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Abstract

Herbarium sheets present a unique view of the world’s

botanical history, evolution, and diversity. This makes them

an all–important data source for botanical research. With

the increased digitisation of herbaria worldwide and the ad-

vances in the fine–grained classification domain that can

facilitate automatic identification of herbarium specimens,

there are a lot of opportunities for supporting research in

this field. However, existing datasets are either too small,

or not diverse enough, in terms of represented taxa, ge-

ographic distribution or host institutions. Furthermore,

aggregating multiple datasets is difficult as taxa exist un-

der a multitude of different names and the taxonomy re-

quires alignment to a common reference. We present the

Herbarium Half–Earth dataset, the largest and most diverse

dataset of herbarium specimens to date for automatic taxon

recognition.

1. Introduction

Natural history collections, such as herbarium speci-

mens, contain a plethora of information from phenotype

to genotype. Each specimen is a snapshot in time and

all together provide a history of plants on Earth since the

first herbarium collections were made nearly 500 years ago

[18]. Therefore, herbarium specimens are integral for un-

derstanding biodiversity and providing data to ameliorate

the impacts of habitat loss and climate change [1, 5, 13].

Citizen science initiatives such as iNaturalist [10] and

Pl@ntNet [12], have popularised species recognition as a

challenging real–world classification task, with large imbal-

anced fine–grained datasets. Similarly using computer vi-

sion methods for the automatic classification of herbarium

specimens is a well studied topic, [2, 3, 7, 14, 15, 16, 20, 21,

22, 23, 24, 26]. Many of these works focus on morphologi-

cal trait recognition [3, 15, 16, 17, 20, 21, 26], while others

focus on species recognition from leaves only [21, 23, 24].

Figure 1. Distribution of training images per taxon. The

Herbarium Half–Earth dataset is highly imbalanced. Featured

taxa are from top to bottom: Ericameria nauseosa (Pall. ex

Pursh) G.L. Nesom & G.I. Baird (Asteraceae), Bidens sulphurea

(Cav.) Sch. Bip. (Asteraceae) and Solanum rixosum A.R. Bean

(Solanaceae).

However existing datasets designed for computer vision

approaches currently present some limitations. They are ei-

ther small, targeted at specific taxa, only representative of

a certain geographic region or coming from a single in-

stitution (see Tab. 1). With the Herbarium Half–Earth

dataset, we aim to address all these limitations and present

the largest and most diverse dataset of herbarium specimens

for automatic taxon recognition to date.

Dataset # Images # Taxa # Institutions Geo. Range

Dillen et al. [7] 1’900 1’580 9 All Continents

Lorieul et al. [15] 163’233 7’782 1 Americas

Herbarium 255 [2] 11’071 255 1 Costa Rica

Herbarium 1K [2] 253’733 1’204 1 France

Herbarium 2019 [19] 46’000 680 1 Americas

Herbarium 2020 1’170’000 32’000 1 Americas

Herbarium 2021 2’500’000 64’500 5 Americas, Oceania and Pacific

Table 1. Summary of existing herbarium sheet datasets. Note that

the Herbarium 2019 dataset focuses on the flowering plant family

Melastomataceae, while the other datasets present a wider taxo-

nomic diversity.
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2. The Herbarium Half–Earth Dataset

The Herbarium Half–Earth dataset 1 includes more than

2.5M images of vascular plant specimens representing

nearly 64,500 taxa from the Americas and Oceania.

The most exact labels are, in many cases, intraspecific

(subspecies, varieties, forms, etc.) or nothospecies (hybrids)

neither of which can be characterized as “species”, thus we

use the terms “taxon” and “taxa” as generic descriptors of

taxonomic labels. In addition to labels for species–level and

below, we also include labels at higher levels in the taxo-

nomic hierarchy: family and order. This allows for exper-

imentation with methods that address label hierarchy and

label similarity. These labels may also be supplemented by

more fine–grained estimates of difference among taxa avail-

able from other sources [11].

The images are provided by the New York Botanical

Garden (NY), Bishop Museum (BPBM), Naturalis Bio-

diversity Center (NL), Queensland Herbarium (BRI), and

Auckland War Memorial Museum (AK).

This dataset has a long tail; there are a minimum of

three images per taxon (Fig. 1). However, some taxa can

be represented by more than 100 images. This dataset

only includes images of vascular plant—the group of plants

that includes lycophytes, ferns, gymnosperms, and flow-

ering plants (Fig. 2). The extinct forms of lycophytes are

the major component of coal deposits, ferns are indicators

of ecosystem health, gymnosperms provide major habitats

for animals, and flowering plants provide almost all of our

crops, vegetables, and fruits.

Figure 2. Example of images in the Herbarium Half–Earth dataset.

2.1. Dataset Challenges

The Herbarium 2021 Half–Earth dataset is challenging

due to multiple reasons. First, of course, due to its large

imbalance (Fig. 1), the imbalance factor for the dataset is

1,654.5. Second, the variation within species (Figs. 3) is

high. Herbarium specimens can capture plants at differ-

1https://github.com/visipedia/herbarium_comp

ent growth–stages (e.g., juvenile versus adult) or with dif-

ferent sets of plant parts (e.g., leaves and flowers versus

leaves and fruit; see Fig. 3). In addition, the techniques

used to press, dry, and mount specimens vary among col-

lectors and collecting expeditions—these differences can

change the appearance of specimens dramatically (e.g., col-

lecting in alcohol often causes leaves to turn black). Arbi-

trary aesthetic decisions made while processing specimens

can result in specimens that differ dramatically in appear-

ance even though they are simply different parts of the same

individual plant (Fig. 4). In a herbarium collection, every at-

tempt to conserve dried specimens is made, but in practice

older specimens become more fragile and suffer damage as

they age leading to some specimens being less complete

and more damaged than others. Third, the visual similarity

among species can be high (Fig. 5). Finally, the diagnostic

morphological features that botanists use to identify species

are often very small and thus require a model that is able

to handle high–resolution images and can focus on specific

details [4, 22].

Figure 3. Example of visually different images corresponding

to the same species: Abarema brachystachya (DC.) Barneby &

J.W.Grimes (Fabaceae). The observed differences are primarily

due to different reproductive stages: early flowering, late flower-

ing, and fruit.

Figure 4. Different specimens of Arbutus xalapensis Kunth (Eri-

caceae) made from the same individual plant at the same time by

the same collector using the same pressing, drying, and mounting

protocol.
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Figure 5. Example of visually similar images from different

Alyssum species (Brassicaceae): A. alyssoides (L.) L., A. de-

sertorum Stapf, A. simplex Rudolphi, A. szovitsianum Fisch. &

C.A. Mey.

2.2. Data Preprocessing

In this section we give an overview of how we prepro-

cessed the dataset. Figure 6 presents some example of

herbarium sheets before and after the preprocessing steps.

2.2.1 Label Alignment

Herbarium specimens of the same taxon may have been la-

beled in various ways due to differences in the interpretation

of taxon circumscriptions, nomenclatural changes, and/or

errors. For example, over time Pilosella piloselloides (Vill.)

Soják (Asteraceae) has been known by at least 526 different

names [8]. To ameliorate this situation as much as possible,

we have standardized the image labels to the Leipzig Cata-

logue of Vascular Plants (LCVP v1.0.2) [8]. Labels in our

dataset have an LCVP status of either “accepted” or “unre-

solved”.

The data exported from the institutional databases were

first processed to find labels that exactly matched LCVP.

For labels that did not precisely match, we then searched

for long unambiguous partial matches to LCVP: the label

was shortened by removing the rightmost word and then we

searched for a match that produced only one LCVP output

taxon; if no match was found, this was repeated until the

label contained only two words. Labels that still did not un-

ambiguously match LCVP, were matched using tre-agrep

[25] allowing an increasing amount of mismatch (10–30%

of label length; all weights were set to 1). Matches returned

by tre-agrep were manually reviewed (8,430 labels passed

manual review). Images with labels that could not be co-

erced into matching LCVP were excluded from the dataset

(c. 73 thousand images).

2.2.2 Image Blurring

Herbarium specimens always have a hand–written or

printed label on the sheet (usually lower right–hand corner),

which includes information about the name of the taxon, the

geographic location where it was collected, the date of col-

lection, and the person or team of people who collected it.

In addition, annotation labels are often added to the speci-

men to correct or update information on the original label—

these are sequentially added in the empty space above the

original label. Specimens often also have institutional la-

bels or stamps indicating the herbarium in which the spec-

imen is archived and a barcode label corresponding to an

institutional database entry. Specimens may also include

field tags with identification numbers attached directly to

the plant. Images usually include color and measurement

scales as well as institutional logos. All of these labels can

of course, help identify the specimen, thus we blurred this

information in the dataset in order to force models to learn

about the plants themselves rather than the label text.

To detect these labels we used a pretrained EAST text

detection model [27]. This model outputs bounding boxes

around the detected text. We merged the bounding boxes

that overlapped by a sufficient margin, and filtered out those

that were too small. The resulting regions were then heavily

blurred. We first applied a mean blur, then a single Gaus-

sian blur with added noise, and finally used a smooth alpha

map to blend into the original (Fig. 6). Finally, we excluded

images from the dataset where more than 25% of the image

was blurred, as we found those to be, in most cases, wrong

predictions from our text detection model. We deliberately

chose to tune the text detection model to have a high speci-

ficity, in order to avoid unnecessarily blurring parts of the

plant. Even though, this means that there are images where

part of the labels are missed by our blurring algorithm.

2.2.3 Image Resizing

Herbarium sheets are digitized as very high–resolution im-

ages to preserve as much of the detail as possible. A com-

mon image size is around 6000 × 4000. This is very large

even for networks that are designed to work with higher

resolutions. We have resized all images in the dataset to

a larger dimension of 1000 (while preserving the aspect ra-

tio), in order to make the overall size of the dataset more

accessible.

2.2.4 Dataset Split

Our dataset contains images from 64,500 taxa at the

species–level or below with 2,257,759 in the training set

and 243,020 in the test set. The data has been split to ob-

tain an approximately even number of images across taxa

in the test set. In fact, we capped the maximum number of

images per taxon to 10 for the test set. For taxa that have

few images we did a 80%/20% split for training/test. Each

category has a minimum of three images: at least one in the

test set and two in the training set.
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Figure 6. Example of images before and after preprocessing.

3. The Herbarium 2021 Half-Earth Challenge

The Herbarium 2021 Half-Earth Challenge is a compe-

tition hosted on Kaggle as part of 8th workshop for Fine–

Grained Visual Categorization at CVPR 2021. This is the

third iteration of the Herbarium Challenge, in this section

we give a brief description of the previous challenges.

The Herbarium 2019 Challenge [19, 14] focuses on

the flowering plant family Melastomataceae. It contains

46,469 digitally imaged herbarium specimens representing

683 species. The Melastomataceae is a large family with

166 recognized genera and 5,892 species [8]. The overlap

with the iNaturalist 2018 challenge dataset [10] is only 2

out of the 683 species in the Herbarium 2019 dataset.

The Herbarium 2020 Challenge dataset contains over

1M images representing over 32,000 plant species. This

challenge focuses on vascular land plants of the Americas.

4. Baseline and Evaluation Metric

As a simple baseline we have trained a ResNet-50 [9]

for 10 epochs. We split the training set in a stratified man-

ner to create a hold-out validation set, thus the baseline was

trained on 80% of the full training set. We used a balanced

sampling strategy, so as to mitigate the impact of the imbal-

ance on the classifier. We resized the images to 256 × 256

and used some standard data augmentations (small rota-

tions, horizontal flips, color-jitter and finally center-crop to

224×224). We initialised the model with weights pretrained

on ImageNet [6]. Finally we trained the model using the

standard cross-entropy loss, a batch size of 32, a stochastic

gradient descent with a learning rate of 1 · 10−3 which is

further reduced when a plateau is reached and a momentum

factor of 0.9.

The evaluation metric for the Herbarium 2021 Half-

Earth Challenge is the F1 score:

F1 = 2
Pre · Rec

Pre + Rec
, (1)

where Pre denotes the precision and Rec the recall. Our

baseline achieves an F1 score of 0.46 on the private test set

of the competition. For comparison, the first place solution

of the competition achieved an F1 score of 0.76 on the pri-

vate test set 2.

5. Conclusion

We presented the Herbarium Half-Earth dataset to enable

the development of better automatic taxon recognition mod-

els. The development of models to automatically identify

specimens will reduce the bottleneck of species identifica-

tion and has the potential to advance biodiversity research

at an unprecedented rate.

In the future, we would like to expand the dataset to in-

clude specimens collected world-wide. There are more than

35 million digitized specimens in electronic databases rep-

resenting more than 80% of the known vascular plant diver-

sity.
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Nozha Boujemaa, and Daniel Barthélémy. A look inside the
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