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Abstract—Rapid growth in Deep Neural Network (DNN) workloads has increased
the energy footprint of the Artificial Intelligence (AI) computing realm. For
optimum energy efficiency, we propose operating a DNN hardware in the Low-
Power Computing (LPC) region. However, operating at LPC causes increased delay
sensitivity to Process Variation (PV). Delay faults are an intriguing consequence of
PV. In this paper, we demonstrate the vulnerability of DNNs to delay variations,
substantially lowering the prediction accuracy. To overcome delay faults, we present
STRIVE—a post-fabrication fault detection and reactive error reduction technique.
We also introduce a time-borrow correction technique to ensure error-free DNN
computation.

I. INTRODUCTION

The emergence of Deep Neural Networks (DNNs) and their
growing usage in diverse applications has led to a rapid advancement
in the development of Application Specific Integrated Circuit (ASIC)
architectures for the Artificial Intelligence (AI) computing realm.
A Tensor Processing Unit (TPU) is one such ASIC, developed by
Google and has been deployed in their datacenters for the inference
phase of the DNN computation [1]. With the rapid deployment of Al
hardware at the edge, there is a tremendous need to investigate these
circuit-architectures in the Low-Power Computing (LPC) region [2].

Figure 1 demonstrates a key challenge in realizing Al hardware at
the edge: a massive delay variance with voltage at LPC in comparison
to Super Threshold Computing (STC). The figure shows a FO4
inverter delay characteristics at these two regions, when the supply
voltage is varied by the same percentage variation of the respective
voltage domains. For example, a 40% voltage variation can cause a
45% delay variation at STC, and a huge 250% delay variation at LPC.
Due to these extreme sensitivities, the omnipresent manufacturing
Process Variation (PV) in the devices can realize gate delays up
to 20x of the nominal values in the LPC region [3]. Collectively,
a small set of PV-affected gates, in combination with a minute
variation in operating condition (e.g., voltage), can completely alter
the critical path of the circuit and protract the combinational delay,
which subsequently leads to frequent timing violations. We term these
delay faults as Low-Power Faults (LP-faults) in this paper.

LP-faults may remain benign and exhibit the correct operation
at nominal voltages. However, they are exposed and cause frequent
timing faults at LPC. The process of frequency guard-banding which
works efficiently at STC, becomes highly ineffective at LPC due to
the extreme variation in delays. In a tightly pipelined architecture
such as TPU with a large number of interconnected Multiplier-and-
Accumulate (MAC) units, detection of an LP-fault in an individual
MAC unit can be a formidable challenge. Furthermore, as these faults
manifest only after fabrication and at certain operating conditions,
detecting and correcting these faults become even more challenging.
In this paper, we analyze the damage an LP-fault can induce on a
DNN inference operation.

Interestingly, many modern datasets used in DNN computations
exhibit a plethora of zero weights [4], [5], as well as, zero activation
elements. In conjunction with the perceived resilience of DNN
software from errors, it is intuitive to expect that DNN inference may
be inherently tolerant to LP-faults [6]. However, our rigorous cross-
layer analysis reveals otherwise. For example, an otherwise innocuous
zero result from a MAC can lead to non-zero outcome under an LP-
fault, causing a havoc in the inference accuracy. Not only do we
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Fig. 1: Delay sensitivity for power supply at STC vs LPC. HSPICE
simulations shown for a 31 fan-out-of-four (FO4) inverter chain at the
14nm multi-gate technology node [9].

find that inference accuracy can drop dramatically from LP-faults,
our results show extreme unpredictability in these inference drops,
demonstrating a critical need to rigorously analyze and mitigate LP-
faults for successful deployment of these Al hardware accelerators at
the edge.

Razor is a popular technique which uses a double sampling flip-
flop to detect a timing error in a pipelined circuit and employs an
instruction replay to recompute the erroneous data [7]. However,
replaying an instruction in a TPU pipeline requires stalling of the
entire systolic array operation, incurring a massive loss in throughput
for such a data-parallel architecture. To our knowledge, our paper is
the first work to introduce a post-fabrication fault detection technique
to identify the faulty MAC units in a TPU.

Our specific contributions in this paper are as follows:

e We explore the impact of delay faults in a systolic array of
MAC units. We investigate the problem an LP-fault can pose in
transforming a zero output from a multiplier to an incorrect non-
zero value (Sections II-B and II-C). We also show how a subset of
zero computations in a DNN matrix multiplication magnifies this
threat (Section II-C).

e We introduce STRIVE—a low-overhead faulty MAC detection
technique for a TPU systolic array (Section III-E), to identify the
PV-affected MAC units and timing error resilience techniques to
mitigate the effect of LP-faults (Sections III-D and III-F).

e We demonstrate that STRIVE incurs less than 1% loss in infer-
ence accuracy for 6 DNN benchmarks in a TPU affected by a gate
level fault rate of 1% (Section V-B). Additionally, STRIVE gives
1.8 and 1.3 x better performance per unit power than Fault-Aware
Pruning [8].

II. MOTIVATION

In this section, we will uncover a post fabrication phenomenon
which poses a severe threat to the error resilience of DNNs. Moreover,
we also demonstrate the threat posed by a multiplier unit, when
an expected zero computational output results in an unpredictable
non-zero value. Sections II-A and II-B provide a background of the
TPU and LP-faults, respectively. Sections II-C and II-D elaborate the
results and the significance of our demonstration.
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Fig. 2: Sensitized paths in a MAC unit for zero and non-zero weights,
respectively.

A. TPU Systolic Array

DNNGs utilize multiple layers of computations during the inference
stage. The multiple layers of DNNs are translated into a matrix
multiplication of the activation input, with the weight matrix. A
TPU employs a systolic array of nxn MAC units to expedite the
matrix multiplication operations. Figure 5 shows a TPU-the yellow
array, where each yellow box is a MAC unit comprising a multiplier
and an accumulator. Activation inputs are stored in a unified buffer
and subsequently streamed across the MAC array, while the weight
matrices are pre-loaded into the MAC units. The activation inputs
and stationary weights maintain an 8-bit precision.

B. Impact of PV at Low-Power: LP-faults

PV sensitivities experienced at STC are severely exacerbated at
LPC. Therefore, a small effect of PV in a post fabrication circuit
can produce a substantially large delay variation, when the operating
region is switched from STC to LPC. Although the actual variation
in physical dimensions (i.e., gate length or ¢,; length) remains iden-
tical, the observed variation will be in the transformed or elongated
delays. Hence, any sensitized circuit path that exceeds the guard-
banded clock period leads to a timing violation. These faults are
termed as LP-faults or Delay Faults. LP-faults can be completely
hidden at STC, as the timing guard-band essentially covers up the
relatively smaller delay variations (Figure 1). As we move towards
LPC, the voltage and frequency are lowered appropriately, and a suit-
able timing guard-band is applied. However, as the delay variations
are significantly higher at LPC, the prolonged combinational delay
due to PV will exceed the timing guard-band and trigger an LP-
fault. Furthermore, as factors leading to LP-faults emanate during
fabrication, their effects can be perceived only during the real-time
working environment.

1) Threats due to LP-faults:

Effect on Inference Accuracy: In a TPU systolic array (at every
clock cycle), the output of each MAC unit, is added to the resulting
activation and weight product of the consecutive downstream MAC
unit. Hence, the accumulated product from the lowermost row forms
a single element of the output matrix. However, as the systolic array is
operated at LPC, the effects of PV in a MAC unit can instigate a delay
fault and produce an erroneous output. As the PV-affected gates are
distributed across the systolic array, more and more MAC units will
be rendered faulty. Consequently, a large magnitude of LP-faults will
increase the propagation of erroneous outputs and eventually incorrect
values will be stored in the output matrix (later shown in Figure 8).
Therefore, inference accuracy processed using the erroneous values
will be significantly lowered.

Significance of Zero Activation: Figures 2(a) and 2(b) compare the
sensitized paths in a MAC unit between a zero weight and a non-
zero weight. A zero weight in the MAC unit drives the output of
the multiplier to zero for the entirety of the matrix multiplication
operation, thus sensitizing the second accumulator input path (i.e.,
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Fig. 4: Zero computations and Fault Prone zero computations elaborated
as a percentage of total computations for 6 different DNN benchmarks.

output from the upstream MAC) to the output. Eventually, the
upstream MAC output is forwarded to the MAC unit in the immediate
lower row. Hence, a zero weight masks the LP-faults. However, for
a non-zero weight, the circuit path from the activation input will be
sensitized. Consequently, even for a zero activation input, a prolonged
delay needed to stabilize the faulty multiplier output can eventually
expose an LP-fault, thereby resulting in a non-zero output. We term
such computations as Fault Prone zero computations.

We present the motivational data to demonstrate the serious effects
of LP-faults, by employing a rigorous cross-layer methodology as
described in Section IV.

C. Results

Figure 3 depicts a drop in the inference accuracy when the
percentage of faulty gates increases in a TPU systolic array, for 5 out
of 6 DNN benchmarks. The increase in the LP-fault level challenges
the inherent timing error tolerance of DNNs [6], thereby dwindling
the DNN inference accuracy. An outlier benchmark is IMDB, where
the significant number of zero weights sensitizes the accumulator
paths to the output (case of Figure 2(a)), consequently reducing the
damaging effects of LP-faults.

Figure 4 shows the percentage of zero computations and Fault
Prone zero computations for 6 different benchmarks. From Figure 4,
it is evident that even though more than 80% of the computations
involve zero computations, more than 20% of the zero computations
are Fault Prone in 5 out of the 6 DNN benchmarks. Therefore, even a
zero computation in a PV-affected multiplier can pose a considerable
threat and contribute in lowering the inference accuracy.

D. Significance

Our findings demonstrate that the effects of PV at LPC can lead to
significant deterioration of the DNN inference accuracy. Additionally,
our study shows that even a predictable zero computation is not safe
from the threat of an LP-fault. Since the phenomenon leading to
a delay fault is born during fabrication, identical chips can exhibit

different variations in the sensitized paths. As Al Edge computing
is migrating more towards LPC, the emergence of delay faults can
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Fig. 5: Design block and dataflow of STRIVE.

severely hamper the DNN predictions. Hence, we need a runtime
mechanism to identify the faulty MAC units when a systolic array
is operated at LPC and an efficient design paradigm to reduce the
effect of LP-faults. Since a zero activation input can be identified
due to the redundant bit pattern and the output of a MAC unit for a
zero activation is predictable, we can doctor such characteristics to
our benefit. With this premise, in the next section, we explore our
proposed scheme—STRIVE, to detect and handle LP-faults affected
MAC units.

III. STRIVE DESIGN

In this section, we discuss STRIVE, our novel design paradigm
to detect and mitigate the effect of delay faults in an LPC TPU.
STRIVE uses a low-overhead post-fabrication faulty MAC detection
technique to identify the error-prone MACs. Furthermore, by inferring
the location of faulty MACs, we devise and employ a position-aware
timing error mitigation scheme to tackle an LP-fault. We describe the
challenges and the overview of STRIVE in Sections III-A and III-B.
The threat posed by an LP-fault is explained in Section III-C. Sections
III-D through II-F elaborate the design components in detail.

A. Challenges

In this section, we highlight the problems which need to be
addressed by STRIVE to effectively counter the threat posed by LP-
faults.

1) A faulty MAC unit is susceptible to Fault Prone zero compu-
tation. Hence, a MAC unit needs to be equipped to handle this
scenario (addressed in Section III-D) .

2) Diagnosing faulty MAC units spread across the TPU systolic
array (addressed in Section III-E1).

3) Reclaiming the DNN inference accuracy from an LPC TPU
housing PV-affected MAC units (addressed in Sections III-E2
and III-F).

B. Design Overview

Figure 5 depicts the top-level overview of STRIVE. We enhance
the LPC TPU with a Fault Control Unit (FCU) and each MAC unit
with Fault Hop (FHop). Initially, the FCU generates the activation
and weight matrices, and the output map. Later, the FCU compares
the TPU-generated output matrix and the output map to deduce the
location of PV-affected MACs (Section III-E1). The faulty MAC
locality is later exploited by the FCU, to tackle the LP-faults, using
FHop (Section III-E2).

Additionally, we discuss an alternate technique Fault Hop Time-
Borrow (FHop-TB), to mitigate the effects of an LP-fault, by enhanc-
ing the design of FHop (Section III-F).

S | Multiplier Output |
-~

Multiplier Output

on

Activation
w
o
JVIN ASUd
Activat
O+
&e
VN Ad4d

Pt
pcess Lo-TETT0
Jriation

ndino
indino

<z

N
MAC Output Weight MAC Output

(a) Fault free MAC. (b) PV-affected MAC.
Fig. 6: Working of a PV-free and PV-affected MAC.

Agtivation Vectors

arl[@] o o
=) 0|a,| 0
la;|=>[0]0]a

4
Activation Matrix

ngght Vectors

EANEAAL?
EANEARAL
=) Wi | W | w;

Weight I{/Iatrix

Oytput Vectors

a,.wila,.wila,.w)

0,.W,|a,.W,|a,.w,|

03.W;(05.w5la;w,

Outpu} Map

Fig. 7: Development of input matrices and output map—correct outputs—
by FCU.

C. Illustrative example for an LP-fault

Figures 6(a) and 6(b) describe the operations of a fault-free and
faulty MAC, respectively. For a fault-free MAC (Figure 6(a)), the
multiplier concludes its computation within the clock period and
delivers an error-free output, thereby leading to a correct output from
the MAC unit (i.e., 30). However, the significant delay stemming from
the PV-affected multiplier in a faulty MAC (Figure 6(b)), instigates an
LP-fault. Hence, an incorrect value will be processed at the multiplier
output (i.e., 15 in Figure 6(b)) and an erroneous value (i.e., 45) will
be delivered to the next logic stage. So, a faulty MAC unit needs to
be protected from a zero activation input, which is discussed next.

D. Fault Hop (FHop)

In this section, we introduce FHop. As a zero activation input
produces a zero computation, we intend to entirely skip the MAC
operation for a MAC unit. We augment the MAC unit with a NOR
gate, an OR gate and a multiplexer (MUX), as demonstrated in
Figure 5. The MUX output is controlled either by the NOR gate
(viz., the zero activation input) or the Fault EN signal from FCU
(discussed in Section III-E). Thus, for a zero activation input or when
a Faulty EN signal is set, the erroneous MAC operation is bypassed
and the accumulator input is directly presented to the MAC output
through the MUX. Hence, FHop prevents a possible Fault Prone zero
computation and aids in the identification of faulty MACs (discussed
in Section III-E1b).

E. Fault Control Unit (FCU)

FCU houses the Fault Detection Registers (FDRs) along with the
fault detection vectors. We dedicate one FDR to each column of the
systolic array (Figure 5). Each bit of the FDR is labeled as a Fault EN
signal and maps to a corresponding MAC unit in that column. The
FCU operates in two modes: (a) Fault Detection Mode, to determine
the faulty MACs, and (b) Fault Resilient Mode, which is the nominal
operating mode of the TPU.

In Fault Detection Mode, all the bits of the FDR are reset to zero,
to skip a MAC operation only for a zero activation input. The FCU
later sets the FDR bits for all the faulty MACs. Hence, during the
Fault Resilient Mode, the errant MAC operations are also skipped.

Next, we discuss the two operating modes of the FCU.

1) Fault Detection Mode: We will demonstrate the detection
technique for a 3 x 3 systolic array for illustration purposes, as the
same technique will be scaled up to any dimension of the systolic
array.
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a) Matrix and map—correct outputs—generation

Figure 7 depicts the low-overhead matrix/map generation method-
ology. The FCU generates the activation matrix by allocating the
individual activation vectors along the diagonal and zero value for
the non-diagonal entries, thereby creating a diagonal matrix. For the
weight and output matrix, all the elements in a row are assigned the
same weight and output vector. However, each row is allocated a
different vector.

b) Faulty MAC detection

Systolic Array Operation with Faulty MACs : Figure 8 demon-
strates the cycle-wise accurate matrix multiplication between the
activation and weight matrices for the fault detection. The systolic
array is pre-loaded with the weight matrix, while the activation matrix
is transposed and streamed to the individual rows (i.e., from left to
right). Activation table and the Output Matrix table shown below the
systolic array in Figure 8, coherently maps the activation input being
streamed to the corresponding MAC units and the output accumulated
from the last row of the systolic array in the respective clock cycles.

o In Cycle 1, activation a; is multiplied with weight w; in the only
active MAC unit.

o In Cycle 2, zero activation values are streamed to the first and
second row. The activation a;, from Cycle 1, is forwarded to the
successive column (i.e., second column) of the first row. As the
MAC units are enhanced with FHop, the active MAC unit in the
second row encountering the zero activation will skip the MAC
operation and forward the upstream MAC output (i.e., a1.w1) to
the downstream MAC unit.

o Nominal operation continues in Cycles 3 and 4, as non-zero
activation has not reached the faulty MACs.

« However, in Cycle 5, activation inputs a2 and as reach the faulty
MAC units in rows two and three, respectively. As the non-
zero activation inputs are multiplied by the respective weights,
the extended combinational delay will trigger a timing error and
erroneous values (i.e., (az.w2)* and (as.w3)™) are generated. The

Fault En

th_clk _
-

Fig. 10: Detection and correction of timing errors by FHop-TB, using
the Time-Borrow technique.

erroneous value from the faulty MAC unit in the third row (i.e.,
(az.ws3)™) is stored in the output matrix.

« In Cycles 6 and 7, the erroneous value (az.w2)* along with other
output entries are accordingly forwarded and stored in the output
matrix.

Detection of Faulty MACs : Figure 9 presents the process of
detecting the Faulty MACs, using the output matrix. FCU compares
the respective entries of the output matrix with the output map (Figure
7) and determines the location of faulty MACs. FCU thus sets the
bits of the FDR targeting the faulty MACs in each column (Figure
5). An entire systolic array operation is utilized by STRIVE for the
errant MACs detection process.

2) Fault Resilient Mode: In the Fault Resilient Mode, as the
faulty MACs are identified, the set Fault EN signal effectively skips
the faulty MAC computation. Even though the skipping operation
generates a loss in precision for the output matrix entries, the overall
inference accuracy is not relatively affected due to the algorithmic
level error tolerance of DNNs [6]. However, increase in the number
of faulty MACs will eventually lead to a drop in DNN inference
accuracy. To address this caveat, we enhance the design of FHop with
a time-borrow feature to achieve a superior performance, discussed
next.

F. Fault Hop Time-Borrow (FHop-TB)

Figure 10 presents FHop-TB—an enhanced variant of FHop that
utilizes the combinational delay disparity between the multiplier unit
and the accumulate unit to prevent the propagation of corrupted
values. FHop-TB uses a Time-Borrow (TB) flop to capture the
delayed output of the faulty MAC and direct it to the next logic
stage within the same clock cycle.

The accumulation process utilizes less than 50% of the clock cycle.
For a faulty MAC, we intend to borrow 50% of the clock cycle from
its downstream MAC (i.e., the downstream MAC will be performing
its own multiplier operation during this period) to procure the correct
MAC output and ensure that the correct output is provided to the



Benchmarks Error-free
Name [ Architecture Accuracy
IMDB [10] | CONV: 400x(400x50)x(398, 256), FC: 256x1 0.89
CONV: (32, 32, 3)x(32, 32, 32)x(32, 32, 32)x
SVHN [11] (14, 14, 64)x(14, 14, 64)x(5, 5, 128)x 0.94
@, 5, 128), FC: 512x512x10
CONV: (3, 48, 48)x(32, 48, 48)x(32, 46, 46)x
GTSRB [12] (64, 23, 23)x(64, 21, 21)x(128, 10, 10)x 0.97
(128, 8, 8), FC: 2048x512x43
MNIST [13] FC: 784x256x256x10 0.98
REUTERS [14] FC: 2048x256x256x46 0.80
FMNIST [15] FC: 784x256x512x10 0.89

TABLE I: List of DNN benchmarks and their error-free accuracy.

downstream MAC for its accumulation process. Thus, the TB latch
is driven by a delayed clock (i.e., 50% shift from the system clock) to
perform the Time Borrowing operation. In a faulty MAC, the output
of the shadow latch is sensitized to the MUX 1 output; else, the
output of the original latch is delivered to the MUX 1 output. For a
zero activation, MUX 2 bypasses the upstream MAC output to the
downstream MAC unit, irrespective of a faulty/non-faulty MAC unit.
Therefore, the output of MUX 2 can switch between MUX 1 output
and upstream MAC output.

IV. METHODOLOGY

Our extensive cross-layer methodology allows us to combine
functional simulation of a DNN inference task (thus, allowing pre-
cise estimation of inference accuracy) with a holitic power-timing
characteristics spanning three layers: device, circuit and architecture.

We perform HSPICE simulations on basic logic gates (e.g., NOR,
NAND and Inverter) using the 16-nm predictive technology model
to measure their delay distributions [9]. We use VARIUS-NTV to
implement the impacts of with-in die PV at LPC [16]. We incor-
porate the FinFET attributes using the VARIUS-TC model [17]. We
synthesize the Verilog RTL of the TPU systolic array augmented with
our design components using Synopsys Design Compiler. The syn-
thesized netlists are utilized by our in-house Static Timing Analysis
(STA) tool along with the libraries of delay distributions to generate
the sensitized path delays of the MAC unit for all the benchmark
driven inputs. We use Cadence SoC Encounter to place and route the
design and measure the area, power, and wirelength overheads.

We use our in-house cycle-accurate TPU systolic array simula-
tor, modeled on the detailed TPU architecture [1]. To accurately
simulate a timing violation, the combinational delays for a PV-
affected MAC unit and a nominal MAC unit, developed from the
STA tool are integrated into the TPU simulator. Initially, we train
the DNN benchmarks by interfacing the TPU simulator with Keras
(running tensorflow in the background) [18]. Table I lists the DNN
benchmarks along with their error-free accuracies. Activation inputs
from each layers are streamed across the weight matrices from the
trained model for matrix multiplication. The output matrices are
appropriately combined to obtain the inference accuracy.

V. EXPERIMENTAL RESULTS

In this section, we examine the efficacy of STRIVE at LPC operat-
ing conditions—a typical use case for an edge system deployed for an
inference task. The baseline operation is set to (0.45V, 67.5MHz) and
guarantees an error-free execution for an LPC TPU (i.e., TPU without
any faulty MACs). Section V-A introduces the comparative schemes.
Sections V-B and V-C elaborate the inference accuracies and energy
efficiency of the schemes. Section V-D discusses the overheads of
STRIVE.
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A. Comparative Schemes

o Fault-Aware Pruning (FAP) : This scheme prunes all the
weights of faulty MAC units [8]. The weights are implemented
for multiple precision values to bypass the faulty multiplier in the
MAC unit. FAP does not have an error detection scheme as we have
proposed, and therefore presumes to have an oracular knowledge
of the faulty MACs. As expected for an edge system deployed for
inference in the field, we do not expect weights to be retrained,
and thus consistently model no retraining for both FAP and our
schemes, STRIVE and STRIVE-TB.

e STRIVE : This is our proposed technique, which utilizes the
locality of the PV-affected MAC or a zero activation input to skip
the erroneous MAC operation. FCU enables the Fault EN signal for
the respective error-prone MAC to restrict the erroneous data from
latching on to the accumulator output. FHop is used to perform
the bypassing operation (Figure 5).

e STRIVE-TB : This scheme is an upgraded variant of STRIVE,
which uses FHop-TB (Figure 10). The error-free output from a
faulty MAC unit is captured by the Time-Borrow Flop using the
delayed clock, and the Fault EN signal enables the forwarding of
this correct data to the next stage.

B. Inference Accuracy

Figure 11 depicts the normalized inference accuracy for the three
comparative schemes, as the percentage of faulty gates are increased
in the TPU. All the schemes are operated at the baseline voltage and
frequency. The X-axis represents the percentage of faulty gates in the
TPU. STRIVE and FAP are able to offer modest error resilience for
4 out of 6 DNN benchmarks up to 0.6% fault rate. For REUTERS
and FMNIST, the extreme data-delay variance between the activation
sequences causes significant timing errors, thereby dropping the
inference accuracy for STRIVE and FAP. The significant number of
zero activation computations aids STRIVE in retaining the inference
accuracy as the percentage of faulty gates are increased. However,
STRIVE-TB incurs less than 1% loss in inference accuracy for up
to 1% gate fault rate in a TPU, as it is able to capture the delayed
data using the Time-Borrow approach. Overall, STRIVE-TB vastly
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Fig. 12: Energy Efficiency comparison of FAP, STRIVE and STRIVE-TB
(higher is better).

outperforms FAP, demonstrating remarkable resilience in retaining
inference accuracy under LP-faults.

C. Energy Efficiency

Figure 12 presents the energy efficiencies of the compara-
tive schemes measured using the Tera Operations Per Second
(TOPS)/Watt metric. TOPS measure will be the same for all the
schemes at the corresponding frequency of operation. The TOPS/Watt
is normalized to that of the LPC TPU, operated at the baseline
operating conditions. FAP has a lower energy efficiency due to its
larger power consumption in comparison to STRIVE and STRIVE-
TB. STRIVE boasts a higher energy efficiency due to its low
overhead operation compared to STRIVE-TB. STRIVE and STRIVE-
TB offers an average 1.8x and 1.3 better performance per unit
power, compared to FAP. Hence, STRIVE is an energy efficient design
paradigm, able to extract superior performance even from an error-
prone TPU.

D. Implementation Overheads

STRIVE incurs overheads due to the inclusion of FCU and the
combinational logic for FHop or FHop-TB. Area overhead added
by STRIVE and STRIVE-TB is ~ 1.8% and ~ 6%. STRIVE and
STRIVE-TB incurs a power overhead of ~ 2% and ~ 5%, and a
wire-length overhead of ~ 1.1% and ~ 3.5%, respectively.

VI. RELATED WORK

Several techniques have been explored to mitigate the adverse
effect of faulty Processing Elements (PEs) in deep learning accel-
erators. D.Xu et al. proposed a hybrid computing architecture to
recompute the operations of the processing elements mapped to the
faulty PEs in arbitrary locations [19]. Spyrou et al. demostrated
a fault-tolerant Spiking Neural Network architecture with simplified
error detection and recovery scheme [20]. Salami et al. evaluated
an undervolting technique for Neural Network acceleration in Field
Programmable Gate Arrays (FPGAs) to improve the power-efficiency
[21]. Givaki et al. experimentally evaluated the effect of aggressive
voltage underscaling of block RAMs in an FPGA by emulating the
real fault maps of SRAM memories [22]. Tang et al. investigated the
impact of GPU dynamic voltage and frequency scaling on the energy
consumption and performance of DNNs [23]. Lee et al. explored
optimization methods for hardware architectures for energy-efficient
DNN processing on edge devices [24]. However, to the best of our
knowledge, this paper is the first work that addresses the threat of
a delay fault in altering the output of a zero multiplier computation
to a non-zero value, and introduce a novel post-fabrication timing
error detection scheme for a TPU affected by faulty MAC units.

VII. CONCLUSION

In this paper, we highlight the impact of PV in a TPU systolic array
under low-power operation. We demonstrate STRIVE—an energy
efficient paradigm to identify and nullify the effect of LP-faults, and
reclaim the performance from a TPU systolic array affected by faulty
MAC units. STRIVE incurs minimum loss in inference accuracy for a
TPU infested by a gate level fault rate of 1%. Additionally, STRIVE
delivers 1.8 and 1.3x better TOPS/watt compared to FAP.
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