Getting the wiggles out: Movement between tasks pre-
dicts future mind wandering during learning activities

Rosy Southwell [0000-0003-4141-523X] Candace E. Peacock [0000-0001-5865-0653]
and Sidney K. D’Mello [0000-0003-0347-2807]

University of Colorado Boulder, Boulder CO 80301, USA
rosy.southwell@colorado.edu

Abstract. Mind wandering (“zoning out”) is a frequent occurrence and is nega-
tively related to learning outcomes, which suggests it would be beneficial to
measure and mitigate it. To this end, we investigated whether movement from a
wrist-worn accelerometer between tasks could predict mind wandering as 125
learners read long, connected, informative texts. We examined random forest
models using both basic statistical and more novel nonlinear dynamics movement
features, finding that the former were more predictive of future (i.e., about 5
minutes later) reports of mind wandering. Models generalized across students
with AUROCS up to 0.62. Importantly, vertical movement as measured by the
Z-axis accelerometer channel, e.g. flexion or extension of the elbow in stretching,
was the most predictive signal, whereas horizontal arm movements (measured by
X- and Y-axis channels) and rotational movement were not predictive. We dis-
cuss implications for theories of mind wandering and applications for intelligent
learning interfaces that can prospectively detect mind wandering.
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1 Introduction

Mind wandering (MW) is defined as ‘zoning out’, or where attention disengages from
the primary task towards task-unrelated thoughts [10, 18]. Students are estimated to
mind wander approximately 30% of the time during learning [33], varying from 20%
to 40% depending on the learning activity, with greater occurrence in passive forms of
learning such as lecture viewing (35%, [33]) than when engaging with interactive learn-
ing technology (23% [19]). Although MW has benefits such as enabling future planning
and creativity [23], meta-analyses indicate that it is negatively related to performance
for activities involving focused attention and concentration [10, 14]. Accordingly, re-
searchers have investigated various interventions to alleviate the effects of MW in ed-
ucation. Proactive interventions are (usually non-individualized) modifications to task
parameters made beforehand, such as changing text properties to reduce MW [13, 17,
10] whereas reactive interventions aim to detect and mitigate effects of MW after its
onset, for example, by repeating content or asking a probing question to reengage at-
tention and mitigate any learning deficits [8, 22].

This raises the question of whether there are patterns of behavior that can prospec-
tively predict that future MW will occur. If so, detecting such patterns could be used in



learning technologies to enable proactive interventions or to improve prediction of MW
when it occurs. These possibilities depend on the ability to identify behaviors that can
prospectively predict MW compared to existing research that focuses on detecting it
when it occurs [3, 8, 14, 22, 28]. As a step in this direction, the present study examines
whether patterns of movement during pre-defined intra-task intervals can prospectively
predict self-reports of MW as probed roughly 5 minutes later during learning from com-
plex texts. We model movement because well-established theoretical and empirical re-
search links it to engagement and attention [3, 5, 9, 14, 24, 28] and movement can be
measured using low-cost wearable accelerometers scalable for use in classroom set-
tings. In addition to the practical applications, the present work also advances empirical
knowledge of the behaviors that underlie MW.

1.1  Background and Related work

Movement and student engagement. Mind wandering is an attentional subcomponent
of (dis)engagement [6], and one way that movement has been studied in relation to
engagement is through monitoring posture. In a classic study, Mota and Picard (2003)
measured how posture (as measured by pressure sensors on a seat and back of a chair)
related to a child’s level of interest [24]. D'Mello et al. extended this approach to test
how a student’s posture, also measured via a pressure-sensitive chair, was related to
their level of engagement and found that boredom was associated with leaning back
and changes in seat pressure and that flow was associated with leaning forward [5, 9].
Fidgeting, which indicates restlessness, has also been associated with MW in class-
rooms using self-report measures [3]. Seli et al. (2014) expanded beyond self-reports
of fidgeting and found that increased MW was associated with more fidgeting as in-
dexed by participants sitting on a Wii balance board [28]. Farley et al. (2013) demon-
strated that fidgeting (as coded from video) and self-reports of MW increased as a func-
tion of time during lecture viewing and that fidgeting was negatively predictive of the
retention of lecture material beyond the role of MW [14].

Whereas the above research suggests a link between body movement and engage-
ment, it is unknown whether there are patterns of movement that are indicative of future
MW. Nevertheless, the literature on aerobic breaks (e.g., running on the spot, jumping
exercises, stretching) can shed some light. Indeed, when aerobic exercise was added to
breaks, participants reported decreases in fatigue and increases in vigor compared to
unstructured breaks in which students could do what they wanted as long as they re-
mained in their seats [1]. Furthermore, when exercise breaks (calisthenic exercises),
non-exercise breaks (computer game), and no breaks were introduced into computer-
ized lectures, it was found that exercise breaks promoted attention (lower MW) and
better retention throughout the lecture relative to the non-exercise breaks and no breaks
condition [15]. These studies suggest that moving more during breaks in learning tasks
can have some positive benefits in terms of reducing MW, but have yet to yield predic-
tive models of MW from behavior measured during breaks.

Prospectively predicting mind wandering. There is a small body of work that focuses
on whether it is possible to prospectively predict MW, although without considering



movement. In a simulation study Kopp et al. (2014) explored whether individual attrib-
utes (e.g., working memory capacity) could be used to identify reading situations (de-
fined as text difficulty and utility value) that resulted in the lowest MW rates for an
individual [20], suggesting that a learning system that places learners in conditions to
reduce MW is feasible (though they did not test this possibility). Another study found
that eye movements were more dispersed (spread out) before people later reported MW
[34], suggesting that gaze could prospectively predict MW. However, cross-validation
was not done so it is unknown whether their models would generalize across learners.
In another recent study using electroencephalography, causality analysis of timeseries
of oscillatory neural activity indicated that it predicted MW several minutes later [25].
However, taking such neural measurements would be impractical for a learning envi-
ronment.

1.2  Current Work: Contributions and Novelty

We tested the intriguing possibility as to whether machine-learning models of move-
ment during task breaks can prospectively predict MW. Specifically, we measured
movement (via accelerometer data) during short intra-task intervals between reading
each of five expository texts and collected probe-caught MW responses as students read
each text. Random forest models were trained to predict MW from movement measured
prior to reading (i.e., during breaks) in a learner-independent fashion.

Our study is novel in multiple respects. To our knowledge, this is the first attempt to
prospectively predict MW in a student-generalizable manner, which has several appli-
cations if successful (see Discussion). Second, prior work has employed basic statistical
movement features (e.g., mean movement, variance). As an alternative we employed a
technique from nonlinear dynamical analyses called recurrent quantification analysis
(RQA [32]) to characterize various patterns of movement, including fidgeting, which
has been associated with MW [3, 5, 9, 14, 24, 28].

We examined three research questions. First, we evaluated how the prospective MW
models performed relative to several baselines including a context model that captured
situational factors independent of movement, a “gaze dispersion” model inspired by
[34], and a model of movement during the MW episode. Second, we examined whether
models consisting of statistical movement features or RQA were better predictors of
MW. A final question examined which channels and features of movement were most
predictive of mind wandering.

2 Methods

2.1 Data Collection

Data were collected as part of a larger study investigating neurophysiology during
learning from complex texts. Only aspects germane to the present study are presented
here. The data analyzed here have not been previously published. Participants (N=156,
age 23+6 years, 67% female, 32% male, 1% other) were students from a large public
University in the Western US (77% White, 9% Asian, 7% Hispanic, 5% Other, 2%



prefer not to say). Participants were paid $20 per hour plus $10 for a follow-up survey
via Amazon gift cards. All procedures were approved by the Institution’s internal re-
view board (IRB00000191 protocol #19-0396) and all participants provided informed
consent after being given the opportunity to read the consent form prior to the study
and upon arrival, and to ask the researcher any questions. We analyzed data from the
125 participants with complete accelerometer data.

Participants each read five expository texts of around 1000 words each split into 10
pages (screens of text) on the topic of behavioral research methods: Bias, Hypothesis,
Casual Claims, Validity, and Variables. The texts had a mean Flesch-Kincaid grade
level of 13.2 indicating an advanced reading level [16] suitable for college students.
Reading was self-paced in that participants pressed a key to advance to the next page
but could not return to a previous page. On average, participants read each text for 5.5
minutes (SD = 1.8), for a total of 27.6 minutes (SD = 9.2).

As participants read the texts, they were probed for MW at two pseudorandom
points roughly corresponding to the first and second half of the text. Specifically,
upon advancing to the next page of text, they were presented with the following ques-
tion: Were you zoning out when you read the previous page? Participants responded
with “yes” or “no” using mouse clicks. Such self-reports of MW are a standard and
validated method for measuring conscious phenomena [10, 29]. Participants were
trained on how to respond to MW probes prior to the main reading session. Here, they
were given a definition of MW (i.e., abbreviated as thinking about something other
than reading or “zoning out”) and were informed that they would be asked about these
zone outs as they read. Participants were asked to be honest about these zone outs, be-
cause they are perfectly natural and were reassured that responding “yes” would not
affect their progress in the study. As a knowledge check, they were asked to identify
an example of zoning out in a multiple-choice question.

Participants wore a Shimmer3 (sampling rate = 51.2 Hz) on their non-dominant
wrist. The sensors include electrodermal activity, photoplethysmography, two accel-
erometers, a gyroscope, and a magnetometer, but models focused on the latter three
sensors. Participants also underwent gaze tracking using the Eyelink 1000+ desktop
mounted eye-tracker. Chin and forehead rests were used to minimize head movement
during reading, but participants were encouraged to stretch and reposition prior to read-
ing each text: participants were presented with a prompt (“Before proceeding, if you
need a short break to stretch or close your eyes, you can do so now.”) and to press a
button to proceed when ready. Next the eyetracker was recalibrated by collecting fixa-
tion positions from nine known target positions (presented in random order) to map raw
eye data to gaze position on-screen. Following calibration, participants went through a
validation procedure which measured the difference between the computed fixation po-
sition and the fixation position for the target during calibration. The error reflects the
accuracy of the calibration. Analyses focused on movement (accelerometer, gyroscope,
magnetometer) between texts, i.e. the intra-task interval comprising the break and eye-
tracker recalibration. Eye-tracker calibration error was also analyzed as this may in-
creasse if the participant moves or fidgets during the calibration. The time stamps cor-
responding to the initial eyetracker calibration (preceding the first text read) were not
recorded so we focus on the recalibration periods prior to the final four texts.



All Instances: All Close & Far Instances (N = 942)

Matched Instance: Close & Far Instances Match (N = 560)

Close Instance (N = 471) Far Instance (N = 471)
Break MW Probe MW Probe
(Recalibration)
Page | | Page | | Page | | Page | | Page | | Page | | Page || Page | | Page | | Page
0 1 2 3 4 5 6 7 8 9 10
Repeat for 4 texts

Fig. 1. Example event sequence. First, participants were recalibrated on the eyetracker during a
break and then proceeded to read 10 pages of an expository text. They were probed for MW on
two pseudo randomly selected pages. N refers to the number of instances.

2.2 Machine Learning Models

We chose Random Forest classifiers since they incorporate nonlinearity and interactiv-
ity among features and have good generalization properties. The random forest classi-
fier was implemented in sklearn, with 100 estimators, minimum of 15 samples per leaf,
and the maximum number of features set to the square root of the total number of fea-
tures. The class weights of the models were balanced by setting the weights to be in-
versely proportional to the number of samples in each class. Note that no resampling
was done on either the training or testing sets: setting the class weights to ‘balanced’
simply penalizes incorrect predictions made on the minority class.

We tested several different models. One model was trained on only the first MW
probe per text (Fig. 1) to test whether the features were more sensitive to future MW
that occurred closer in time to calibration (“closest”). A second model was trained on
only the second MW probe per text (Fig. 1) to test the endurance of the model (“far-
thest”). A third model was only tested on cases where MW responses for the nearest
and farthest probes were the same (i.e., positive or negative MW) (“matched”). The
matched model provided the purest test of whether movement was predictive of future
MW since people consistently mind wandered (or not) throughout the duration of the
text. A final model was tested on all MW probes administered during each text (“all”).

We used four-fold cross-validation at the participant-level to ensure generalizability
to new participants [7]. Here, the dataset was randomly split into four folds, with the
data from a given participant only being in a single fold. Predictions were pooled across
the four folds prior to computing AUROCSs. The process was repeated 101 times with
a different random partitioning of the folds for each run. The same fold assignments
were used to train all the models (including baseline models) per run. Performance was
evaluated using the area under the receiver operator characteristic (AUROC) curve,
which ranges from 0 to 1 with an AUROC of 0.5 indicating baseline chance-level per-
formance. Here, we focus on the run with the median-performing model for each model
specification as the results were highly consistent across runs (95% confidence intervals



at most differed by 0.01 AUROC across models). We used the roc.test function from
the pROC package in R [27] (bootstrap test with 10,000 iterations) to statistically com-
pare the median run’s AUROC between models. The false discovery rate correction
was used to correct for six multiple comparisons.

2.3 Sensors, Data Processing, and Feature Extraction

Sensors & Signals. The Shimmer3 has a low noise accelerometer with a lower range
of values (range: 2.0 g), a wide range accelerometer that has a wider range of possible
values (range: £2.0 g; 4.0 g; £8.0 g; £16.0 g), a gyroscope, and a magnetometer. All
sensors were sampled at 51.2 Hz. Accelerometers and gyroscopes measure linear and
rotational motion in X, Y, and Z coordinates, respectively, whereas magnetometers in-
dicate direction. From both accelerometer’s acceleration time series, we additionally
derived velocity [acceleration * change in time] and distance [acceleration * (change in
time)?]. This resulted in 6 accelerometer time series (3 measures [acceleration, velocity,
distance] x 2 sensors [low noise vs. wide range]) for each axis (X,Y,Z). From the an-
gular velocity (i.e. gyroscope), we computed degrees rotated [angular velocity * change
in time] totaling 2 timeseries for each axis. Combining these accelerometer and gyro-
scope signals with the magnetometer direction time series this totaled 9 movement
measures * 3 axes, yielding a timeseries for each of 27 “channels” from which statistical
features were derived (see below). We smoothed each time series using the de-
noise_wavelet function in Scikit Image (wavelet="sym4’, mode="soft’, wavelet lev-
els=3) then removed values that exceeded 3 SD from the mean to account for noise and
linearly interpolated over removed data. Fig. 2 depicts example accelerometer time se-
ries for intra-task intervals corresponding to positive and negative MW responses.
Statistical Movement Features. The following eight statistical features were com-
puted from each of the 27 time series: mean, median, maximum, minimum, standard
deviation, kurtosis, skew, and range [11, 26]. Statistical features were z-scored within-
participant. Because the question of interest was whether movement intra-task intervals
was prospectively predictive of MW, we computed statistical features from the time
series between reading blocks, which included a self-paced break followed by eye-
tracker recalibration (total M = 142.8 sec; SD = 90.2 sec). As the intra-task interval
contained both a break and the recalibration, we also extracted features from just the
break (M = 13.4 sec, SD = 16.5 sec), and just the calibration (M = 101.8 sec, SD =73.6
sec), and fit models using the features from these intervals alone. For comparison with
the pre-reading movement models, we also extracted features during reading the page
corresponding to the MW probe (as a baseline check; M =34.0 s; SD =10.4 s).
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Fig. 2. Example time series from the z component of the low noise accelerometer for breaks
corresponding to positive (red lines) and negative (blue lines) responses to MW probes.

Calibration Error Features. During each validation period, the eye-tracker outputs
the degrees, horizontal (X pixels), and vertical error (Y pixels) based on how far each
fixation was from each of the nine calibration points. We computed the same eight
statistical features over the 9 calibration errors, resulting in 24 calibration error features.
Context Features. Context features capture situational factors independent of move-
ment and were used as a baseline measure to gauge the added value of movement fea-
tures. They comprised calibration duration and text order.
Model Comparisons. To evaluate which channels would provide the most infor-
mation, we first trained separate models for the 9 movement measures, each on 24 sta-
tistical movement features: 8 statistical features * 3 axes, plus the two context features.
The angular velocity, degrees rotated, and direction channels were not predictive of
MW (all AUROC:S at chance). We found that the low noise and wide range accelerom-
eter features yielded very similar (AUROCS within 0.01) results, so we focused on the
low-noise accelerometer channels. The most strongly predictive accelerometer-derived
channel was distance. For this low noise distance channel, we then trained separate
models using the 8 statistical features of the X, Y, and Z components. Overall, the Z
component which indexed the direction perpendicular to the wrist surface (i.e., flexion
and extension of the elbow/arm, such as may occur during stretching, or lifting the hand
from the keyboard and mouse) [30] contained the most information (M AUROC = 0.62,
95% CI = [0.62, 0.62]) relative to X and Y (which indexed horizontal, planar move-
ments such as moving the arm across the desk [30]) which were at chance, so we fo-
cused models on the Z component statistical features from the low noise distance chan-
nel.
Recurrent Quantification Analysis Features. We conducted recurrent quantification
analysis (RQA) to complement the statistical movement features. RQA is an analytic
suite used to investigate the dynamics of complex timeseries, and is a powerful tool that
avoids several of the assumptions of traditional techniques (e.g., assumptions of sta-
tionary, homoscedasticity) [32]. We computed the auto recurrence (the amount that a
time series recurs with itself at all time lags) of the Z component of the low noise dis-
tance channel during recalibration and during reading of each page with a MW probe.
This entailed transforming the time series into a distance matrix where each cell cap-
tures the pairwise distance between the elements of the time series with itself (Fig. 3).
The diagonal is the line of identity (LOI) or the distance between elements that occur
at the same point (0 for auto-recurrence). Diagonal lines parallel to the LOI represent
points that occur at a particular time lag with lines further from the LOI representing
greater time lags. The distance matrix is then transformed to a recurrence matrix with
a radius which captures whether two points recur. If the distance of a given cell is less
than the radius, then the cell is defined as a recurrent point and a value of 1 is assigned
to the cell (Fig. 3). Diagonal lines represent patterned behaviors (e.g., fidgeting) and
vertical lines represent smooth or slow changes to movement.

We used the “crqa” package in R [4], set the delay to 0, the embedding dimension
to 1 (i.e., no phase space embedding), standardized each time series, and used Euclidean



distance metric. We tested radius values between 0.03 and 0.15 with a step size of 0.005
on a random 10% of participants and selected the value corresponding to approximately
5% mean recurrence. We repeated this procedure with another random 10% of partici-
pants, to confirm values. We proceeded with radii of 0.04 and .095 for time series as-
sociated with recalibration and MW pages, respectively. We computed the following
RQA features from the recurrence matrices: recurrence rate (the fraction of recurrent
time points over the total number of points), and features related to vertical and diagonal
lines (determinism, laminarity, averaged diagonal line length, trapping time, longest
diagonal line, longest vertical line, ratio, entropy) [4].

Stationary Abrupt Movements Periodic/Oscillating Movements
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Fig. 3. Example recurrence plots. The first panel represents a stationary system (e.g., no move-
ment), the second panel represents a system with abrupt movements (e.g., stretching), and the
third panel represents periodic movements (e.g., fidgeting).

3 Results

3.1 Model comparisons.

All four statistical movement models (all”, “matched”, “closest”, “farthest”) computed
during intra-task intervals outperformed chance (i.e., AUROCs > 0.5, CIs do not over-
lap 0.5), whereas the RQA and calibration error models did not (Table 1). The context-
only models also performed at chance except for the “farthest” model, but a pairwise
ROC test indicated that its accuracy was lower than the “farthest” statistical model (p
=.04). Pairwise ROC tests between the statistical feature models revealed no significant
differences (ps > 0.05). Quantitatively, the statistical movement “matched” and “far-
thest” models yielded the highest AUROCS of 0.62. The best AUROC: for the separate
break models (all: 0.53 [0.50, 0.58]) and calibration (matched: 0.59 [0.56, 0.65]) mod-
els were significant but lower than for the main model using the entire intra-task inter-
val. Interestingly, the statistical features model during the probed reading page per-
formed at chance, while there was a weak signal for the RQA movement model.

Table 1. AUROCs and 95% bootstrapped Cls from the median performing model. Bolded values
indicate models that outperformed chance.

Movement Models Baseline Models




Model Statistical RQA Context Calibration Error
Type

Matched  0.62 [0.58, 0.67] 0.46[0.41,0.50] 0.48[0.44, 0.53] 0.49 [0.44, 0.54]
Closest 0.54 [0.50, 0.60] 0.46[0.41,0.51] 0.44[0.39, 0.49] 0.54 [0.49, 0.58]
Farthest  0.62 [0.56, 0.66] 0.50[0.45,0.56]  0.55 [0.50, 0.60] 0.48 [0.42, 0.53]
All 0.59 [0.55,0.62] 0.48[0.44,0.51] 0.49[0.46, 0.53] 0.49 [0.45, 0.52]
Page Of 0.49[0.49,0.49] 0.52[0.51,0.52] -- --

3.2 Predictive features.

We used Shapley Additive exPlanations (SHAP) [21] on the median-performing
“matched” model as it provides the cleanest mapping of movement during breaks and
MW. SHAP gives feature importance and direction of influence. The top three features
were kurtosis, median, and minimum of the Z component of distance, capturing flexion
and extension of the elbow/arm (e.g., stretching) (Fig. 4). Positive kurtosis (i.e. the peak
of the distribution is sharp and the tails are short) was associated with future MW. This
might suggest that there were fewer outliers during periods that were followed by MW.
Future MW was also associated with a lower median distance. This suggests that when
people produced smaller movements during the recalibration break, they mind wan-
dered more later. Finally, the minimum distance was smaller before texts where MW
was reported, again suggesting that smaller movements during breaks predict more MW
later. Together, these findings suggest that when people produce bigger movements
during intra-task intervals via flexion and extension of the arms, later MW is reduced.
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Fig. 4. Feature importances (Panel 1) and directions (Panels 2-4) for the top 3 features. X-axes
represent the value of each feature and the Y-axis represents the SHAP value in predicting the
probability of MW (values > 0 indicate MW). Each dot represents an instance from the test set.

4 Discussion

The purpose of the present work was to identify whether there are patterns of behav-
ior between task intervals that can prospectively predict MW during later learning.
Overall, our results showed a consistent pattern across participants, namely that statis-
tical features computed from an accelerometer time series between task blocks pre-
dicted future MW better than the page of MW, a context model, and a model that con-
sidered calibration error. Such models were predictive of MW both early during read-
ing (on average 1.7 minutes into each text) and later (after 5.6 min of reading) with a
stronger (albeit nonsignificant) effect for the latter. These patterns generalized across
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learners. We achieved a highest AUROC of 0.62, while admittedly modest, is con-
sistent with AUROC:s of 0.60 obtained by both computer vision algorithms and ma-
jority voting by nine human observers in a study detecting MW from visual features
during reading [2]. It is lower than AUROCSs obtained from eye gaze [12], but this is
unsurprising because eye gaze provides a more direct measure of visual attention.

We also found that learners who moved more during intra-task intervals, as indicated
by greater flexion and extension of the arms, experienced less MW later, suggesting
that how students behave during breaks matters. Indeed, prior work has found that ex-
ercise breaks reduce MW during lecture viewing relative to non-exercise breaks [15].
Our findings provide converging evidence and suggest that even in a controlled lab
setting, students who moved more tended to MW less during later reading. As partici-
pants were seated during the entire task, including the break, these results might be akin
to breaks that occur during standardized testing. A surprising finding was that there
were no consistent temporal patterns of movement that predicted MW as people read,
as prior work has identified a link between movement and concurrent engagement [3,
5,9, 14, 24, 28]. Although RQA should detect fidgeting behaviors, it might be the case
that due to the study constraints and instructions (i.e., participants wore sensors and
were asked to minimize movements as they read), participants might have moved less
than they would have in more naturalistic reading conditions. Therefore, the present
study is likely underestimating the influence of movement during MW.

Applications. The knowledge that there are consistent patterns in movement that can
prospectively predict MW has the potential to be incorporated into intelligent learning
interfaces. If such a model detected that MW might occur, intelligent technology could
suggest to a learner to stretch or walk before completing the next learning activity. If
applied to multiple learners, and the prospect of future MW is high, the instructor could
be notified that a calisthenic break might be appropriate. Furthermore, a prospective
MW detector could be paired with existing proactive and reactive interventions to re-
duce the negative effects of MW. Specifically, a system might be able to increase the
frequency of proactive interventions to decrease MW, such as changing the textual
properties [13, 17] or interspersing more test questions [31] if MW is predicted. Simi-
larly, reactive MW detectors could be “seeded” with prospective MW predictions to
potentially increase the accuracy of these detectors.

Limitations. As described above, the lab setting might have influenced how learners
moved during reading relative to naturalistic reading settings, however participants
were encouraged to move at the start of the recalibration, which is the focus of the
analyses. Relatedly, because participants were seated the present models might not gen-
eralize to all task contexts. For example, the finding that the Z channel, which indexed
flexion and extension of the arms, contained the most information (contrary to X and
Y which captured horizontal, planar arm movements which might correspond to less
naturalistic movements when seated) may only be relevant where learners remain
seated during breaks (e.g., standardized testing). However, it is likely the X and Y chan-
nels would be more relevant for active breaks, such as walking. It will be critical for
future work to test whether the present model generalizes to other break contexts. The
outcome measure we predict in the present study is self-reported mind-wandering,
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probed after reading on (up to) ten selected pages, and at a coarse, binary level. How-
ever, MW is a multifaceted phenomenon [29] and future work should consider using a
wider range of MW measures. Other relevant measures of individual differences, e.g.
working memory, were not considered here but controlling for these may nuance the
findings. In addition, the sample demographics are not representative of the US as a
whole [35], with a narrow age range, no Black respondents, and Hispanic participants
underrepresented, again highlighting the need to check whether these results generalize.
Conclusion. Although MW has some benefits, multiple studies indicate that it is nega-
tively correlated with learning outcomes (see Introduction), leaving the question open
as to how we might mitigate it. Our results suggest that how people move between task
blocks is related to how much they will mind wander later. In addition to its theoretical
relevance, the ability to prospectively model mind wandering has exciting implications
for intelligent learning systems that aim to reduce MW during learning.
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