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Abstract. Mind wandering (“zoning out”) is a frequent occurrence and is nega-

tively related to learning outcomes, which suggests it would be beneficial to 

measure and mitigate it. To this end, we investigated whether movement from a 

wrist-worn accelerometer between tasks could predict mind wandering as 125 

learners read long, connected, informative texts. We examined random forest 

models using both basic statistical and more novel nonlinear dynamics movement 

features, finding that the former were more predictive of future (i.e., about 5 

minutes later) reports of mind wandering. Models generalized across students 

with AUROCS up to 0.62. Importantly, vertical movement as measured by the 

Z-axis accelerometer channel, e.g. flexion or extension of the elbow in stretching, 

was the most predictive signal, whereas horizontal arm movements (measured by 

X- and Y-axis channels) and rotational movement were not predictive. We dis-

cuss implications for theories of mind wandering and applications for intelligent 

learning interfaces that can prospectively detect mind wandering.  
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1 Introduction 

Mind wandering (MW) is defined as ‘zoning out’, or where attention disengages from 

the primary task towards task-unrelated thoughts [10, 18]. Students are estimated to 

mind wander approximately 30% of the time during learning [33], varying from 20% 

to 40% depending on the learning activity, with greater occurrence in passive forms of 

learning such as lecture viewing (35%, [33]) than when engaging with interactive learn-

ing technology (23% [19]). Although MW has benefits such as enabling future planning 

and creativity [23], meta-analyses indicate that it is negatively related to performance 

for activities involving focused attention and concentration [10, 14]. Accordingly, re-

searchers have investigated various interventions to alleviate the effects of MW in ed-

ucation. Proactive interventions are (usually non-individualized) modifications to task 

parameters made beforehand, such as changing text properties to reduce MW [13, 17, 

10] whereas reactive interventions aim to detect and mitigate effects of MW after its 

onset, for example, by repeating content or asking a probing question to reengage at-

tention and mitigate any learning deficits [8, 22].  

This raises the question of whether there are patterns of behavior that can prospec-

tively predict that future MW will occur. If so, detecting such patterns could be used in 
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learning technologies to enable proactive interventions or to improve prediction of MW 

when it occurs. These possibilities depend on the ability to identify behaviors that can 

prospectively predict MW compared to existing research that focuses on detecting it 

when it occurs [3, 8, 14, 22, 28]. As a step in this direction, the present study examines 

whether patterns of movement during pre-defined intra-task intervals can prospectively 

predict self-reports of MW as probed roughly 5 minutes later during learning from com-

plex texts. We model movement because well-established theoretical and empirical re-

search links it to engagement and attention [3, 5, 9, 14, 24, 28] and movement can be 

measured using low-cost wearable accelerometers scalable for use in classroom set-

tings. In addition to the practical applications, the present work also advances empirical 

knowledge of the behaviors that underlie MW. 

1.1 Background and Related work 

Movement and student engagement. Mind wandering is an attentional subcomponent 

of (dis)engagement [6], and one way that movement has been studied in relation to 

engagement is through monitoring posture. In a classic study, Mota and Picard (2003) 

measured how posture (as measured by pressure sensors on a seat and back of a chair) 

related to a child’s level of interest [24]. D'Mello et al. extended this approach to test 

how a student’s posture, also measured via a pressure-sensitive chair, was related to 

their level of engagement and found that boredom was associated with leaning back 

and changes in seat pressure and that flow was associated with leaning forward [5, 9]. 

Fidgeting, which indicates restlessness, has also been associated with MW in class-

rooms using self-report measures [3]. Seli et al. (2014) expanded beyond self-reports 

of fidgeting and found that increased MW was associated with more fidgeting as in-

dexed by participants sitting on a Wii balance board [28]. Farley et al. (2013) demon-

strated that fidgeting (as coded from video) and self-reports of MW increased as a func-

tion of time during lecture viewing and that fidgeting was negatively predictive of the 

retention of lecture material beyond the role of MW [14]. 

Whereas the above research suggests a link between body movement and engage-

ment, it is unknown whether there are patterns of movement that are indicative of future 

MW. Nevertheless, the literature on aerobic breaks (e.g., running on the spot, jumping 

exercises, stretching) can shed some light. Indeed, when aerobic exercise was added to 

breaks, participants reported decreases in fatigue and increases in vigor compared to 

unstructured breaks in which students could do what they wanted as long as they re-

mained in their seats [1]. Furthermore, when exercise breaks (calisthenic exercises), 

non-exercise breaks (computer game), and no breaks were introduced into computer-

ized lectures, it was found that exercise breaks promoted attention (lower MW) and 

better retention throughout the lecture relative to the non-exercise breaks and no breaks 

condition [15]. These studies suggest that moving more during breaks in learning tasks 

can have some positive benefits in terms of reducing MW, but have yet to yield predic-

tive models of MW from behavior measured during breaks. 

Prospectively predicting mind wandering. There is a small body of work that focuses 

on whether it is possible to prospectively predict MW, although without considering 
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movement. In a simulation study Kopp et al. (2014) explored whether individual attrib-

utes (e.g., working memory capacity) could be used to identify reading situations (de-

fined as text difficulty and utility value) that resulted in the lowest MW rates for an 

individual [20], suggesting that a learning system that places learners in conditions to 

reduce MW is feasible (though they did not test this possibility). Another study found 

that eye movements were more dispersed (spread out) before people later reported MW 

[34], suggesting that gaze could prospectively predict MW. However, cross-validation 

was not done so it is unknown whether their models would generalize across learners. 

In another recent study using electroencephalography, causality analysis of timeseries 

of oscillatory neural activity indicated that it predicted MW several minutes later [25]. 

However, taking such neural measurements would be impractical for a learning envi-

ronment.  

1.2 Current Work: Contributions and Novelty 

We tested the intriguing possibility as to whether machine-learning models of move-

ment during task breaks can prospectively predict MW. Specifically, we measured 

movement (via accelerometer data) during short intra-task intervals between reading 

each of five expository texts and collected probe-caught MW responses as students read 

each text. Random forest models were trained to predict MW from movement measured 

prior to reading (i.e., during breaks) in a learner-independent fashion.  

Our study is novel in multiple respects. To our knowledge, this is the first attempt to 

prospectively predict MW in a student-generalizable manner, which has several appli-

cations if successful (see Discussion). Second, prior work has employed basic statistical 

movement features (e.g., mean movement, variance). As an alternative we employed a 

technique from nonlinear dynamical analyses called recurrent quantification analysis 

(RQA [32]) to characterize various patterns of movement, including fidgeting, which 

has been associated with MW [3, 5, 9, 14, 24, 28]. 

We examined three research questions. First, we evaluated how the prospective MW 

models performed relative to several baselines including a context model that captured 

situational factors independent of movement, a “gaze dispersion” model inspired by 

[34], and a model of movement during the MW episode. Second, we examined whether 

models consisting of statistical movement features or RQA were better predictors of 

MW. A final question examined which channels and features of movement were most 

predictive of mind wandering. 

2 Methods 

2.1 Data Collection 

Data were collected as part of a larger study investigating neurophysiology during 

learning from complex texts. Only aspects germane to the present study are presented 

here. The data analyzed here have not been previously published. Participants (N=156, 

age 23±6 years, 67% female, 32% male, 1% other) were students from a large public 

University in the Western US (77% White, 9% Asian, 7% Hispanic, 5% Other, 2% 



4 

prefer not to say). Participants were paid $20 per hour plus $10 for a follow-up survey 

via Amazon gift cards. All procedures were approved by the Institution’s internal re-

view board (IRB00000191 protocol #19-0396) and all participants provided informed 

consent after being given the opportunity to read the consent form prior to the study 

and upon arrival, and to ask the researcher any questions. We analyzed data from the 

125 participants with complete accelerometer data.  

Participants each read five expository texts of around 1000 words each split into 10 

pages (screens of text) on the topic of behavioral research methods: Bias, Hypothesis, 

Casual Claims, Validity, and Variables. The texts had a mean Flesch-Kincaid grade 

level of 13.2 indicating an advanced reading level [16] suitable for college students. 

Reading was self-paced in that participants pressed a key to advance to the next page 

but could not return to a previous page. On average, participants read each text for 5.5 

minutes (SD = 1.8), for a total of 27.6 minutes (SD = 9.2).  

As participants read the texts, they were probed for MW at two pseudorandom 

points roughly corresponding to the first and second half of the text. Specifically, 

upon advancing to the next page of text, they were presented with the following ques-

tion: Were you zoning out when you read the previous page? Participants responded 

with “yes” or “no” using mouse clicks. Such self-reports of MW are a standard and 

validated method for measuring conscious phenomena [10, 29]. Participants were 

trained on how to respond to MW probes prior to the main reading session. Here, they 

were given a definition of MW (i.e., abbreviated as thinking about something other 

than reading or “zoning out”) and were informed that they would be asked about these 

zone outs as they read. Participants were asked to be honest about these zone outs, be-

cause they are perfectly natural and were reassured that responding “yes” would not 

affect their progress in the study. As a knowledge check, they were asked to identify 

an example of zoning out in a multiple-choice question.  

Participants wore a Shimmer3 (sampling rate = 51.2 Hz) on their non-dominant 

wrist. The sensors include electrodermal activity, photoplethysmography, two accel-

erometers, a gyroscope, and a magnetometer, but models focused on the latter three 

sensors. Participants also underwent gaze tracking using the Eyelink 1000+ desktop 

mounted eye-tracker. Chin and forehead rests were used to minimize head movement 

during reading, but participants were encouraged to stretch and reposition prior to read-

ing each text: participants were presented with a prompt (“Before proceeding, if you 

need a short break to stretch or close your eyes, you can do so now.”) and to press a 

button to proceed when ready. Next the eyetracker was recalibrated by collecting fixa-

tion positions from nine known target positions (presented in random order) to map raw 

eye data to gaze position on-screen. Following calibration, participants went through a 

validation procedure which measured the difference between the computed fixation po-

sition and the fixation position for the target during calibration. The error reflects the 

accuracy of the calibration. Analyses focused on movement (accelerometer, gyroscope, 

magnetometer) between texts, i.e. the intra-task interval comprising the break and eye-

tracker recalibration. Eye-tracker calibration error was also analyzed as this may in-

creasse if the participant moves or fidgets during the calibration. The time stamps cor-

responding to the initial eyetracker calibration (preceding the first text read) were not 

recorded so we focus on the recalibration periods prior to the final four texts. 
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Fig. 1. Example event sequence. First, participants were recalibrated on the eyetracker during a 

break and then proceeded to read 10 pages of an expository text. They were probed for MW on 

two pseudo randomly selected pages. N refers to the number of instances. 

2.2 Machine Learning Models 

We chose Random Forest classifiers since they incorporate nonlinearity and interactiv-

ity among features and have good generalization properties. The random forest classi-

fier was implemented in sklearn, with 100 estimators, minimum of 15 samples per leaf, 

and the maximum number of features set to the square root of the total number of fea-

tures. The class weights of the models were balanced by setting the weights to be in-

versely proportional to the number of samples in each class. Note that no resampling 

was done on either the training or testing sets: setting the class weights to ‘balanced’ 

simply penalizes incorrect predictions made on the minority class. 

We tested several different models. One model was trained on only the first MW 

probe per text (Fig. 1) to test whether the features were more sensitive to future MW 

that occurred closer in time to calibration (“closest”). A second model was trained on 

only the second MW probe per text (Fig. 1) to test the endurance of the model (“far-

thest”). A third model was only tested on cases where MW responses for the nearest 

and farthest probes were the same (i.e., positive or negative MW) (“matched”). The 

matched model provided the purest test of whether movement was predictive of future 

MW since people consistently mind wandered (or not) throughout the duration of the 

text. A final model was tested on all MW probes administered during each text (“all”).   

We used four-fold cross-validation at the participant-level to ensure generalizability 

to new participants [7]. Here, the dataset was randomly split into four folds, with the 

data from a given participant only being in a single fold. Predictions were pooled across 

the four folds prior to computing AUROCs. The process was repeated 101 times with 

a different random partitioning of the folds for each run. The same fold assignments 

were used to train all the models (including baseline models) per run. Performance was 

evaluated using the area under the receiver operator characteristic (AUROC) curve, 

which ranges from 0 to 1 with an AUROC of 0.5 indicating baseline chance-level per-

formance. Here, we focus on the run with the median-performing model for each model 

specification as the results were highly consistent across runs (95% confidence intervals 
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at most differed by 0.01 AUROC across models). We used the roc.test function from 

the pROC package in R [27] (bootstrap test with 10,000 iterations) to statistically com-

pare the median run’s AUROC between models. The false discovery rate correction 

was used to correct for six multiple comparisons. 

2.3 Sensors, Data Processing, and Feature Extraction 

Sensors & Signals. The Shimmer3 has a low noise accelerometer with a lower range 

of values (range: ±2.0 g), a wide range accelerometer that has a wider range of possible 

values (range: ±2.0 g; ±4.0 g; ±8.0 g; ±16.0 g), a gyroscope, and a magnetometer. All 

sensors were sampled at 51.2 Hz. Accelerometers and gyroscopes measure linear and 

rotational motion in X, Y, and Z coordinates, respectively, whereas magnetometers in-

dicate direction. From both accelerometer’s acceleration time series, we additionally 

derived velocity [acceleration * change in time] and distance [acceleration * (change in 

time)2]. This resulted in 6 accelerometer time series (3 measures [acceleration, velocity, 

distance] x 2 sensors [low noise vs. wide range]) for each axis (X,Y,Z). From the an-

gular velocity (i.e. gyroscope), we computed degrees rotated [angular velocity * change 

in time] totaling 2 timeseries for each axis. Combining these accelerometer and gyro-

scope signals with the magnetometer direction time series  this totaled 9 movement 

measures * 3 axes, yielding a timeseries for each of 27 “channels” from which statistical 

features were derived (see below). We smoothed each time series using the de-

noise_wavelet function in Scikit Image (wavelet=‘sym4’, mode=‘soft’, wavelet_lev-

els=3) then removed values that exceeded 3 SD from the mean to account for noise and 

linearly interpolated over removed data. Fig. 2 depicts example accelerometer time se-

ries for intra-task intervals corresponding to positive and negative MW responses.  

Statistical Movement Features. The following eight statistical features were com-

puted from each of the 27 time series: mean, median, maximum, minimum, standard 

deviation, kurtosis, skew, and range [11, 26]. Statistical features were z-scored within-

participant. Because the question of interest was whether movement intra-task intervals 

was prospectively predictive of MW, we computed statistical features from the time 

series between reading blocks, which included a self-paced break followed by eye-

tracker recalibration (total M = 142.8 sec; SD = 90.2 sec). As the intra-task interval 

contained both a break and the recalibration, we also extracted features from just the 

break (M = 13.4 sec, SD = 16.5 sec), and just the calibration (M = 101.8 sec, SD = 73.6 

sec), and fit models using the features from these intervals alone. For comparison with 

the pre-reading movement models, we also extracted features during reading the page 

corresponding to the MW probe (as a baseline check; M = 34.0 s; SD = 10.4 s). 

 

 



7 

Fig. 2. Example time series from the z component of the low noise accelerometer for breaks 

corresponding to positive (red lines) and negative (blue lines) responses to MW probes.  

Calibration Error Features. During each validation period, the eye-tracker outputs 

the degrees, horizontal (X pixels), and vertical error (Y pixels) based on how far each 

fixation was from each of the nine calibration points. We computed the same eight 

statistical features over the 9 calibration errors, resulting in 24 calibration error features.  
Context Features. Context features capture situational factors independent of move-

ment and were used as a baseline measure to gauge the added value of movement fea-

tures. They comprised calibration duration and text order.  
Model Comparisons. To evaluate which channels would provide the most infor-

mation, we first trained separate models for the 9 movement measures, each on 24 sta-

tistical movement features: 8 statistical features * 3 axes, plus the two context features. 

The angular velocity, degrees rotated, and direction channels were not predictive of 

MW (all AUROCs at chance). We found that the low noise and wide range accelerom-

eter features yielded very similar (AUROCS within 0.01) results, so we focused on the 

low-noise accelerometer channels. The most strongly predictive accelerometer-derived 

channel was distance. For this low noise distance channel, we then trained separate 

models using the 8 statistical features of the X, Y, and Z components. Overall, the Z 

component which indexed the direction perpendicular to the wrist surface (i.e., flexion 

and extension of the elbow/arm, such as may occur during stretching, or lifting the hand 

from the keyboard and mouse) [30] contained the most information (M AUROC = 0.62, 

95% CI = [0.62, 0.62]) relative to X and Y (which indexed horizontal, planar move-

ments such as moving the arm across the desk [30]) which were at chance, so we fo-

cused models on the Z component statistical features from the low noise distance chan-

nel.  

Recurrent Quantification Analysis Features. We conducted recurrent quantification 

analysis (RQA) to complement the statistical movement features. RQA is an analytic 

suite used to investigate the dynamics of complex timeseries, and is a powerful tool that 

avoids several of the assumptions of traditional techniques (e.g., assumptions of sta-

tionary, homoscedasticity) [32]. We computed the auto recurrence (the amount that a 

time series recurs with itself at all time lags) of the Z component of the low noise dis-

tance channel during recalibration and during reading of each page with a MW probe. 

This entailed transforming the time series into a distance matrix where each cell cap-

tures the pairwise distance between the elements of the time series with itself (Fig. 3). 

The diagonal is the line of identity (LOI) or the distance between elements that occur 

at the same point (0 for auto-recurrence). Diagonal lines parallel to the LOI represent 

points that occur at a particular time lag with lines further from the LOI representing 

greater time lags. The distance matrix is then transformed to a recurrence matrix with 

a radius which captures whether two points recur. If the distance of a given cell is less 

than the radius, then the cell is defined as a recurrent point and a value of 1 is assigned 

to the cell (Fig. 3). Diagonal lines represent patterned behaviors (e.g., fidgeting) and 

vertical lines represent smooth or slow changes to movement. 

We used the “crqa” package in R [4], set the delay to 0, the embedding dimension 

to 1 (i.e., no phase space embedding), standardized each time series, and used Euclidean 
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distance metric. We tested radius values between 0.03 and 0.15 with a step size of 0.005 

on a random 10% of participants and selected the value corresponding to approximately 

5% mean recurrence. We repeated this procedure with another random 10% of partici-

pants, to confirm values. We proceeded with radii of 0.04 and .095 for time series as-

sociated with recalibration and MW pages, respectively. We computed the following 

RQA features from the recurrence matrices: recurrence rate (the fraction of recurrent 

time points over the total number of points), and features related to vertical and diagonal 

lines (determinism, laminarity, averaged diagonal line length, trapping time, longest 

diagonal line, longest vertical line, ratio, entropy) [4].  

 

Fig. 3. Example recurrence plots. The first panel represents a stationary system (e.g., no move-

ment), the second panel represents a system with abrupt movements (e.g., stretching), and the 

third panel represents periodic movements (e.g., fidgeting). 

3 Results 

3.1 Model comparisons.  

All four statistical movement models (all”, “matched”, “closest”, “farthest”) computed 

during intra-task intervals outperformed chance (i.e., AUROCs > 0.5, CIs do not over-

lap 0.5), whereas the RQA and calibration error models did not (Table 1). The context-

only models also performed at chance except for the “farthest” model, but a pairwise 

ROC test indicated that its accuracy was lower than the “farthest” statistical model (p 

= .04). Pairwise ROC tests between the statistical feature models revealed no significant 

differences (ps > 0.05). Quantitatively, the statistical movement “matched” and “far-

thest” models yielded the highest AUROCs of 0.62. The best AUROCs for the separate 

break models (all: 0.53 [0.50, 0.58]) and calibration (matched: 0.59 [0.56, 0.65]) mod-

els were significant but lower than for the main model using the entire intra-task inter-

val. Interestingly, the statistical features model during the probed reading page per-

formed at chance, while there was a weak signal for the RQA movement model. 

Table 1. AUROCs and 95% bootstrapped CIs from the median performing model. Bolded values 

indicate models that outperformed chance. 

 Movement Models Baseline Models 
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Model 

Type 

Statistical RQA Context Calibration Error 

Matched 0.62 [0.58, 0.67] 0.46 [0.41, 0.50] 0.48 [0.44, 0.53] 0.49 [0.44, 0.54] 

Closest 0.54 [0.50, 0.60] 0.46 [0.41, 0.51] 0.44 [0.39, 0.49] 0.54 [0.49, 0.58] 

Farthest 0.62 [0.56, 0.66] 0.50 [0.45, 0.56] 0.55 [0.50, 0.60] 0.48 [0.42, 0.53] 

All 0.59 [0.55, 0.62] 0.48 [0.44, 0.51] 0.49 [0.46, 0.53] 0.49 [0.45, 0.52] 

Page Of 0.49 [0.49, 0.49] 0.52 [0.51, 0.52] -- -- 

3.2 Predictive features.  

We used Shapley Additive exPlanations (SHAP) [21] on the median-performing 

“matched” model as it provides the cleanest mapping of movement during breaks and 

MW. SHAP gives feature importance and direction of influence. The top three features 

were kurtosis, median, and minimum of the Z component of distance, capturing flexion 

and extension of the elbow/arm (e.g., stretching) (Fig. 4). Positive kurtosis (i.e. the peak 

of the distribution is sharp and the tails are short) was associated with future MW. This 

might suggest that there were fewer outliers during periods that were followed by MW. 

Future MW was also associated with a lower median distance. This suggests that when 

people produced smaller movements during the recalibration break, they mind wan-

dered more later. Finally, the minimum distance was smaller before texts where MW 

was reported, again suggesting that smaller movements during breaks predict more MW 

later. Together, these findings suggest that when people produce bigger movements 

during intra-task intervals via flexion and extension of the arms, later MW is reduced.  

Fig. 4. Feature importances (Panel 1) and directions (Panels 2-4) for the top 3 features. X-axes 

represent the value of each feature and the Y-axis represents the SHAP value in predicting the 

probability of MW (values > 0 indicate MW). Each dot represents an instance from the test set. 

4 Discussion 

The purpose of the present work was to identify whether there are patterns of behav-

ior between task intervals that can prospectively predict MW during later learning. 

Overall, our results showed a consistent pattern across participants, namely that statis-

tical features computed from an accelerometer time series between task blocks pre-

dicted future MW better than the page of MW, a context model, and a model that con-

sidered calibration error. Such models were predictive of MW both early during read-

ing (on average 1.7 minutes into each text) and later (after 5.6 min of reading) with a 

stronger (albeit nonsignificant) effect for the latter. These patterns generalized across 
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learners. We achieved a highest AUROC of 0.62, while admittedly modest, is con-

sistent with AUROCs of 0.60 obtained by both computer vision algorithms and ma-

jority voting by nine human observers in a study detecting MW from visual features 

during reading [2]. It is lower than AUROCs obtained from eye gaze [12], but this is 

unsurprising because eye gaze provides a more direct measure of visual attention.  

We also found that learners who moved more during intra-task intervals, as indicated 

by greater flexion and extension of the arms, experienced less MW later, suggesting 

that how students behave during breaks matters. Indeed, prior work has found that ex-

ercise breaks reduce MW during lecture viewing relative to non-exercise breaks [15]. 

Our findings provide converging evidence and suggest that even in a controlled lab 

setting, students who moved more tended to MW less during later reading. As partici-

pants were seated during the entire task, including the break, these results might be akin 

to breaks that occur during standardized testing. A surprising finding was that there 

were no consistent temporal patterns of movement that predicted MW as people read, 

as prior work has identified a link between movement and concurrent engagement [3, 

5, 9, 14, 24, 28]. Although RQA should detect fidgeting behaviors, it might be the case 

that due to the study constraints and instructions (i.e., participants wore sensors and 

were asked to minimize movements as they read), participants might have moved less 

than they would have in more naturalistic reading conditions. Therefore, the present 

study is likely underestimating the influence of movement during MW.  

Applications. The knowledge that there are consistent patterns in movement that can 

prospectively predict MW has the potential to be incorporated into intelligent learning 

interfaces. If such a model detected that MW might occur, intelligent technology could 

suggest to a learner to stretch or walk before completing the next learning activity. If 

applied to multiple learners, and the prospect of future MW is high, the instructor could 

be notified that a calisthenic break might be appropriate. Furthermore, a prospective 

MW detector could be paired with existing proactive and reactive interventions to re-

duce the negative effects of MW. Specifically, a system might be able to increase the 

frequency of proactive interventions to decrease MW, such as changing the textual 

properties [13, 17] or interspersing more test questions [31] if MW is predicted. Simi-

larly, reactive MW detectors could be “seeded” with prospective MW predictions to 

potentially increase the accuracy of these detectors. 

Limitations. As described above, the lab setting might have influenced how learners 

moved during reading relative to naturalistic reading settings, however participants 

were encouraged to move at the start of the recalibration, which is the focus of the 

analyses. Relatedly, because participants were seated the present models might not gen-

eralize to all task contexts. For example, the finding that the Z channel, which indexed 

flexion and extension of the arms, contained the most information (contrary to X and 

Y which captured horizontal, planar arm movements which might correspond to less 

naturalistic movements when seated) may only be relevant where learners remain 

seated during breaks (e.g., standardized testing). However, it is likely the X and Y chan-

nels would be more relevant for active breaks, such as walking. It will be critical for 

future work to test whether the present model generalizes to other break contexts. The 

outcome measure we predict in the present study is self-reported mind-wandering, 
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probed after reading on (up to) ten selected pages, and at a coarse, binary level. How-

ever, MW is a multifaceted phenomenon [29] and future work should consider using a 

wider range of MW measures. Other relevant measures of individual differences, e.g. 

working memory, were not considered here but controlling for these may nuance the 

findings. In addition, the sample demographics are not representative of the US as a 

whole [35], with a narrow age range, no Black respondents, and Hispanic participants 

underrepresented, again highlighting the need to check whether these results generalize. 

Conclusion. Although MW has some benefits, multiple studies indicate that it is nega-

tively correlated with learning outcomes (see Introduction), leaving the question open 

as to how we might mitigate it. Our results suggest that how people move between task 

blocks is related to how much they will mind wander later. In addition to its theoretical 

relevance, the ability to prospectively model mind wandering has exciting implications 

for intelligent learning systems that aim to reduce MW during learning.  

5 References 

1. Blasche, G. et al.: Comparison of rest-break interventions during a mentally demanding 

task. Stress and Health. 34, 5, 629–638 (2018). https://doi.org/10.1002/smi.2830. 

2. Bosch, N., D’Mello, S.K.: Can Computers Outperform Humans in Detecting User Zone-

Outs? Implications for Intelligent Interfaces. ACM Trans. Comput.-Hum. Interact. 29, 2, 1–33 

(2022). https://doi.org/10.1145/3481889. 

3. Carriere, J.S.A. et al.: Wandering in both mind and body: individual differences in mind 

wandering and inattention predict fidgeting. Can J Exp Psychol. 67, 1, 19–31 (2013). 

https://doi.org/10.1037/a0031438. 

4. Coco, M.I., Dale, R.: Cross-recurrence quantification analysis of categorical and continu-

ous time series: an R package. Frontiers in Psychology. 5, (2014). 

5. D’Mello, S. et al.: Posture as a Predictor of Learner’s Affective Engagement. In: Proceed-

ings of the Annual Meeting of the Cognitive Science Society, 29(29). p. 7 , Merced, CA (2007). 

6. D’Mello, S.K.: Giving Eyesight to the Blind: Towards Attention-Aware AIED. Int J Artif 

Intell Educ. 26, 2, 645–659 (2016). https://doi.org/10.1007/s40593-016-0104-1. 

7. D’Mello, S.K. et al.: Machine-Learned Computational Models Can Enhance the Study of 

Text and Discourse: A Case Study Using Eye Tracking to Model Reading Comprehension. Dis-

course Processes. 57, 5–6, 420–440 (2020). https://doi.org/10.1080/0163853X.2020.1739600. 

8. D’Mello, S.K. et al.: Zone out No More: Mitigating Mind Wandering during Computer-

ized Reading. In: Proceedings of the 10th International Conference on Educational Data Min-

ing. International Educational Data Mining Society, Wuhan, China (2017). 

9. D’Mello, S.K., Graesser, A.C.: Mining bodily patterns of affective experience during 

learning. In: Proceedings of the Third International Conference on Data Mining. (2010). 

10. D’Mello, S.K., Mills, C.S.: Mind wandering during reading: An interdisciplinary and inte-

grative review of psychological, computing, and intervention research and theory. Language 

and Linguistics Compass. 15, 4, e12412 (2021). https://doi.org/10.1111/lnc3.12412. 

11. Erdaş, Ç.B. et al.: Integrating Features for Accelerometer-based Activity Recognition. 

Procedia Computer Science. 98, 522–527 (2016). https://doi.org/10.1016/j.procs.2016.09.070. 

12. Faber, M. et al.: An automated behavioral measure of mind wandering during computer-

ized reading. Behav Res. 50, 1, 134–150 (2018). https://doi.org/10.3758/s13428-017-0857-y. 

13. Faber, M. et al.: The effect of disfluency on mind wandering during text comprehension. 

Psychon Bull Rev. 24, 3, 914–919 (2017). https://doi.org/10.3758/s13423-016-1153-z. 

14. Farley, J. et al.: Everyday attention and lecture retention: the effects of time, fidgeting, and 

mind wandering. Front Psychol. 4, 619 (2013). https://doi.org/10.3389/fpsyg.2013.00619. 



12 

15. Fenesi, B. et al.: Sweat So You Don’t Forget: Exercise Breaks During a University Lec-

ture Increase On-Task Attention and Learning. Journal of Applied Research in Memory and 

Cognition. 7, 2, 261–269 (2018). https://doi.org/10.1016/j.jarmac.2018.01.012. 

16. Flesch, R.: A new readability yardstick. Journal of Applied Psychology. 32, 3, 221–233 

(1948). 

17. Forrin, N.D. et al.: On the relation between reading difficulty and mind-wandering: a sec-

tion-length account. Psychological Research. 83, 3, 485–497 (2019). 

https://doi.org/10.1007/s00426-017-0936-9. 

18. Fox, K.C.R., Christoff, K.: The Oxford Handbook of Spontaneous Thought: Mind-Wan-

dering, Creativity, and Dreaming. Oxford University Press (2018). 

19. Hutt, S. et al.: Automated gaze-based mind wandering detection during computerized 

learning in classrooms. User Model User-Adap Inter. 29, 4, 821–867 (2019). 

https://doi.org/10.1007/s11257-019-09228-5. 

20. Kopp, K.: Identifying Learning Conditions that Minimize Mind Wandering by Modeling 

Individual Attributes. In: Intelligent Tutoring Systems. pp. 94–103 Springer International Pub-

lishing, Cham (2014). https://doi.org/10.1007/978-3-319-07221-0_12. 

21. Lundberg, S.M., Lee, S.-I.: A Unified Approach to Interpreting Model Predictions. In: 

Advances in Neural Information Processing Systems. Curran Associates, Inc. (2017). 

22. Mills, C. et al.: Eye-Mind reader: an intelligent reading interface that promotes long-term 

comprehension by detecting and responding to mind wandering. Human–Computer Interaction. 

36, 4, 306–332 (2021). https://doi.org/10.1080/07370024.2020.1716762. 

23. Mooneyham, B.W., Schooler, J.W.: The costs and benefits of mind-wandering: A review. 

Canadian Journal of Experimental Psychology. 67, 1, 11–18 (2013). 

24. Mota, S., Picard, R.W.: Automated Posture Analysis for Detecting Learner’s Interest 

Level. In: 2003 Conference on Computer Vision and Pattern Recognition Workshop. pp. 49–49 

IEEE, Madison, Wisconsin, USA (2003). 

25. Nakatani, C. et al.: Context-dependent neural effects predict mind wandering minutes in 

advance, http://biorxiv.org/lookup/doi/10.1101/2021.09.04.458977, (2021). 

https://doi.org/10.1101/2021.09.04.458977. 

26. Ravi, N. et al.: Activity Recognition from Accelerometer Data. American Association for 

Artificial Intelligence. 6 (2005). 

27. Robin, X. et al.: pROC: an open-source package for R and S+ to analyze and compare 

ROC curves. BMC Bioinformatics. 12, 1, 77 (2011). 

28. Seli, P. et al.: Restless mind, restless body. Journal of Experimental Psychology: Learn-

ing, Memory, and Cognition. 40, 3, 660–668 (2014). https://doi.org/10.1037/a0035260. 

29. Smallwood, J., Schooler, J.W.: The Science of Mind Wandering: Empirically Navigating 

the Stream of Consciousness. Annual Review of Psychology. 66, 1, 487–518 (2015). 

https://doi.org/10.1146/annurev-psych-010814-015331. 

30. Straczkiewicz, M. et al.: On Placement, Location and Orientation of Wrist-Worn Tri-Ax-

ial Accelerometers during Free-Living Measurements. Sensors (Basel). 19, 9, 2095 (2019). 

https://doi.org/10.3390/s19092095. 

31. Szpunar, K.K. et al.: Interpolated memory tests reduce mind wandering and improve 

learning of online lectures. PNAS. 110, 16, 6313–6317 (2013). 

32. Webber, C., Zbilut, J.: Recurrence quantification analysis of nonlinear dynamical systems. 

Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences. (2005). 

33. Wong, A.Y. et al.: Task-unrelated thought during educational activities: A meta-analysis 

of its occurrence and relationship with learning. Contemporary Educational Psychology. 71, 

102098 (2022). https://doi.org/10.1016/j.cedpsych.2022.102098. 

34. Zhang, H., Jonides, J.: Pre-trial Gaze Stability Predicts Momentary Slips of Attention, 

https://psyarxiv.com/bv2uc/, (2021). https://doi.org/10.31234/osf.io/bv2uc. 

35. U.S. Census Bureau QuickFacts: United States, https://www.census.gov/quick-

facts/fact/table/US/PST045221, last accessed 2023/01/14. 


