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Abstract

In the analysis of data sets consisting of (x,y)-
pairs, a tacit assumption is that each pair corre-
sponds to the same observational unit. If, how-
ever, such pairs are obtained via record linkage
of two files, this assumption can be violated as
a result of mismatch error rooting, for example,
in the lack of reliable identifiers in the two files.
Recently, there has been a surge of interest in this
setting under the term “Shuffled Data” in which
the underlying correct pairing of (x,y)-pairs is
represented via an unknown permutation. Ex-
plicit modeling of the permutation tends to be
associated with overfitting, prompting the need
for suitable methods of regularization. In this
paper, we propose an exponential family prior
on the permutation group for this purpose that
can be used to integrate various structures such
as sparse and local shuffling. This prior turns
out to be conjugate for canonical shuffled data
problems in which the likelihood conditional on
a fixed permutation can be expressed as prod-
uct over the corresponding (x,y)-pairs. Infer-
ence can be based on the EM algorithm in which
the E-step is approximated by sampling, e.g., via
the Fisher-Yates algorithm. The M-step is shown
to admit a reduction from n? to n terms if the
likelihood of (x,y)-pairs has exponential fam-
ily form. Comparisons on synthetic and real data
show that the proposed approach compares favor-
ably to competing methods.

1 Introduction

Shuffled data problems refer broadly to situations in which
the goal is to perform inference for a functional of the joint
distribution of a pair of random variables (x,y) (such as,
e.g., their covariance) based on separate samples {x; }7_;
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and {y;};*, that involve matching pairs {(Xr«(;), ¥s)}i~y
pertaining to the same statistical unit, where the map 7* :
{1,...,m} — {1,...,n} may only be observed incom-
pletely. This is a rather common scenario in data inte-
gration problems in which different pieces of information
about a shared set of entities reside in multiple data sources
that need to be combined in order to perform a given data
analysis task. The process of identifying matching parts
across two or more files is often far from trivial in the ab-
sence of unique identifiers, and has thus grown into a vast
and active field of research known as record linkage, e.g.,
Binette and Steorts (2020). The above shuffled data model
represents a direct approach to account for mismatches in
record linkage and the impact on downstream data analysis.
Shuffled data problems were first systematically discussed
in DeGroot et al. (1971), with little progress until a few
years ago given advances in computation (Gutman et al.,
2013). Recently, shuffled data problems have generated
widespread interest, fueled by applications in signal pro-
cessing (Unnikrishnan et al., 2018; Pananjady et al., 2018),
correspondence problems in computer vision (Pananjady
et al., 2017; Li et al., 2021) and NLP (Grave et al., 2019;
Shi et al., 2021), biomedical data analysis (Ma et al., 2021a;
Abid and Zou, 2018), and data privacy (Domingo-Ferrer
and Muralidhar, 2016; Gordon et al., 2021).

On the theoretical side, several papers have investigated
the statistical limits of signal estimation and permutation
recovery in unlabeled sensing in which the goal is to re-
cover a signal * from n noisy linear measurements y; =
X+ (i), 0°) + €, 1 < i < n, where 7 is an unknown per-
mutation, i.e., m = n and 7* is one-to-one (Unnikrishnan
et al., 2018; Pananjady et al., 2018; Hsu et al., 2017; Abid
et al., 2017; Tsakiris and Peng, 2019). Another line of re-
search has studied the setting in which x and y are scalar
and related by a monotone map (Carpentier and Schliiter,
2016; Rigollet and Weed, 2019; Flammarion et al., 2019;
Ma et al., 2020; Balabdaoui et al., 2021).

A common conclusion from these works is that shuffled
data problems are generally plagued by both statistical and
computational challenges. First, the combinatorial nature
of 7* makes it hard to devise computationally tractable
approaches with provable guarantees. Existing algorith-
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mic “solutions” involve integer programming (Tsakiris
and Peng, 2019; Peng and Tsakiris, 2020; Mazumder and
Wang, 2021), the EM algorithm (Gutman et al., 2013; Abid
and Zou, 2018; Tsakiris et al., 2020), sampling and ap-
proximate inference (McVeigh et al., 2019; Steorts et al.,
2016; Klami, 2012). Regardless of the computational chal-
lenges, shuffled data problems tend to be highly susceptible
to noise and prone to overfitting. In fact, statistical guar-
antees typically involve unrealistically stringent signal-to-
noise requirements (Pananjady et al., 2018; Hsu et al,,
2017). Loosely speaking, this issue results from the fact
that the set of permutations grows rapidly in size with n.
This observation suggests that suitable forms of regulariza-
tion hinging on prior information on 7* are needed to con-
strain the size of the parameter space under consideration.
Several papers consider partial shufflings in which vary-
ing fractions of (x;,y;)-pairs are already observed with
the correct correspondence (Slawski and Ben-David, 2019;
Slawski et al., 2019, 2020; Zhang and Li, 2020; Peng et al.,
2021), and only the remaining portion of the data is subject
to shuffling. Another constraint commonly encountered in
record linkage is that 7* is block-structured with known
composition of the blocks based on auxiliary variables that
are required to agree for matching records. In domains such
as signal processing and computer vision, 7* is often con-
strained to act locally in the sense that indices are shuf-
fled only within small time windows or image regions (Ma
et al., 2021b; Abbasi et al., 2021).

The goal of the present paper is the development of a reg-
ularization framework for shuffled data problems that inte-
grates those and other constraints in a unified way. To that
end, we introduce an exponential family prior on the per-
mutation group that is flexible enough to accommodate any
kind of prior information that can be expressed solely in
terms of index pairs (2, j). This prior turns out to be conju-
gate for canonical shuffled data problems in which the like-
lihood conditional on a fixed permutation can be expressed
as product over the corresponding (x, y)-pairs. Inference is
based on the MC-EM algorithm considered in Wu (1998)
and Abid and Zou (2018). We show that for exponential
family likelihood, the resulting M-step is particularly scal-
able since it involves n instead of n? terms. Moreover,
computation of the MAP estimator of 7* with the remain-
ing parameters fixed reduces to a linear assignment prob-
lem, and hence remains computationally tractable. Theo-
retical results and a collection of experiments for various
shuffled data setups demonstrate the usefulness of regular-
ization based on the proposed prior in comparison to the
unregularized counterpart and other baselines.

Notations. We denote by D = {(x;,y;)}"; the observed
merged data, subject to shuffling. We use (x,y) for a
generic pair of matching records. We use X and Y for
the row-wise concatenation of {x;} ; and {y;}} ,, re-
spectively. We let p(-) denote the density (PDF) of a list

of variables in (-), and accordingly p(- | -) is used for con-
ditional PDFs. We write u ~ p to express that random
variable u has density p. The symbol E(_,[-] is the expec-
tation w.r.t. (...). The Hamming distance on the permuta-
tion group P(n) of [n] = {1,...,n} is denoted by dy. The
symbol tr is used for the matrix trace, and I,, denotes the
identity matrix of dimension n. The cardinality of a set is
denoted by | - |, and I denotes indicator function.
Conventions. We often refer to a permutation via the un-
derlying map 7 and the associated matrix II = (7;;) in an
interchangeable fashion, and accordingly P(n) and subsets
thereof may refer to both maps and matrices. Asterisked
symbols such as 7*, 8%, o, etc. refer to ground truth pa-
rameters; non-asterisked symbols such as 7, 6, o etc. refer
to generic elements of the associated parameter spaces.

2 Approach

Our approach will be presented as follows: we start with
a brief motivation, followed by a more formal systematic
introduction, and conclude with technical details pertaining
to computation and model fitting.
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. :
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Figure 1: L: Samples from the model y; = x,«(;)8" +
€, ¢ € [n], n = 1,000, with 10% random mismatch.
M: Re-paired data (27, (i), ¥i)i=1 = (T@),Y))ie1 and
B R: Re-paired data
(%), ¥:)j—, based on the proposed Hamming prior.

corresponding amplified slope [Sy.

2.1 Motivating examples

Consider the simple linear regression setup y; =
Tre(i) 3" + o€, where x; and ¢; are independent standard
normal random variables, 1 < ¢ < n, and 7* permutes 10%
of the indices uniformly at random. Suppose that the sign
of 3* is known to be positive. Then the ML estimator of 7*
(or equivalently, the MAP estimator under a uniform prior
over P(n)) is given by the permutation Ty that matches
the corresponding order statistics in {x;}_; and {y;};:

Dl TR () Yi = D1 T Y() (1

As shown in Figure 1, myy performs rather poorly. The
scatterplot of the matching of corresponding order statistics
is far from that of the underlying correct pairing. In fact,
ML is associated with massive overfitting. Specifically, let

~ n n N 1 n .
P = Zx(i)y(i)/ fo, T, = o Z(Zh — z:8u)”
=1 i=1 i=1

denote the resulting ML estimators of 3* and o2, respec-
tively. It is straightforward to show that

oo — 0, ntYN (wBt — xi/B\ML)Q —0o2 (2
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Figure 2: L: Data y;, = sin(107t;) + 0.1¢;, ¢; ~ N(0,1),
i € [n]. M: Locally permuted data (t;, y:.,,) R: Corrected
data (t;, yt.,,.,) based on the proposed prior.

in probability as n — oo. This is alarming since it implies
that the least squares fit absorbs all the noise.

Figure 1 shows that the ML estimator is too aggressive in
forming “corrected” pairs (xz,, (;), ¥:) given that only 10%
of the observations are actually mismatched, and among
those 10%, only a fraction contributes substantial mismatch
that exceeds the noise inherent in the problem. Sparsity of
m* is often a reasonable assumption in post-linkage data
analysis (Chambers and Diniz da Silva, 2020; Slawski and
Ben-David, 2019), where sparsity here means that set of
mismatches {i € [n] : 7*(i) # ¢} has significantly smaller
cardinality than n. Given an upper bound on the number of
mismatches, say k, it is appropriate to consider the follow-
ing constrained ML estimator of 7*:

MAXrep(n) Doreq Tr(i)¥i subjectto dy(m,id) <k, (3)

where id is the identity map on [n] and dy(w,7’) =
Sor I(m(i) # 7'(i)) denotes the Hamming distance on
P(n). To the best of our knowledge, there is no efficient
algorithm for computing the maximizer directly. However,
there exists a Lagrangian multiplier v > 0 such that (3) is
equivalent to the optimization problem

maXzecp(n) {Z;Lzl Tr(i)Yi — ’YdH (7T7 Id)} )
= maXrep(n) { Doimy 2o yey Tij (50 — Y@ # 4))},

which is a linear assignment problem with cost matrix C' =
(fy][(i £ j) — xjyi), which is computationally tractable
according to the discussion following (7) below. The right
panel of Figure 1 highlights the improvement that can be
achieved by the resulting estimator which here only makes
a small number of re-pairings of (x, y) capturing pairs that
correspond to massive mismatch error in the left panel.

Figure 2 illustrates scenarios in which 7 is not sparse (with
a mismatch rate exceeding 80%), but constrained to be a
“local shuffling” in the sense that max; ¢y, |7 (i) —i| < 7,
i.e., the corresponding permutation matrix is a band ma-
trix with bandwidth at most . This scenario is particularly
relevant when the data is recorded sequentially (e.g., over
different time points) or across a spatial domain endowed
with a notion of distance, and it is known that 7* can only
mix up the order of data inside a specific time window or
within a local neighborhood. There are numerous applica-
tions in which 7* is locally constrained such as genome se-

quencing (Abid et al., 2017), signal processing (Balakhris-
nan, 1962; Abbasi et al., 2021), or computer vision (Ma
et al., 2021b). The illustrative example in Figure 2 can be
thought of a regression problem in which the signal is a sine
with known frequency but unknown (positive) amplitude
8%, ie., yr, = B*sin(107t;)+0.1¢;, 1 < i < n (left panel).
However, the observed data is of the form (y;_. , )i, for
some unknown (local) permutation 7* (middle panel). If
B* is known to be positive, then the (unconstrained) ML
estimator Ty of 7 matches the order statistics {1(;) }7—,
and {y(;)};—1, where p; = sin(107t;), i € [n]. In order
to improve over the ML estimator using the prior knowl-
edge of local shuffling, we impose the constraint that the
alternative estimator 7 does not pair any indices more than
r = 3 apart. This estimator can be obtained as solution of
the optimization problem

mg(x) Sy HilYr(s) subjectto |m(i) —i| <7, i€ [n]
mTeP(n

= maX,ep(n) { iy 2?21 T (i — cij) } 5

where ¢;; = 0if |i — j| < r and ¢;; = +oo otherwise. As
in (4), the problem in (5) side is a linear assignment prob-
lem and hence computationally tractable, and corresponds
to MAP estimation under the family of priors considered
below. The corrected, i.e., repaired data (ti,yﬁoﬁ*(i))yzl
based on this approach are depicted in Figure 2 (R).

2.2 Exponential family prior on P(n)

The priors discussed in the two examples of the previ-
ous subsection can be understood as specific instances of
a more general family of prior distributions over P(n).
Specifically, we consider the family of priors

p(r) o exp(y (I M), M ER™™, 5>0, (6)
where v > 0 is the concentration parameter, and
the matrix M (which is not required to have any spe-
cific properties) defines the mode(s) of the distribution
argmaxyep,) (LI, M), where (-,-) here represents the
trace inner product on the space of matrices. In the same
vein, the mode(s) of the distribution correspond to the set
of matrices closest to M with respect to the same norm.
Moreover, the distribution specified by (6) is of exponential
family form with respect to the trace inner product (Wain-
wright and Jordan, 2008).

Linear Assignment Problems (LAPs). Linear assignment
problems are a class of optimization problems for com-
puting optimal one-to-one matchings of two sets of items
(Burkard et al., 2009). LAPs are of the form

minHEP(n) <H7 C>7 @)

where C'is a given cost matrix. By the Birkhoff-von Neu-
mann theorem (Ziegler, 1995), the minimum over P (n) can
be replaced by the minimum over DS(n), the set of n-by-n
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doubly stochastic matrices. Therefore, (7) reduces to a lin-
ear program in n? variables and n? + 2n linear constraints.
This implies that computing a mode of (6) is tractable.

Specific examples. Below, we consider a few examples of
interest that are special cases of (6).

(I) Hamming prior. Consider the choice M = I,,. For
any II € P(n), we then have (IL, [,,) = n— > | I(IL;; #
1) = n — du(m,id), where dy(m,7') = Y1 I(m(i) #

7'(i)) denotes the Hamming distance on P(n). Since n
does not depend on 7, Eq. (6) reduces to
p(ﬂ) S8 exp(—'y dy (Wa Id))a ®)

which appeared in the first example of the preceding sec-
tion, cf. (4), in which the goal was to take into account the
underlying low rate of mismatches. The prior (8) is a spe-
cific Mallows’ prior p(7) x exp(—~d(rw,m)) for a base
permutation 7o and a metric d on P(n) (Mallows, 1957).

(II) Local shuffling prior. As in the second example in
§2.1, suppose we want to have the prior p place most of
its mass on permutations that move indices within small
windows, i.e., |7 (i) — ¢| tends to be small. This can be
achieved by choosing the entries of M in (6) as M;; =
—¢(]i — j|) for a non-decreasing function ¢. The choice
¢(u) = 0if |u| < r for a positive integer r and ¢(u) =
+o0 otherwise yields the approach (5) that underlies the
example in Fig. 2 above.

(III) Block prior. In record linkage, it is common that
IT* = bdiag(II7,...,II%) is block diagonal with known
block composition. For example, suppose that gender, eth-
nicity, and age group are used as matching variables, and
that these three categorical variables are free of errors. In
this case, mismatches can only involve pairs (¢, j) falling
into the same block corresponding to a specific combina-
tion of the above variables. Such known block structure
can be encoded via prior (6) by choosing M;; = —oo if
(i,7) are not contained in the same block and M;; = 0
otherwise. This corre%ponds to a uniform prior for each
block, i.e., p(m) = [],_; p(m) with p(m) o< 1, b € [B].
The prior for each block does not have to be uniform; e.g.,
a Hamming prior as in Example (I) above can be used in-
stead. Moreover, the hard block constraint can be relaxed.

(IV) Lahiri-Larsen prior. In their seminal work on lin-
ear regression in the presence of mismatch errors, Lahiri
and Larsen (2005) and Chambers (2009) assume that 7* ~
p(m) whose expectation E, ) [IT*] = @Q is known to the
(post-linkage) data analyst. In the framework considered
here, it is convenient to use M = @ in (6). An example
for @ is the so-called exchangeable linkage model (Cham-
bers, 2009; Zhang and Tuoto, 2021) with Q = (1 — «)I,, +
%LLLTL . In this case, the resulting prior is equivalent to
the Hamming prior considered in Example (I). More com-
plex priors are obtained depending on the structure of Q.

2.3 Integration in Shuffled Data Problems

We now outline how the above prior can be integrated into
generic shuffled data problems. The proposed Monte-Carlo
EM (Wei and Tanner, 1990) framework builds upon the pa-
per by Wu (1998) that has been rediscovered in the more
recent work Abid and Zou (2018). The MC-EM scheme in
Wu (1998) was further developed in Gutman et al. (2013)
based on the concept of data augmentation (Tanner and
Wong, 1987). None of Wu (1998); Abid and Zou (2018);
Gutman et al. (2013) consider informative priors for 7.

Conditional & Integrated Likelihood. Suppose we are
given data D = {(x;,y;)}/, potentially contaminated by
mismatch error. Let p(x;,y;; 0) be the likelihood (depend-
ing on a parameter 6) for the pair (x;,y;), (i,7) € [n]?.
The likelihood for € resulting from D conditional on a spe-
cific ¥ € P(n) is given by

L(Olm) = [ [ peenovi:0) = [ L 1 oy 007 ©)
=1

i=1j=1

Conjugacy. It is worth noting that under (9), the poste-
rior p(7|D, #) is a member of the family of distributions
specified by p(w), i.e., the latter is a conjugate prior. This
follows from the observation that

p(n|D,0) o p(Dlm,0) - p(m) = L(0]) - p(r)

= exp (L1, 5y i log{plocy, ¥il6)} + vy )
= exp(tr(Il' Mp,p,5)), (10)

with Mp g, = (log(p(x;,y:]0)) + vMi;).

The (conditional) likelihood (9) can be maximized with re-
spect to both # and 7 as, e.g., in Pananjady et al. (2018);
Abid et al. (2017); Slawski and Ben-David (2019). Alter-
natively, 6 is considered as the quantity of primary interest,
which suggests the integrated likelihood

L(0) = Ex[L(0]m)] = > rep(ny LOIT)p(m). (1)

As seen in §2.1, maximizing the conditional likelihood is
prone to overfitting, prompting a need for regularization.
The use of the integrated likelihood mitigates that problem
at best slightly, but not substantially (cf. supplement for
details), hence regularization remains relevant.

MC-EM scheme. The Expectation-Maximization (EM)
algorithm (Dempster et al., 1977) is an established heuris-
tic for minimizing the negative log-likelihood ¢(6) =
—log L(0) corresponding to (11) via a sequence of surro-
gates {£()(0;0())},> that are minimized successively:

—log Ex[L(0[m)] ~ Eqp e [—log L(0]|m)],
where £()(0; (1) = E,p,om[—log L(0]|7)] is equal to

St 2 Blry D, 00~ log p(x;, yi:6)},  (12)
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the so-called expected complete data negative log-
likelihood. The surrogates {¢()(-;6®))} tend to be ecas-
ier to minimize since they are linear combinations of stan-
dard likelihood terms as encountered for fixed and known
m. Surrogates are updated according to

O+« argmin 60 (6;01)) ~» (D (g; gD,
0
Here, the main challenge of this scheme is the E-step, i.e,
the calculation of the expectation on the right term in (12).
For any pair (¢, j), we have

E[?Tij|D Q(t)] x Znep(n) p(’])‘ﬂ79(t))p(7r)7rij
- ZWEP {Hz 1p 7Yi;9(t))}p(7r)7rij.

Since the summation over P(n) is not computationally
tractable, the expectation needs to be approximated, e.g.,
via Monte Carlo simulation. Since for the same reason, the
posterior p(7|D, 1)) is only accessible up to an unknown
constant (cf. (10)), it is appropriate to resort to Markov
Chain Monte Carlo (MCMC) (Gelman et al., 2013). The
Metropolis-Hastings (MH) algorithm can be used to gener-
ate a Markov Chain {7(*)};~; whose stationary distribu-
tion equals p(7|D, #™*)). This yields the approximation

Elmy|D, 6] = 25 Yty my (0,4) € [ (13)
where b denotes the length of the “burn-in” period, and m
denotes the total length of the Markov chain. Substitut-
ing (13) into (12) then yields what is known as MC-EM
scheme, cf. Algorithm 1. Conveniently, there is a proposal
distribution for the MH algorithm that is easy to work with,
known as Fisher-Yates sampling: it generates a new permu-
tation from the current one by swapping the assignments of
a pair of indices (cf. Algorithm 2).

Initialization. The choice of the initial iterate (°) can crit-
ically impact the quality of the solution that is returned by
EM schemes given that the latter is a local strategy that
finds a stationary point of a (in general) non-convex objec-
tive near the initial iterate. Several consistent initial esti-
mators are known for regression setups depending on the
structure of 7 (Lahiri and Larsen, 2005; Chambers and Di-
niz da Silva, 2020; Slawski et al., 2021; Peng et al., 2021),
and those naturally lend themselves as initial iterate.

Careful initialization of the MH subroutine is important in
order to ensure that p(7|D, () is explored well given that
|P(n)| = n! while the number of MCMC iterations m is
limited. Fortunately, under the prior (6), computing the
mode argmax__ p(7|D, #*)) reduces to an LAP of the form
(7) in virtue of (10). Initialization via the mode has the ad-
vantage that the Markov chain is started in a high density
region. The hope is that the resulting iterates (generated
according to a localized proposal distribution) will pick up
most of the mass of p(7|D, #®) so that (13) will well ap-
proximate the underlying expectation.

Algorithm 1 Monte Carlo EM (MC-EM) algorithm
Input: D = {{x2 bt {yi}~1}. 7, EM_iter

Initialize 00 — 9mn

fort=0,...,EM_iter

Tinit <= Argmax, cp(,) p(m|D,01).

E[x|D, 0] « MH(D, 0, Fini(, v, m).

9(+1) ¢+ ming {Z?,j:l E[mi;|D, 00){—log p(x;, yi; 9)}}.
t < t+1; end for

Algorithm 2 MH sub-routine

Input: D, 6, Tini(, v, m; Initialize 7(0) «— 7.
fork=0,...,m
Sample (i, j) € [n]>. 7(i) < 70 (5), 7(j) =

r(7, 7 ®)) min{ f’:,lﬁ;;v), }

Draw u ~ U(]0, 1]).

if (7, 70)) > w7 o T oelser whHD) o (k)
k < k + 1; end for; return E[r|D, ] as in (13)

7" (4).

Reduction under exponential family likelihood. For
a variety of exponential family models, the expected
complete data negative log-likelihood (12) involves n
instead of n? terms. Specifically, (12) will be
S r{x v, (BID,00]7Y);:0)} for a function r
depending at most on {x;,y;, (E [H|D 0®]TY) 17, Ex-
amples of interest are presented in the sequel.

(i) Least squares regression. In this case, we take
—logp(x,y; B,0%) = (y — x"B)?/(20%), which corre-
sponds to the negative likelihood of a linear regression
model with i.i.d. zero-mean Gaussian errors with variance
o2. This yields the following expression for the expected
complete data negative log-likelihood:

(20%) 7 220, 25, Elry D, 00 (ys — x/ 8)?
= o *{3I1XBII3 - (E[MD,0M]TY.X5)},

which is identical to a least squares objective with design
matrix X and response vector E[IIT |D, §)]Y

(ii) Generalized linear models. In this case, we have

—log p(x, y; B, ¢) = LELLCD 4 c(y, ), where a, ¢
and c denote scale, cumulant, and partition function, re-
spectively. Similar to above, one shows that

s Y Bl D,001{4(x] B) — yix] BY + (Y, 9)
=5 S {0 B) — (BIIID, 0] TY), x] 8} + e(Y, ).
While the canonical link is assumed above, this is not nec-
essary to achieve the reduction from n? to n terms.

(iii) Precision matrix estimation & multivariate normal
data. Let (x,y) ~ N(ps, ;1) with precision matrix ..

Estimation of p, is unaffected by 7*; w.l.o.g. u, = 0. Up
to constants, — log p(x,y; Q) = —logdet Q + tr(Qzz"),
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where z = [x " y"]"; zz" has diagonal blocks xx ', yy "
and off-diagonal blocks xy ', yx'. Thus tr(Qzz') =
tr(Qxxxx ") +t1(Qyyyy 1) + 2t1(Qyxxy | ), where Qs
{1y etc. are the corresponding sub-matrices of 2. Hence,

Z?:l 2?21 E[r;|D, Q(t)]{_ log p(x;,yi;€2)}
= —n(logdet Q + tr(QSgmp.0m))s

where Sgi7p oy consists of blocks X' X/n, Y'Y /n,
XTE[MD,QY]TY /nand Y E[|D, QM]X /n.

Computational complexity of Algorithm 1. For expo-
nential family models benefitting from the above reduc-
tion, updating 6 in the M-step involves n terms, and is
computationally equivalent to a standard estimation prob-
lem. Apart from the initialization of the Markov chain, the
approximate E-step has complexity O(m), where m de-
notes the length of the Markov chain. Computing the ac-
ceptance probability, updating 7*) and keeping track of
E[II|D,0M]TY within Algorithm 2 can be done in time
O(1) since the proposal distribution only changes (k) at
two positions. However, m is recommended to be of the or-
der Q(n), heuristically justified by the fact that in the worst
case a permutation is the product of n — 1 transpositions.

Remarks. (i) Following Tanner and Wong (1987) and Gut-
man et al. (2013), the MC-EM approach can be converted
into a fully Bayesian approach: given that MC-EM in-
volves sampling from p(w|D, @), one can as well sample
from p(0|D, ) in an alternating fashion, which yields a
Gibbs sampler for the joint posterior p(@, 7| D). (ii) The
framework herein is not limited to permutations: we may
be given Dx = {x;}¥, and Dy = {y;}y, N > n
(w.Lo.g.), and then consider maps 7 : [n] — [N] repre-
sented by a matrix IT € {0,1}"*" with unit row sums.
Priors of the form (6) given a mode M € R™* as well as
conditional and integrated likelihoods can be defined anal-
ogously to (9) and (11). (iii) We think of the sampling
scheme as a template rather than an efficient approach; im-
proving efficiency, e.g., along the lines of Zanella (2020);
Grathwohl et al. (2021), is left for future work.

3 Theoretical Insights

In this section, we present some analysis of the proposed
prior from a regularization perspective and provide guid-
ance on the choice of the hyperparameter «. Data-driven
selection of v based on Empirical and Hierarchical Bayes
approaches are detailed in the supplement.

Hamming prior. Our first results concerns the MAP esti-
mator of IT* under the Hamming prior (8). Specifically, we

consider the linear regression setup
Yi = Mg (i) (X) +ovei,  pi(x) = XTﬁ*a
iid.

xi ~ N(0,17),1 < i <n, {&}, 2 N(0,1),

(14)

as considered in prior work on shuffled linear regression
(Pananjady et al., 2018; Hsu et al., 2017). The theorem be-

low considers the sparse setting in which the underlying 7*
satisfies the constraint dy (7*, id) < k for k& “small enough”
as made precise below. For simplicity, it is assumed that 3*
and o2 are known; various estimators for the regression pa-
rameter in this scenario have been proposed (Zhang and Li,
2020; Slawski et al., 2021; Peng et al., 2021).

Theorem 3.1. Suppose the setting (14) holds true. Let
II denote the resulting MAP estimator of II* with
dy(IT*,I,) < k. Then, if v > 379, where 79 =
72v/SNRlog(en/k), we have dy(IL, I,,) < 2k and

(T =TT a2 < 0 (17+/K log(en/3k) + v/27).

with probability at least 1 — 2/n and 1 — 3 /n, respectively,
where s = (15(x))1_, and SNR = || " 3/,

Theorem 3.1 implies that if 7 is chosen larger than the
threshold ~y, the MAP estimator II will be 2k-sparse,
which matches the sparsity of II* up to the factor 2. By
the triangle inequality, dy(IT*,II) < 3k, i.e., IT and IT*
will be close in Hamming distance. Moreover, for values
such that 3y < v < Cy for C' > 3, we obtain

(I = T*) |2 < 0. (y/klog(en/k) + SNRY*\/klog(en/k)).

The dependence on the signal-to-noise ratio SNR is im-
proved compared to the naive estimator Iy = I,,, whose
error scales as a*\/klog(en/k)SNRl/z; for small SNR,
one cannot hope for improvements over ﬁo in general. In
light of the discussion in §2.1, the improvement over the
maximum likelihood estimator IIy;, whose error scales as
74/, is substantial as long as k is small relative to n.

The next result yields a lower bound on ~ ensuring a pre-
scribed level of sparsity k based on the prior only.

Proposition 3.2. Suppose that © follows the Hamming
prior (8) with parameter ~y. Then forall2 < k <n

< exp(—kdlogn),
ifv> (1+0)logn, §>0,

Zc(kvn)v lf’YSIOg(n_kL

Pﬂ-Np (dH (Tl', Id) Z k)

where c(k,n) — 3 as k — oo, with |k denoting the

number of derangements of k elements.

Proposition 3.2 asserts that the hyperparameter v of the
prior (8) should be chosen proportional to log(n — k) ~
logn as n gets large in order to ensure that the prior
places essentially no mass outside the Hamming ball {7 :
dy(m,id) < k}. The threshold v ~ logn is sharp in the
sense that if v < log(n — k), the prior will place at least
mass (1) = 11k/k! ~ ;- for not too small k outside that
Hamming ball. The likelihood p(D|) favors permutations
with best fit to the given data, so that the posterior mass
P.p({m : dy(mid) < k}) will be less than the prior
mass. It is thus natural to consider v ~ logn as initial
point.
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Local shuffling prior. The next statement addresses the
scenario in Fig. 2 for Lipschitz functions. In particular, the
level of penalty needed for the MAP solution to satisfy the
condition max; |7(¢) — 4| < r is provided.

Proposition 3.3. Suppose that y; = jir«(;) + 0x€; i € [n],
iid.

with {e;}_, =~ N(0,1), where u; = f*(i/n), i € [n],
for a function f* : [0,1] — R that is L-Lipschitz. Let
further the matrix M in the prior (6) have entries M;; =

I(je¢ — 4| > r), 1 < i,5 < n, for a given bandwidth
T = MaXc[y) |77(0) 2L (\/logn + V/2r), the
resulting MAP estimator T satisfies |7(i) —i| < r, i € [n],
with probability at least 1 — exp(—(v/2 — 1)2/2) — 2/n.
Under the same event,

426*L - 1
—Z faGi) = fine ()" < ————

n

In theory, the assertion of the above proposition can be
achieved by setting v = oo. Established solvers of LAPs
require the entries of the cost matrix to be finite. In addi-
tion, solver accuracy can degrade with the magnitude of the
entries (Bernhard, 2021).

4 Experiments

In this section, we present the results of experiments con-
ducted with synthetic and real data. In the supplement, we
also show an example demonstrating the use of the data
augmentation approach discussed at the end of §2.3 as an
alternative to the Monte-Carlo EM scheme.

Synthetic data. We consider data generation according to
the following three models (1 <7 < n):

@@~ N(x,. *( )5 a3),
Poisson (GLM): y/;[Xy (i) ~ Pmsson(exp( X yB" +55)),
MultiVariateNormal: z; = (X(5), ¥i) ~ N (g, Q51).

The {x;}? , and {¢;}}_, are ii.d random samples from
the N (0, I4) and N(0,1) distributions, respectively. The
regression parameter S* is sampled uniformly from the
sphere {3 € R? : ||B]la = 3}, and B ~ N(0,1).
For MVN, we let g, = 0 and Q71 = (1 — pu)lpiq +
D 1p+q1; 4+q- Finally, 7* is a permutation selected uni-
formly at random from one of the following constraint sets:

} 5s)

max |m — <r
1<l<n| ( ) Z| }

where P(B) denotes the set of block-structured permuta-
tions corresponding to B blocks of uniform size n/B, i.e.,
{1,...,n/B},....{(B=1)(n/B)+1,...,n}. Note that
in (i), k refers to the number total of mismatches, whereas
in (iii) k refers to the number of mismatches per block. We
fixn =1,000,d = 20,0, =1, p. =08, p=gqg =25,

Linear Regression (LR): ;|X =

(i) k-Sparse: {w € P(n Z]I (i) # 1)
(ii) »-Banded: {77 € P(n):

(iii) k-SparseBlock: {ﬂ' € P(B Z}I

B = 50. The mismatch rates k/n and k - B/n in (15)(i)
and (15)(iii), respectively, are varied between 0.2 and 0.5 in
steps of 0.05, and the bandwidth r in (15)(ii) is varied be-
tween 3 and 10. For each setup and each value of k£ and 7,
100 independent replications are performed. The following
approaches are compared:

(I) naive. Standard maximum likelihood estimation as used
for parameter estimation in the absence of mismatches,
which corresponds to fixing 7w = id as the identity.

(II) oracle. The unknown permutation 7* is considered
as known, and standard maximum likelihood estimation is
used for parameter estimation after fixing m = 7*.

(ITI) robust [for setting k-Sparse only]. For setup LR,
the regression parameter is estimated on the robustfit
function in (MATLAB, 2019). For setup GLM, the regres-
sion parameter is estimated based on the robust GLM esti-
mation method (Wang et al., 2020) that uses observation-
specific dummy variables and penalization. For setup MVN,
Q) !is estimated according to the robust cov function in
MATLAB which implements the minimum covariance de-
terminant estimator (Rousseeuw and Driessen, 1999).

(IV) EM, EMH, EML, EMB. Algorithm 1 using uniform,
Hamming, local shuffling, and block-Hamming prior, re-
spectively, which reflect the constraint sets (i) to (iii) in
(15). The EM iterations are initialized by setting = = id,
and the number of EM iterations is limited to 400. The
number of MCMC iterations per EM iteration is set to 8k,
half of which are counted towards the “burn-in period”.
We note that a modified MH algorithm is used for EML
(cf. supplement); for EMB, the MH scheme in Algorithm 2
is applied blockwise. For the Sparse and SparseBlock set-
tings, the hyperparameter v is chosen based on Proposition
3.2, which suggests v o log(n). For the Banded setting,
the choice v = 1 was found to yield good performance.

(V) Lahiri & Larsen (LL), Chambers (C) [for setting
k-SparseBlock only]. The approaches described in Cham-
bers (2009) and Labhiri and Larsen (2005) with the choice
Q= E[H*] = Ip ® Qo, where Qo = (1 - O4*)[71/3 +
a*ln/Blz/B, a, = (k - B)/n. For setup MVN, the LL ap-
proach amounts to estimation of €2, by the inverse of the

modified sample covariance matrix S with blocks Syx =
XTX/n, Sxy =X"QTY/n,and Syy = Y'Y /n.

(VI) Averaging [for setting r-Banded only]. We com-
pute (componentwise) running averages of the {x; }? , and
{y:}, within sliding windows of size r, and estimate the
parameters B* or Q, from these local averages as usual
(i.e., as if these were the original, uncontaminated data).

For better comparison across experimental configurations,
we visualize the relative estimation error (REE) ||5* —
B*|l2/118* |2 and ||Corr®* — Corr* || , where 3" and Corr®*
are placeholders for the aforementioned estimators; “Corr”
refers to the correlation matrix corresponding to €2, *. Se-
lected results are shown in Figure 3, which displays aver-
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Figure 3: Results of the synthetic data experiments. The
corresponding error bar represent £3 x standard error. The
figure captions represent the prior and model (bold) under
consideration.

Relative Estiamtion error
o
o

ages of the REE over 100 replications for each model and
each permutation. Overall, it can be seen that EMB, EMH,
EML achieve significant improvements over their unregu-
larized counterpart and the other baselines.

data model prior
Italian survey data(ISD) LR hamming
El Nino data(END) LR block
CPS wages(CPS) LR hamming
Bike sharing data(BSD) GLM block
Flight Ticket Prices(FTP) MVN  hamming
Supply Chain Management(SCM) MVN  hamming
Beijing Air Quality data(BAQD) MVN  local

Real data. We consider seven benchmark data sets for
shuffled data problems. The data sets are preprocessed ver-
sions of their original counterparts (details on data process-
ing can be found in the supplement). Even though the data
sets themselves are real, the permutations that scramble the
given matching pairs {(x;,y;)} are synthetic; for each
data set, we consider 100 independent random permuta-
tions depending on the underlying setting. We consider the
same list of competitors and associated configurations as
for the synthetic data experiments. Asterisked ground truth
parameters here refer to oracle estimates based on knowl-
edge of 7*, and relative estimation error (REE) is defined
accordingly in terms of those ground truth parameters.

Hamming & Block prior. As shown in Fig. 4, the
proposed approach consistently improves over naive least
squares once the fraction of mismatches exceeds 0.2, and
yields substantial improvements as that fraction increases.
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Figure 4: Results of the real data experiments. The cor-
responding error bars represent £3 x standard error. The
figure captions represent the prior and data set (cf. table
above) under consideration.

The regularized EM approach based on the priors in EMB,
EMH, EML noticeably reduces error induced by shuffling.

Local shuffling prior. As shown in Table 1, the EM ap-
proach with local shuffling prior achieves significant error
reductions compared to the naive approach and the EM ap-
proach without regularization.

Table 1: Results of the real data experiment (Beijing Air
Quality Data) with local shuffling permutation. Each num-
ber in the table is the average REE over 100 replications.

Methods naive EM EML

[|Corr™ — Cort*||r  0.76 1.97 0.34
standard error 0.0012 0.0111 0.0010

5 Conclusion

In this paper, we have proposed a framework for regular-
ized estimation in shuffled data problems by means of an
exponential family prior on the permutation group. The
exponential family form is convenient for computational
purposes yet sufficiently rich to incorporate common forms
of prior knowledge. The proposed prior is not tailored to
specific data analysis problems, but can be applied gener-
ically. The results in this paper confirm the importance of
regularization in shuffled data problems given the inherent
danger of overfitting already with little noise. While the
approach covers various constraints that can be imposed on
the underlying permutation, it is not exhaustive. For ex-
ample, suppose we have information on the cycles of the
permutation (numbers or lengths). Such information can-
not be expressed in terms of index pairs, and hence requires
a different paradigm. Kondor et al. (2007); Huang et al.
(2009) use Fourier analysis on the permutation group (Di-
aconis, 1988) to facilitate learning of permutations, and it
is an interesting direction of future research to study how
that approach can be leveraged for the type of shuffled data
problems considered in the present paper.
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A Detailed derivations of the expected complete data negative log-likelihood for selected
models

In this section, we provide detailed steps for deriving the expected complete data negative likelihood for least squares
regression and precision matrix estimation for multivariate Normal data.

Recall that the expected complete data negative likelihood is given by
n n
E.pom[—log L(0]m)] = Z Z (731D, 0 {—log p(x;,y:i;0)}

(i) Least squares regression. In this case, we take — log p(x,y; 3,02) = (y — x ' 3)?/(202), and we have that

T; > D Elmy D0y —x] 8)* = ) ZZE mi;|D, 0] { 18 yz‘XjTﬁ} +c

i=1 j=1 i=1j=1

- 02 ZE Zﬂw ’D 6
- % ZXJ‘TB Z E[r;|D, 0%y
j=1 i=1
- {; ST -3 (B TY) o] ﬁ)}
i=1

i=1

22 {3118 - (B0 Y X5}

(ii) Precision matrix estimation for multivariate normal data. In this case, — log p(x,y; Q) = —logdet Q + tr(Qzz "),
where z = [x " y']T; zz" has diagonal blocks xx ', yy " and off-diagonal blocks xy ", yx .

n

> > Elmy D, QW ]{~logp(x;,yi; )}

i=1 j=1

= —nlogdet Q + tr ( XXZXZ > + tr (nyZyiyiT>
i=1
Oy > > E[m;[D, Q0 )x;y]

i=1 j=1
= —nlogdet Q + tr(Qex X ' X) + tr(Qux Y TY) + tr(Qy X T E[II]D, Q] TY)
= fn(log det + tr(QSE[lﬂD,Q(t)])'
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B Derivation of the claims in Eq. (2)

Let pi; = x;8*, 1 < i < n, and let P} and P} be the probability measures with mass 1/n at the {z}7_, and {y; }};,
respectively. Then the squared Wassersteln 2 dlstance W between P} and P is given by (cf. Peyré and Cuturi, 2019)

1 — 1 & 2
E;yf‘FE;M? 0 {erngé)zmzyz}

Wg(P[[,P" = min Z{yl o (i

T€P(n) N
Iqm o, 1m0 2 *
=D D - ﬁZrmy(i)B (8.
i=1 i=1 i=1
We have that W5 2(Py, Py — W3 (P, P,) = (\/(B*)2 + 02 — 3*)? in probability as n — oo, where P, and P, denote

the Gauss1an measures N (0, (B* ) ) and N (0, (B* ) + a?), respectlvely (Peyré and Cuturi, 2019, Remark 2.31). At the
same time, 2 3" 4?2 — (8*)? 4+ o2 and 711 S u? — (B*)? in probability as n — oo. Substitution into (S.1) and
invoking Slutsky s theorem, we have that

1 n
-~ > zwya = V(B2 + o2

=1

in probability as n — oo. The first result in (2) then follows immediately from Slutsky’s Theorem and the fact that
n~t 3" 27 — 1, and observe that the third result in (2) is obtained as a direct consequence with the same reasoning.
The result 53; — 0 is obtained by expanding the square

I , 28 ~ Ies 55 o
= E Yi —— E YiwiBmL + — E z7 (Bw)”
i=1 i=1 i=1
and analyzing each of the terms accordingly.

C Proof of Theorem 3.1

In light of relation (10), straightforward manipulations and omission of terms not depending on II show that the MAP
estimator II is the minimizer of the optimization problem

(Y, IIp) + o2vdy(I1, I,,) } . S.2
Hrergr(ln){ p) + o2ydu(IL, 1) } (S.2)

Since II minimizes (S.2), the following basic inequality holds true:
—(Y, 1) + o2ydu(IT, 1) < —(Y, 11" ) + o2 ydn (117, I, (S:3)
Decomposing Y = p + £ with & = 0,11%€ and re-arranging terms in the above inequality yields that
(g, (T = T)ps) — (€, (T = T1*)pa) + 02ydu(TT, 1) < o2k,

where we have substituted dy(IT*, I,,) = k. By the Cauchy-Schwarz inequality, (IT* s, ﬁu) < IT*w
that the first term in the previous inequality is non-negative. This in turn yields that

g, which implies

—(& (I~ ")) + 0Zdn(IL 1) < o2yk. (S4)
In the sequel, we will derive a probabilistic lower bound on the first term on the left hand side.

For any integer 1 < s < n, consider the event £; = {dH(ﬁ, I,) < s} andletv = . We have that

A=)
2HB Il

_ (- T)p [d-T)u  p
|[7]|2 = sup Uy s ) — Sup ) Tan
Jufl2<1 2(18* 12 fulla<1 2 15* ||
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Observe that conditional on s, for any vector u € R™, (IT—IT*)u can have at most ms = s+ k non-zero entries. Moreover,

||(II = II*)u|| < 2||ul|2. Finally, note that in light of the setting (14) under consideration, g/||3*||2 ~ N (0, I,,). Tt follows
that for any ¢ > 0

P(|[7]]2 > t[&) <P ( sup  (u,g) > t) , g~ N(0,1). (S.5)
)

w€By(ms

where for any integer 1 < ¢ < n, By(¢) here denotes the set of all unit vectors having at most ¢ non-zero entries.
Denote by w(B(£)) = Eyn(0,1,,)[SuPyes(e) (U )] the corresponding Gaussian width (Vershynin, 2018, §7.5). Choosing

t = w(B(ms)) + c1v/2logn in (S.5) for ¢; > 1, standard tail bounds for the suprema of Gaussian processes (Boucheron
et al., 2013, Theorem 5.8) yield

(7]l > w(Bo(m.)) + c1/2logn |€,) < n ™.

Using that w(By(ms)) < 44/ms log(en/ms) (e.g., Plan and Vershynin, 2013, Lemma 2.3) and the fact that slog(en/s) >
logn for any n > s > 1, we have with ¢; = V2

P(||[o]lz > 61/mslog(en/my) |Es) < 1/n. (5.6)
Combining this with the definition of 7 yields that
P((T — ) palls > 12]18" l2v/m, log(en/m,) |€.) < 1/n?.

Let now 7, = 12(|8* ||21/ms log(en/my) and F, = {||(Il — II*) /|2 < 7}, and note that

P((¢, (ﬁ —I")p) > t|FsNE) <P ( sup  (g,v)0Ts > t) , g~ N(0,1).
vEBy(ms)

Using the same argument as above, we choose t = 0,7, {w(Bo(ms)) + c2v/2logn} with c; = /2. Putting together the
pieces as above, we obtain

P((&, (T =T1")p) > 12 6.-0.]|8"||2ms log(en/m, )| Fs N E,) < 1/n’.
=72

Now let o = 72vSNRlog(en/k) > 72v/SNRlog(en/m;) and define the event

(& (M- T")p)

Gs={4——5— < Yoms
O—*

Observe that conditional on £ N G, the earlier inequality (S.4) implies that (recalling that m; = s + k)
—9002(s + k) + o2ys < —(&, (T — T ) + o2ydn (0, I,) < o2yk.
Combination of the left and right hand sides and re-arranging terms implies the inequality

s—k
rys—Hc

Yo =

Now for any s > 2k, the right hand side is lower bounded by (1/3)~. This in turn yields a contradiction whenever ~ is

chosen such that v > 3~g. In order to conclude that dH(ﬁ, I,,) < 2k with the stated probability in that case, it remains
to provide a corresponding lower bound on the probability of the event | J]_,(E; N G), i.e., at least one of the events
{€s N G4} occurs. Since the events inside the union are disjoint, we obtain that

n

P (CJ(& N gs)> = iP(é‘s NG, > ip(ss NG NF) =Y P(G|E N F) P(FIE) P(E)

-1
s >1-1/n2 >1-1/n2

> zn:(l —2/n*)P(E) >1-2/n.
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In order to prove the second part of Theorem 3.1, we first invoke the following basic inequality equivalent to (S.3)
1T = Y5 + 202ydu(TL, 1) < 10" = Y |3 + 205w (IT°, L,).
Expanding the squares and re-arranging yields conditional on | J_, (€5 N Gs)
Mg — I 3 < 2(€, Tp — I ) + 202y (k — 5)

<2 sup <£,u>||H*u—ﬁuH2 +203’7(k_8)7
u€Bo(3k)

where in the second inequality, we have used that if v > 3o, conditional on on |J)_, (€5 N Gs), it holds that dy (ﬁ, I,) <
2k. The latter inequality is of the form

x? —2bx —c <0, go=|lp— T pl, b= sup (&u), c=202y(k—s).
u€Bo(3k)

After elementary manipulations, we obtain the inequality z < v/b2 + ¢ + b < 2b + +/c, which translates to

Ty — I pfa <2 sup  (€,u) +04y/27 < o (17\/k’10g(6n/3k) + \/27) ;

u€Bo(3k)

with probability at least 1 —2/n — 1/n =1 — 3/n, where the term sup,,¢, (3x) is controlled similarly to (S.6).

D Proof of Proposition 3.2

The probability mass function of (8) is given by (Fligner and Verducci, 1986):

exp(— i " (ex —1)*
() = 22 ;C(Z:)( W) ) = mtexp(my Y EPO D (8.7
k=0 ’

In the sequel, let us write {D(7) = d} as a shortcut for the event {dn(7,id) = d}. We then have

- B n exp(—vd) (n

where !d denotes the number of derangements of {1,...,d}, i.e., the number of permutations 7 of d objects such that
7(j) # j forall 1 < j < d. Straightforward manipulations yield

n —d) 2 1d n _
P(D(r) > k) = P =y =y owbh_d) (5.8)

n 2.8 —1)* n ex
= nlexp(—yn) Yoy, ROIZT =y gy oy (eeG)Zlt v

For z > 0 and integer m > 1, define the (upper) incomplete Gamma function and its “normalized” counterpart by

r(m,x):/mtnfle*tdt, ['(m,z) = T'(m,z)/T(m),

where I'(m) = I'(m,0) = (m — 1)! denotes the Gamma function. It can be shown that (Abramowitz and Stegun, 1964,

§6.5)
Z
k=

Further note that for & < d < n, we have that k, <!d/d! <!n/n! < e~!. Accordingly, for % < co(n, k) <In/n!, we
obtain the following for the right hand side of (S.8):

k
o= eT(m+ 1,) (5.9)

n n—=k :
exp(y(n —d)) (exp(v))* 1
co(n, k) e = co(n, k) - ey o
dzl:c (n—d)!>r, ( p(z!) ¢ ; 7! S ( p(z!) 1)¢

e P T(n — k + 1, exp(y))
exP(M=1T(n + 1,exp(y) — 1)
f(n —k+1,exp(y))
T(n+1,exp(y) — 1)

= co(n, k

= CO(nv
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At this point, we consider the upper bound on the probability of interest as stated in the proposition. We have

f(n —k+ 17 exp(v)) _ feoxop(’*/) t"ikeftdt F(?’L + 1) < fexp('y) "= ¥ e~tdt n!
D(n+1,exp(y) = 1) Jopeyy_a tetdt Dn—k+1) = [ tne=tdt (n—k)!

< exp(—vk)n"* = exp(—dklogn).

provided v > (1 + §) log n, which concludes the proof of the upper bound.

Regarding the lower bound, observe that in view of relation (S.9), the ratio of normalized incomplete Gamma functions
can be expressed via the ratio of CDFs of two independent Poisson random variables, that is

T(n—k+1exp(y) _P(Xi<n—k)
L(n+1,exp(y) — 1) P(Xy<n) ’

where X7 and X are two independent Poisson random variables with parameters exp(~y) and exp(y) — 1, respectively.
Setting v = log(n — k) yields that the right hand side is a function of the form ¢; (n, k) that is lower and upper bounded
by 1/4 and 1, respectively, as n — oo. Taking c¢(k,n) = co(k,n) - ¢1(k, n) yields the assertion.

E Proof of Proposition 3.3

Similar to Eq. (S.3) in the proof of Proposition 3.1, we have the basic inequality
(Y, TIp) +o2y > Ty < —(Y,II"p). (S.10)
(4,9):li—5]>r

In the sequel, we will show that under the stated conditions, the left hand side must exceed the right hand side unless
H” = 0 for all (¢, j) such that |i — j| > r. Expanding Y = II*u + o0.€ and re-arranging terms yields the inequality

oy Y. My<o(p-Trpe =0 > €lize —le@) 0 > &llae) — tae(@)s (S11)
(,9):li—j|>r |7 (i) —i|>r |7 (2)—i|<r

where we have used that ||IT* 2|2 — (e, II* 1) > 0. For the second term on the right hand side, the triangle inequality
yields that for all indices 4 that are summed over, we have |7(i) — 7*(¢)| < 2r. Using the Cauchy-Schwarz inequality in
combination with the Lipschitz property of the underlying function, we obtain that

1/2 1/2
> eilpra) — tae@) < Y & > (ra) — tae@)’
a7 (1) —i| <r |7 (1)~ <r a7 (1) —i| <r
27“ L
ll€ll2 (S.12)

=7
By standard concentration results (e.g., Wainwright, 2019, § 2.3), the event £; = {||€||2 < v/2n} holds with probability at
least 1 — exp((v/2 — 1)2/2). We now turn to the first term on the right hand side of (S.11). We have the upper bound

Z €i(Hz(i) — Hrr (i) < Lll€llo - card({i : [7(i) —i[ > r}), (S.13)
| w(8)—i|>r

where we have used that max;; |u; — p;] < L. Standard concentration results yield that the event & = {[|€|loc <
2/log n} holds with probability at least 1 — 2/n. Combining (S.12) and (S.13) yields that conditional on &£; and &, the
right hand side of (S.11) is upper bounded by

2. L (\/logn card({i : [ ()—z\>r})+\ﬂ)

At the same time, the left hand side of (S.11) evaluates as o2+ - card({i : |7(i) — i| > r}). If the expression card(. . .) is

zero, the claim follows trivially. Otherwise, the condition v > 2L(7 VIog n+v21) ensures that the left hand side exceeds the
right hand side, which is a contradiction, and hence it must hold that |7r( =i <r,1<i<n.
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Observe that conditional on the event {|7 (i) — ¢| < r, 1 < i < n}, the basic inequality (S.10) reduces to
(Y, Ip) < (Y, ") = Y —Tpll < [Y - I pl3

Substituting Y = II* . + o€ in the inequality of the right hand side and expanding squares, we obtain that conditional on
{I7(#) —i| <r, 1 <i<n}and &

n

N " r-L
[Ty — T pl3 < 20, ;Q’(Nﬁ(i) — fan(i)) < 40*%”

with the same arguments as used for (S.11) and (S.12). Dividing both sides by n yields the assertion.

€lla < 4V20,(r - L),

F Metropolis-Hastings scheme for local permutations

Algorithm 3 Monte Carlo EM Algorithm for local permutations
Input: D, 0, Tinic, v, m,

Initialize 7(©) «— T,

fork=0,...,m

Sample ¢ € [n] uniformly at random.
Sample j uniformly from {max{i — r, 1}, ..., min{é + r,n}}.
If [7™ @) — 70 () > r
invalid-mcmc-steps < invalid-mcmc—-steps + 1; continue;
end If
7(i) « 70 (7), 7(j) = 79 (0).

~ k . 7 |D,0;
r(7r,7r( >) < min {%, 1},

Draw u ~ U([0, 1]).
if (7, 7®)) > u: pFHD 7
else: 7(F+) (k)

k+—k+1.

end for
return E[7|D, 6] as in (13) with m replaced by m — invalid-mcmc-steps.

G Additional information regarding real data analysis

In this section, we provide references of each data set and regression model used in the real data analysis. A summary of
each data set is shown in Table S.1 below.

Table S.1: Overview of the data set used in the real data analysis. *refers to the total number of MCMC iterations after the
burn-in period within each block.

data(abbreviation) n d/p q model  prior MCMC Step
Italian survey data(ISD) (Slawski et al., 2021) 2011 2 LR hamming 2k

El Nino data(END) (Slawski et al., 2021) 93935 5 LR block 1.5k*

CPS wages(CPS) (Slawski et al., 2021) 534 11 LR hamming 2k

Bike sharing data(BSD) (Wang et al., 2020) 731 16 GLM  block 1.5k*

Flight Ticket Prices(FTP) (Slawski et al., 2020) 335 30 6 MVN  hamming 2k

Supply Chain Management(SCM) (Slawski et al., 2020) 8966 35 16 MVN  hamming 4k

Beijing Air Quality data(BAQD) (Slawski et al., 2020) 9762 5 5 MVN  local shuffling 2k
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H Integrated maximum likelihood estimator and overfitting

In this section, it is briefly explained that under a uniform prior p(7) o 1, the integrated maximum likelihood estimator
based on (11) still exhibits a tendency to overfit, in a spirit similar to what is shown in §2.1 for the maximum likelihood
estimator of 7*. To demonstrate this point, we consider the following setup:

Y|X,IL 3,07 ~ N(IXB,07),  p(I) o<1, p(B) o1, (S.14)
and 02 > 0 fixed. The integrated likelihood corresponding to (11) is then given by

p(r, 5|D)p(D)

148) = »(DI8) = [ o2lm Botals) i = [ PLrS

p(m|B) dm /p(ﬁ\ﬁ, D)p(w|D) dm.
Observe that under (S.14)

il 2
P17, D) ~ N(XTX) X TIXS" XX, pla(D) o oxp (- P2
where Piix denotes the projection on the orthogonal complement of the column space of IIX. Note that p(7|D) is high
for permutations achieving good fit (overfit) to the data, and the optimization problem maxg p(D|3) will be dominated by
the modes of those distributions p(3|m, D) for which the corresponding weight p(7|D) is high. In particular, in regimes
with SNR = ||3*||2/02 large, the maximizer of the integrated likelihood will not substantially differ from the estimator
returned by max, g p(D|8, 7) (the MLE in §2.1), which is known to overfit dramatically.

I Data Augmentation example

In this paragraph we present a brief illustration of the proposed approach when used in conjunction with data augmentation,
i.e., both the parameter and the permutation are sampled in an alternating fashion (cf. Remark (i) at the end of §2.3). For
this purpose, we consider the Italian household survey discussed in Tancredi and Liseo (2015), see also Table S.1. This
data set involves a simple linear regression problem in which the household income (in 1k Euros) in 2010 is is regressed
on the same quantity in 2008, including an intercept term.

The process of file linkage subject to mismatch error involving the income data from the two years under consideration
is simulated by generating a permutation 7* uniformly at random from the Hamming ball of radius k around the identity
permutation, where k/n = 0.4.

We follow the paradigm of data augmentation in Tanner and Wong (1987) by considering 7* as missing data. This yields the
following scheme that alternates between sampling of a permutation 7 and sampling of regression parameters 5 = (g, 81)
and o2 given responses Y = (y;)"_; (income from 2010) and design matrix X = [1,, (z;)™ ,] (intercept and income from
2008).

(I) Augmentation Step: Sample 7 from p(7|Y, X, B, 02(]671)), ji=1,...,m,
1 & - ,
(IT) Posterior Step: (a) Sample B*) from — Zp(ﬁ|02(k 1), 'S X),
m
j=1
1 & ;
(b) Sample 02(k) from — Zp(a2|ﬂ(k), 'S X),
m
j=1

where m denotes the number of samples in the augmentation step, and k& denotes the iteration counter for the parameters
(8,02).

Sampling in step (I) is implemented according to the MH procedure shown in Algorithm 2. Furthermore, under the usual
non-informative prior distribution for (3, 02), i.e., p(3, 0?) o o~2, the full conditional distributions appearing in step (II)
are given by

Blo® ILY, X ~ N(B,0*(X X)), o?|8,ILY,X ~ Inv-x*(n — d, 5%,

_ ) 1 ~
fi=(XTX)7XTITY, 5% = ——||Y — X5,
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Figure S.1: Comparison between the posterior distributions for the parameters (3y, 31, 02) for the Italian household survey
data (i) with regularization based on the proposed Hamming prior for 7 (v = logn, grey histogram) and without regular-
ization, i.e., uniform prior for 7 (red histogram). “Oracle” refers to the least squares estimator in the absence of mismatch
error.

where Inv-y?(v, a?) refers to the scaled inverse y?-distribution with scale parameter @ > 0 and v degrees of freedom
(cf. §14 in Gelman et al. (2013) for more details on Bayesian inference for linear regression models).

For this illustration, we use m = 100, where each sequence {T((j )} is generated by uniform thinning of Markov chains of

length 4,000 generated by Algorithm 2. The number of samples (3 (®), 02(k)) obtained via the above scheme is taken as
1,000. The sampling procedure is initialized from step (II) with the identity permutation. We compare both the unregular-
ized case with the uniform prior for 7 as well as the regularized case with the Hamming prior (8) (v = logn in view of
Proposition 3.2).

Figure S.1 confirms that the proposed approach achieves visible improvements over the unregularized approach which
suffers from serious amplification bias affecting the slope parameter 3; and serious underestimation of the error variance,
as predicted by the brief analysis accompanying the first introductory example in §2.1.

J Empirical and Hierarchical Bayes approaches

In this section, we outline how the hyperparameter v of the proposed prior on 7 can be selected based on Empirical and
Hierarchical Bayes approaches. For simplicity, these approaches are presented for the linear regression model (14) in an
exemplary fashion.

J.1 Hierarchical Bayes

Consider the following hierarchical model specification:

p(ﬂ702) X 0'_2,

p(7) o< Gamma(a, b),

plrln) oc exp(— dia(, i) /0(3). (5.15)
_ 2

p(Y|Xa/3aU2,7T,’)/) X exp (”Y20H_2)(6”2) .

where () denotes the terms in the normalization constant in the prior p(r|7y) that depend on .
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The data augmentation approach in the previous section can be extended as follows:

(I) Augmentation Step: Sample 7/) from p(n|Y, X, Bk=1) az(k_l), 'y(kfl)), ji=1,....m,
1 & — _
(ID) Posterior Step: (a) Sample %) from o Zp(ﬁ\aQ(k 1), k=1 70) Yy X)),
j=1

1 & ,
(b) Sample 2™ from — Zp(az\ﬁ(k), k=1 7 0) y X),
m -7

(¢) Sample v*) from Zp ~|B%) 2(k) )Y, X).

Compared to the data augmentation scheme in the previous section, the only addition is given by part (c), which requires
sampling from the full conditional distribution of «. Under (S.15), this full conditional can be expressed as follows.

p(B,0%,7,7,Y,X)
p(ﬂ702’7r7Y’X)

o PY1B, o?,m,7,X) x p(B,0%) x p(n|y) x p(7)
[ p(Y|B8,0%,m,7,X) x p(B8,02) x p(|y) x p(y)dy
p(m]y) X p(v)
[ p(xly) x p(y)dy

exp(—~du(m,id)) b a—1,—b
— 9 X rt@? !

exp(—vydy(m,id a _1,.—
f p( l(:)( id) %,}/a le=bvdry

p(7]8,0°%, 7, Y, X) o

Since we cannot obtain a closed form expression for the full conditional ~y (because of the term (7)), it is necessary to
resort to rejection sampling, which is straightforward here since +y is one-dimensional.

J.2  Empirical Bayes

In the Empirical Bayes approach, + is considered as the second parameter to be optimized in the M-step (in addition to the
primary parameter of interest #). This yields the following scheme.

Algorithm 4 Monte Carlo EM Empirical Bayes (MC-EM-EB) algorithm
Input: D = {{x;} b1 {yi}l"1}. 7, EM_iter

Initialize 00 «— B, v — Fipie.

fort=0,...,EM_iter

Tinit <= argmax, cp(,,) p(m|D, 1), 7).

E[r|D, 6", y"] < MH(D, 60, Fint, »"), m).

60— ming {57, _, Blr;|D, 0,7V {~ logp(x;, ¥::0)} }

A0 min, {7, Blry|D,00,7){~ log p(mis, 1)} |

t+t+1

end for

Note that the M-step decouples into two separate optimization problems since the likelihood does not depend on . For the
same reason, the M-step update for 8 remains unchanged compared to the case where -y is treated as fixed. In the following,
we elaborate on the M-step update for v. We have

n

4 = argmin ¢ — Z E[W¢j|D,9(t+1)77(t)]IOgP(WijW)

v i,j=1

— argmin {log(w(’y)) 4y % (n — tr(BJI/D, e<t>,7<t>}))} : (S.16)
Y
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where we recall that i
. — (exp(y) — 1)
Y(7v) :=nlexp(—vyn) Z — (S.17)
k=0

In the sequel, we will demonstrate that the above minimization problem in +y has a rather simple (approximate) closed-form
update. We will use the approximation

(exp(y) = 1* |~ (exp(y) — 1)

explexp(y) — 1) = Y oty Yo SR

I
M=

k

Il
o

k=n-+1

(exp(y) —1)*
Ko

2
NE

>
Il
o

assuming that n is sufficiently large. Accordingly, we have that

7 = argmin{log (v (7)) + v x (n — tr(E[I]D, 0, 7V])}
~ argmin{exp(y) — 1 =y n+n-y— - te(B[I[D,60, "))}
~ argmin{exp(y) — 1 — v - tr(E[|D, 01, 4"])}

Note that the terms inside the curly brackets are convex in . Therefore, taking the derivative with respect to v and setting

the result equal to zero, we have that
7 ~ log(tr(E[TI[D, 6, 71))).



