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Abstract

With recent advances in computing hardware and surges
of deep-learning architectures, learning-based deep image
registration methods have surpassed their traditional coun-
terparts, in terms of metric performance and inference time.
However, these methods focus on improving performance
measurements such as Dice, resulting in less attention given
to model behaviors that are equally desirable for registra-
tions, especially for medical imaging. This paper investi-
gates these behaviors for popular learning-based deep reg-
istrations under a sanity-checking microscope. We find that
most existing registrations suffer from low inverse consis-
tency and nondiscrimination of identical pairs due to overly
optimized image similarities. To rectify these behaviors,
we propose a novel regularization-based sanity-enforcer
method that imposes two sanity checks on the deep model
to reduce its inverse consistency errors and increase its dis-
criminative power simultaneously. Moreover, we derive a
set of theoretical guarantees for our sanity-checked image
registration method, with experimental results supporting
our theoretical findings and their effectiveness in increasing
the sanity of models without sacrificing any performance.

1. Introduction

Learning maps between images or spaces, i.e. registra-
tion, is an important task, and has been widely studied in
various fields, such as computer vision [15, 33], medical
imaging [20, 52], and brain mapping [35, 47]. With re-
cent advances in modern computing hardware and deep-
learning techniques, learning-based deep image registra-
tion methods have surpassed their traditional counterparts,
both in terms of metric performance and inference time.
Different from the traditional style of optimizing on sin-
gle image pair [12, 32, 7, 11, 2, 28, 19] using diffeomor-
phic formulations, such as elastic [4, 38], fluid mechan-
ics [7, 18, 43] or B-spline [36], existing deep registra-
tions [42, 6, 13, 29, 23, 10, 41, 25, 9] focus on maximizing
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Figure 1. FV-SDice-Dice comparisons of deep registrations on
IXI Brain dataset. The vertical axis is FV (% of folded voxels),
the horizontal axis is SDice (Self-Dice), and the circle size is Dice.
Both sanity-checked models (VM-ESC and TMBS-ESC) achieve
better diffeomorphism, competitive registration performance, and
significantly improved self-sanity, compared to other models, in-
cluding models with inverse consistency (ICNet [50], ICON [16]).

image similarities between transformed moving images and
fixed images. Despite the effectiveness of this approach, it
inevitably leads to over-optimization of image similarities
and thus introduces non-smooth mappings [6, 50, 16, 9],
where smooth transformation maps are typically desirable,
especially in the medical imaging domain.

To tackle the over-optimized issue, popular remedies [4,

,44,37,49,45, 39, 40] utilize add-ons such as Large De-
formations Diffeomorphic Metric Mapping (LDDMM) [7],
vector Stationary Velocity Field (vSVF) [39], B-spline [36],
Elastic [4] or Demons [43] to enforce diffeomorphism, re-
quiring costly and iterative numerical optimizations [8, 49,

]. Other methods [13, 17] seek probabilistic formulation
for the registration but can lead to inferior performance [9].
Nonetheless, these methods operate only on one mapping
in the direction from moving to fixed images, yet disregard-
ing the relationship between different mappings from both
directions, as shown in Appendix' Fig. A1.

lAppendixgoes https://arxiv.org/pdf/2307.09696.pdf
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Recent studies [50, 16, 31] have made great progress
in modeling the relationship, i.e. inverse consistency, for
different mappings. [50, 16] explicitly enforce the re-
lationship in a strict form for ideal inverse consistency.
However, for applications such as brain tumor registra-
tion [3], where there are regions with no valid correspon-
dences, it is impractical to apply in such a strict man-
ner. To select valid correspondences, [3 1] utilize mean er-
rors of similar anatomical locations as thresholds. How-
ever, it is always tricky to determine similar anatomical lo-
cations, especially for unsupervised registrations in med-
ical imaging [6, 13, 41]. Different from previous meth-
ods [50, 16, 31], we introduce two straightforward yet ef-
fective constraints, namely, self-sanity check to reduce er-
ror while registering identical pairs and cross-sanity check
to ensure inverse consistency. Using our sanity checks, we
test a wide range of registration models and find that de-
spite better performance such as Dice, most models are suf-
fering from over-optimization of image similarities, lead-
ing to folded transformations and low sanity awareness, as
shown in Fig. 1. Moreover, our sanity checks can be ap-
plied to different registration models, where the extensive
experiments certify that our method improves their sanity
awareness, without sacrificing any performance.

Our findings are five-fold: (1) We find that despite bet-
ter performance such as Dice, most models produce non-
smooth transformations and are less aware of sanity errors
due to over-optimization on image similarities; (2) We pro-
pose two novel sanity checks for the registration model
training and derive corresponding theoretical foundations;
(3) Our sanity checks not only help reduce the sanity er-
rors of existing models but also assist them to produce more
regular maps without diffeomorphic add-ons; (4) Our pro-
posed sanity-checks are model-agnostic. It can be deployed
to various models and is only needed during training so that
it does genereate no side effects for inference; (5) Experi-
ments on IXI [1], OASIS [26], and BraTSReg [3] datasets
verify our findings and show on par or better performance.

2. Background and Related Work

Background. Consider a set of images defined on the
domain Q2 C R™ (n-D spatial domain) of some Hilbert
space H. Let f be the fixed, and m be the moving € 2. Let
u : 0 — R”™ be a displacement vector field that maps from
H x H — H* (dual space of H) such that ¢ = u+p, where
p is the image grid of coordinates. ¢ denotes the transfor-
mation from m — f. The goal of registration is to com-
pute such transformation ¢, whose quality can be measured
by some similarity functions in the form of Sim(f,m o ).
mo  denotes that m is warped by ¢. Without loss of gener-
ality, Sim(+) can be replaced by any differentiable similarity
function, such as Normalized Cross Correlation (NCC) and
Mutual Information (MI). Alternatively, we can use other

Method Relaxation/Approximation Error Bound
ICNet [50] Hg”;*fﬁf*"‘\l% -
™7 0 o™ —id||3+
ICON [16] m -
€*|ldy ?f\/J?C(wmf)H%
DIRAC e -
[ ] %ZN|gm~>f+gf~> |2+5
|g7n~>f +§f~>7ﬂ‘2 <
Ours _ Ae(l —)BN
a(|gm—>f|2+|gf—>m|2)+ﬁ c( )6

Table 1. Comparison between different inverse consistent registra-
tion methods. Due to the space limit, the formulations are shown
only for m — f, where f — m should follow the same way.

distance functions such as sum squared error (SSD) by re-
placing — Sim(+) with Dist(-). Hereafter, we will stick to
the similarity notation for later derivations.

Let g be the mapping function, parameterized using the
model, where u = g™~/ := g(m, f) stands for the dis-
placement map from m — f. In terms of such g learned
by the model, we assume that the similarity operator is con-
cave, making — Sim convex when it is not a distance opera-
tor for a (m, f) pair. Therefore, the optimization in standard
learning-based registrations can be formulated as

min — Sim(f,mo(gm_”c—l—p))—|—)\T||Reg(gm_>f)||§7 (1

trying to find such g for a (m, f) pair in the mapping search
space. Here, Reg(:) term is added to smooth the transfor-
mation, penalizing sudden changes in the map. Most com-
monly, Reg(-) can be in the form of V(u) (first-order spa-
tial derivative) or V2(u) (second-order spatial derivative),
where L? norm of the image gradient is generally adopted
in medical registration, resulting in a H' regularization.
Definition 1 (Ideal/Strict inverse consistency). Given two
different mappings: g™~/ and g/ =™, if "7/ 0 /7™ =
id, where id denotes the identity transformation, we called
these two mappings are strictly inverse consistent. The strict
inverse consistency is equivalently formulated as ¢/ +
gf7™ =0, where g/ is back-projected from gf =™,
Relation to other inverse consistent methods. We
show the relationship between methods in Tab. 1. The for-
mulation of ICNet [50] follows strict inverse consistency
in Def. 1 with Frobenius norm. Besides strict inverse con-
sistency, ICON [16] adds regularization using the deter-
minant of the Jacobian matrix of the transformation. In-
stead of explicitly enforcing strict consistency as in [50, 16],
DIRAC [31] and our approach both modulate the inverse
problem with more relaxation. This inequality formulation
allows us to tell whether a voxel has a valid correspondence,
which is practically useful in registering image pairs with
topological changes, e.g., brain tumor registration [3 1, 30].
Different from [3 1], where means of inverse errors are uti-
lized, we closely associate our formulation with the data, al-
lowing us to show that the errors are upper bounded without
resorting to extra information to determine similar anatom-
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Figure 2. Self-sanity error maps comparison. Left: with no self-
sanity check, Right: with self-sanity check. We unify the error
maps’ scale bars for a fair comparison.

ical structures, which has not been studied in other related
works. Experimentally, our relaxation shows better perfor-
mance over various metrics. Besides, to the best of our
knowledge, our work is the first to consider the self-sanity
error directly on displacements rather than for image simi-
larities as in [23] for medical image registration studies.

3. Methodology
3.1. Self-sanity and Cross-sanity Checks

To increase the discriminative power of identical pairs
feeding into the model, we propose our self-sanity check as

9“7 =0,va € {m, f}. 2)

where the mapping function g learned using any models is
restricted to output zero displacements for identical pairs.
Such identical pairs can be filtered out using similarity mea-
surements. However, users are unlikely to perform these
filters, especially when they do not know that trained mod-
els would produce terrible predictions for identical pairs.
Hence, our self-sanity check is a natural remedy.

Next, we enforce the inverse consistency on different
mappings for g by the model. We will search for corre-
spondence in the fixed image for every point in the moving
image such that the transformations between the two im-
ages are inconsistent. For example, suppose that a point in
the space of image a is registered to the space of image b.
If we register this point from image b back to image a, the
point will arrive at the same location in image a (Def. 1).
We first define the backward displacement map as in opti-
cal flow studies [22, 27, 24], back-projected from gbﬁa

37 (p) = g7 (p + 9" b (p)), 3)

making it convenient for calculation. We then introduce our
cross-sanity check in the form of

g PR < alg R 8 @)

V(a,b) € {(m, f),(f,m)}. Here, we allow the estima-
tion errors to increase linearly with the displacement mag-
nitude with slope « and intercept 3. Instead of imposing
zero-tolerance between forward and back-projected back-
ward displacements [16, 31], we relax the inverse consis-
tency with error tolerance, defined by « and 3, to allow

Figure 3. Comparisons between strict inverse consistency trained
results (Top) and cross-sanity checked results (Botfom). Our re-
laxed sanity-checked result maintains a similar level of inverse
consistency as ™ ¥ o of 7™ is close to id transformation (sec-
ond column). We can also observe that ours produces a more reg-
ular map, compared to the folded map from the model trained with
strict inverse consistency. Best view zoomed.

occlusions which is more practical. L.e., This sanity check
states that every point p in the moving image a should be
able to map back from the fixed image b to its original place
in image a with certain error tolerance. We then prove that
this error tolerance is upper bounded.

Theorem 1 (Relaxed registration via cross-sanity check).
An ideal symmetric registration meets @® 7 o b7 = id,
defined in Def. 1. Then, a cross-sanity checked registration
is a relaxed solution to this ideal registration, satisfying

B(2—a)N
l—a

®)

lg*+ g1 <

Here, 0 < a < 1and g > 0. N is a constant, rep-
resenting the total pixel/voxel numbers. Theoretically, our
proposed cross-sanity checks can be viewed as a relaxed
version of the strict symmetric constraint, which is com-
monly used. We also derive the lower/upper bound for satis-
fying our forward/backward consistency check as shown in
Eq. (5). The derivations’ details are shown in the Appx. A.2.
To sum up, our cross-sanity check allows a series of solu-
tions to the forward/backward consistency in an enclosed

set with a radius of \/@ .

3.2. Unique Minimizer for Single Image Pair

Next, we show that there exists a unique solution for
our sanity-checked optimization, in terms of a single im-
age pair. We start with writing the standard optimization
with our proposed sanity checks in the norm form as

min —Sim(f, m o (g™ +p)) + Ar[[Reg(g™ )3,
st g+ 373 < alllg®"l13 + [1g°113) + BN,

g3 =10, ¥(a,b) € {(m, f), (f;m)}.
(6)



Theorem 2 (Existence of the unique minimizer for our re-
laxed optimization). Let m and f be two images defined
on the same spatial domain ), which is connected, closed,
and bounded in R™ with a Lipschitz boundary O). Let
g : Hx H — H* be a displacement mapping from the
Hilbert space H to its dual space H*. Then, there exists a
unique minimizer g* to the relaxed minimization problem.

The detailed proof for Thm. 2 is shown in Appx. A.3.
In summary, for a moving-fixed pair, since the relaxation
by sanity checks and data term (e.g. SSD) are convex, to-
gether with the convex search space for g, our problem has a
unique minimizer. Thus, the optimization problem is well-
conditioned by properties of our regularity constraints such
that g will not change dramatically.

3.3. Loyal Sanity-Checked Minimizer

In the next section, we further prove that the distance be-
tween the minimizer of the sanity-checked constrained op-
timization and the optimal minimizer for a single moving-
fixed image pair can be represented and controlled by our
proposed sanity checks. We first rewrite Eq. (6) as

min — Sim(b, a o (g“_’b +p))+ )\T||Reg(g”“_>b)\|§7
st [lg" 7+ 3713 < alllg®P13 + 113°7¢]13) + BN,

lg*=llz =0, ¥(a,b) € {(m, f),(f,m)}.
(N
Remark 2.1. We denote this formulation as the bidirec-
tional optimization since it operates in both directions. It is
straightforward to show that this bidirectional optimization
still satisfies Thm. 2 so that there exists a unique minimizer.
Then, with a slight abuse of notations, we define that

g/ m. (8)

g = [gm—)f’gf—)m’gm%m’

8c 8s

We can rewrite the minimization problem as

min — Sim(g) + \.||Reg(g)||3,
st |lgsll3 =0,
llge + €ell3 < allgell +1gl3) +28N. (9

Here, Sim(g) := Sim(m, f o (¢ 7™ + p)) + Sim(f,m o

(9"~ + p))zs HRegég)lI% = ||R62g(9mﬁf)||§ ;r
HReg(ng;")lz, lgsllz = ||5J”Hm||2 + H:qf%flg’
lge + &cll3 = [lg™ > + g/ =™ 13 + |lg/ =™ + g/ |3,

and |lge|[3 + [|€ll3 = I[lg™ 5 + [lg™ 7|3 +
llg/=™|13 + ||g"~™||3. Then, the optimal minimizer g.
can be written in the matrix equation as

g. = argmin — Sim(g), st Ag. =Y.
gcH
Reg(-) 0 0 0

A=|CS() 0 0 |, y=|0f}|. (10)
0 0 SS(v) 0

Here, Reg(") := [[Reg(g)l|3. CS(") = |lgc + &5 —
a(llgell3 + [|gcll3) — 28N, and SS(-) := ||g|[3. as defined
previously. T here means that we can have < 0 solutions for
the CS check as in Eq. (9), which we show will not inter-
fere with the theoretical foundations by masking in the next
section. In this way, we obtain our unique minimizer as

- A
Buanity = argmin — Sim(g) + S[|Ag —yll3, (1)
geH

where A := [2\,, 2]\, 2)\;] is the vector of parameters.
Theorem 3 (Loyalty of the sanity-checked minimizer). Let
g be the optimal minimizer to the bidirectional registra-
tion problem, defined in Eq. (10), and gsanity as our sanity-
checked minimizer, defined in Eq. (11). The distance be-
tween these two minimizers can be upper bounded as

. . A
Slm(gsanity) - Slm(g*) S EHA(gsanity - g*)”% (12)

The proof is presented in Appx. A.4. We then expand the
right-hand side of Eq. (12) as

Sim(gsanity) - Shn(g*) S )\rHReg(gsanity)Hg
+ /\SHSS(gsanity)Hg) + )‘CHCS(gsanity)H%v
Reg(g«) =0, SS(g.) =0, CS(g.) = 0.
(13)
Empirically, the first two terms contribute relatively less
(10x smaller) than the cross-sanity error (See Experi-
ments). Thus, we focus on the CS term here. Following
Thm. 1, [|CS(gsanity)||3 is upper bounded in the form of

where

|ICS (8sanity)|[5 < 2(1 — @) BN. (14)

Here, 0 < o < 1 and 8 > 0 ensure the inequality’s di-
rection, where the multiplication of fwo accounts for cross-
sanity errors from two directions, i.e., from moving im-
age to fixed image and also fixed image to moving image.
Thus, t. We put the full derivation of CS error bound in
the Appx. A.5. In a nutshell, we prove that by satisfying
the cross-sanity check, we have an upper bound for the CS
error, constraining the relationship between two displace-
ments from different directions via parameters « and f3.

Lemma 4 (Upper-bound of distance between optimal min-
imizer and sanity-checked minimizer). Let g, and gsanity
respectively be the optimal minimizer and the constrained
minimizer with cross-sanity check, then we have an upper
bound for the distance between such two minimizers as

Sim(sanity) — Sim(g«) < 2A.(1 — a)SN. (15)

The Lemma 4 follows Thm. 3 and Eq. (14) (upper bound
of CS error). That said, the loyalty w.r.t the distance of the
constrained minimizer is controlled by the combination of
a, (3, and the weight parameter A..



Figure 4. Training a sanity-checked model. @ denotes spatial
warping, e.g., warped m is that we warp moving image m using
the transformation map calculated from g™/,

Interpretation of derived upper bound. By Lemma 4,
we prove that if we average on the total number of voxels
and also two directions, the similarity distance between the
optimal minimizer and our sanity-checked minimizer per
pixel/voxel is upper bounded by A\.(1 — «)S. That being
said, to satisfy our sanity checks, and thus maintain the loy-
alty to the optimal minimizer, A.(1 — «)/ should be small.
Numerically speaking, for example, if « = 0.1 and 5 = 10,
we have (1 — )8 = 9. This distance of 9 is extremely large
for this delicate image registration task, causing the con-
strained minimizer to be untrustworthy. Therefore, we need
to adopt a relatively small loss weight A, e.g. A = 0.001,
to bound the distance between two minimizers tightly. This
observation from our proven theoretical upper bound also
coincides with our sanity loss weight ablation study.

3.4. Sanity-checked Registration Training

We show our sanity-checked training pipeline in Fig. 4.
We introduce each loss in the subsection. The self-sanity
check can be formulated into a loss function form as

1 m m
Late = 5 (19" 113 + llg"13)- (16)

So that the self-sanity loss penalizes the squared differences
between predicted displacement maps and the ideal ones.
Next, we use m — f direction as an example (f — m
direction follows the same principle) to formulate the pro-
posed cross-sanity check loss. We calculate for every voxel
and define a binary mask M™ 7 in the form of

a7

Mt = 0 if satisfies the cross-sanity check,
"~ |1 otherwise.

An interpretation of this binary mask M™7/ is that it
records violations of the cross-sanity check (Eq. (4)) for

M Top: M™>/ M Bottom: M/ ™

Figure 5. Mask evolution during training. Overall, as training
proceeds, violators of the cross-sanity check are decreasing.

each individual point. In this way, < 0 solution in Eq. (10)
will not challenge the theoretical formulations since these
points are masked out. Thus, we can formulate the pro-
posed cross-sanity check in the form of a loss function of

£m—>f — ||Mm—>f ® (gm—>f +§f—>m)||§ _B||Mm—>f||%

Cross
—a(M™ 0 g+ (IMT T o gl ).
(13)
The final Leross = 3(L0o2d + L12M). Here, ® denotes
element-wise multiplication so that we only retain points
violating the cross-sanity check. In this case, the loss value
is only calculated for those violators, visualized as occlu-

sion masks, shown in Fig. 5. Finally, the total loss is
Ltotal = Esim + ATﬁlreg + )\S‘Cself + )\C‘CCI‘OSS' (19)

Here, Lgm as NCC loss, Lyeg as ||V (u)|[3, and A, = 1,
following standard deep registrations [0, 9]. If not specified
otherwise, A; = 0.1 and A, = 0.001. While training, the
model optimizes the total loss L, on different moving-
fixed image pairs (m, f) in the training set D as

min  min Liotal- (20)
(m,f)eD geH
In this way, we fulfill our novel regularization-based sanity-
enforcer formulation for training a registration model.

4. Experiments

Evaluation metrics. We study model behaviors in a
wide range of metrics. For the main metric, we use dice
to measure how fit is the transformed segmentation to its
ground truth, following previous studies. To study the
model taking an identical pair as inputs, we also report
self dice (SDice), i.e., the dice when registering the mov-
ing image to itself. For pre-operative and post-recurrence
registration, we measure the mean target registration error
(TRE) of the paired landmarks with Euclidean distance in
millimeters and also self mean registration error (STRE) to
study the self-sanity of the models. Besides, we report 95%
Hausdorff Distance (HD95) as in [9], which measures the
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Figure 6. Comparisons between different models on IXI dataset.

95th percentile of the distances between boundary points
of the transformed subject and the actual subject. We fol-
low [3, 31] to report robustness (ROB) for a pair of scans as
the relative number of successfully registered landmarks.

For diffeomorphism measurements, we report the per-
centage of folded voxels (FV) whose Jacobian determinant
< 0, the Absolute Value of Negative Jacobian (AJ) where
we sum up all negative Jacobian determinants, and the Stan-
dard Deviation of the logarithm of the Jacobian determinant
(SDlogJ). All these three Jacobian determinant-related met-
rics reflect how regular are the transformation maps.

For quantifying sanity errors, we present the mean of
self-sanity error (SSE) and the mean of cross-sanity error
(CSE), defined in Eq. (16) and Eq. (18), respectively. These
two metrics are designed to study model behaviors per the
level of each single image pair and are essential for our san-
ity analysis of different learning-based deep models.

Implemented models. We denote the bidirectional
optimization as Enclosed (E) Image registration, operat-
ing to maximize the similarity score and minimize the
spatial gradient regularization. We also have Self-sanity
checked (S) and Cross-sanity checked (C) image regis-
trations. Moreover, as proof of concept that our sanity
checks can be applied to different learning-based models,
we implement our proposed techniques on models such
as VoxelMorph [6] (VM), TransMorph-Large [9] (TM),
TransMorph-B-spline [9] (TMBS), and DIRAC [31].

4.1. Results

Atlas-to-subject registration. We split in total 576
T1-weighted brain MRI images from the Information eX-
traction from Images (IXI) [1] database into 403, 58, and
115 volumes for training, validation, and test sets. The
moving image is an atlas brain MRI obtained from [23].
FreeSurfer [14] was used to pre-process the MRI volumes.
The pre-processed image volumes are all cropped to the
size of 160x192x224. Label maps, including 30 anatom-
ical structures, are obtained using FreeSurfer for evaluat-
ing registration. Besides CNN-based models [0, 23, 10],
we also include other transformer-based deep methods [ 10,
51, 48, 46] as baselines following [9]. The comparison re-
sults are presented in Tab. 2, and qualitative comparisons

TMBS-ESC

Figure 7. Qualitative comparisons on IXI, where we mark maxi-
mum values of error maps on each top left. Best view zoomed.
(m, f)

mo " f fopl™m SSE map

CSE map

r

TM-SC

Figure 8. Comparisons on OASIS validation set. Our method
produces more regular maps for all input image pairs.

in Fig. 6. For cross-sanity check, we set « = 0.1 and
[ = 12. Overall, we can observe models with sanity checks
achieve better diffeomorphisms without impairing any Dice
performance and even improve the performance for the VM
model. We show qualitative comparisons in Fig. 7. Com-
pared to the naive counterparts, our sanity-checked model
produces more regular maps from both directions and re-
duces huge sanity errors, comparably using error heatmaps
for both self-sanity and cross-sanity errors.
Subject-to-subject registration. OASIS dataset [26,
21] contains a total of 451 brain T1 weighted MRI images,
with 394/19/38 images used for training/validation/testing
purposes, respectively. The pre-processed image volumes
are all cropped to the size of 160x192x224. Label maps for
35 anatomical structures are provided using FreeSurfer [14]
for evaluation. For the cross-sanity check, we set o = 0.1
and 8 = 10. The results are shown in Tab. 3. In terms
of main metrics, we achieve on-par performance with all
the state-of-the-art methods, further certifying our sanity
checks will not contaminate the performance of models.
We also show our qualitative comparison in Fig. 8, indi-



Method

Dice? FVl Method Dicet HD95] SDlogJ| Method Dicef HD95) SDlogl]
Affine 0.386+0.195 - VTN [25] 0.82740.013 1.722+0.318 0.121£0.015 Initial 0.56  3.86 1.50
SYN[2] 0.645+0.152 <0.01 ConAdam [41] 0.84620.016 150040304 0.06740.005 VTN [25] 080 177  0.08
NiftyReg [28] ~ 0.645+0.167 0.020+0.046 VM [6] 0.8474+0.014 1.546+0.306 0.133£0.021 ConAdam[41] 0.81  1.63 0.07
LDDMM [7]  0.680+0.135 <0.01 ClapIRN [29]  0.861+0.015 1.514+0.337 0.072+0.007 ClapIRN[29] 0.82  1.67 0.07
deedsBCV [19] 0.733+0.126 0.147£0.050 M [9] 0.8624+0.014 1.431+0.282 0.128+0.021 TM [9] 0.82  1.66 0.12
MIDIR [34] 0.742+0.128 <0.01
PVT [46] 0.72740.128 1.858--0.314 T™-SC 0.862+0.014 1.449+0.310 0.08440.005 T™-SC 0.820 1.666 0.085
CoTr [48] 0.73540.135 1.29840.342 (a) OASIS validation set results. (b) OASIS test set results.
VM [6] 0.732+0.123  1.522+0.336  Table 3. OASIS dataset results, obtained from the LEARN2REG challenge organizers [20].
VM-diff [13] 0.580+0.165 <0.01 Since the listed top-ranking methods are already enclosed, we mainly study the impact of
ICNet [50] 0.742:£0.223  0.854:+0.316 adding sanity checks, where the impact is proved to be negligible on these main metrics
CM [23] 0.737£0.123  1.719+0.382 g sanity ’ p p ghg :
ViT-V-Net [10] 0.73440.124 1.6094+0.319
nnFormer [51]  0.74740.135 1.5954+0.358 Method TRE] STRE| ROB1 Fv] Alx1 Ozi
ICON [16] 0.75240.155  0.69540.248 Initial 6.8640.996 i i i
T™ [9] 0.754+0.124 1.579+0.328
TM-diff [9] 0.594+0.163 <0.01 *DIRAC [31] 2.760+0.247 0.27440.027 0.77640.055 0.0254+0.009 4.242+2.954
TMBS [9] 0.7614+0.122 <0.01 tDIRAC-SC  2.719+0.259 0.218+0.046 0.795+£0.034 0.022+0.005 3.001+1.314
VM-ESC 0.74340.025 0478+0.101 Table 4. BraTSReg dataset results, reported as means+-deviations out of five-fold validations.
TMBS-ESC 0.762+0.023 <0.01 x: We use their code and train models until convergence. f: We implement the cross-sanity

Table 2. IXI dataset results. check to replace the inverse consistent error part of DIRAC, and add our self-sanity check.

(m, f)

fogpl=m SSE map

"DpIRAC>SC”

00

Figure 9. Example axial T1-weighted MR slices comparisons on
BraTSReg dataset. The error maps are normalized to incorporate
displacements in unit space predicted by DIRAC.

cating that our sanity-enforced image registration results in
less self-sanity error from the self-sanity error map compar-
ison and more regular maps in the deformed grid. All these
comparisons prove the efficacy of our regularization-based
sanity-enforcer to prevent both sanity errors.

Pre-operative and post-recurrence scans registration.
BraTSReg [3] dataset contains 160 pairs of pre-operative
and follow-up brain MR scans of glioma patients taken from
different time points. Each time point contains native T1,
contrast-enhanced T1-weighted, T2-weighted, and FLAIR
MRI. Within the dataset, 140 pairs of scans are associated
with 6 to 50 manual landmarks in both scans. The other 20
pairs of scans only have landmarks in the follow-up scan.
Following [31], we create a five-fold schema where each
fold has 122/10/28 for training/validation/test, respectively.
We set « = 0.01 and § = 0.03 in the cross-sanity check
since DIRAC predicts normalized displacement (range 0 to
1). We take an average of five folds to report our results in
Tab. 4. All baselines and our models use the same training
setup. We specifically focus on the model training part and
directly train all models on data downloaded from the offi-

cial website [5] without pre-affine and post-processing steps
mentioned in their paper [30]. The best model is selected on
the validation set, which has the lowest TREs. Despite the
high performance of the baseline, we can observe that the
substitution by cross-sanity check and the addition of self-
sanity check enable all metrics’ improvements to be claimed
as state-of-the-art. We also show qualitative comparisons
in Fig. 9, where the comparison between SSE error maps
demonstrates the effectiveness of our self-sanity check.

4.2. Sanity Analysis

We conduct a broad sanity analysis on a wide range
of models on the IXI dataset, including popular mod-
els (VM [6] and TM [9]), model with cycle consistency
(CM [23]), models with inverse consistency (ICNet [50]
and ICON [16]), probabilistically-formulated models (VM-
diff [13] and TM-diff [9]), and models with diffeomor-
phic add-ons (MIDIR [34] and TMBS [9]). The results
are shown in Tab. 5. We find that models with probabilis-
tic formulation or cycle consistency have higher self-sanity,
whereas the other models are insensitive to this scenario and
have an inferior SDice. However, these probabilistic for-
mulated models suffer from an relatively low Dice score,
refraining from practical usage. For CM, albeit low self-
sanity error, the correspondence error between image pairs
is not negligible. We also find it interesting that models
with diffeomorphic add-ons still suffer from large sanity er-
rors, despite their ability to produce a diffeomorphic/regular
map, caused by not modeling different mappings from both
directions. Overall, our behavior studies show that most
models suffer from inferior Dice/SDice performance, lower
diffeomorphism, or significant sanity errors. Our proposed
sanity checks improve performance from every aspect, pro-
ducing a more regular map and preventing sanity errors.



Main MetricT Diffeomorphism|  Sanity Error]
Method R . 4 0

Dice SDice FV AJx10® SSEx10" CSE
PVT [46] 0.727 0.695 1.858 3.64 5295 1943
CoTr [48] 0.735 0.846 1.298 2.10 6.28 21.37
MIDIR [34] 0.742 0.850 <0.1 <0.1 6.75 15.75
VM [6] 0.732 0.890 1.522 3.00 5.16 16.55
VM-diff [13]  0.580 1.000 <0.1 <0.1 0.13 <0.1
ICNet [50] 0.742 0.849 0.854 1.90 13.23 7.48
CM [23] 0.737 1.000 1.719 3.44 1.18 19.47
VIT-V-Net [10] 0.734 0.908 1.609 297 1452 12.98
nnFormer [51] 0.747 0.799 1.595 2.90 1331 20.68
ICON [16] 0.752  0.899 0.695 0.90 7.31 5.68
T™ [9] 0.754 0.873 1.579 2.75 85.63  19.62
TM-diff [9] 0.594 1.000 <0.1 <0.1 0.16 <0.1
TMBS [9] 0.761 0.903 <0.1 0.02 23.84  14.08
VM-ESC 0.743 1.000 0.478 0.43 <0.1 2.55
TMBS-ESC 0.762 1.000 <0.1 <0.1 <0.1 2.99

Table 5. Sanity analysis of various models on IXI dataset.

(61 [81 [6] 231 (101 [511 [501 (el o1 [o] | B AL
19.24 10.02 563 7.58 11.27 1044 346 278 2261 731\@ 0.92

Table 6. Cross-sanity Error using strict inverse consistency on
IXI dataset, i.e., 3% + g*~° = 0. We choose VM for [6] and
TMBS for [9] as our baselines. We show our results in the last
two columns. Still, we achieve state-of-the-art performance even
under strict inverse consistency for calculating cross-sanity error.

4.3. Ablation Study

Cross-sanity error under strict inverse consistency.
We testify the performance under strict inverse consistency
as in Def. 1, the same as CICE in [11], shown in Tab. 6.
The reductions of strict inverse consistency error compared
using relaxed inverse consistency are caused by many small
errors taken into account for calculating the average, where
our sanity-checked methods still show better performance,
compared to all models, including the model trained using
explicitly strict inverse consistency, e.g. [16].

Sanity checks loss weight study. We derive an upper
bound for our saner registration in Lemma 4. We show in
the study that we can utilize this upper bound to guide us
to set appropriate loss weight A, for the cross-sanity check.
For fast verification, we randomly sample 50 subjects from
the training set of the IXI dataset and validate/test in the full
validation/test set. We also include the self-sanity check
loss weight A; here for comparing purposes. The experi-
mental results are shown in Tab. 7. Compared to A., A
is insensitive to weight change. As we discussed earlier,
if we set higher loss weight to cross-sanity check, for ex-
ample, 0.01/0.001, approximately having upper bounds as
0.1/0.01, respectively. This creates a huge difference when
we train our models. This high tolerance for error results in
significantly degenerated performance for Dice, where our
derived upper bound gives useful guidance for the setting of
loss weights. More discussions can be found in Appendix.

Model ablation study. We study our proposed sanity
checks on IXI and OASIS validation datasets and report the

Ae Xs Dicet SDicet FV] AJx10*| SSEx10'| CSE|

le-3 0.720 0.957 0913 1.24 0.658 6.96
Se-4 le2 0.720 0.983 0.920 1.27 0.299 6.77
le-1 0.719 1.000 0.896 1.22 <0.1 6.73
le-3 0.721 0967 0422  0.38 0.572 3.43
le-3 le2 0720 0989 0426 040 0.301 3.46
le-1 0.721 1.000 0.443 0.40 <0.1 3.43
le-3 0473 0912 <O0.1 <0.1 1.966 <0.1
le-2 le-2 0420 0980 <0.1 <0.1 1.210 <0.1
le-1 0.406 1.000 <0.1 <0.1 0.209 <0.1

Table 7. Sanity loss weight study of VM on sub-IXI dataset.

Method Dicet SDicet FV| AJx10*] SSEx10'| CSE|

VM 0.732  0.890 1.522  3.00 5.156 16.55
VM-E 0.742 0919 1574 3.04 2.647 26.97
VM-ES 0.740 1.000 1.442 272 0.050 25.32
VM-EC 0.743 0.950 0.447 0.39 1.178 2.61
VM-ESC 0.743 1.000 0.478 0.43 <0.1 2.55
™ 0.862 0.925 0.752 1.52 3.069 10.72
TM-S 0.861 1.000 0.777 1.66 0.018 11.43
TM-C 0.862 0948 0.246  0.26 0.991 2.93
TM-SC  0.862 1.000 0.307 0.35 <0.1 3.17

Table 8. Model ablations on IXI dataset (top rows) and OASIS
validation dataset (bottom rows). Since TM is already enclosed
(E), we focus on studying the impacts of adding our sanity checks.

results in Tab. 8. We show that each sanity check reduces
the corresponding errors without compromising other met-
rics’ performance compared to their naive counterparts. We
also find that the bidirectional registration and cross-sanity
check can also mitigate self-sanity errors to a certain level,
but cannot eliminate such errors completely, proving that
our self-sanity check is necessary to regulate the models’
behavior for mapping identical image pairs. More experi-
ments such as parameters « and  numerical study, sanity
preservation study, statistical significance of results, abla-
tive qualitative results, etc, can be seen in the Appendix.

5. Conclusion

This paper focuses on correcting learning-based deep
models’ behaviors on single moving-fixed image pairs. In
our model sanity analysis, we find that most existing mod-
els suffer from significant sanity errors, with no exceptions
for models equipped with diffeomorphic add-ons. We show
that this sanity-checked model can prevent such sanity er-
rors without contaminating any registration performance.
While the experimental results certify the effectiveness of
our proposed sanity checks, our sanity checks are supported
by a set of theoretical guarantees derived in this paper. We
first show that there is an error upper bound for our sanity-
checked formulation to the optimal condition. Then, we
show that this upper bound can give significant guidance to
train a sanity-checked registration model, where we believe
it is beneficial for preventing overly optimization on image
similarities when training deep registration models.
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A. Appendix

A.1. Comparison Between Diffeomorphic Methods
and Inverse Consistent Methods

(m, f}—= i—ﬁ[ —-g'Tf

Diffeomorphic add-ons :
(LDDMM, B-spline, etc)|
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Figure Al. Illustration of two different types of methods. Techni-

(b) Inverse consistent methods

cally, diffeomorphic methods [4, 36, 44, 37,49, 45,39, 40] are also
inverse-consistent. But following the convention in [50, 16, 31],
we restrict inverse consistency in the essence of operating on two
different mappings predicted by the same model. Since the diffeo-
morphic methods only operate on one mapping, where the other
mapping is calculated from that mapping, rather than predicted.
Thus, they are called diffeomorphic methods instead.

A.2. Proof of Thm. 1

Theorem 1 (Relaxed ideal symmetric registration via
cross-sanity check). An ideal symmetric registration meets

<pa—>b ° (pb%a _ ’Ld7

in which id denotes the identity transformation. Then, a
cross-sanity checked registration is a relaxed solution to the
ideal registration, satisfying

“ b—a B(2—a)N
lg*™" + "> \|§<%~

Proof. A straightforward explanation for ideal symmetric
registration p?*? o ©?7% = id would be that the coordi-
nates of one pixel (p) for image a stay the same after two
transformations: forward transformation (from a to b) and
backward transformation (from b back to a). Therefore, we
have the chain of the coordinates changing

p

a—b

== g"7"(p) +p
229 g2 (g 0 (p) 4 p) + g* 0+ p
—p. (A1)
By simplification, we have the ideal inverse consistency:
9" ) +p) + g T p=p

gb—m + ga—>b —0. (A2)

Different from the ideal inverse consistency, recall that our
cross-sanity check in norm form is

Hga%bJrgbaaHg < a(Hgaﬁng+||§bﬂa||§)+ﬂ]\7. (A3)

Suppose 0 < a < 1 and S > 0. By expanding the cross-
sanity check, we have

BN — (1 —a)(llg*~*115 + 113" 113)

T
a—b gb—m <

g

2
< BN
- 2
(A4)
So, we have
0< gaHngbﬁa < 57‘]\[, (AS)
and BN
0 < g3+ llg"7115 < T (A6)

Thus, we have

~ ~ T
lg*™" + 5" l13 = [lg" I3 + [1g" 115 + 29"~ 5"~

2—a)N
_Be-aN
11—«
(A7)
Finally, we derive the lower/upper bound as
2—a)N
||ga—>b+§b—>a”% < B(lfa) (A8)
O

It is obvious that our cross-sanity check formulation
(Eq. (A)) is a relaxed version of the strict symmetry in
Eq. (A2). So far, we prove that under our cross-sanity
check, the symmetry of g% and g° " is bounded by o and
(. When the strict symmetry is satisfied, our cross-sanity
check is definitely satisfied. However, if our cross-sanity
check is satisfied, it is not the other way around. We show
in the experiments that our relaxed version of symmetry im-
proves the overall results, quantitatively and qualitatively.

A.3. Proof of Thm. 2

Theorem 2 (Existence of the unique minimizer for our re-
laxed optimization). Let m and f be two images defined
on the same spatial domain ), which is connected, closed,
and bounded in R™ with a Lipschitz boundary OS). Let
g : Hx H — H* be a displacement mapping from the
Hilbert space H to its dual space H*. Then, there exists a
unique minimizer g* to the relaxed minimization problem.

Proof. In reality, a meaningful deformation field cannot be
unbounded. We first restrict g to be a closed subset of
L2(H*):
B&{ge L*(H*):
lglZ2 () < B, B € Ry only depends on }. (A9)



We then seek solutions g* to the minimization problem in
the space H'() N B, and meanwhile satisfying our pro-
posed checks. For short notations, we denote the minimiza-
tion problem as

i FE
,Soin E(9),
S.t.
E(g) = —Sim(f,mo (¢" 1 +id)) + \.||Reg(g™1)]|3,

(A10)
and )\, is a positive constant. For ¢ € H' N B, E(g)
is bounded below and there exists a minimizing sequence

{gr}72, satisfying
E(gk+1) < B(g) < -+ < B(g1) < lim E(gr)

inf E(g). All
Jnf_E(g) (A1)

For identical inputs, we have ||g||3 =0 < B= g€ H'n
B, thus, the self-sanity is checked. For different image pairs,
we have

llg +3ll5 < a(llglls + 11l3) + BN < 2aB + 8N.
(A12)
By definition, g and its reversed displacement g need to fol-
low the constraint g(z)g(z) < 0,Vz € €, so we have

max(||g + §|3) < ||9]|3 < B = 2aB+BN < B. (Al13)

Here, we let 2aB + BN < B, since our cross-sanity check
is considered a tighter bound than B. Thus, by choosing
appropriate « and /3, we can ensure that the cross-sanity is
also checked, such that g € H L' B. Due to the fact that
H' is precompact in L? space, there exists a convergent
subsequence where we still denote as {g;}7°,, and g* €
H', such that g, — g*, which is strongly in L? and a.e.
in 2. Note that, either similarity functions (e.g. NCC) or
distance functions (e.g. SSD) is naturally bounded in our
image registration scenario, so that we can always have

—Sim(f,m o (g* +9)) < lim —Sim(f,m o (g5 +p).
(Al14)
Besides, for the H' regularization, since {gr}p2, is a

bounded convergent sequence in H' N B, and g, — g¢*
a.e. in ). By the dominant convergence theorem, we have

Jim Reg(gi) = Reg(g"). (A15)
—00
Combining Eq. (A14) with Eq. (A15), we obtain
Q< T N s '
E(g") < lim E(gr) = inf E(g) (A16)

Thus, g* is indeed a solution to the minimization problem.
So far, we prove that there exists a minimizer g* of the mod-
ified optimization problem. We can then prove that g* is

unique. Note that, we assume that the similarity operator is
concave (e.g., NCC, negative NCC is convex) when it is not
a distance operator (e.g., SSD is convex) on the transforma-
tion with a pair of (m, f). Le., g* = g|m, f, i.e., g* learned
by the model and conditioned on this specific (m, f) pair
to satisfy the proposed sanity checks. Therefore, since the
data term (e.g. SSD) and the regularization (H ' regulariza-
tion) are convex, together with the convex search space for
g, the uniqueness of the minimizer g* is proved. O

A.4. Proof of Thm. 3

Theorem 3 (Loyalty of the sanity-checked minimizer). Let
g4« be the optimal minimizer to the bidirectional registra-
tion problem, defined in Eq. (10), and gsanity as our sanity-
checked minimizer, defined in Eq. (11). The distance be-
tween these two minimizers can be upper bounded as

. . A
Sim(gsanity) — Sim(g.) < §||A(gsanity - g*)||§

Proof. Since g, is optimal, thus we have that — Sim(g..) +
AMAg. —yl3 < —Sim(guanity) + 2|[Agsanity — ¥[3-
Since ||Ag. —y||3 = 0, with elimination we have that
- Slm(g*) < - Sim(gsanity) + %”Agsanity - yH% By
substituting y with Ag, and combining like terms, we
have Eq. (12). Therefore, we prove the loyalty of the unique
minimizer gganity to the optimal minimizer g,, controlled
by weight \. O

A.5. Proof of CS Error Upper Bound

Recall we want to prove that the CS error is upper
bounded in the form of

||Cs(gsanity)||§ < 2(1 — Oz)ﬁN

Proof. Recall CS error in Eq. (9), and by Thm. 1, we have
| |Cs(gsanity> | |§

= Hgsanity + gsanity”% - O‘(HgsanityHg + HgsanityHg) — 28N

= (1 - O‘)(HgsanityH% + HgsanityHg

2 .
+ mgsanity gsanity) - 2BN

< (1 - O‘)(HgsanityHg + HgsanityH%
+ 2gsanity—l—gsanity) - 2BN

= (1 - O‘)Hgsanity + gsanity”% - 26]\[
26(2 —
<1-0)BC= N _opn
11—«
=2(1—«)BN, where 0<a<1l and S>0.

(A17)
The first inequality holds since gsanityT Eeanity < 0 for
valid inverse consistent displacements. The second inequal-
ity holds for two directions (m— f and f—m) by Thm. 1 .
Thus, the proof for CS error upper bound is completed. [
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Table Al. Ablation study for «, 3, where the loss weights for
both sanity check losses are set to 0.001. * denotes the checkpoint
model used in this ablation (resulting in initial CSE errors on the
left-side of arrows), and T represents where we follow the standard
protocol to finetune the model for the same epochs as the rest ab-
lative experiments. In this case, a and /3 are only used to calculate
the CSE. Along with SSE, they are not part of the training loss.

VM-ESC

Figure A2. Qualitative comparisons of different model variants
on: (Top) IXI dataset, (Bottom) OASIS validation dataset.

A.6. Cross-sanity Check Numerical Study

We present our numerical study for o and 3 parameters
in Tab. Al. This ablation study is conducted on the same
subset of IXI training dataset described in the ablation study
section but validate/test in the entire validation/test set. Our
thought is that compared to the problem of enforcing strict
inverse consistency over two different displacements, the
relaxed version might be easier to solve, mathematically.
Again, practically speaking, it is rather difficult to find one-
to-one correspondence for every point in the moving-fixed
image pair, which is the strict inverse consistency saying,
relaxing or setting an error threshold can be effective from
this perspective. Our error-bound formulation implicitly
presents guidance for training such sanity-checked models.

Settings of o and 3. A uniform estimate of « and f3 is pos-
sible, however, such a bound is not sharp, and it will lead to

ICON [16] and our method on IXI dataset.

over-estimation of ). (the regularization parameter) for dif-
ferent applications. Hence, we prefer to derive the bounds
on « and S on particular sets of applications, where we can
easily find such bounds from the formulations. As stated in
Thm. 1, o and 5 control the relaxation. We can also di-
rectly derive an upper bound from the check that constrains
the ratio of two displacements. Since g ~°G*~2<0, then

a—b gb—)a 2

et g <1=5» B is neglected for simplicity. These two
bounds estimate ranges of a and 3 for our relaxation. E.g.,
we use existing models (e.g., VM) to predict ten samples
randomly, and set 8 to 0.15x maximum displacement; set
a to 0.1 for models outputting absolute displacements (e.g.,
VM and TM), or « to 0.01 for models outputting relative
displacements (e.g., DIRAC). Note that this only needs to
be done once, while the previous experiment shows that the
registrations are pretty robust among a range of « and f.

Thus, it is safe to choose « and 8 within the range.
A.7. Ablative Qualitative Comparisons

Qualitative comparisons between our ablative model
variants are shown in Fig. A2.

A.8. Sanity-awareness Preservation Study on
Cross-Dataset Scenario

We test whether sanity awareness is preserved in cross-
dataset scenarios. We train our sanity-checked register in
one dataset and then test it on different dataset so no over-
lapping between training and testing datasets. The results
are shown in Tab. A2. Compared to methods without sanity
checks, our sanity-checked models improve in every met-
ric, certifying that our sanity checks do not harm the model
training. Besides, the sanity-checked registers still preserve
good sanity for preventing corresponding errors.



Method TRE] STRE] ROBT FV] AJx107]

DIRAC | 2.760£0.247 | 0.274+0.027 | 0.77610.055 | 0.02540.009 | 4.242+2.954
DIRAC-C | 2.72140.262 | 0.268+0.039 | 0.791+£0.044 | 0.0224+0.008 | 3.01241.442
DIRAC-SC | 2.719£0.259 | 0.218+0.046 | 0.7954-0.034 | 0.02240.005 | 3.001£1.314

Table A3. Performance of replacing the inverse consistent error.

A.9. Experimental Results Statistical Significance

We specifically study whether our results are statis-
tically significant, compared to the other strong base-
lines, e.g., ICON [16] and DIRAC [31]. We calculate
p value using scipy package. Compared to ICON,
our VM-ESC (p value: 0.0174)and TMBS-ESC (p
value: 0.0280), while for DIRAC, our DIRAC-SC (p
value: 0.0204), considering all metrics shown in the
corresponding tables. All the p values are < 0.05, indi-
cating that our results are statistically significant.

A.10. Error Map Comparisons between Inverse
Consistent Methods

Qualitative comparisons between inverse consistent
methods on IXI dataset are shown in Fig. A3.

A.11. Performance of Replacing DIRAC’s Inverse
Error

We denote it as DIRAC-C, and report in Tab. A3.

A.12. Role of Image Similarity Loss

The image similarity loss still plays a very important role
during training. The reason is that Lger and Lpogs are de-
fined on displacements, to calculate such losses, we need
to ensure that those displacements are meaningful, which is
guaranteed via Lg;,. Compared to the value of NCC (<1),
the cross-sanity error is relatively large (Tab. 2), and using
small A, will not interfere with the optimizations.



