#### **Assessment for Learning**

# Helping Children Build on What They Know

Art Baroody, *University of Illinois Urbana-Champaign* 

Jim Pellegrino, University of Illinois Chicago

Paper presented at the annual meeting of American Educational Research Association, April 2023, Chicago, IL

\*Preparation of this report was supported by the National Science Foundation through Grant #1621470 and #2201939 to the first author and Grant #1813737 to the second author.

The opinions expressed are solely those of the authors and do not necessarily reflect the position, policy, or endorsement of the National Science Foundation

#### Mr. Ellis Reviews His First-Graders'

**End-of-Unit Math Test** 

nmative test )



#@\$%&!, after all that drill, they should have done better than this on the test of addition facts.

# Three Things That Would Have Helped Mr. Ellis' Students to Achieve Fluency with the Basic Sums Better

- Focus on meaning learning and memorization (instead of learning and memorization by rote).
- Use learning progressions (theory- and researchbased sequences of knowledge and thinking) to ensure new instruction is meaningful—that is, builds on what a student already knows.
- Use formative assessment to find where a child is on a learning progression and what instruction would be developmentally appropriate.

#### Meaningful Learning and Memorization

Learning the basic addition facts (or any worthwhile knowledge) is like learning Chinese. Sure, you could memorize, for example, the 18 Chinese characters below.

But consider how much easier and effective it would be to look for relations between a symbol and what you know and among the symbols. For example—

- \* Two(many) Trees = a 'Forest; three (many, many)Trees'= 'Jungle'
- \* (A man at) 'Peace' = 'Woman' (under his) 'Rodfyo 'Women(under a)'Roof'= conflict



#### Learning Progressions Can Help a Teacher Consider Prerequisite Knowledge and Whether a Task is Developmentally Appropriate

Mr. Ellis noted that many of his children were not fluent with more difficult sums such as the near-doubles 8+7 or even 4+5.

Understanding the learning progression for mental addition would have helped him recognize that children often build on what they know to devise ingenious strategies for reasoning out relatively difficult sums.

For example, children who are developmentally ready—who are already fluent with the easier facts 4+4=8 and 8+1=9 can recognize 4+5 as 4+4+1 and use their existing knowledge to quickly reason its sum is 9.

Formative Assessment Can Help a Teacher Locate Where a Child is on a Learning Progression—Whether the Pupil Has Prerequisite Knowledge For a Proposed Learning Task and, If Not, What Task Would Be Developmentally Appropriate

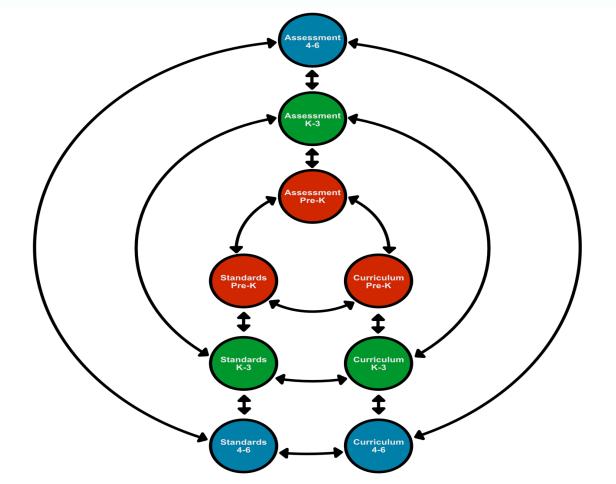
Fluency Adding to 10 (e.g., 4+5=10)

Fluency Adding doubles (e.g., 4+4=8), which is helpful in achieving fluency with near-doubles such as 4+5=9

Fluency Adding with 1 (e.g., 8+1=9), which is helpful in achieving fluency with near-doubles such as 4+5=9

Fluency with number after-relations (e.g., after comes nine), which permits fluency adding with 1

Fluency verbally counting to "ten" (necessary for fluency with number-after relations


On what step is a student already? What is an appropriate next step?

# Using Formative Assessment in Conjunction with a Learning Progression Can Help Educators Avoid Common Pitfalls

- Underestimating or overestimating children's existing knowledge. Familiarity with learning progressions can help educators better define expectations.
  - **Focusing on skills.** As learning progression highlight concepts, skills, and their interrelations, instruction based on them can be more balanced.
  - Uncertainty about what to do with a child who is struggling to learn. Learning progressions can provide a detailed map of what children must already know and the steps needed to make progress.
- A lack of coordination between levels, such as preschool and the primary grades, or even between grades within a level. (See next slide.)

Learning Progressions Suggests Educators Take a Long View: Standards (Goals), Curriculum, and Assessment Need to be Aligned Across Grade Levels (Vertically) As Well as Within a Grade Level (Laterally)

To ensure his students achieve fluency with relatively difficult sums, Mr. Ellis needs to coordinate his efforts with his district's kindergarten or even preschool teachers (as well as those in grade 2 or even higher).



### References

- The following provide more information on developmental progressions—including how early number sense supports achieving fluency with basic addition combinations:
  - Baroody, A. J., Bajwa, N. P., & Eiland, D. (2009). Why can't Johnny remember the basic facts? *Developmental Disabilities Research Reviews*, 15, 69–79. (Special issue on "Pathways to Mathematical Learning Disabilities," guest edited by M. Mazzocco.)
  - Baroody, A. J., & Purpura, D. J. (2017). Early number and operations: Whole numbers. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 308–354). National Council of Teachers of Mathematics.
  - Clements, D. H., & Sarama, J. (20219). Learning and teaching early math: The learning trajectories approach. New York: Routledge.
  - Frye, D., Baroody, A., Burchinal, M., Carver, S. M., Jordan, N. C., & McDowell, J. (2012). Teaching math to young children: A practice guide. Washington, DC: National Center for Education Evaluation and Regional Assistance (NCEE), Institute of Education Sciences, U.S. Department of Education.

## References

- The following provide more information on formative assessment:
  - National Research Council (NRC). (2011). A Framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academy Press.
  - National Research Council (NRC). (2011). A Framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academy Press.
  - Pellegrino, J. W. (2018). Assessment of and for learning. In F. Fischer, C. E. Hmelo-Silver, S. R. Goldman, & P. Reimann (Eds.), International handbook of the learning sciences (pp. 410–421). Routledge.
  - Shepard, L. A., Penuel, W. R., & Pellegrino, J. W. (2018). Using learning and motivation theories to coherently link formative assessment, grading practices, and large -scale assessment. Educational Measurement: Issues and Practice, 37(1), 21–34.

## The End

- Thank you.
- For more information e-mail:

baroody@illinois.edu or

pellegjw@uic.edu.