
The 16th International Conference on Grid, Cloud, and Cluster Computing (GCC’20), 27-30 July 2020

Regular Research Paper - The Abaco Platform: A

Performance and Scalability Study on the Jetstream Cloud

Christian R. Garcia, Joe Stubbs, Julia Looney

Anagha Jamthe, and Mike Packard

Texas Advanced Computing Center

University of Texas at Austin

Austin, TX 78758

Email: [cgarcia, jstubbs, jlooney, ajamthe, mpackard]@tacc.utexas.edu

Kreshel Nguyen

Computational Engineering

Dept of Aerospace Engineering

University of Texas, Austin

Austin, TX 78712

Email: kreshel@utexas.edu

Abstract—Abaco is an open source, distributed cloud-
computing platform based on the Actor Model of Concurrent
Computation and Linux containers funded by the National
Science Foundation and hosted at the Texas Advanced Computing
Center. Abaco recently implemented an autoscaler feature that
allows for automatic scaling of an actor’s worker pool based on
an actor’s mailbox queue length. In this paper, we address several
research questions related to the performance of the Abaco plat-
form with manual and autoscaler functionality. Performance and
stability is tested by systematically studying the aggregate FLOPS
and hashrate throughput of Abaco in various scenarios. From
testing we establish that Abaco correctly scales to 100 JetStream
“m1.medium” instances and achieves over 19 TFLOPS.

Keywords—functions-as-a-service, autoscaling, containers,
cloud computing, performance engineering.

I. INTRODUCTION

Abaco (Actor BAsed COntainers) [1] is a hosted, functions-

as-a-service Application Programming Interface (API) which

combines Linux container technology with the Actor Model of

Concurrent Computation[2]. Also referred to as a “serverless”

platform, Abaco enables the rapid development of reactive,

event driven architectures requiring minimal long-term mainte-

nance. Funded since 2017 by the National Science Foundation,

Abaco serves the national research community with the ability

to run high throughput, low latency workloads concurrently for

faster execution. In its first two years in production, Abaco

has been adopted by several projects and has supported the

invocation of over 70,000 functions collectively running for

more than 20 million seconds.

Users register new actors in Abaco by making an API

request that includes a reference to a publicly available Docker

image to use for the actor; in response, Abaco generates and

returns a URI associated with the new actor. Users can then

use the URI to send messages to the actor. For each message

sent to an actor, Abaco puts the message on an internal queue

assigned to the actor, referred to as the actor’s “mailbox”

or “inbox”. For each queued execution, as Abaco’s internal

compute resources become available, the system launches

a container from the actor’s image and injects the original

message data into the container. Most Abaco executions start

within one or two seconds of a message being sent; however,

in some cases, users will queue tens of thousands of messages

in a short period of time for a single actor, in which case, the

executions will run over several hours or days.

The resource requirements of workloads on Abaco can vary

greatly depending on the nature of the computation being

performed. Abaco provides users with different ways of inter-

acting with the API to facilitate executions. In particular, users

have the option of manually scaling the resources assigned to

an actor, or using Abaco’s autoscaling feature to dynamically

scale resources based on the actor’s mailbox size. In this paper,

we set out to experimentally determine the differences in per-

formance between manual scaling and autoscaling under two

different work loads, and metrics: “FLOPs”, which determines

the amount of work that can be achieved by a system at a given

time and “hashrate”, which is a measure of performance that

became popular with the emergence of Bitcoin [3] technology.

A. Abaco Background

The Abaco system uses internal agents referred to as “work-

ers” to facilitate the processing of actor messages. When a

worker is created, it is assigned to exactly one actor, and

it subscribes to the internal Abaco queue corresponding to

the actor’s mailbox, defined in RabbitMQ[4]. In response to

receiving a message intended for its assigned actor, a worker

starts an actor container from the defined image associated

with the actor and injects the message data into the container,

either in an environment variable in the case of text data, or a

unix domain socket in the case of binary data. The worker then

supervises the actor execution, monitoring for the actor process

to exit, and collecting resource usage and log data along the

way. A given worker does not retrieve a new message from

the actor’s queue until the current execution is finalized. It

follows that, for a given actor, the number of messages being

processed concurrently at any given time is no more than the

number of workers assigned to the actor. In particular, an actor

with one worker only processes one message at a time.

In many applications, it is critical that messages are pro-

cessed sequentially, and Abaco formalizes this notion through

a property called “stateless” provided at actor registration. If an

actor is registered with the “stateless” property set to False,

Abaco will never start more than one worker for the actor.

This feature distinguishes Abaco from many other functions-



The 16th International Conference on Grid, Cloud, and Cluster Computing (GCC’20), 27-30 July 2020

as-a-service offerings and is an important aspect of the Actor

Model more generally.

However, for actors registered with the stateless property

set to True, Abaco can increase or decrease the number of

workers associated with an actor. Abaco provides an endpoint

in its HTTP API that users can use to create additional workers

or shutdown existing workers for actor’s they have access to.

This approach is referred to as ”manual scaling”.

B. Autoscaling

The Abaco autoscaler will automatically scale the number

of workers associated with an actor according to the size of

the actor’s mailbox. The autoscaling will scale up when an

actor has at least 1 message in its inbox. Similarly, when the

actor has 0 messages in its inbox, the autoscaler will shut

down workers for that actor that are not currently overseeing

a running execution. There is also a limit to the number of

workers an actor can have. If this limit is reached, then Abaco

will stop the scale-up process until the number of workers for

that actor has reduced below the limit.

The autoscaling in Abaco has been developed on top of

Prometheus, an open-source time series database and mon-

itoring server [5]. Prometheus functions by scraping plain-

text values that it converts into time series data. Prometheus

can be configured to repeatedly scrape values from specific

APIs on a given time interval. The algorithm for autoscaling

is as follows. The Abaco metrics API endpoint produces plain

text values of the current actor inbox sizes, as well as how

many workers are assigned to each actor. Prometheus scrapes

the instantaneous mailbox sizes using the Abaco metrics

endpoint every 5 seconds. The autoscaler then uses this data to

determine whether it should scale-up, scale-down, or neither.

This allows Abaco to provide more resources to those actors

which require it, while removing resources once they are no

longer needed. If an actor has at least one message, but it has

reached its limit of workers, then neither scale-up or scale-

down will occur.

II. EXPERIMENT DESIGN

Harnessing the full potential of high performance computing

at a user level has become increasingly difficult as the field has

grown in scale and complexity. The Abaco platform attempts

to alleviate this issue by giving users an additional tool in

HPC. This study seeks to answer the research questions below

by analyzing various performance metrics in order to better

understand the use, potential, and limitations of the Abaco

platform.

A. Research Questions

• What is the difference in worker creation rate between a

manually scaled worker pool and using the autoscaler?

• What is the performance of Abaco at different node sizes

and how does it compare to the theoretical limit of the

hardware utilized?

• What are the scaling limits of the Abaco platform and

what are the causes to those limits?

B. Experiment Overview

Our experiment compares the performance of the Abaco

autoscaler versus manually scaling actor’s worker pools. Each

test run consists of three main tasks. First we must create

an actor, second we must create workers for that actor, and

third we must run the actual computations for that actor.

Actor creation is identical no matter whether the autoscaler

capability is used or not. Worker creation however varies and

can be measured separately in order to quantify the scaling

rate between manual scaling and autoscaling. The actual

computations are also possible dependent variables which can

be measured using two sets of performance metrics and allows

us to measure any differences due to workload or work type.

Additionally, we measure how different hardware allocations

affects the results by making use of Jetstream to run tests on

different node sizes.

C. Performance Metrics

In this section we describe the performance metrics utilized,

FLOPS and hashrate, along with the theoretical bounds used

in test setup.

1) FLOPS: The four basic mathematical floating point

operations performed by computers are: addition, subtraction,

multiplication, and division. The amount of above operations

performed on a per second basis is referred to as floating-

point operations per second, abbreviated as FLOPS. FLOPS

of a computer system acts as a metric for the amount of work

a computer can perform in a given time. In this experiment

we use the amount of FLOPS to compare different testing

scenarios and gauge system overheads, slowdowns, and most

importantly, scalability.

There are two parts to the FLOPS evaluation experiment.

First, a large scale distribution of relatively quick work is

set up to test the autoscaling performance of the platform.

Second, a smaller scale distribution of relatively slow work

is set up to achieve peak FLOPS by removing overhead in

worker deployment.

The ”work” mentioned above is a Python script that

when executed takes three inputs: the amount of threads

the script should utilize, standard deviation for randomiz-

ing a square matrix, and the size of the two square ma-

trices. The script then calculates the dot product of these

two random square matrices as the ”work of the experi-

ment”. This script is packaged as a Docker Hub image at

abacosamples/abaco_perf_flops[6].

To calculate the amount of FLOP in each execution we

use equation 1, where S is the input size, described above.

This equation calculates the amount of FLOP in a dot product

operation between two square matrices[7].

FLOP = (S + S − 1) ∗ S2 (1)

From there, in order to calculate the speed of one whole

trial we use equation 2 to calculate FLOPS. We do this by

taking the amount of FLOP per executions, multiplying it by

2



The 16th International Conference on Grid, Cloud, and Cluster Computing (GCC’20), 27-30 July 2020

the amount of executions, E, of each trial, and dividing by the

amount of elapsed time, t, from trial start to end.

FLOPSreal =
(2S3

− S2) ∗ E

t
(2)

2) Hashrate: The second performance metric used in our

experiment is hashrate. Hashrate is the number of hashes per

second, where a hash is one iteration of a SHA256 hashing

function, which creates a hashed block [8]. This measure of

performance became popular with the rise of Bitcoin[3], where

mining a block with certain parameters gave a reward in the

form of bitcoins. Without using an identical hashing function,

language, and algorithm to Bitcoin, which is proprietary, or

some other proof-of-work function, we are unable to compare

our hashrate with the results from other computers. Instead we

will hash a set amount of blocks and compare results gathered

through the testing.

To actually calculate hashrate of the

system, we register an actor using the

abacosamples/abaco_perf_hashrate[9] image,

available on Docker Hub. This image contains a script

that runs Python’s hashlib.sha256() function a given

number of times. Each iteration of this hashlib.sha256()

function is a hash of a block. Our experiment runs each

execution running until three million hashes are calculated.

Hashrate is given in equation 3, where Hr is hashrate, h is

hashes, and t is elapsed time from trial start to end.

Hr =
h

t
(3)

D. Obtaining Theoretical Bounds

While we have an established method of obtaining FLOPS

and hashrate, we’re still in need for a result to compare our

data against. With an addition of a comparative result, we gain

access to additional insights on system overhead and the real

limits of our testing.

We use equation 4 to obtain the theoretical limit of FLOPS

for a single server [10]. In this equation N is the number of

cores per CPU, F is the average frequency of these cores, and

O is the operations per cycle for each CPU.

FLOPStheory = Ncores ∗ Favg ∗Ocycle (4)

Plugging into the above equation knowing that the Jetstream

server cluster is using 6 cores of a v3 Intel Xeon E5-2680

turbo-boosted to 3.30GHz and running 16 operations per cycle

gives us a theoretical max speed of 316.8 GFLOPS per node.

This number now acts as the theoretical fastest speed that our

servers could ever possibly achieve.

Along with a theoretical limit for FLOPS, we also have a

practical limit, which is the speed of our experiment script

running solely on a Jetstream compute node. This is the

practical limit for our experiment and any change from that

number would be caused by overhead from Abaco, Docker,

Python, networking, etc.

Hashrate on the other hand is determined empirically and

thus does not have a theoretical max that we can calculate.

Instead, similar to FLOPS, we run our hashrate script solely

on a Jetstream compute node, which allows us to compare and

view the effects of system overhead.

III. EXPERIMENTAL SETUP

We divide the experiment setup into two parts: deployment

and validation. We first deploy the servers that run Abaco,

it’s components, and the compute nodes that Abaco will

utilize to spawn new workers on. Secondly, we run the test

suite to conduct the performance studies. Our entire testing

repository, along with Docker images is hosted on Github,

TACC/abaco-autoscaling, with READMEs detailing

the exact instructions to reproduce the experiment. In this

section we describe an overview of the experimental process

so that users can implement this method in their workflows.

A. Resource Configuration

We begin with configuring the resources needed for this

experiment. All servers are hosted by the NSF’s scalable cloud

system for XSEDE, Jetstream [11]. This service allows for

the creation and configuration of virtual machines (VMs),

or ”nodes”, which gives our experiment the ability to scale.

Jetstream uses Openstack [12] for resource management and

gives us the ability to deploy servers through the command

line interface (CLI). Although this paper will continue to

reference the resources used, it’s important to note that the

Abaco platform is capable of running on any cluster of Linux

nodes.

All nodes have the following specifications: CentOS Linux

version 7.6.1810, kernel version 3.10.0-957.5.1.el7.x86 64,

Docker version 18.09.5, and Docker Compose version 1.24.0.

All Abaco nodes are Jetstream m1.quad nodes which have 10

GB RAM, 20 GB SSD storage, and 4 vCPUs. A vCPU in

this case is one core of a Intel Xeon E5-2680 v3, which can

turbo-boost from 2.50GHz to 3.30GHz.

B. Resource Deployment

In this section we describe the automated deployment pro-

cess used by the test program to create the cluster of nodes

and install the Abaco software exercised by the test trial.

At a high-level, deployment consists of 1) creating 5 Open-

Stack instances for each of the dedicated Abaco components

(MongoDB, Redis, RabbitMQ, Prometheus, and the Abaco

web services), 2) creating a number of Openstack instances

corresponding to the cluster size of the trial (these are the

Abaco ”compute nodes”), and 3) installing and starting the

services.

All scripts used by the test program for automating the

deployment are maintained in the Github repository for

this project [13], within the /deployment folder. The

README.md file, included in that directory, provides an in-

depth description of all of the scripts available for the users.

To simplify the process of running multiple trials, the

performance test suite git repository was designed to be cloned

3



The 16th International Conference on Grid, Cloud, and Cluster Computing (GCC’20), 27-30 July 2020

to a single persistent instance running within the Openstack

network where the node clusters for the different trials will

be provisioned. Scripts that make use of the OpenStack CLI

to start or stop instances require an OpenStack authentication.

The root directory of the repository contains a shell script,

openrc-script, which prompts the user for a password

when run using command ./openrc-script. This script

sets environment variables that will authenticate a user with

OpenStack. It’s worth noting that an entire Abaco installation

can run correctly on just one node, but for the experiment,

we chose to separate Abaco’s components across five separate

nodes for resource distribution and debugging purposes.

Additionally, the test scripts make use of a few pre-defined

Openstack instance images. Using pre-built images that in-

cluded base software such as the Docker container runtime,

docker-compose, etc., significantly reduced the overall rntime

of the test suite across multiple trials, as the instances were

burned down and recreated between runs. The images used by

the tests are available on the JetStream system, and we can

make them available to import to other OpenStack clusters

upon request.

The Abaco system is not ready for use until the com-

pute nodes are created and ready for use. Creation and

management of the compute nodes was also automated

with scripts in the /deployment folder. For example, the

.up_instances script creates a specified input number of

OpenStack m1.medium compute nodes using the prebuilt

perf-abaco-compute Openstack image. The up_abaco

script starts the Abaco services (packaged as Docker con-

tainers) on the various instance. The up_abaco script is a

convenience wrapper around an Ansible playbook designed

to interact with sets of instances running on an OpenStack

cluster, also included in the repository.

C. Validation Setup

The test suite itself was also automated and requires little

human intervention once the Abaco system against which it

will run has been instantiated. The /test_suite/tests

folder within the Github repository includes all the Python

tests for this experiment. The master test script, named

run_tests.sh, runs the test for all specified node sizes,

each time deleting nodes to reach the specified amount of

nodes and re-initializing all containers.

To run the tests with the autoscaler ON, the

run_tests.sh script must be modified to uncomment

the Python scripts that begin with scaling, and the

instances must be redeployed with an updated version of the

abaco.conf file, included in the repository. It’s also worth

noting that the Prometheus component is only needed when

running with the autoscaler turned on. Complete details are

provided in the project repository on Github.

D. Validation

The execution of our experiment suite has five trials of six

jobs - three using manual scaling and three using autoscaler - at

ten different node sizes. The first of the three jobs with manual

TABLE I
WORKER CONFIGURATIONS PER TEST TYPE

Test Type max workers per host max workers per actor
Quick FLOPS 6 30

Slow FLOPS 1 1

Hashrate 6 36

scaling is a quick work FLOPS test. The test is setup with six

Abaco actors per node to have one actor per node core. Each

of these actors are given 5 executions to complete and each

of these executions consists of doing the dot product of two

square matrices of dimensions 8000 by 8000. The second test

using manual scaling is the hash test and is setup similarly

to quick work FLOPS except for the fact that each actor is

given 6 executions and each execution is meant to complete

3,000,000 SHA256 hashes. The third test using manual scaling

is the slow work FLOPS test. This test has one Abaco actor per

node so that each actor gets 6 cores to run on. Each of these

actors is given 5 executions to complete and each of these

executions consists of doing the dot product of two square

matrices of dimensions 25,000 by 25,000. The last three tests

are exactly the same as the first three, but they utilize the

Abaco autoscaler for worker management.

For this paper, we use the Abaco system configura-

tions described in table I, for each test type. These pa-

rameters are set in the abaco.conf file found in the

deployment/abaco_files folder of the repository.

These parameters act as the upper bounds of available workers

in each test. These bounds resemble configurations in TACC’s

existing production deployment of Abaco and ensure that we

don’t ruinously scale up our workers and cause bottlenecks

due to inefficient CPU distribution.

IV. FINDINGS

We conduct experiments to answer the research questions

stated in section 2.1. From the first set of experiments, we

gather data on the rate of worker creation at different node

sizes, manual and autoscaler to scale workers. The second set

of experiments do the same, except we measures two perfor-

mance metrics in order to visualize any falloff in performance.

Our experimental findings broadly follow the patterns that

we expect in terms of worker creation rate and performance

drop off. Using these insights we propose to answer the re-

search questions posed by this paper in the following sections.

A. Difference in worker scaling rate between scaling types

The largest difference between manually scaled worker pool

tests and autoscaler tests is obviously the rate of worker

creation. By making this part of the experiment independent

of any work done we can see the difference in time when

creating workers.

Figures 1 and 2 both are split into two subplots for easier

viewing and analysis. Experiments on node sizes 1 through 40

are on the left plot of each figure and node sizes 50 through

100 are on the right plot of each figure.

4



The 16th International Conference on Grid, Cloud, and Cluster Computing (GCC’20), 27-30 July 2020

Fig. 1. Rate of worker creation in the manually scaled case

In figure 1 we see two important elements. First, from 1 to

40 nodes, the manually scaled worker creation rate increases

linearly. Secondly from 50 to 100 nodes, there seems to be

a worker creation slowdown at around 200 seconds, when

around 8000 workers are created. While this particular set of

circumstances is unlikely to repeat itself in a real workflow,

we can see that the rate of worker creation reaches some upper

limit that results in a slowdown of worker creation.

Fig. 2. Rate of worker creation in the autoscaler case

In figure 2 we can see that from 1 to 40 nodes worker

creation rate increases in a relatively regular fashion and

reaches a ceiling from 50 to 100 nodes. This can likely be

attributed to the way Abaco queues up and creates workers

once they are requested. While there may be resources to

create more workers, the autoscaler requests those resources

at set time increments and caps off the worker creation rate.

Figure 3 shows us the overall average worker creation rate

for both manual and autoscaler cases and compares them.

Here we can see that the worker creation rate slows down

in the manually scaled case at around a node size of 70 when

overall average rate begins to drop off. We can also see the rate

gradually increasing in the autoscaling case as worker creation

rate rises with additional nodes and then reaches a plateau.

Fig. 3. Comparison of worker creation rates

The data gathered gives useful information to users about

the Abaco platform. We see that the manually scaled case

has a higher rate of worker creation. The necessity of this

performance is somewhat negligible however due to a use case

of this variety being particular rare. The autoscaler rate has

a ceiling of about 6.5 workers created every second. Over

the course of one minute, any node size greater than around

thirty would product around 390 workers. Ten minutes would

produce around 3900 workers. This amount of workers per

node would create a bottleneck on resources solely due to

having so many docker containers running in parallel. Even

more resource hungry would be manually scaling workers at

a rate of 15 workers per node which is possible at a node size

above 30. While possible, this would produce a prohibitively

large amount of workers on a single node.

Overall, we see that Abaco performs exceptionally well

during worker creation. Assuming a user is running demanding

tests, worker creation time would be a small fraction of total

run time and will far exceed the performance necessary for

most users. While in the manually scaled case we do run into

performance issues, it’s important to note that they arise at

around 7000 workers and are likely due to the rate of worker

creation being too fast.

B. Analysis of performance at different node sizes

One of the most important questions to ask when using

Abaco is how much performance is a user ready to trade in

for the ease of use and accessibility of the Abaco autoscaler.

Column 1 of table II is the ratio of autoscaler performance

to manually scaled performance. From the results we can see

that the overall trade-off when an execution is running is nearly

indistinguishable with the autoscaler even being marginally

better than the manually scaled performance in the quick

work tests. This statistic follows our expected patterns as the

autoscaler and manually scaled tests should only differ in how

workers are created, not performance in executions.

In the second column of table II we see that the quick

work tests are 65.1% of theoretical performance, the slow

work tests are 67.7% of theoretical performance, and the

hashrate tests does not have a theoretical performance due to

5



The 16th International Conference on Grid, Cloud, and Cluster Computing (GCC’20), 27-30 July 2020

TABLE II
PERFORMANCE RATIOS AT A NODE SIZE OF 89.

Ratio of Autoscaler Speed
to Manually Scaled Speed

Ratio of Manually Scaled
Speed to Theoretical Speed

Ratio of Jetstream Speed
to Theoretical Speed

Ratio of Manually Scaled
Speed to Jetstream Speed

Quick Work
FLOPS Test

102.4% 65.1% 71.5% 80.2%

Slow Work
FLOPS Test

99.1% 67.7% 81.2% 94.7%

Hashrate
Test

99.5% N/A N/A 92.5%

the empirical nature of hashrate testing. The third column of

table II gleans perspective on these numbers by comparing

the theoretical hardware performance to our Jetstream per-

formance. In one case, Jetstream is 71.5% of the theoretical

performance, while in the other it is 81.2% of the theoretical

performance. In essence the theoretical hardware performance

is an unreasonable metric to compare against when our testing

hardware could only practically achieve around 75% of that

performance. Thus the important metric to compare to is the

practical result, which is Jetstream performance.

In the fourth column of table II we see the manually

scaled speed as a percentage of Jetstream speed. In the quick

work tests we see 80.2% of Jetstream speed. This is due

to a combination of Docker overhead, Abaco overhead, and

overhead due to the node. For instance, running a multitude of

quick tests means that the node’s CPU is constantly going in

and out of working and must constantly change clock speed

from resting to turbo. In the other two tests performance is

92.5% and 94.7% of the Jetstream speed, which again can be

attributed to the same causes.

Figure 4 visualizes the results of table II. With this figure

we see that performance increases linearly as more nodes are

added to the tests. and there’s not any irregularities when

executions are being ran. This gives us a sense of scale

in regards to the amount of work that the Abaco platform

is capable of running. At 89 nodes, the slow FLOPS test

reaches 19 TFLOPS of performance. This is equivalent to the

theoretical performance of 13 Stampede2[14] nodes.

To answer the research question, overall the performance

trade-off of using the Abaco platform is minor as compared

to the Jetstream performance and the trade-off of using the

Abaco autoscaler is non-existent once executions are actually

being ran.

C. The scaling limits of Abaco

A question that must be asked for a researcher is, how

far can the Abaco platform scale out before issues arise and

potentially affect usage? In our test setup we ran into several

hurdles, many were easily fixed, while others will need future

improvements made to the Abaco system to ensure peak

performance no matter the case.

The first issue that we faced came from Docker Hub.

When testing the performance of the platform, if too many

workers were requested at once, Abaco would eventually begin

receiving HTTP status codes 429, ”Too Many Requests”. This

would result in a platform error that attempted to scale back the

Fig. 4. TFLOPS of different tests based on node size
Top: Lots of Quick Work Tests
Center: Slow Work Tests
Bottom: Hashrate Tests

number of workers to clear platform congestion. To alleviate

this issue going forward, Abaco should either set a capped

Docker requests rate or add an actor flag that bypasses pulling

worker images unless they are missing.

Two more issues seen were related to node resources. The

first was RabbitMQ restricting any incoming messages when a

node’s RAM was sufficiently in use. This was alleviated by set-

ting the RABBITMQ_VM_MEMORY_HIGH_WATERMARK en-

vironment variable to a higher percentage. The second re-

source issue came from MongoDB, also consuming a large

6



The 16th International Conference on Grid, Cloud, and Cluster Computing (GCC’20), 27-30 July 2020

amount of node RAM. This issue resulted in node slowdown

and eventual slow responsiveness, and was most likely the

cause of worker creation slowdowns in the case of very large

node sizes.

Another major issue that was observed involved Abaco’s use

of it’s Redis database. Abaco stores all runtime information for

a given actor under a single key in the Redis database. Initial

versions of the experiment sent all messages in a given test to

a single actor. At very high node counts, performance suffered

as a result of Redis optimistic locking when information was

being written to the actor record. This was alleviated by

changing the tests to use multiple actors (e.g., one actor per

node) and dividing the work evenly across the actors in the

experiment. Abaco is nearing completion of a set of changes

to it’s database usage to improve query and write performance

in the rare cases that one actor doing so much work could be

more beneficial.

Overall, the primary symptoms of scaling issues did not

come in any fatal outcomes, but in slowdowns of the Abaco

systems.

V. RELATED WORK

Abaco draws comparison to and inspiration from a number

of existing software systems.

A. Functions-as-a-service

There are commercial offerings from AWS Lambda [15],

Google Cloud Functions [16], Microsoft Azure Functions [17],

and IBM Apache OpenWhisk Functions [18]. However, many

of these offerings have limits on memory allocation and run-

time duration. Some also have limitations on which languages

can be used. AWS Lambda allows many different languages,

but limits users to 1536 MB of memory allocation and 300

seconds of runtime, while Google Cloud Functions only allows

Node.js and has a maximum duration of 540 seconds, and

Microsoft Azure functions has no limit on execution time limit

but limits the amount of functions running at once to 10.

The closest in spirit to Abaco would be the open source

project OpenFAAS [19], which provides functions-as-a-service

based on Docker images. Unlike Abaco, however, it requires

the function container to run an HTTP server. It also does not

include the Actor model and several other features that are

part of Abaco.

B. Containers-as-a-service

Commercial examples of containers-as-a-service include

Amazon’s Elastic Container Service (ECS) [20]and Google’s

Container Engine [21]. Although these services allow the

use of arbitrary container images, they lack the Actor-based

architecture that is part of Abaco’s design, making them better

suited for long-running server daemons.

C. Distributed Computing Platforms

Platforms such as Apache Spark [22], Apache Storm [23],

iPython parallels [24]and AWS Kinesis [25] provide features

similar to Abaco’s scientific functions. These systems even

support additional paradigms such as inter-process commu-

nication (IPC) and provide better performance. For Abaco,

scientific functions only ever attempt to achieve pleasantly

parallel compute jobs and its goal is to make them more

accessible.

VI. CONCLUSION

In this study, we tested the actual performance of Abaco

to compare it with the theoretical bounds of the system. We

measured the differences in performance and worker creation

rate between manually scaled workers and the autoscaler, and

evaluated the scaling limits of Abaco and their causes. From

our findings we conclude that the Abaco platform greatly

automatizes additional set up and frees up valuable user time

at little to no extra cost compared to a manually scaled setup.

If we were to improve upon this experiment we would want to

overhaul Abaco in order to optimize scaling to more compute

nodes. Before this experiment the scalability of Abaco was

unknown. However, with the fixes mentioned before and

hardening of some systems, Abaco has the potential to grow to

an even greater extent and give researchers an even better tool

to make use of HPC resources. Overall the study demonstrates

the practicality of using Abaco to simplify workflow and using

the Abaco autoscaler to further reduce user time needed.

ACKNOWLEDGMENT

This material is based upon work supported by the National

Science Foundation Office of Advanced CyberInfrastructure,

award number 1740288. This work used the Extreme Science

and Engineering Discovery Environment (XSEDE) Jetstream

resource at the TACC through allocation CCR190017.

REFERENCES

[1] J. Stubbs et al., “Rapid development of scalable, distributed computation
with Abaco,” Science Gateways Community Institute. 10th International
Workshop on Science Gateways, 2018.

[2] G. Agha, Actors: a model of concurrent computation in distributed

systems. Cambridge, MA, USA: MIT Press, 1986.

[3] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009.
[Online]. Available: http://www.bitcoin.org/bitcoin.pdf

[4] A. Wood, Rabbit MQ: For Starters. North Charleston, SC, USA:
CreateSpace Independent Publishing Platform, 2016.

[5] Prometheus, “Prometheus,” Feb. [Online]. Available:
https://github.com/prometheus/prometheus

[6] (2020) Docker hub flops image. [Online]. Available:
https://hub.docker.com/repository/docker/abacosamples/abaco perf flops

[7] (2020) Numpy dot product. [Online]. Available:
https://www.tutorialspoint.com/numpy/numpy dot.htm

[8] (2020) What is hashrate? [Online]. Available:
https://www.buybitcoinworldwide.com/mining/hash-rate/

[9] (2020) Docker hub hashrate image. [Online]. Available:
https://hub.docker.com/repository/docker/abacosamples/abaco perf hashrate

[10] D. M. R. Fernandez. (2020) Nodes, sockets, cores and flops, oh, my.
[Online]. Available: https://www.shorturl.at/kUZ12

[11] C. A. Stewart, T. M. Cockerill, I. Foster, D. Hancock, N. Merchant,
E. Skidmore, D. Stanzione, J. Taylor, S. Tuecke, G. Turner,
M. Vaughn, and N. I. Gaffney, “Jetstream: A self-provisioned,
scalable science and engineering cloud environment,” in Proceedings

of the 2015 XSEDE Conference: Scientific Advancements Enabled

by Enhanced Cyberinfrastructure, ser. XSEDE ’15. New York,
NY, USA: ACM, 2015, pp. 29:1–29:8. [Online]. Available:
http://doi.acm.org/10.1145/2792745.2792774

7



The 16th International Conference on Grid, Cloud, and Cluster Computing (GCC’20), 27-30 July 2020

[12] A. Shrivastwa, S. Sarat, K. Jackson, C. Bunch, E. Sigler, and T. Camp-
bell, OpenStack: Building a Cloud Environment. Packt Publishing,
2016.

[13] (2020) Github - abaco autoscaling. [Online]. Available:
https://github.com/tacc/abaco-autoscaling

[14] (2020) Stampede2. [Online]. Available:
https://www.tacc.utexas.edu/systems/stampede2

[15] (2020) Aws lambda. [Online]. Available:
https://aws.amazon.com/lambda/

[16] (2020) Google cloud foundation. [Online]. Available:
https://cloud.google.com/foundation-toolkit/

[17] (2020) Microsoft azure. [Online]. Available: https://azure.microsoft.com/
[18] (2020) Apache openwhisk. [Online]. Available:

https://openwhisk.apache.org

[19] (2020) Openfaas. [Online]. Available: https://www.openfaas.com

[20] (2020) Amazon elastic container service. [Online]. Available:
https://aws.amazon.com/ecs/

[21] (2020) What is gke? [Online]. Available:
https://www.aquasec.com/wiki/display/containers/Google+Container+Engine

[22] (2020) Apache spark. [Online]. Available: https://spark.apache.org

[23] (2019) Apache storm. [Online]. Available: http://storm.apache.org

[24] (2020) Ipython parallel. [Online]. Available: https://ipython.org/ipython-
doc/stable/parallel/parallel intro.html

[25] (2020) Amazon kinesis. [Online]. Available:
https://aws.amazon.com/kinesis/

8


