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Abstract

Human learning is often motivated by self-imposed challenges,
which guide behavior even in the absence of external rewards.
Previous studies have shown that humans can use personal
goals to “hack” the definition of reward, warranting an ex-
tension of the classic reinforcement learning framework to ac-
count for the flexible attribution of value to outcomes accord-
ing to current goals. However, learning through goal-derived
outcomes is less efficient than learning through more estab-
lished reinforcers, such as numeric points. At least three pos-
sible explanations exist for this sort of impairment, or “bug”.
First, occasional lapses in executive function, which is required
to encode and recognize goals, may result in subsequent fail-
ure to update values accordingly. Second, the higher work-
ing memory load required to encode novel stimuli as desir-
able outcomes may impair people’s ability to update and re-
member correct stimulus-reward associations. Third, a weaker
commitment to arbitrary goals may result in dimmer appet-
itive signals. By extending existing experimental paradigms
that include learning from both familiar rewards and abstract,
goal-contingent outcomes and combining them with computa-
tional modeling techniques, we find evidence for each of the
proposed accounts. While other factors might also play a role
in this process, our results provide an initial indication of the
key elements supporting (or impairing) the attribution of re-
warding properties to otherwise neutral stimuli, which enable
humans to better pursue arbitrarily set goals.
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Introduction

The reinforcement learning (RL) framework has proven use-
ful in explaining neural and behavioral signatures of learn-
ing in natural organisms, including humans (Niv, 2009). RL
also plays a key role in many of the recent advances in ar-
tificial intelligence — sitting at the root of self-driving cars
and machines that can beat human Go masters (Silver et al.,
2016; Wang et al., 2018). However, even the most sophis-
ticated RL algorithms are strikingly inflexible compared to
humans. In particular, standard RL systems depend on exter-
nal rewards to learn how to select the optimal action given a
certain state of the environment. For software and robots, re-
wards are usually defined by the engineer in alignment with
a specific objective the RL agent is designed to attain (Sutton
& Barto, 2018). Biological rewards are shaped by evolution
or learned through association with homeostatic or reproduc-
tive rewards. However, humans can also subjectively attribute
rewarding properties to virtually any otherwise neutral state
of the world, thereby “hacking” the innate reward system to
accomplish arbitrarily set goals (abstract representations of

future states one is trying to bring about; Juechems & Sum-
merfield, 2019; O’Reilly, 2020). Testifying to the powerful
role of personal goals in the definition of reward, people fre-
quently incur physical or cognitive costs for the pursuit of
feats that are more or less far removed from evolutionary ad-
vantages (e.g., running a marathon or completing crosswords;
Blain & Sharot, 2021). The ability to attribute value to in-
termediary goals is also at the core of “divide and conquer”
strategies, which are required to accomplish complex behav-
ior (Diuk et al., 2013; Newell & Simon, 1972).

Upon investigating this phenomenon more closely in a
probabilistic learning task, McDougle et al. (2022) observed
similar RL-related signals in dopaminergic structures upon
receipt of both standard reinforcers (numeric points) and goal
outcomes (fractal images associated with goal-congruent).
Nonetheless, learning was less effective when feedback was
provided as novel goal-contingent rewards than as standard
reinforcers, damaging performance. Here, we replicate evi-
dence for the human ability to “hack” the reward system to
achieve arbitrarily set goals while attempting to explain the
sources of imperfection (“bugs”) in this process.

McDougle et al. (2022) observed that stronger prefrontal
engagement at goal encoding leads to more reliable reward
signals when receiving goal-contingent feedback. Therefore,
one possible account for worse performance in the instructed
rewards condition is that occasional lapses in goal mainte-
nance could subsequently prevent the recognition of goal at-
tainment (or failure to do so). Here, we test this hypothe-
sis by adapting previous experiments and directly measuring
people’s encoding of abstract feedback as either rewarding or
non-rewarding (Experiment 1).

Needing to imbue different abstract goals with value on
every trial, as was the case in previous experiments, could
also decrease participants’ ability to recruit resource-limited
working memory to guide choice (Collins & Frank, 2012).
Here, we eliminate this confound by implementing a con-
trol task in which goal-contingent outcomes remained stable
throughout the experiment (Experiment 2).

A third, non-exclusive explanation for lower performance
when learning from arbitrary goals than numeric points re-
lates to differences in reward-related signals between the two.
While numeric points were likely associated with positive
outcomes on multiple occasions prior to participants’ engage-
ment with our task, goal-contingent outcomes were com-



pletely abstract and instructed by the experimenter. More-
over, greater familiarity and repeated associations with re-
ward might have made points more immediately rewarding
than goal images. Thus, it is possible that commitment to ac-
crue points was stronger than the willingness to obtain goal-
congruent images, which may have resulted in weaker appet-
itive responses to the latter, compared to the former. This hy-
pothesis is further justified by the fact that, in the McDougle
et al. (2022) study, reward prediction error signals following
goal-contingent outcomes failed to reach statistical signifi-
cance in the dorsomedial striatum, despite there not being dif-
ferences between conditions in whole-brain contrasts. Here,
we employ behavioral and computational analyses across ex-
periments to test this hypothesis.

Experimental Design

The experimental design was adapted from Collins and Frank
(2012) and McDougle et al. (2022) with the aim of comparing
learning performance in tasks where feedback was provided
in the form of either points (standard reinforcers) or abstract,
novel stimuli associated with instructed goals (one-shot en-
coded, goal-dependent rewards). Two versions of the experi-
ment (“Experiment 1~ and “Experiment 2” below) were run.
In both experiments, participants were presented with thor-
ough instructions and a round of practice trials, and then
tasked with learning the correct mapping between each of six
images and one of three actions (Figure 1). The images be-
longed to the same category (e.g., vegetables, cartoon char-
acters, famous monuments) and were unique to each of six
blocks. Participants were told that learning the correct re-
sponse for one image was not informative with respect to the
correct action for another image. Within each block, indi-
vidual images were presented 13-14 times with a uniform de-
lay between same-stimulus presentations. Three “Points” and
three “Goals” blocks were pseudo-randomly interleaved.
Within Points blocks, participants first saw a “+1” and a
“+0” message at the top and bottom of the screen, with the la-
bels “Win” and “Lose” at the top of each respective message,
identifying the desirable outcome. Next, participants viewed
a stimulus image and had to press one of the J, K, or L keys
on their keyboard. Depending on whether their response was
correct, they received feedback in the form of the +1 message
or +0 message in a deterministic fashion and without the as-
sociated label. The structure in Goals blocks was similar, but
+1 and +0 messages were replaced by fractal images, accom-
panied by the labels “Goal” at the top, and “Nongoal” at the
bottom of the screen. Feedback in the Goals blocks was pre-
sented in the form of the goal or nongoal image (according to
whether the participant selected the correct key) without the
associated label. To track any occurring lapses in the recog-
nition of desirable outcomes, participants were instructed to
“collect” +1 messages and goal images by pressing a separate
key (D) upon obtaining them, while avoiding the collection
of +0 messages and nongoal images. If participants collected
the outcome within the allotted time, the black square that

originally surrounded the outcome would turn blue, signaling
that their “collection” was recorded (but not whether it was
correct).
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Figure 1: Task design. Points and Goals trials were presented
in separate blocks (three each) in a pseudo-randomized order.
In Experiment 1, “Goal” and “Nongoal” images changed on
each trial. In Experiment 2, the same two fractals were used
as goal and nongoal images.

In Experiment 1, goal and nongoal images changed on ev-
ery trial. In Experiment 2, the same two fractals were used
as goal and nongoal images (randomized across participants
while maximizing visual distinctiveness) throughout the ex-
periment. Participants in Experiment 2 were shown the goal
and nongoal images during the instructions. In Experiment
2, participants also rated their liking of the goal and nongoal
images on a scale from 1 (“not at all”) to 5 (“very much”)
at three different time points: 1) before the instructions be-
gan, 2) after being told which images would be used as the
goal and nongoal image throughout the experiment, 3) at the
end of the experiment. Experiment 1 and Experiment 2 were
otherwise identical.

After completing the main task, participants performed six
blocks of an N-back task (Kirchner, 1958), which was in-
tended to measure working memory independently of the
learning task (Haatveit et al., 2010). Here, participants
viewed a sequence of letters and were tasked with pressing
the left arrow key on their keyboard when the same letter
reappeared following the presentation of N stimuli. The rele-
vant N (1-3) was specified at the beginning of the block.

Participants

All subjects were recruited from the university’s pool of par-
ticipants and completed the experiment online on their own
devices. Participants received partial course credit as com-
pensation for their time.

One hundred and twenty-five individuals completed Exper-
iment 1. Thirty-five participants were excluded because they
met at least one of the following criteria: 1) missing more
than 25 trials during the course of the experiment, 2) miss-
ing more than 10 trials consecutively, 3) selecting the same
response more than 15 times in a row, 4) having a reward



collection d’ in the Points condition below or equal to 1, 5)
making more than 20 reward collection errors in the Points
condition, 6) having a reward collection d’ in the Goals con-
dition below or equal to 0, 7) making more than 50 reward
collection errors in the Goals condition. These quality checks
were intended to control for task engagement, and thresholds
were based on elbow points in ordered group distributions
(Xia et al., 2021). Therefore, data from 90 participants (70%
female, ages 18-30, M = 20.33 £ 0.21) were analyzed for
Experiment 1.

One hundred and twenty-one individuals completed Exper-
iment 2. Twenty-eight participants were excluded based on
the same criteria as in Experiment 1. Therefore, data from
93 participants were analyzed for Experiment 2 (71% female,
ages 18-27, M = 20.09 £ 0.19).

The University of California, Berkeley Institutional Re-
view Board approved the experimental procedure.

Computational Modeling

We fit a set of candidate models that shared a basic RL archi-
tecture (Sutton & Barto, 2018). The value of each stimulus-
action pair (Q) was initialized at O at the beginning of each
block. Q-value updates followed the delta rule (Rescorla &
Wagner, 1972), according to which the expected value of the
chosen response (c¢) on a given trial (¢) is updated as:

Qt+1(C)=Qt(C)+OC'8c,t (1)

where o is the learning rate and d is the trial’s reward pre-
diction error calculated upon receipt of feedback (r):

Sc,t =Trer — Qt (C) (2)

Models also included a forgetting parameter (¢) which par-
tially countered feedback-guided updates by returning Q-
values towards the initial value on each trial (see McDougle
et al., 2022). All models selected actions via a softmax pol-
icy, with the inverse temperature parameter ([3) controlling the
amount of exploration of suboptimal responses. Other factors
that varied across models included the presence of separate Bs
for Points and Goals blocks, separate os for Points (otp) com-
pared to Goals (0) blocks, and an additional parameter, r,
which rescaled the value of goal-conditioned outcomes as a
fraction of 1 while leaving numeric rewards intact. Instead
of objective outcomes (i.e., +1 for obtaining a point or a goal
image, and +0 otherwise), a subset of the models used sub-
jective rewards (+1 if participants pressed the “reward collec-
tion” button, +0 otherwise) to update Q-values.

All models were fit through hierarchical Bayesian model-
ing, using PyStan to interface the programming language Stan
via Python. Weakly informative priors were chosen in accor-
dance with Baribault and Collins (2021). Four parallel chains
were run for 1000 iterations each. All models converged, as
evidenced by all R scores (the Gelman-Rubin convergence
diagnostic) being < 1.01 and effective sample sizes being
> 400 (Vehtari et al., 2021). The widely applicable infor-
mation criterion (wAIC; Watanabe, 2013) was used to com-

pare the predictive value of candidate models while account-
ing for complexity. wAIC scores were calculated following
Fontanesi et al. (2019). Model validation was performed by
simulating data based on five samples from each chain’s last
125 samples for each participant.

Results

Humans can attribute reinforcing properties to
abstract, goal-congruent stimuli

Despite using a different experimental design, we replicated
McDougle et al.’s (2022) finding that learning can be guided
by a goal-contingent attribution of value to otherwise neu-
tral stimuli, similar to learning in the presence of numeric
points (which constitute more typical reinforcers). In both ex-
periments, participants exhibited successful learning of each
stimulus-action mapping, with high average accuracy in both
Points (Experiment 1: M = 0.79 &£ 0.01; Experiment 2: M
=0.79 £ 0.01) and Goals blocks (Experiment 1: M = 0.65
4 0.02; Experiment 2: M = 0.76 & 0.01; Figure 2). While
not novel, this finding is remarkable, as it calls for an exten-
sion of the traditional RL framework in psychology, wherein
reinforcers are typically understood as deriving from primary
sources of reward or stimuli associated with them. By con-
trast, participants in our study were able to treat abstract stim-
uli as signals for learning based on a single instruction.
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Figure 2: Learning performance in Points and Goals blocks
across stimulus iterations for Experiments 1 (A) and 2 (B).
Insets illustrate differences in overall performance. Shading
and error bars show the standard error of the mean. Dots
represent individual participants.

Learning via goal-contingent signals is less efficient
than learning through standard rewards

Consistent with previous results (McDougle et al., 2022),
learning was more efficient in Points blocks compared to
Goals blocks (Experiment 1: t(81) = 11.54 p < 0.001; Exper-
iment 2: t(92) =3.78 p < 0.001). Therefore, the attainment of
arbitrary goal outcomes cannot be considered fully equivalent



to receiving more familiar and easily interpretable reinforcers
such as numeric outcomes. In the remainder of this paper, we
test three hypotheses that might account for such differences.

Lapses in goal recognition play a marginal role in
accounting for goal-dependent learning

Throughout the experiment, we recorded participants’ sub-
jective accounts of reward receipt by asking them to press
a key upon obtaining points or goal images (but not other
outcomes). This manipulation enabled us to directly test the
hypothesis that occasional lapses in goal outcome encoding
underlie differences in learning across task conditions.
Overall, reward collection errors were extremely rare. Ac-
curacy was very high across experiments, as evidenced by
high d’ scores (a measure of sensitivity that is unaffected by
response biases; Experiment 1: M = 3.61 4+ 0.06; Experi-
ment 2: M = 3.97 £ 0.05). Nonetheless, average accuracy
was greater in Points than in Goals trials in Experiment 1
(t(81) = 6.36, p < 0.001). This finding is consistent with
the hypothesis that setting a reward value for a new goal is
more demanding for executive functions than experiencing
a known reward. It also supports the view that differences in
learning performance between the two conditions observed in
Experiment 1 can be explained by occasional lapses in goal
maintenance and subsequent recognition. This theory makes
two further predictions: 1) we should observe a difference
in lapses in reward collection in Experiment 2 to account for
significant learning differences, and 2) differences in reward
collection should predict differences in performance.
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These predictions were not supported by the findings.
Specifically, there was no significant difference in reward col-
lection d’ scores for Points compared to Goals trials (t(92) =
0.43, p=0.667; Figure 3) in Experiment 2. Moreover, the dif-
ference in learning performance between the conditions was
not significantly correlated with the difference in reward col-
lection accuracy between the conditions in either experiment
(Experiment 1: Spearman’s p = 0.03, p = 0.762; Experiment
2: p=0.17, p=0.133). In addition, computationally account-
ing for lapses could not fully recover the difference between
Points and Goals performance. This was evident in the fact
that substituting objective reward contingencies with subjec-
tive outcomes (based on whether participants collected points
or images) did not improve model fit (Experiment 1: AWAIC

relative to the best model =
556.76).

235.57; Experiment 2: AWAIC =

Together, these results suggest that occasional lapses in
goal outcome recognition may play a marginal role in the im-
perfect recruitment of reward structures for the achievement
of arbitrary goals, but are likely not the sole cause of impair-
ments in goal-dependent learning.
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Figure 4: Computational models successfully replicate be-
havioral patterns in Experiments 1 (A) and 2 (B). (C) Work-
ing memory cannot fully account for differences in learning
rates between conditions in Experiment 1. (D) Differences
in performance between conditions correlate with individual
differences in value attribution in Experiment 2. Self-reported
feelings of reward were stronger for the receipt of points than
“goal” images in Experiments 1 (E) and 2 (F). The inset (F)
shows progressive preferential liking for “goal”, compared to
“nongoal” images in Experiment 2.



Working memory load impinges on goal-dependent
learning

In Experiment 1, the goal image varied on each trial. This
choice in experimental design pushes the concept of value at-
tribution onto abstract novel stimuli to a logical extreme, but
poses an additional load on working memory when learning
from goals, compared to the Points condition (in which de-
sirable outcomes stay identical throughout the experiment).
To account for the difference in working memory load, goal
images remained the same in Experiment 2 for the entire du-
ration of the study.

Providing evidence that working memory load was an
important factor in the impairment of learning with goal-
dependent rewards, maintaining a fixed goal/nongoal image
pair in Experiment 2 significantly reduced the difference be-
tween Points and Goals performance compared to Experi-
ment 1 (t(173) = 7.09, p < 0.001; Figure 2). However, we
note that working memory load was not the only factor im-
pacted by changes in the task design applied in Experiment
2, and repeated exposure and value attribution to the same
goal images created a possibility to improve the goal signal
associated with them — a point to which we return below. In
both experiments, individual differences in working memory
involvement in learning were captured by the model’s learn-
ing rate parameters. Indeed, in Experiment 2, the learning
rate (o) was significantly correlated with N-back d’ — a stan-
dard proxy of working memory that was measured indepen-
dent of learning (p = 0.35, p = 0.001). In Experiment 1, the
best model included separate learning rates for the two con-
ditions, both of which correlated with N-back d’ scores (0ip:
p=047,p <0.001; og: p=0.39, p < 0.001). Furthermore,
the average learning rate for Points blocks was significantly
higher than the learning rate for Goals blocks (difference M =
0.09, 95% HDI =[0.01, 0.19]; Figure 4B), supporting the hy-
pothesis that working memory was less available to support
learning in Goals blocks.

While taking these results into account, it is remarkable
that the difference between Points and Goals trials remained
significant even in Experiment 2, where we removed the
working memory load confound. Indeed, the difference there
was not well captured by a model with separate learning rates
(AWAIC compared to the best model = 23.22). Moreover,
even in Experiment 1, the difference between ap and 0. was
not correlated with N-back d” scores (p =0.08, p=0.513; Fig-
ure 4B), suggesting that differences in learning rates were at
least in part accounting for factors beyond working memory.
Therefore, novelty in outcome encoding appeared to have a
considerable, but partial role in slowing down learning from
goal-contingent outcomes compared to standard rewards.

Goal-contingent outcomes are likely associated with
weaker appetitive signals

Neither cognitive explanation explored thus far could fully
account for differences between learning guided by goal-
contingent outcomes versus numeric points. An additional,

non-mutually exclusive hypothesis of the phenomenon holds
that weaker appetitive signals associated with attaining ab-
stract outcomes, compared to the receipt of standard rewards,
might have caused the learning differences observed between
the two conditions.

Table 1: Logistic mixed-effects regression predicting correct
versus incorrect reward collection from the (z-scored) con-
dition, stimulus iteration, block number, and the interaction
between condition and the latter two.

Estimate + SEM z p

Experiment 1

Intercept 1.86 £0.01 21.11 < 0.001
Cond. 0.30 + 0.07 449 <0.001
Iteration 0.11 £ 0.01 16.63 < 0.001
Block 0.16 = 0.02 10.32 < 0.001
Cond. X iteration 0.01 £0.01 1.86 0.063
Cond. x block -0.02 £ 0.02 -1.00  0.320
Experiment 2

Intercept 1.89 + 0.08 22.92 < 0.001
Cond. 0.30 £ 0.07 448 < 0.001
Iteration 0.13 +0.01 18.34 < 0.001
Block 0.19 + 0.02 12.63 < 0.001
Cond. X iteration -0.00 + 0.01 -0.42 0.677
Cond. x block -0.06 £ 0.01 -3.56 < 0.001

In favor of this idea, subjective ratings of “how rewarding it
felt” to obtain goal images, self-reported by participants at the
end of the experiment (on a scale from 1 = “not at all” to 5 =
“very much”; Experiment 1: M = 3.49 + 0.14; Experiment 2:
M =3.41 £ 0.11), were lower than ratings for the attainment
of points (Experiment 1: M = 3.69 £ 0.13; Experiment 2: M
=3.60 + 0.12) both in Experiment 1 (Wilcoxon’s z = 172, p
= 0.043) and Experiment 2 (z = 58.8, p = 0.010; Figure 4E-
F). Moreover, the best model in Experiment 2, where working
memory load was comparable across conditions, incorporated
a parameter, r, which multiplied goal-dependent goal signals
while leaving rewards from numeric outcomes unchanged at
1. In this model, which successfully replicated behavioral
patterns (Figure 4B), the mean r was lower than 1, although
individual differences sometimes exceeded 1 (M = 0.94, 95%
= [0.69, 1.21]), suggesting that, on average, reward signals
were weaker for goal images than points. In further support of
the idea that condition-based differences in value attribution
caused learning differences between Points and Goals blocks,
individual mean values of r in Experiment 2 correlated with
learning performance differences between the two (p = -0.64,
p < 0.001; Figure 4D). The same was true for » in Experiment
1 M =0.71, 95% HDI = [0.50, 0.93], p =-0.69, p < 0.001),
where the model that comprised this parameter was a close
second best-fitting (AWAIC = 13.32).

Repeated opportunities to attribute value to goal im-
ages (present in Experiment 2, but not Experiment 1) led
condition-based differences in approach responses to dampen
throughout the course of the experiment (as evidenced by a



significant interaction between block number and condition
on reward collection accuracy; Table 1). Accordingly, in Ex-
periment 2 participants’ liking of the goal image, relative to
the nongoal image, increased over the course of the exper-
iment. If before being instructed to associate either image
with desirable outcomes participants had no preference be-
tween goal and nongoal images (each measured on a scale
from 1 to 5; difference M = 0.05 & 0.15, t(92) = 0.37, p =
0.714 against 0), after completing the task, participants had
acquired a significant preference for the goal image (M = 0.65
+ 0.18, t(92) =3.53, p < 0.001). Together, these results sug-
gest that differences in the strength of the reward signal asso-
ciated with goal-dependent outcomes, compared to numeric
points, were a partial cause of learning differences between
the two conditions.

Discussion

If secondary rewards (e.g., money or numeric points) earn
their reinforcing property through experienced associations
with primary rewards (e.g., food, water, or sex), goals can
imbue even abstract and/or novel stimuli with value, enabling
learning with a level of flexibility that has so far only been
shown in humans. From struggling to solve a Sudoku puzzle
to enduring the physical strain of climbing Kilimanjaro, peo-
ple complete self-imposed challenges despite incurring vary-
ing amounts of costs. Perhaps even more strikingly, humans
are capable of using goal-dependent signals to guide learn-
ing toward voluntarily set objectives — calling for an impor-
tant reconsideration of how rewards are defined in RL. Here,
we replicated the finding (McDougle et al., 2022) that people
can attribute value to completely novel, abstract stimuli upon
a single, instructed association with the task goal, and use
such constructed reward signals to guide their own learning.
Moreover, we confirmed previous results showing that learn-
ing from goal-contingent outcomes is less efficient than learn-
ing from more standard rewards. Understanding the origins
of this discrepancy could help identify the key processes in-
volved in flexible value attribution during goal-guided learn-
ing. We therefore sought to identify and test initial hypothe-
ses for why this might be the case.

First, slower learning from goal-dependent outcomes could
result from occasional lapses in goal-outcome maintenance
and recognition. This hypothesis was justified by previous
neuroimaging findings in a similar task, wherein stronger in-
teractions between the prefrontal cortex and reward-sensitive
regions predicted better performance in the Goals condition
(McDougle et al., 2022). To address it, we asked participants
to “collect” desirable outcomes (i.e., points or goal images),
hence recording any occurring errors in the attribution of re-
warding or punishing properties to the observed outcome.
While reward collection errors were more frequent in Goals
than Points blocks, lapses were extremely rare and unlikely
to fully account for condition-based differences in learning
performance.

Second, we controlled for possible effects of working

memory load that might have detracted from learning re-
sources in the original Goals condition — in which desirable
and undesirable outcomes had to be newly encoded on each
trial — and the Points condition — in which positive and nega-
tive outcomes remained stable over time. This manipulation
significantly reduced learning differences between the two
conditions, suggesting an important role of executive function
in the attribution of rewarding properties to novel stimuli. At
the same time, differences between points and goals-based
learning were not entirely attributable to working memory
limitations.

Third, we asked whether differences in learning from sec-
ondary, as opposed to goal-conditioned rewards, could be par-
tially accounted for by differences in appetitive signals. This
account was inspired by parallel differences in reward-related
neural signals observed in a previous exploration (McDougle
et al., 2022). Indeed, both self-reports of the subjective feel-
ing of reward in response to goal images, compared to nu-
meric points, and computational modeling results, provided
evidence for a weaker reward-related signal in the former
case. We speculate that this difference may be adaptive, pre-
venting people from attributing too much value to arbitrary,
instructed goals as opposed to more established outcomes that
have been frequently associated with rewards in the past.

At this stage, we cannot confirm or exclude the role of
other factors in the different effects of standard versus goal-
contingent rewards. For instance, specific properties of nu-
merical outcomes may ease the interpretation of outcomes in
the Points condition (e.g., Shenhav et al., 2016). One way to
test this hypothesis would be to substitute points with more
abstract, yet traditionally positive/negative outcomes, such as
green/red marks. Such a design may also address possible
differences in the two conditions due to greater visual pro-
cessing needed to encode fractals compared to numeric out-
comes. Lastly, each of the factors identified here is likely to
interact with the others — an aspect that awaits future research.

To summarize, we have replicated the finding that hu-
mans can imbue abstract, novel stimuli with reward and use
them as signals for learning, and investigated whether oc-
casional lapses in goal maintenance, working memory load,
and differences in value attribution cause slower learning with
such goal-defined reinforcers compared to standard, numeric
points as rewards. Altogether, we find evidence for each of
the three hypotheses, suggesting that multiple factors con-
tribute jointly to the recruitment of the reward system while
attempting to learn and attain arbitrarily set goals. While
other components might be at play, the present experiments
provide an initial indication of key elements that may impair
flexible attribution of rewarding properties to otherwise neu-
tral stimuli. Future studies may explore how each of these
factors interacts with the others. A better understanding of the
limitations of the ability to set and achieve arbitrary goals will
ultimately lead to ways we can enhance this perhaps uniquely
human capacity, empowering people to reach their own quo-
tidian or ambitious goals.
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