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ABSTRACT: Performance-based wind engineering has gained significant interest over the past decade
as a means to achieve innovative designs with increased performance at reduced costs. Nonetheless, the
vast computational demand required for propagating uncertainty through general nonlinear
high-dimensional systems in estimating probabilistic performance metrics represents a significant barrier
to further application. To address this issue, a non-intrusive long short-term memory (LSTM)-based
metamodeling scheme for nonlinear response history prediction is embedded in a state-of-the-art
stratified sampling scheme, therefore, enabling the efficient and accurate performance assessment of
nonlinear wind-excited systems. To treat high dimensional problems, the excitation and response time
histories are reduced by projection through a basis obtained via proper orthogonal decomposition. It is
proposed to learn the mapping from the projected excitation and responses directly through the LSTM
neural network, which avoids the need for schemes, such as Galerkin projection, that are intrusive in
nature. For training, the LSTM neural network is calibrated based on the distribution of the largest wind
speeds to occur in the most extreme stratum. The trained LSTM network is then rapidly transferred to
the remaining strata with computationally negligible effort. The proposed framework is illustrated
through a case study consisting of a 37-story full-scale nonlinear steel moment-resisting frame. A
site-specific wind hazard is considered with wind directionality captured through a sector-by-sector
approach. The calibrated LSTM metamodel was seen to require four orders of magnitude less effort
than state-of-the-art direct integration algorithms while maintaining remarkable accuracy. The capability
to use the LSTM neural network with transfer learning for direct estimation of the exceedance
probabilities was shown for multiple engineering demand parameters of interest, including residual drift.

1. INTRODUCTION and Spence, 2021b,a; Chuang and Spence, 2022;

Performance-based wind engineering (PBWE)
has gained significant interest over the past decade
for enabling more economic and innovative de-
signs. Numerous theoretical frameworks have been
developed for its application in practice (Jain et al.,
2001; Ciampoli et al., 2011; Barbato et al., 2013;
Chuang and Spence, 2017; Cui and Caracoglia,
2018; Ouyang and Spence, 2020; Chuang and
Spence, 2019; Cui and Caracoglia, 2020; Ouyang

Arunachalam and Spence, 2022), eventually lead-
ing to the publication of the Prestandard for
Performance-Based Wind Design by the Ameri-
can Society of Civil Engineers (American Soci-
ety of Civil Engineers, 2019). Nonetheless, the
vast computational demand required in propagat-
ing general uncertainty through nonlinear structural
systems for providing a probabilistic assessment of
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performance can represent a significant barrier to
implementation. This limitation calls for the de-
velopment of alternative methods that can reduce
the computational effort in propagating uncertainty
through high-dimensional finite element models of
nonlinear systems. Metamodeling schemes provide
a promising remedy to this issue by seeking to de-
fine a model of the model that is capable of ac-
curately reproducing the response of the original
problem at a fraction of the computational effort.
Recently the long short-term memory (LSTM) neu-
ral network has been introduced as a metamodeling
approach for reproducing the response time histo-
ries of nonlinear structural systems subject to gen-
eral stochastic excitation (Li and Spence, 2022). In
particular, without loss of accuracy, this metamod-
eling approach has been seen to be remarkably effi-
cient in applications involving full-scale engineered
buildings (Li and Spence, 2022).

Motivated by the potential shown by LSTM-
based metamodeling schemes, this paper in-
vestigates the possibility of developing a rapid
performance-based wind assessment framework
enabled by integrating LSTM-based metamodel-
ing with a general uncertainty propagation frame-
work based on recent advances in stratified sam-
pling (Arunachalam and Spence, 2023). In particu-
lar, to cope with the typically high dimensional sys-
tems associated with engineering problems, a re-
duced space is defined by applying proper orthog-
onal decomposition (POD) over a set of response
snapshots of the original model output. The ba-
sis functions of the reduction are used to directly
project/reduce both the excitation and responses.
It is then proposed to use the LSTM neural net-
work to directly learn the mapping from the pro-
jected excitation to the projected responses, there-
fore avoiding the need to solve the reduced model
even during training. This LSTM metamodeling
scheme is subsequently integrated into a recently
introduced stratified sampling scheme for wind en-
gineering applications. To enhance the transferabil-
ity among different wind speed strata, the meta-
model is calibrated based on a statistical represen-
tation of the largest wind speeds to occur in the
most extreme stratum. Subsequently, the calibrated
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metamodel is transferred to the remaining strata
with negligible computational effort. The entire
scheme is illustrated on a 37-story steel moment-
resisting frame subject to stochastic wind excita-
tion. The calibrated metamodel is shown to be ca-
pable of accurately predicting the exceedance prob-
ability curves associated with various engineering
demand parameters of interest, including peak and
residual responses, with more than four orders of
magnitude gains in efficiency as compared to state-
of-the-art direct integration schemes.

2. PROBLEM SETTING

Performance-based wind assessment is gener-
ally based on probabilistic response metrics esti-
mated from propagating uncertainty in the form of
stochastic wind excitation through finite element
models of the structural system. This generally
involves the repeated evaluation of the following
high-dimensional nonlinear equation of motion:

Mx + Cx +f(x,x) =F(t;vy, o) (1)

where X, X, and X are respectively the vectors of
displacement, velocity, and acceleration; M and
C are the mass and damping matrices; f(X,x) is
the potentially nonlinear restoring force; F(¢; vy, o)
is the vector of external stochastic wind excita-
tion calibrated to a maximum mean hourly wind
speed, vy, of direction ¢. Typically, it is extremely
computationally cumbersome to solve Eq. (1) di-
rectly, making it difficult to implement probabilis-
tic performance-based wind assessments based on
direct propagation of uncertainty.

3. PROPOSED FRAMEWORK

The proposed framework integrates a LSTM-
based metamodeling framework with knowledge
transfer into the general uncertainty propagation
scheme outlined in (Arunachalam and Spence,
2023). In particular, the high-dimensional problem
of Eq. (1) is first converted to a low-dimensional
mapping from the space of the projected excita-
tion to the space of the projected responses through
dimensionality reduction based on POD. Subse-
quently, this mapping is directly captured by the
LSTM neural network. Moreover, given the im-
plementation of stratified sampling for uncertainty
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propagation, the LSTM neural network is first
trained based on data extracted from the largest
value distributions of the wind speeds belonging to
the most extreme stratum with transfer to all re-
maining strata. This framework provides a highly
efficient tool for wind performance assessment in-
corporating both load stochasticity as well as uncer-
tainty in wind speed and direction.

3.1.

The high dimensionality typically associated
with engineering problems can lead to significant
difficulties in metamodeling. The dimensionality
reduction based on projection through a set of basis
vectors, collected in the matrix ®, is hence imple-
mented. In particular, to minimize the dimension-
ality after reduction while maintaining accuracy in
the nonlinear responses, ® is constructed by col-
lecting the first few left-singular vectors from the
POD over a set of displacement snapshots obtained
by solving Eq. (1). Through &, the excitation and
responses are projected into the reduced space as:

POD-based dimensionality reduction

p=>'F )

q=o'x (3)
where p and q are projected excitation and re-
sponses with significantly reduced dimensionality.
Through Eq. (2-3), the originally high dimensional
problem is reduced to a low dimensional mapping
of the form: p — (. It should be observed that this
dimensionality reduction scheme does not require
any knowledge of the structural system, i.e., it is
non-intrusive. In the next section, the LSTM neu-
ral network will be introduced to learn the obtained
low-dimensional mapping.

3.2. LSTM-based metamodeling

The LSTM is a refined version of the typical re-
current neural network capable of capturing short-
and long-term dependency within response time
histories. In addition, the gradient vanishing or
exploding issues seen in training typical recurrent
neural networks are alleviated. In particular, as the
core component of an LSTM neural network, the
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LSTM layer is mathematically described as:

gi(t) = Gg(WEHZ(t —1) +WfT,IY(f) +bg) 4
gi(t) = og(w EHZ(t - )+W1TIY(I) b)) ()
g, (t) = Oy (Wouz(t — 1)+ Wo 1y (t) +bo)  (6)
AC(t) = Gs(WzHZ(t 1)+w () +be)  (7)
C(r) =gi(1)oC(t — 1) +g(r)oAC(r)  (8)
z(1) = go(1) 0 05 (C(1)) )

where y and z are respectively the layer input
and output vector; C(¢) is the LSTM cell state
with AC(t) its increment; Wrp,W;H, Wo H, We H,
Wt 1, Wi [, Wo I, Wc 1, and b, by, by, b are respectively
the weights of z(r — 1), weights of y(7), and biases
in gi(t), g(1), go(r). and AC(1); Gy(-) and o)
are respectively the gate activation function and the
state activation function; and o is the element-wise
product operator. The LSTM network usually con-
sists of one or more LSTM layers, augmented with,
for example, fully connected layers, for better flexi-
bility. For calibration, the LSTM network is trained
by adjusting the parameters of all the layers so as
to minimize output error. Noting that the compu-
tational effort and memory demand in the training
process is highly dependent on the length of the in-
put and output series, it is generally convenient to
perform a wavelet transformation of p and q. The
resulting wavelet coefficient series associated with
p and q are generally considerably shorter and be
considered as the inputs and target outputs of the
LSTM neural network.

3.3.  Training and simulation strategy

To propagate uncertainty in wind hazard inten-
sity, measured through vy and «, and load stochas-
ticity, the aforementioned LSTM-based metamod-
eling scheme 1is integrated with the stratified
sampling scheme outlined in (Arunachalam and
Spence, 2023). In particular, a sector-by-sector
approach is adopted for modeling wind direction
in which the sectorial wind speed distributions are
linearly related to the non-directional distribution
function of vg. Stratification can therefore be car-
ried out directly in terms of the non-directional
distribution function of vy (Chuang and Spence,
2022). Within each sector, uncertainty in wind
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direction, «, is modeled through a uniform dis-
tribution. In implementing the stratified sampling
scheme, the support of the wind speeds, vy, is par-
titioned into a set of mutually exclusive and collec-
tively exhaustive strata: E;, i = 1,2,...,N,,. Any
quantity of interest to be evaluated is first condi-
tioned on each E; through an optimal allocation of
samples, as outlined in (Arunachalam and Spence,
2023), and subsequently unconditioned based on
the law of total probability.

Within this setting, it is proposed to calibrate the
metamodel first within the stratum with the high-
est wind speeds (i.e., the stratum that will produce
the largest demands and therefore the most extreme
nonlinearity), and then efficiently transfer to lower
strata using transfer learning. To ensure the meta-
model is trained to a limited set of extreme wind
speeds, the training data is generated from the dis-
tribution of the largest wind speeds to occur in the
most extreme stratum (i.e., the last wind speed stra-
tum) by sampling from:

P(Vu|EN,) = [P(vu|EN,, )™

where P(vy|Ey,) is the cumulative distribution
function of vy conditioned on the wind speed stra-
tum N,,; Vg 1is the largest value over ny, samples
where ny,, is the sample size to be considered in
the simulation with the trained LSTM neural net-
work. Once the LSTM neural network is calibrated
to this dataset, its structure is transferred to all the
remaining strata with trivial computational effort.
Once trained, this framework defines a metamodel
capable of explicitly propagating a full range of un-
certainty in excitation to the response of the system.

(10)

4. CASE STUDY
4.1. Building and hazard information

To illustrate the proposed framework, a case
study consisting in a 37-story steel moment-
resisting frame subject to stochastic wind excitation
is considered. The moment-resisting frame is illus-
trated in Figure 1. The total height of the structure
is 150 m, with a story height of 6 m for the first
floor and 4 m for all remaining floors. The width
of the six bays of the structure is 6 m, leading to a
total width of 30 m. The structural system is com-
posed of box section columns and AISC (American
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Figure 1: The structural system of the case study steel
building.

Institute of Steel Construction) wide flange beam
sections. The site-specific non-directional distribu-
tion for vy is defined through a Weibull distribu-
tion calibrated based on the site-specific point value
wind speeds transformed from the annual 3 s gust
wind speeds of the hazard maps of the ASEC 7-
22 (American Society of Civil Engineers, 2022).
In total 6 strata were considered for the imple-
mentation of the stratified sampling scheme. In
addition, 8 equal-sized wind sectors were consid-
ered to capture directionality effects. The high-
dimensional finite element model of the system was
developed in OpenSees using fiber-based model-
ing and an elastic-perfectly plastic material model.
The stochastic wind loads had a total duration of 10
minutes and included an initial ramp-up and a fi-
nal ramp-down. They were generated using a data-
driven spectral POD model calibrated to wind tun-
nel data (Chuang and Spence, 2019). A total of
12,000 samples will be used for evaluating the sys-
tem response (250 samples per stratum and sector).

4.2.  Results
As outlined in Section 3.3, the LSTM-based
metamodel is first calibrated with data generated
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by direct integration, carried here in OpenSees, and
wind speed samples belonging to the extreme dis-
tribution of Eq. (10) where for this case, ny, =
250 and P(vy|Ey,) is the distribution function of
vy conditioned on N,, = 6. In total, 800 samples
were used to train the LSTM-based metamodel with
transfer to the remaining five wind strata. The cal-
ibrated LSTM-based metamodel was subsequently
used to simulate the responses for all 12,000 sam-
ples. For validation, the OpenSees model was also
run for all 12,000 samples. Comparisons between
the sample responses and exceedance probability
curves of the peak interstory drift, residual inter-
story drift, and peak drift are shown in Figure 2. It
is seen that for all responses the LSTM-based meta-
model shows excellent accuracy. This holds true
even for the residual drift. Moreover, it is seen from
Figures 2(b), (d), and (f) that a constantly high level
of accuracy is maintained over the entire dataset.
This highlights how the training scheme, based on
data from the distribution of the largest wind speeds
in stratum 6, equipped the LSTM neural network
well for transfer to the remaining strata. Moreover,
compared with the direct integration in OpenSees,
once trained, the metamodel was more than four or-
ders of magnitude faster. The proposed scheme al-
lows the explicit propagation of a full range of un-
certainty in the wind hazard, i.e., both the wind in-
tensity measures (wind speed and direction) as well
as wind load stochasticity. The efficiency of the
scheme illustrates the potential to adopt the scheme
in PBWE applications involving inelastic structural
systems.

5. CONCLUSIONS

This paper outlined the development of a rapid
wind performance assessment scheme for engi-
neered structural systems through the integration
of LSTM-based metamodeling schemes and ad-
vanced stratified sampling frameworks. A POD-
based projection is firstly considered to reduce both
the high-dimensional excitation and responses. The
low dimensional mapping from the reduced excita-
tion to reduced responses is subsequently learned
by the LSTM metamodel in a non-intrusive man-
ner. The LSTM metamodel is applied as a response
estimator in a state-of-the-art stratified sampling
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Figure 2: Comparison between the results obtained

by direct integration in OpenSees and the proposed
metamodel: (a) exceedance probability curves of the
peak interstory drift at the top floor and (b) compari-
son between the peaks of all samples; (c) exceedance
probability curves of the top floor residual interstory
drift and (d) comparison between the peaks of all sam-
ples; (e) exceedance probability curves of the top floor
displacement response and (f) comparison between the
peaks of all samples.

scheme. To ensure the transferability to different
wind speed strata, the LSTM-based metamodel is
calibrated with the data generated by considering
the distribution of the largest wind speeds of the
most extreme stratum. The proposed framework
is validated on a 37-story inelastic steel moment-
resisting frame. The calibrated LSTM-based meta-
model is shown to have excellent transferability and
accuracy in reproducing the exceedance probabil-
ity curves of multiple responses of interest, includ-
ing residual interstory drift. The trained LSTM-
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based metamodel is seen to require four orders of
magnitude less computational effort than the corre-
sponding high-fidelity model. The remarkable ac-
curacy, efficiency, as well as transferability over a
wide range of wind speeds and directions attest to
the significant potential of the proposed framework
for applications in PWBE.
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