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Abstract

Controller tuning is a vital step to ensure the controller delivers its designed performance. DiffTune
has been proposed as an automatic tuning method that unrolls the dynamical system and controller
into a computational graph and uses auto-differentiation to obtain the gradient for the controller’s
parameter update. However, DiffTune uses the vanilla gradient descent to iteratively update the
parameter, in which the performance largely depends on the choice of the learning rate (as a hyper-
parameter). In this paper, we propose to use hyperparameter-free methods to update the controller
parameters. We find the optimal parameter update by maximizing the loss reduction, where a pre-
dicted loss based on the approximated state and control is used for the maximization. Two methods
are proposed to optimally update the parameters and are compared with related variants in simula-
tions on a Dubin’s car and a quadrotor. Simulation experiments show that the proposed first-order
method outperforms the hyperparameter-based methods and is more robust than the second-order
hyperparameter-free methods.
Keywords: Auto-tune, Controller tuning, Auto-Differentiation

1. Introduction

Controller design and tuning are two vital steps in applying control techniques to a system: con-
troller design roots in qualitative analysis to ensure stability, whereas parameter tuning delivers the
desired performance on real systems. Controller tuning is normally done by hand, by either trial-
and-error or proven methods for specific controllers (e.g., Ziegler–Nichols method for proportional-
integral-derivative (PID) controller tuning (O’dwyer, 2009)). However, hand-tuning often requires
experienced personnel and can be inefficient, especially for systems with long loop times or huge
parameter space.

To improve efficiency and performance, automatic tuning (or auto-tune) methods have been
investigated. Such methods integrate system knowledge, expert experience, and software tools to
determine the best set of controller parameters, especially for the widely used PID controllers (Yu,
2006; Åström et al., 1993; Li et al., 2006). Commercial auto-tune products have been available
since 1980s (Zhuang and Atherton, 1993; Åström et al., 1993). Existing auto-tune methods can
be categorized into model-based (Trimpe et al., 2014; Kumar and Ramadge, 2021; Cheng et al.,
2022a) and model-free (Marco et al., 2016; Berkenkamp et al., 2016; Calandra et al., 2014; Lizotte
et al., 2007; Loquercio et al., 2022; Mehndiratta et al., 2021). Both approaches iteratively select
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the next set of parameters for evaluation that is likely to improve the performance of the previous
trials. Model-based auto-tune methods leverage knowledge of the system model and apply gradient
descent so that the performance can improve based on the local gradient information (Trimpe et al.,
2014; Kumar and Ramadge, 2021). Stability can be ensured by explicitly leveraging knowledge
about the system dynamics. However, model-based auto-tune might not work in a real environment
due to imperfect model knowledge. Model-free auto-tune methods rely on an approximated gradi-
ent or a surrogate model to improve the performance. Representative approaches include Markov
chain Monte Carlo (Loquercio et al., 2022), Gaussian process (GP) (Marco et al., 2016; Berkenkamp
et al., 2016; Calandra et al., 2014; Lizotte et al., 2007), and deep neural network (DNN) (Mehndi-
ratta et al., 2021). Such approaches often make no assumptions on the model and are compatible
with real data owing to their data-driven nature. However, some model-free approaches (e.g., GPs)
are inefficient when tuning in high-dimensional parameter spaces. Besides, establishing stability
guarantees with data-driven methods is hard, where empirical methods are often applied.

Figure 1: Illustration of an unrolled dynamical system as a
computational graph.

To overcome the challenges in the
auto-tune scheme, DiffTune (Cheng
et al., 2022a) has been proposed as a
model-based auto-tune method based
on auto-differentiation (AD). Diff-
Tune unrolls a dynamical system into
a computational graph, as shown in
Figure 1. Based on the computational
graph, DiffTune iteratively improves
the system performance by tuning the
controller parameters using the an-
alytical gradient. When the com-
putational graph is unbroken, both
forward- and reverse-mode ADs can
be applied to compute the analytical gradient. However, the computational graph is broken when
incorporating real systems’ data because the new system states are obtained through sensor measure-
ments or state estimation instead of evaluating those from the dynamics. The broken computational
graph forbids the usage of forward- or reserve-mode AD. In this case, we propose the “sensitivity
propagation,” which essentially propagates the sensitivity of an ordinary differential equation (ODE)
system (Khalil, 2015; Ma et al., 2021). The measured or estimated state information is applied to
propagate the gradient in the forward direction in parallel to the dynamics’ propagation.

DiffTune enjoys three qualities for autotune schemes: stability is inherited from the controllers
with stability guarantees by design; real-data compatibility is enabled by the sensitivity propa-
gation; and efficiency is provided since the sensitivity propagation runs forward in time and in
parallel to the system’s evolution. DiffTune is generally applicable to tune all the controller param-
eters as long as the system dynamics and controller are differentiable, which is the case with most
of the systems. For example, algebraically computed controllers, e.g., with the structure of gain-
times-error (PID (Kumar and Ramadge, 2021)), are differentiable. Moreover, following the seminal
work (Amos and Kolter, 2017) that differentiates the argmin operator using the implicit differ-
entiation, one can see that controllers relying on a solution of an optimization problem to generate
control actions (Amos et al., 2018; East et al., 2020; Jin et al., 2020, 2022; Ma et al., 2022; Xiao
et al., 2021, 2022; Parwana and Panagou, 2021; Vien and Neumann, 2021) are readily differentiable.
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Despite the merits of DiffTune stated above, what is still missing in DiffTune is the tuning ef-
ficiency: the original DiffTune framework (Cheng et al., 2022a) uses vanilla gradient descent to
improve the performance iteratively. Such a first-order method is not efficient enough since the con-
vergence speed largely depends on the learning rate, which needs to be tuned as a hyperparameter.
This issue motivates us to look into hyperparameter-free approaches that choose the learning rate
“optimally.” More generally, we study how the parameter can be updated “optimally.” We apply a
first-order approximation of the closed-loop state trajectory using sensitivity, where the approxima-
tion essentially serves as the predicted state corresponding to updated parameters. The approxima-
tion leads to a predicted loss, analyzing which permits to derive the explicit formula for the optimal
learning rate or, more generally, the optimal parameter update, which is hyperparameter-free. We
implement the above-mentioned methods together with related first-order and second-order methods
in simulations on a Dubin’s car model and a quadrotor model and compare their performance.

Our contributions are summarized as follows: i) We show deeper insights into DiffTune from
the perspective of first-order approximation of the predicted state trajectory using sensitivity. These
insights allow for predicting the loss change when the controller parameters change, which further
enables optimal parameter updates subject to a certain criterion. ii) Based on the new insights,
we improve DiffTune’s gradient descent method by proposing hyperparameter-free alternatives and
compare their performance with related variants in simulations.

The remainder of the paper is organized as follows: Section 2 reviews the related work of this
paper. Section 3 introduces the technical background and fundamentals of DiffTune. Section 4
describes the usage of sensitivity for predicting state trajectory subject to parameter change and de-
rives optimal parameter updates (and their closely related variants). Section 5 shows the simulation
results on a Dubins’ car and on a quadrotor. Finally, Section 6 concludes the paper.

2. Related Work

We briefly review previous work in the following four domains: automatic parameter tuning, learning-
based controllers, recurrent neural networks (for the resemblance between their recurrent form and
the iterative nature of dynamical systems), and second-order methods for unconstrained optimiza-
tion.
Model-based auto-tune leverages model knowledge to infer the parameter choice for performance
improvement. In (Trimpe et al., 2014), an auto-tune method is proposed for a linear quadratic regu-
lator (LQR). The gradient of a loss function with respect to the parameterized quadratic matrix coef-
ficients is approximated using Simultaneous Perturbation Stochastic Approximation (Spall, 2005).
In (Kumar and Ramadge, 2021), the gradient of a quadratic loss over input control actions and sys-
tem outputs with respect to PID gains is computed using auto-differentiation tools. In (Wiedemann
et al., 2022), a controller is trained via analytical policy gradient, which achieves similar or better
performance than model-based and model-free reinforcement learning (while requiring less training
data) and similar performance to MPC (while reducing the computation time). In (Romero et al.,
2022), the authors use a probabilistic policy search method (weighted maximum likelihood) to tune
a model predictive contour controller for quadrotor agile flight.
Model-free auto-tune relies on a zeroth-order approximate gradient or surrogate performance
model to decide the new candidate parameters. In (Killingsworth and Krstic, 2006), the authors use
extremum seeking to sinusoidally perturb the PID gains and then estimate the gradient. Gradient-
free methods, e.g., Metropolis-Hastings sampling (Loquercio et al., 2022), have also been used for
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tuning. In terms of surrogate models, machine learning tools have been frequently used for their
advantages in incorporating data. In (Edwards et al., 2021), an end-to-end, data-driven hyperpa-
rameter tuning is applied to an MPC using a surrogate dynamical model. Besides, GP is often used
as a non-parametric model that approximates an unknown function from input-output pairs with
probabilistic confidence measures. This property makes GP a suitable surrogate model that approx-
imates the performance function with respect to the tunable parameters. In (Marco et al., 2016), GP
is applied to approximate the unknown cost function using noisy evaluations and then induce the
probability distribution of the parameters that minimize the loss. In (Berkenkamp et al., 2016), the
authors use GP to approximate the cost map over controller parameters while constructing safe sets
of parameters to ensure safe exploration. Similar ideas have been applied to gait optimization for
bipedal walking, where GP is used to approximate the cost map of parameterized gaits (Calandra
et al., 2014; Lizotte et al., 2007). Besides GP, deep neural networks (DNNs) (Mehndiratta et al.,
2021) have also been used for model-free tuning.
Learning for control is a recently trending research direction that strives to combine the advantages
of model-driven control and data-driven learning for the safe operation of a robotic system. Exem-
plary approaches include, but are not limited to, the following: reinforcement learning (Polydoros
and Nalpantidis, 2017; Tambon et al., 2022), whose goal is to find an optimal policy while gathering
data and knowledge of the system dynamics from interactions with the system; imitation learning
(Ravichandar et al., 2020), which aims to mimic the actions taken by a superior controller while
making decisions using less information of the system than the superior controller; and iterative
learning control (Xu, 2011; Bristow et al., 2006), which constructs the present control action by ex-
ploiting every possibility to incorporate past control and system information, typically for systems
working in a repetitive mode. A recent survey (Brunke et al., 2022) provides a thorough review of
the safety aspect of learning for control in robotics.
Recurrent neural networks (RNNs) refer to the artificial neural networks that have recurrent con-
nections. Recent advances in RNNs have been summarized in (Salehinejad et al., 2017). The re-
current structure of an RNN makes it resemble a discrete-time dynamical system: the gradient van-
ishing/exploding phenomenon when training an RNN using backpropagation through time (BPTT)
can be explained using equilibrium and contracting region of an ODE (Bengio et al., 1994). A short
review of the methods for handling the gradient vanishing/exploding issue is provided in (Salehine-
jad et al., 2017). The BPTT is closely related to the sensitivity analysis of an ODE system. A recent
study (Ma et al., 2021) has shown that the discrete local sensitivity implemented via forward-mode
AD is more efficient than reverse-mode AD and continuous forward/adjoint sensitivity analysis.
Second-order methods for unconstrained optimization use the Hessian matrix to scale the gra-
dients with curvature information, which eliminates the need for hyperparameter tuning in the first-
order methods to achieve satisfactory convergence. The most straightforward second-order method
is the Newton method, where the inverse of the Hessian matrix scales the gradient using curvature.
However, since inverting a Hessian matrix is computationally intensive, alternative methods like
Quasi-Newton, Gauss-Newton, Levenberg-Marquardt, conjugate gradient methods (Nocedal and
Wright, 1999) are applied with various ways to approximate the inverse Hessian matrix. Notably,
differentiable Gauss-Newton (Ma et al., 2019) and Levenberg-Marquardt (Tang and Tan, 2018) have
been proposed in recent years to enable end-to-end learning through these second-order methods.
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3. Background

Consider a discrete-time dynamical system

xk+1 = f(xk,uk), (1)

where xk ∈ Rn and uk ∈ Rm are the state and control, respectively, and the initial state x0 is
known. The control is generated by a feedback controller that tracks the desired state x̂k ∈ Rn such
that

uk = h(xk, x̂k,θ), (2)

where θ ∈ Rp denotes the parameters of the controller. The tuning task adjusts θ to minimize an
evaluation criterion, denoted by L(·), which is a function of the desired states, actual states, and
control actions over a time interval of length N .

DiffTune gradually improves the system performance by tuning the controller parameters using
gradient descent. Specifically, since the controller is stable for θ within the feasible set Θ, we use
the projected gradient descent to update θ (Cheng et al., 2022a) (and ensure stability):

θ ← PΘ(θ − α∇θL), (3)

where PΘ is the projection operator (Parikh et al., 2014) that projects its operand into the set Θ and
α is the step size. To obtain∇θL, DiffTune unrolls the dynamical system (1) and controller (2) into
a computational graph. Figure 1 illustrates the unrolled system, which stacks the iterative procedure
of state update via the “dynamics” and control-action generation via the “controller.” Using the
sensitivity propagation

∂xk+1

∂θ
=(∇xk

f +∇uk
f∇xk

h)
∂xk

∂θ
+∇uk

f∇θh, (4a)

∂uk

∂θ
=∇xk

h
∂xk

∂θ
+∇θh, (4b)

the sensitivities ∂xk/∂θ and ∂uk/∂θ are propagated along with the dynamics (1) in the forward
direction. The desired gradient ∇θL is obtained via the chain rule:

∇θL =

N∑
k=0

∂L

∂xk

∂xk

∂θ
+

N−1∑
k=0

∂L

∂uk

∂uk

∂θ
, (5)

where ∂L/∂xk and ∂L/∂uk can be evaluated once L is chosen and xk and uk are known.
A unique aspect of the sensitivity propagation is its real-data compatibility, where the measured

or estimated state xk is used to propagate the sensitivities and eventually compute∇θL. Using real
data for tuning is vital because the ultimate goal is to improve the performance of the real system
instead of the simulated system. The forward- and reverse-mode ADs are not suitable here for
their incapability of incorporating data from real systems because all the computation relies on a
computational graph. Specifically, the dynamics (1) have to be evaluated each time to obtain a new
state, which is not the case in real systems: the states are obtained through sensor measurements
or state estimation, instead of evaluating the dynamics. Thus, AD can only be applied to controller
tuning in simulations, forbidding the tuning of a real system with measured data. Nevertheless,
sensitivity propagation can still be applied to compute the desired gradient while using data collected
from real systems.
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4. Method

The original DiffTune (Cheng et al., 2022a) uses the vanilla gradient descent with projection (3) to
iteratively reduce the loss. However, the performance depends on the choice of the learning rate α,
which is a hyperparameter to be tuned outside DiffTune. Notice that α∇θL is not the sole choice
of parameter update. A more general form of θ ← PΘ(θ + ϵ) can be applied, where ϵ is the one-
step parameter update to be determined. The problem turns into how to design ϵ so that the loss
reduction from L(θ) to L(θ + ϵ) is maximized (equivalently, L(θ + ϵ) − L(θ) is minimized) in
every iteration, which eliminates the need to tune a hyperparameter.

The change in L(θ + ϵ) is a consequence of the perturbation of ϵ on the state and control, for
which we consider the dynamical system with a (small) ϵ-perturbation on the parameter θ:

xk+1(ϵ) = f(xk(ϵ),uk(ϵ)), uk(ϵ) = h(xk(ϵ), x̂k,θ + ϵ). (6)

Here, the notation xk(ϵ) and uk(ϵ) are the state and control of the system subject to the perturbed
control parameter.

Since we know {xk(0)}k=0:N and {uk(0)}k=0:N−1 and we want to infer about the solution
{xk(ϵ)}k=0:N and {uk(ϵ)}k=0:N−1 without necessarily solving the system (6), a straightforward
approach is to apply Taylor expansion:

xk(ϵ) = xk(0) +
∂xk

∂θ
ϵ+ o(∥ϵ∥), uk(ϵ) = uk(0) +

∂uk

∂θ
ϵ+ o(∥ϵ∥).

Since we obtain the sensitivity ∂xk/∂θ and ∂uk/∂θ from the sensitivity propagation (4) (as a by-
product while computing ∇θL), we can define

x̃k(ϵ) = xk(0) +
∂xk

∂θ
ϵ, ũk(ϵ) = uk(0) +

∂uk

∂θ
ϵ, (7)

where only ϵ is to be determined. With x̃k(ϵ) and ũk(ϵ) being the approximations of xk(ϵ) and
uk(ϵ) up to the first order, we can use the former to predict the loss value when the controller’s
parameters are perturbed from θ to θ+ϵ. Consider the quadratic loss function L(θ) =

∑N
k=0∥xk−

x̂k∥2 +
∑N−1

k=0 λ∥uk∥2, where λ is a regulation term; then the predicted loss function is

L̃(θ + ϵ) =

N∑
k=0

∥x̃k(ϵ)− x̂k∥2 +
N−1∑
j=0

λ∥ũj(ϵ)∥2

=

N∑
k=0

∥xk(0) +
∂xk

∂θ
ϵ− x̂k∥2 +

N−1∑
j=0

λ∥uj(0) +
∂uj
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ϵ∥2

=L(θ) +

N∑
k=0

2(xk(0)− x̂k)
⊤(
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∂θ
ϵ) + ∥∂xk

∂θ
ϵ∥2 + λ
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ϵ∥2.

With the derivation above, we can design ϵ such that the predicted loss can result in the maximum
reduction to L(θ), i.e., minimize L̃(θ+ ϵ)−L(θ) by choosing the best ϵ. Since the quadratic term
of ϵ is positive semi-definite, there exists an ϵ∗ such that L̃(θ+ϵ∗)−L(θ) is minimized. By setting
∂(L̃(θ + ϵ)− L(θ))/∂ϵ = 0, i.e.,

N∑
k=0

2(xk(0)− x̂k)
⊤∂xk

∂θ
+ 2(

∂xk

∂θ
)⊤

∂xk
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∂θ
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)⊤

∂uj

∂θ
ϵ = 0, (8)
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we obtain the optimal parameter update

ϵ∗ =− 1

2

 N∑
k=0

(
∂xk

∂θ
)⊤

∂xk

∂θ
+ λ

N−1∑
j=0

(
∂uj

∂θ
)⊤

∂uj

∂θ

−1

∇θL, (9)

where ∇θL is defined in (5), and the loss function L is in a quadratic form. The optimal update ϵ∗

in (9) happens to share the same form as the parameter update given by the Gauss-Newton method,
where the inverse of the Jacobian product serves as the approximate Hessian inverse to scale the
gradient ∇θL.

Following a similar philosophy, one can apply line search to design the learning rate α such that
L̃(θ − α∇θL)− L(θ) is minimized. Given that the difference L̃(θ − α∇θL)− L(θ) is quadratic
about α with positive coefficient of α2, we can derive the explicit expression for α that minimizes
L̃(θ − α∇θL)− L(θ):

α∗ =
1
2(∇θL)

⊤∑N
k=0∥

∂xk
∂θ ∇θL∥2 + λ

∑N−1
j=0 ∥

∂uj

∂θ ∇θL∥2
∇θL. (10)

Two second-order variants based on the Gauss-Newton update (9) and line-search update (10)
are as follows. The Jacobian product in (9) can be singular, for which the Levenberg-Marquardt
method (Marquardt, 1963) is applied with a damping term µI added to the Jacobian product. The
damping coefficient µ > 0 is a hyperparameter to be tuned. Another second-order method is the
Broyden–Fletcher–Goldfarb–Shanno (Fletcher, 2013) (BFGS), in which the inverse Hessian is ap-
proximated. BFGS requires selecting the learning rate via line search, for which we use the line-
search formula (10), where ∇θL is replaced by the descent direction therein.

5. Simulation results

In this section, we compare the following methods in simulations on a Dubin’s car and a quadro-
tor model: vanilla gradient descent (GD), gradient descent with Polyak’s momentum (GDM), line
search (LS), Gauss-Newton (GN), Levenberg-Marquardt (LM), Broyden–Fletcher–Goldfarb–Shanno
(BFGS). GDM is included in the comparison since it is an accelerated method for GD and is easy to
implement. In the computation of the sensitivity propagation, the partial derivatives ∇xk

f , ∇uk
f ,

∇xk
h, and ∇θh are generated using CasADi (Andersson et al., 2019). We open-source our toolset

DiffTuneOpenSource (Cheng et al.), which facilitates users’ DiffTune applications in two
ways. First, it enables the automatic generation of the partial derivatives required in sensitivity
propagation. In this way, a user only needs to specify the dynamics and controller, eliminating the
need for additional programming of the partial derivatives. Second, we provide a template that al-
lows users to quickly set up DiffTune for custom systems and controllers. We provide two examples
that illustrate the usage of the template.

5.1. Dubin’s car

Simulation setup: The dynamical model and controller are detailed in the Appendix (Cheng et al.,
2022b). The tuning is conducted on a circular trajectory. The loss function is the root-mean-square
error (RMSE) in position tracking. We choose 2 as the learning rates for GD and GDM (0.99 is
used for the momentum coefficient). For LM, we use an identity matrix multiplied by 0.01 as the
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damping term added to the Jacobian product. The termination condition is set to either the relative
loss reduction being less than 1e-4 or 100 iterations being reached. All the gains are initialized at 5.

Figure 2: Loss reduction in the Dubin’s car model

Results: Figure 2 shows the loss reduction
of the compared optimization methods. The
hyperparameter-free LS delivers the best per-
formance among the first-order methods (GD,
GDM, LS). Among the second-order methods,
BFGS delivers the best performance (tanta-
mount to that of LS). BFGS has a slight ad-
vantage in that it terminates with fewer itera-
tions than LS, indicating the benefits of scaling
the gradient with an approximated Hessian in-
verse. Inferior to BFGS, GN has a similar per-
formance to GDM. LM is inferior to GN owing
to the improperly chosen damping coefficient. Both 0.1 and 1 are also tested as the damping coeffi-
cient with even worse performance than the reported.

5.2. Quadrotor

Simulation setup: The dynamical model and controller are detailed in the Appendix (Cheng et al.,
2022b). Two trajectories are used for tuning: one is a 3D circle1 and the other is a 3D figure 82.
These two trajectories are selected to represent two operation conditions of the quadrotor: the 3D
circle has its speed in [2, 2.0025] m/s with acceleration in [2, 2.0025] m/s2, representing dynami-
cally steady trajectories; the 3D figure 8 has its speed in [1.45, 4.58] m/s with acceleration in [0.21,
16.28] m/s2, representing dynamically aggressive trajectories. The loss function is the RMSE in
position tracking. We choose 1e-3 for both trajectories as the learning rate for GD and GDM (the
momentum coefficient is set to 0.5). For LM, we use 20 times the identity matrix as the damping
term added to the Jacobian product. We run 100 iterations for all methods. The controller gains
θ = [kp, kv, kR, kω] are initialized at [1613, 5.613, 8.813, 2.5413]. We use an empirical set
Θ = {θ ∈ R12 : θ ≥ 0.5} for the projection operator PΘ(·) to ensure the parameters are bounded
away from being negative. We test all methods on 1) a noise-free system and 2) a system with
noisy sensors and an extended Kalman filter (EKF) for state estimation (details of the noise char-
acteristics are included in the Appendix (Cheng et al., 2022b)). Comparing these two systems will
illustrate how noisy measurements (subject to EKF smoothing) impact the tuning. The noisy system
is evaluated using Monte Carlo with 100 trials.
Results: Figure 3 shows the results for the 3D circle trajectory. All the methods can achieve a loss
reduction between consecutive iterations smaller than 7e-3 by the end, indicating the loss’s con-
vergence. Among the first-order methods, LS shows faster loss reduction and converges to smaller
losses than the reported GD and GDM. Note that the performance of GD and GDM depends on the
choice of hyperparameters. For the second-order methods, GN converges to the minimum loss of all
compared methods, where LM is slightly inferior to GN due to the additional damping term. How-
ever, the minimum loss of GN is achieved with the gains tuned overly large (see Table A.1 in the

1. 3D circle trajectory p(t) = [2(1− cos(t)), 2 sin(t), 0.1 sin(t)]
2. 3D figure 8 trajectory p(t) = [sin(2t), sin(4t), sin(t)]
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(a) (b) (c)

Figure 3: Results in the geometric controller tuning with the 3D circle trajectory. (a) Loss reduction
(noise-free). (b) Mean loss reduction and three standard deviations in the shaded area (with noisy
sensors and EKF for state estimation). (c) Tracking performance with the noise-free system (in the
xy-plane).

(a) (b) (c)

Figure 4: Results in the geometric controller tuning with the 3D figure 8 trajectory. (a) Loss re-
duction (noise-free). (b) Mean loss reduction and three standard deviations in the shaded area (with
noisy sensors and EKF for state estimation). (c) Tracking performance with the noise-free system.

Appendix (Cheng et al., 2022b)), which also explains that it leads to the minimum variance of the
loss in Fig. 3(b). The overly large gains may compromise the robustness of a real system, especially
when the system experiences delays. Our results do not include the BFGS because the algorithm
terminates early (in less than three iterations) due to the curvature turning negative (Nocedal and
Wright, 1999), which leads to barely updated parameters or performance. Comparing the noise-free
system (in Fig. 3(a)) with the noisy system (in Fig. 3(b)), the trend of the loss reduction is almost
identical, indicating the noise does not significantly impact tuning. The conclusions here also apply
to the results tuned on the 3D figure 8 trajectory shown in Fig. 4.

5.3. Discussion

The results above favor line search as the top choice to be applied in DiffTune+ for the following
two reasons. i) LS is one of the hyperparameter-free methods (LS, BFGS, GN), which are gen-
erally easier to implement than the hyperparameter-based methods (GD, GDM, LM). Among the
former, LS produces more robust parameters than GN and BFGS. The issue with BFGS is that the
curvature needs to stay positive (otherwise, a more involved line-search procedure is required to
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satisfy the Wolfe or strong Wolfe condition (Nocedal and Wright, 1999)). The issue with GN is
majorly the scale between the maximum and minimum eigenvalues of the Jacobian product may be
ill-conditioned, which leads to aggressive parameter updates that may hurt the robustness.

Table 1: Comparison between the hyperparameter-free
LS and hyperparameter-based methods (GD, GDM,
LM)

RMSE [m] Dubin’s car Quadrotor Quadrotor
3D circle 3D figure 8

GD 0.021 0.197 0.377
GDM 0.001 0.181 0.346
LM 0.01 0.128 0.260

LS (Ours) 8.5e-5 0.119 0.291

ii) LS supersedes the hyperparameter-based
methods in most scenarios as summarized
in Table 1. Besides, the performance of
hyperparameter-based methods (GD, GDM,
LM) largely depends on the choice of hy-
perparameters (e.g., learning rates, momentum
terms) for optimization itself besides tuning the
control gains. In the simulations shown above,
GDM can result in a smaller RMSE than GD.
However, the tuning for the momentum term
adds to the workload of tuning hyperparame-
ters of these gradient-descent methods. LM can
be effective if the damping term is tuned properly when it regulates, instead of dominating, the Ja-
cobian product. The tuning of these hyperparameters is still a challenge to applying DiffTune with
hyperparameter-based methods.

6. Conclusion

In this paper, we introduce DiffTune+ which improves its predecessor DiffTune with hyperparameter-
free methods. We use the predicted loss function, which is based on the first-order approximation of
the state and control using sensitivity, to determine the parameter update that can maximize the loss
reduction between consecutive iterations. We obtain new optimal parameter updates of the first-
and second-order methods (line search and Gauss-Newton, respectively) that are hyperparameter-
free. The simulation results show the advantage of the line search in two aspects: First, line search
is more robust than the other hyperparameter-free methods (Gauss-Newton leading to overly large
gains and BFGS terminating too early due to the requirement of positive curvature). Second, line
search outperforms the hyperparameter-based methods in most of the cases, e.g., gradient descent
(with Polyak momentum) and Levenberg-Marquardt, which saves the workload on hyperparameter
tuning. Future work will focus on improving the second-order methods for more efficient auto-
tuning based on DiffTune+.
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Karl Johan Åström, Tore Hägglund, Chang C Hang, and Weng K Ho. Automatic tuning and adap-
tation for PID controllers - a survey. Control Engineering Practice, 1(4):699–714, 1993.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994.

Felix Berkenkamp, Angela P Schoellig, and Andreas Krause. Safe controller optimization for
quadrotors with Gaussian processes. In Proceedings of IEEE International Conference on
Robotics and Automation, pages 491–496, Stockholm, Sweden, 2016.

Douglas A Bristow, Marina Tharayil, and Andrew G Alleyne. A survey of iterative learning control.
IEEE Control Systems Magazine, 26(3):96–114, 2006.

Lukas Brunke, Melissa Greeff, Adam W Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and
Angela P Schoellig. Safe learning in robotics: From learning-based control to safe reinforcement
learning. Annual Review of Control, Robotics, and Autonomous Systems, 5:411–444, 2022.
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