x) [logp(u)] + ]E%(u,zyylx) [logpg (Z|ua X)} + Iqu;(u,z,y|X) [logpg (y|ua Z)] - IEq¢(u,z,y|x) [1Og CI¢(117 z, Y\X)]
B. More Details on Counterfactual Inference

B.1. Proof on Identifiability

Theorem B.1 (Identifiability). Given the posterior distribution of exogenous variable p(u;, uy|x,y), the effect of action
p(y = yf|do(x = x'),uy, ug) can be identified using Ep(a)x’ u,u,)P (ycf|z, uy, ug).

Proof. With u = (u;, u,) and applying Rule 2 and 3 in do-calculus (Pearl, 2009), we have
p(y*']do (x = x') ,u)
— [ (52,0 (<) ) p(aldo (x') ) da

= Ep(aldo(x)u) [P (|2, do (x') ,u)]

B By [p (v |do(2), do (x') )]

P By [P (v |do(2) )]

" B [P (v 7 w)] (14)
concluding the proof. O

B.2. Counterfactual Explanation Algorithm

The pseudo-code for counterfactual explanation is shown in Algorithm 1.

C. More Details on Experiments
C.1. Details on Datasets
Spike Dataset. The generation process of the Spike dataset is summarized below:

We generate D = 3 independent channels of non-linear auto-regressive moving average (NARMA) time series data using
the following formula:
-1
Zai+1 = 05244 + 0.524, Z x(t—1)+ 1.5u(t — (I — 1)u(t) + 0.5 + aqgt (15)
i=0

fort =[1,...,80], order I = 2, u ~ N(0,0.03), and o is set differently for each channel (a; = 0.1, oz = 0.065 and
a3z = 0.003). We use d to index the 3 channels.
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Algorithm 1 Generating Counterfactual Explanations

Input: data x, threshold €, number of samples n and m.
Sample y*"¢ from g, (y|x).
Set a target counterfactual output y©/ # yPred
for i = 1tomdo
Sample u; from g4(ulx,y)
for j = 1tondo
Sample z;; ~ po(z|x, u;)
Sample y;; ~ pa(y|zij, u;)

end for
end for )
Calculate y°f = %

Set x¢/ = x
while |y — y*f| > e do
of _ e Aly—y*S]|
Update X(‘f = X(‘f — AW
end while
return x</

0 = [0.8,0.4,0];

ng ~ Bernoulli(6,);

mg ~ Bernoulli(0y);

_— Poisson(A =2) 1if (ng==1)

=0 otherwise (16)

ga = Sample ([T, 74)
Tdt = gt + ("id,t + 9d> where kg4 ~ N(l, 0.3) Vt € gq

/0 t< min(gq)where mg =1
71 1 otherwise

Real-World Datasets. The real-world datasets also include additional patient information such as age, gender and race. The
age range is [44, 90] for SHHS, [54, 95] for MESA and [71, 90] for SOF. In total, there are 2,651, 2,055 and 453 patients in
SHHS, MESA, and SOF, respectively, with an average of 1,043 breathing signal segments (approximately 8.7 hours).

C.2. Details on Baselines

We use the following five types of state-of-the-art baselines:

¢ Gradient-based methods. Regularized Gradient Descent (RGD) (Wachter et al., 2017a) directly models p(y|x) and
provide the explanation by modifying input with gradients along with L1 regularization; it is therefore it is an actionable
explanation method. Gradient-weighted Class Activation Mapping (GradCAM) (Selvaraju et al., 2017) is originally
designed to models with convolutional layers. We added convolutional layers to our model to adapt GradCAM for our
time series data. Gradient SHapley Additive exPlanations (GradSHAP) (Lundberg & Lee, 2017a) is a game theoretic
approach that uses the expectation of gradients to approximate the SHAP values.

¢ Perturbation-based method. Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro et al., 2016) is a local
interpretation approach based on the local linearity assumption and provides explanations by fitting the output of the
model given locally perturbed input.

* Distribution shift method. Feature Importance in Time (FIT) (Tonekaboni et al., 2020) is a time-series back-box
model explanation method that evaluates the importance of the input data based on the temporal distribution shift and
unexplained distribution shift.

* Association rule method. Case-crossover APriori (CAP) (Dhaou et al., 2021) applies association rule mining algorithm,
Apriori, to explore the causal relationship in time-series data.
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Figure 6. Qualitative results on FIT in a MESA intra-dataset setting.

* Generative method. Counterfactual Residual Generative Adversarial Network (CounteRGAN) (Nemirovsky et al.,
2022) combines a Residual GAN (RGAN) and a classifier to generate counterfactual output. The generated residual
output is considered as the result of the do operation. CounteRGAN is an actionable explanation method.

D. Additional Results

Results on the Spike Dataset. Note that methods such as FIT are not an actionable explanation method. It cannot provide
counterfactual explanation x°/ that could shift the model prediction from y?"*? to y°/; it can only provide importance
scores to explain the current prediction y?"°?. Fig. 5 shows the importance scores produced by FIT to explain the same
model in Fig. 3 in the Spike dataset.

Results on Real-World Datasets. As FIT cannot provide actionable explanations, the importance scores produced by FIT
to explain the same model in Fig. 4 in real-world dataset are separately shown in Fig. 6.

Table 7~11 show more detailed CCR results with different counterfactual action settings and dataset settings. Table 12
shows detailed counterfactual accuracy for each dataset settings and each counterfactual action settings.

Table 7. CCR for different counterfactual action settings (e.g., A—D means ‘Awake’— ‘Deep Sleep’) in SOF.

A—-D L—-D R—-D R—A D—A L—A Average

CounteRGAN  1.356 1.138 1.165 1.127 0908 1.060 1.126
RGD 0996 1.103 1.174 0951 1.108 1.194  1.088
GradCAM 1.012 0926 0.644 0.727 1.012 1.003  0.887
GradSHAP 0.843 1.177 1.219 0913 0.843 0.981 0.996

LIME 1.220 0.857 1.095 0936 1.220 1.139 1.078
FIT 1.064 1.150 1.169 1.202 1.064 0.667 1.053
CAP 0989 0952 1.019 1.139 0.989 0.689  0.963

CounTS (Ours) 1.179 1.161 1.240 1.475 1245 1.387 1.281
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Table 8. CCR for different counterfactual action settings in SHHS+SOF— MESA.

A—-D L—-D R—-D R—A D—A L—A Average
CounteRGAN 1381 1379 1.068 1373 1355 1.158  1.285
RGD 1226 1.130 1.089 1215 1.177 1.293 1.188
GradCAM 1.056 1.014 0.743 1.218 1.056 1.101 1.031
GradSHAP 1.174  0.822 1.046 0948 1.174 0.988 1.025
LIME 0.904 1.246 1.138 1.017 0.904 0.836 1.007
FIT 1.143 1228 1.193 1.206 1.143 0.938 1.142
CAP 0969 1.179 0947 1.418 0.969 0.703 1.031
CounTS (Ours) 1.391 1.331 1.253 1.470 1465 1355 1.377

Table 9. CCR for different counterfactual action settings in MESA.

A—-D L—-D R—D R—A D—A L—A Average
CounteRGAN  1.183 1.345 1.160 1.117 0974 1.200 1.163
RGD 1.159 1.088 1.149 1.204 1.190 1.207 1.166
GradCAM 1.078 0.790 0.419 0954 1.078 0.977 0.883
GradSHAP 0.885 1.027 1.039 1.273 0.885 1.145 1.042
LIME 0.903 1.003 0930 1.233 0.903 0.952 0.987
FIT 1.210 1.118 1.024 1.082 1.210 0.887 1.089
CAP 0.786 1.001 1.176 1.243 0.786 0.783  0.962
CounTS (Ours) 1.213 1.309 1.294 1.526 1.350 1.285 1.329

Table 10. CCR for different counterfactual action settings in MESA+SOF—SHHS.

A—-D L—-D R—D R—A D—A L—A Average
CounteRGAN 1317 1.157 1.281 1.300 1.270 1.060 1.231
RGD 1.193 1266 1.115 1313 1.304 1.255 1.241
GradCAM 1.131  1.093 0.725 1306 1.131 0.953 1.056
GradSHAP 1.025 0910 1.092 0.886 1.025 0910 0.975
LIME 1.018 1.092 1.118 0944 1.018 0.930 1.020
FIT 1.270 1259 1.105 1263 1.270 0.991 1.193
CAP 0994 0.819 1.033 0953 0.994 0.777 0.929
CounTS (Ours) 1301 1.452 1.167 1.560 1.417 1.443 1.390

Table 11. CCR for different counterfactual action settings in SHHS+MESA—SOF.

A—-D L—-D R—-D R—A D—A L—A Average
CounteRGAN  1.210 1.050 1.034 1403 1.065 1.248 1.153
RGD 1.183 0993 1.015 1260 1.155 1.201 1.135
GradCAM 1.108 1.018 1.020 1.215 1.108 1.286  1.126
GradSHAP 0983 0929 0.780 1.044 0983 0.728  0.908
LIME 0.738 1.051 1.199 1.155 0.738 0.708  0.932
FIT 1.110  1.175 0954 1.206 1.110 0.876 1.072
CAP 1.106 0951 0.833 1.145 1.106 1.060 1.034
CounTS (Ours) 1.203 1.266 1.202 1.395 1472 1.341 1.313
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Table 12. Couterfactual accuracy for each dataset settings and each counterfactual action settings.

Method A—-D L—-D R—»D R—A D—A L—A Average

RGD 0867 0903 0921 0932 0931 0922 0913

SHHSEMESA CounteRGAN ~ 0.848 0917 0903 0917 0896 0900  0.897
o FIT 0285 0296 0328 038 0285 0348 0331
CounTS (Ours) 0.868 0.893 0929 0918 0920 0913 0916

RGD 0.828 0.882 0916 0910 0903 0890  0.887

MESTSOF CounteRGAN  0.828 0869 0920 0867 0880 0875  0.868
siis FIT 0334 0263 0374 0354 0334 0348 0327
CounTS (Ours) 0.837 0878 0923 0899 0899 0.890  0.887

RGD 0.882 0.898 0933 0910 0938 0888 0907

SHHSJSOF CounteRGAN 0872 0878 0926 0905 0901 0.897  0.880
MESA FIT 0335 0269 0301 0357 0335 0397 0346
CounTS (Ours) 0.882 0.888 0936 0910 0930 0881  0.889

RGD 0.823 0820 0919 0856 0861 0891  0.862

SoF CounteRGAN  0.831 0800 0899 0.867 0832 0875 0.844
FIT 0257 0328 0311 0328 0257 0310 0248

CounTS (Ours) 0813 0.831 0907 0843 0.864 0881 0852

RGD 0.880 0.892 0940 0944 0887 0900 0.907

SIS CounteRGAN  0.841 0854 0916 0913 0.888 0875  0.888
FIT 0335 0272 0353 0337 0335 0348 0322

CounTS (Ours) 0.868 0.880 0930 0931 0875 0889  0.903

RGD 0.846 0888 0912 0907 0909 08838 0.892

MESA CounteRGAN  0.828 0869 0920 0867 0880 0875  0.868
FIT 0290 0316 0320 0307 0290 0301 0294

CounTS (Ours) 0.837 0.878 0903 0.899 0899 0.890  0.887
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