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Abstract

Incorporating symmetry as an inductive bias into
neural network architecture has led to improve-
ments in generalization, data efficiency, and phys-
ical consistency in dynamics modeling. Meth-
ods such as CNNs or equivariant neural networks
use weight tying to enforce symmetries such as
shift invariance or rotational equivariance. How-
ever, despite the fact that physical laws obey many
symmetries, real-world dynamical data rarely con-
forms to strict mathematical symmetry either due
to noisy or incomplete data or to symmetry break-
ing features in the underlying dynamical system.
We explore approximately equivariant networks
which are biased towards preserving symmetry
but are not strictly constrained to do so. By re-
laxing equivariance constraints, we find that our
models can outperform both baselines with no
symmetry bias and baselines with overly strict
symmetry in both simulated turbulence domains
and real-world multi-stream jet flow.

1. Introduction

Symmetry and equivariance are fundamental to the suc-
cess of deep learning (Bronstein et al., 2021). The canon-
ical examples are translation invariance in convolutional
layers (Fukushima & Miyake, 1982; LeCun et al., 1989;
Krizhevsky et al., 2012), and permutation invariance in
graph neural networks (Bruna et al., 2013; Battaglia et al.,
2018; Maron et al., 2018). Recently, equivariant networks,
which encode symmetry information in network architec-
tures, have gained significant attention for modeling struc-
tured and complex data (Ravanbakhsh et al., 2017; Zaheer
et al., 2017; Kondor & Trivedi, 2018; Cohen & Welling,
2016a; Worrall et al., 2017; Thomas et al., 2018; Cohen
et al., 2018; Maron et al., 2020; Walters et al., 2021).
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Figure 1: Left: When symmetry is a good inductive bias,
prediction performance increases as equivariance or invari-
ance is imposed in the model. But real-world data is very
rarely perfectly symmetric, and so relaxing the strict con-
straint in equivariant networks to balance inductive bias and
expressivity can further improve predictive performance.
Right: Highly flexible models have trouble achieving zero
equivariance error without the guide of appropriate symme-
try biases when the data is symmetric. Perfectly equivariant
models maintain zero equivariance error, which is overly
restricted when data is not perfectly symmetric. An ideal
model for real world dynamics should be approximately
equivariant and automatically learn the correct amount of
symmetry in the data.

However, existing equivariant networks assume perfect sym-
metry in the data. The network is approximating a func-
tion that is strictly invariant or equivariant under a given
group action. However, real-world data are very rarely per-
fectly symmetric. For example, in turbulence modeling,
even though the governing equations of turbulence satisfy
many different symmetries such as scale invariance (Holmes
et al., 2012), effects such as varying external forces, cer-
tain boundary conditions, or the presence of missing values
would break these symmetries to varying degrees. This
significantly hinders the potential applications of equivari-
ant networks. Approximately equivariant networks could
outperform both strictly equivariant networks and highly
flexible models in learning many dynamics in the real world,
as shown in Figure 1.

Relaxing the rigid assumption in equivariant networks to
balance inductive bias and expressivity in deep learning
has been the pursuit of a few recent works. For example,
Elsayed et al. (2020) showed that spatial invariance can be
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overly restrictive, and relaxing spatial weight sharing in stan-
dard convolution can improve image classification accuracy.
d’Ascoli et al. (2021) enforce a convolutional inductive bias
in self-attention layers at initialization to improve vision
Transformers. Residual Pathway Priors (Finzi et al., 2021b)
convert hard architectural constraints into soft priors by
placing a higher likelihood on the “residual”. The residual
explains the difference between the structure in the data and
the inductive bias encoded by an equivariant model. Wang
et al. (2021) proposed Lift Expansion which factorizes the
data into equivariant and nonequivariant components and
models them jointly. Despite progress, a formal definition
of approximate symmetry does not exist. While existing
research focuses on translation symmetry, the rich groups of
symmetry in high-dimensional dynamics learning problems
are unexplored.

In this paper, we first define approximate symmetry. It gives
rise to a new class of approximately equivariant networks
that avoid stringent symmetry constraints while maintain-
ing favorable inductive biases for learning. Specifically,
we generalize the weight relaxation scheme originally pro-
posed by (Elsayed et al., 2020). We study three symme-
tries that are common in dynamics: rotation SO(2), scaling
R > 0 ,  and Euclidean E (2).  For group convolution, we relax
the weight-sharing scheme by expressing the kernel as a
weighted combination of multiple filter banks. For steerable
CNNs, we introduce dependencies on the input to the kernel
basis. We apply our approximate symmetry networks to the
challenging problem of forecasting fluid flow and observe
significant improvements for both synthetic and real-world
datasets 1. Our contributions include:

• We formally characterize the notion of approximate equiv-
ariance, which interpolates between no inductive bias and
a strong inductive bias from equivariance.

• We introduce a new class of approximately equivariant
networks for modeling imperfectly symmetric dynamics
by relaxing equivariance constraints.

• We demonstrate that our approximately equivariant mod-
els can outperform baselines with no symmetry bias, base-
lines with overly strict symmetry, and SoTA approxi-
mately equivariant models in both simulated smoke simu-
lations and real experimental jet flow data.

2. Mathematical Preliminaries

2.1. Equivariant Functions and Neural Networks

Equivariant neural networks incorporate an explicit symme-
try constraint. They are typically employed when a priori
knowledge, such as first principles from physics, imply the

1We open-source our code h t t p s : / / g i t h u b . c o m /
R o s e - S T L - L a b / A p p r o x i m a t e l y - E q u i v a r i a n t - N e t s

ground truth function also respects a symmetry.

Equivariance and Invariance.     Formally, a function
f  : X  !  Y may be described as respecting the symme-
try coming from a group G  using the notion of equivariance.
Assume that an input group representation in of G  acts on
X  and an output representation out acts on Y . We say a
function f  is G-equivariant if

f ( in (g )(x)) =  out (g)f (x) (1)

for all x  2  X  and g 2  G. The function f  is G-invariant if
f ( in (g )(x)) =  f ( x )  for all x  2  X  and g 2  G. This is a
special case of equivariance for the case out(g) =  1.

Strictly Equivariant Neural Networks.     Given an equiv-
ariant f  : X  !  Y , learning can be accelerated by opti-
mizing within a model class of functions f f g  which are
restricted to be equivariant. Since the composition of equiv-
ariant functions is again equivariant, in general a neural
network will be strictly equivariant if all of its layers, lin-
ear, nonlinear, pooling, aggregation, and normalization, are
equivariant. Most of the variation and challenge in this
area is in designing trainable equivariant linear layers. Two
strategies, involving weight sharing and weight tying, are
G-convolution and G-steerable CNN. See Bronstein et al.
(2021) for more details.

G-Equivariant Group Convolution.     A  G-equivariant
group convolution (Cohen & Welling, 2016a) takes as input
a cin-dimensional feature map f  : G  !  R c i n  and convolves
it with a kernel : G  !  Rc o u t c i n  over a group G,

[f  ?G ](g) =  
X  

f (h)  (g 1h): (2)
h 2 G

Here, we assume G  finite, however, G  may also be taken to
be compact if the sum is replaced with an integral. Group
convolution achieves equivariance by weight sharing since
the kernel weight at (g; h) depends only on g 1h and
thus pairs with equal g 1h share weights.

G-Steerable Convolution.     (Cohen & Welling, 2017) Let
f  be the input feature map f  : R2  !  R c i n  . Fix a sub-
group H   O(2), which acts on R2  by matrix mul-
tiplication and on the input and output channel spaces
R c i n  and R c o u t  by representations in : G  !  Rc i n c i n  and out

: G  !  R c o u t c o u t  respectively.

We may convolve f  with a matrix-valued kernel : R2  !
Rc o u t c i n  . In practice, we discretize the input as f  : Z2  !
R c i n      and kernel : Z 2      !  Rc o u t c i n      and compute the H-
action by interpolation after rotation. By (Weiler
et al., 2018a), the standard 2D convolution f  ?Z 2   is H-
equivariant and Z  -translation equivariant when

(hx) =  out (h)(x)in (h 1); 8h 2  H : (3)

https://github.com/Rose-STL-Lab/Approximately-Equivariant-Nets
https://github.com/Rose-STL-Lab/Approximately-Equivariant-Nets
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Again, (hx) is computed based on the group and the
choice of input and output representations. This linear con-
straint induces dependence in the weights, which is called
weight tying. Solving for a basis of solutions to (3) gives
an equivariant kernel basis f l g l = 1  which can be combined
using trainable coefficients  = wl l to learn any
element of the solution space formed by (3).

2.2. Approximate Equivariance

strict weight-sharing and weight-tying constraints in both
group convolution and steerable CNNs.

3.1. Relaxed Group Convolution

The G-equivariance of group convolution results from the
shared kernel (g 1h) in (2). To relax this and conse-
quently relax the G-equivariance, we replace the single
kernel with a set of kernels f  l g L      . We define the new
kernel       as a linear combination of l  with coefficients
that vary with h. Thus, we introduce symmetry-breaking
dependence on the specific pair (g; h),

(g; h) =  
X

w l ( h )  l (g  1h): (4)
l = 1

Figure 2: Simulated diffusion of heat in a metal plate with
(top) uniform diffusion coefficient resulting in perfect sym-
metry and (bottom) slightly varying diffusion coefficient
resulting in approximate symmetry.

Real-world dynamics data may not satisfy the strict equiv-
ariance as in (1). However, since many of the governing
equations contain symmetry, the resulting system may still
be approximately equivariant, as defined below. For ex-
ample, while the heat equation itself is fully rotationally
symmetric, in practice, imperfections in the thickness of the
metal or the composition of the metal can lead to imperfect
symmetry, as shown in Figure 2. Below, we give the formal
definition of approximate symmetry:

Definition 2.1 (Approximate Equivariance). Let f  : X  !  Y
be a function and G  be a group. Assume that G  acts on
X  and Y via representations X  and Y  . We say f  is -
approximately G-equivariant if for any g 2  G,

kf ( X (g ) (x) )       Y  (g )f (x)k  :

Note that strictly equivariant functions are  =  0 approxi-
mately equivariant.

3. Approximately Equivariant Networks

Symmetry in equivariant networks is enforced by strict con-
straints on the weights. Here we propose relaxing weight-
sharing and weight-tying to model approximate symmetries.
Elsayed et al. (2020) showed that relaxing spatial weight
sharing in standard convolution neural nets can improve
image classification accuracy. Whereas 2D convolutions
are shift equivariant, this relaxed 2D convolution is only
approximately equivariant. Our method generalizes this ap-
proach to other symmetry groups, including rotation SO(2),
scaling R > 0 ,  and Euclidean E (2).  Specifically, we relax the

We define the relaxed group convolution by multiplication
with as such

[f ?G       ](g) = f (h) (g; h)
h 2 G

L (5)
=                  f (h)wl (h) l (g  1h):

h 2 G  l = 1

By varying the number of kernels L ,  we can control the
degree of equivariance. Small L  imposes stronger sym-
metry, while large L  gives more flexibility. In our ex-
periments, we found that L  =  3 gave the best prediction
performance in most cases. The weights wi (h) 2  R  and
the kernels l (g  1h) 2  R c o u t c i n  can be learnt from data.
Relaxed group convolution reduces to group convolution
and is fully equivariant if and only if g 1h1 =  g 1h2
implies (g1; h1) = (g2; h2). In particular, this oc-
curs if wl (h1) =  wl (h2) for all h1; h2 2  G  and for all
l =  1;  ; L.

In dynamics learning, we consider velocity vectors as in-
puts. To apply group convolution over the discrete rota-
tion group C n ,  we first lift these velocity vectors to feature
maps f  : C n  !  R  as described in Walters et al. (2021)
Table 1. Given v =  (a; b) 2  R2 , for i  2  C n  we define

f ( i )  =  ca cos(2i=n) +  cb sin(2i=n) where c 2  R  is a
trainable weight. This amounts to mapping the irreducible
1 representation of C n  to the regular representation. This

process can also be extended to lifting velocity fields to
features f  : C4  n ( Z 2 ; + )  !  R  over the group of discrete ro-
tations and translations. As an additional advantage, the fea-
ture maps f  are compatible with element-wise non-linearity.

3.2. Relaxed Steerable Convolution

Although relaxed group convolution does not require pre-
computing an equivariant kernel basis, it is limited to dis-
crete (or compact) groups and is inefficient when the group
order is large. Thus, we also propose relaxed steerable
convolutions.



l = 1

L

(6

^

L

(7

L

(8

R

L

L = + :

Approximately Equivariant Networks for Imperfectly Symmetric Dynamics

G-Steerable 2D Convolution:     First, we explicitly write
out the formula for G-steerable 2D convolution described
by (3). Let f l g L be an equivariant kernel basis of L  non-
trainable kernels that satisfy (3) for given input and output
representations in and out. Denote K  =  f  k; : : : ; kg.
Denote the input feature as f in  : Z2  !  R c i n  , predetermined
equivariant kernels l  : K 2  !  Rc o u t c i n  , and a trainable
weight tensor w 2  R c o u t c i n L .  Then a G-steerable convo-
lution produces an output fout =  f in  ?Z 2  : Z2  !  R c o u t

defined as

f o u t (x )  =  
P

y 2 Z 2  

P
l = 1 ( w l   l ( y ) ) f i n ( x  +  y )  

) 
for a

position x  2  Z2  in the input. Here  denotes element-wise
product in Rc o u t c i n  , and y  2  Z2  is a spatial location in the
kernel.

Relaxed G-Steerable 2D Convolution:     We relax (6) and
break symmetry by introducing a weight w that depends
on y. As w is freely trainable, this breaks the strict posi-
tional dependence of l  imposed by (3). Formally, letting
w : K 2  !  R c o u t c i n L  be the weight, we define the relaxed
steerable convolution fout =  f in ?Z 2   by

f o u t (x)  =  
P

y 2 Z 2  

P
l = 1 ( w l ( y )   l ( y ) ) f i n (x  +  y):

)

When G  is a rotation group and k >  0, we can define
wl (y) =  wl (), where  =  arctan2(y). Since the weight
depends only on the angle of the vector y, we use fewer
parameters. To prevent the model from becoming overly
relaxed, we initialize wl (y) equally for every y  and penalize
the value differences in wl (y) during training, which we
describe in Section 3.3.

For the translation group, we can relax the steerable convo-
lution by further allowing w : Z2   K 2  !  R c o u t c i n L  to vary
with the input position x  as well:

fout (x) =  
P

y 2 Z 2  

P
l = 1 ( w l ( x ; y )   l (y ) ) f i n (x  +  y):

)
However, the above equation is impractical as the space
of the trainable weight is too large. We propose using a
low-rank factorization of w to reduce dimensionality,

wl (x; y) =  
X

a r ( x ) b r ; l ( y )
r = 1

where ar : Z2  !  R  and br; l  : K 2  ! :  Rc o u t c i n  . Then (8)
becomes a combination of relaxed translation group
convolution and relaxed steerable convolution.

3.3. Soft Equivariance Regularization

To encourage equivariance and prevent the model from be-
coming over-relaxed, we add regularization terms to the

loss function on the symmetry-independent weights w dur-
ing training. For relaxed group convolution, we add the
following regularizer to constrain w in (4),

Lgconv =  
X  X  

kwi(h)      wi(g)k:
i = 1  g ; h 2 G

For relaxed steerable convolution, we impose the following
loss term to prevent the w : K 2  !  R c o u t c i n L  in (7) from
varying too much across the kernel spatial domains,

@w(m; n) @w(m; n)
sconv @m @n

The hyperparameter  does not directly control how equiv-
ariant the model is, it only a places a equivariance prior on
the model to be as equivariant as possible given the data.

3.4. Other Alternatives for Approximate Symmetry

We also explored three alternative ways of building approxi-
mately equivariant models.

Lift expansion. Wang et al. (2021) proposed L i f t
Expans ion for modeling partial symmetry, in which the
input space can be factorized into an equivariant subspace
and a non-equivariant subspace. The model uses a non-
equivariant encoder that is tiled across the equivariant di-
mensions of the feature map as additional channels in equiv-
ariant neural nets. This method can also model approximate
symmetry when both the non-equivariant encoder and the
main equivariant backbone are fed with the same input. The
encoder can extract non-equivariant features that are then
treated as having a trivial representation type and included
in the main equivariant model to break perfect equivariance.
Note that while treating the output data as having a trivial
representation type enforces invariance, treating the input
data this way imposes no constraints.

Constrained locally connected neural nets (CLCNN).
Another way of building approximately equivariant models
is using a very flexible model while imposing soft equivari-
ance constraints on the kernels. We use a locally connected
neural network that has the same locality property as con-
volution but the weights are not shared across the spatial
domain (Wadekar, 2019). Thus, it does not have translation
equivariance and employs many more parameters than con-
volution. Suppose : Z2   K 2  !  Rc o u t c i n  is the filter bank.

In addition to the prediction loss, we use the equivari-ant
kernel constraint (3) in the objective with a hinge loss

instead of solving the constraints explicitly before training:

Lhinge =   
X  

kout (h)(x)in(h 1)      (hx)k:
h 2 G

Combination of non-equivariant and equivariant layers.
We also build models that begin with non-equivariant layers
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followed by equivariant layers. The early layers of the
model map observations with approximate symmetries to a
space with an explicit symmetry actions.

3.5. Equivariant Error Analysis

Our hypothesis is that if the ground truth function f  is ap-
proximately equivariant, then a model class with a similar
degree of approximate equivariance would better approxi-
mate f  than a strictly equivariant class or a class without
bias towards symmetry.

We define equivariance error, which quantifies how much a
function f  is approximately equivariant.
Definition 3.1 (Equivariance Error). Let f  : X  !  Y be a
function and G  be a group. Assume that G  acts on X  and Y
via representation X  and Y  . Then the equivariance error
of f  is

k f k E E  =  sup kf (X (g )(x))      Y  (g )f (x)k:

That is, f  is -approximately equivariant if and only if
k f k E E  <  :

We note that a strictly equivariant model cannot perfectly
learn an approximately equivariant function. As stated by
the following proposition, such a model would make errors
at least proportional to the equivariance error. This moti-
vates our choice to use the model class of approximately
equivariant networks.
Proposition 3.2. Let f  : X  !  Y where G  acts on X  and
Y by X  and Y  which are norm-preserving. Assume f  is
approximately equivariant with k f k E E   0. Assume f  is a G-
equivariant approximator for f .  Then there exists x0 2  X
such that

kf (x0 )      f(x0 )k  kf kEE =2:

For simplicity, we assume representations  which are norm
preserving, as with rotations, reflections, and permutations,
although this assumption can be removed by inserting a
factor to account for the operator norm kgk.

By similar logic, we can also show that given a model
class which contains -approximately equivariant functions
for varying , the equivariance error of the approximator
will converge to the equivariance error of the ground truth
function as they converge in model error. Although the
supremum norm is used for equivariance and model error,
the result holds for other norms as well.
Proposition 3.3. Let f f g  be an approximately equivariant
model class with varying k fk E E  2  R0 . Assume a G-
invariant norm. Let f  : X  !  Y be a function with k f k E E  =
. Assume kf    f k 1   c. Then jkf kE E    kfkE E j   2c +  :

The proofs can be found in Appendix A.3.

4. Related Work

4.1. Equivariance and Invariance

Symmetry has long been implicitly used in DL to design
networks with known invariances and equivariances. Con-
volutional neural networks enabled breakthroughs in com-
puter vision by leveraging translational equivariance (Zhang,
1988; LeCun et al., 1989; Zhang et al., 1990). Similarly,
re-current neural networks (Rumelhart et al., 1986;
Hochreiter & Schmidhuber, 1997), graph neural networks
(Maron et al., 2019; Satorras et al., 2021), and capsule
networks (Sabour et al., 2017; Hinton et al., 2011) all
impose symmetries. Equivariant DL models have achieved
remarkable success in learning image data (Cohen et al.,
2019; Weiler & Cesa, 2019b; Cohen & Welling, 2016a;
Chidester et al., 2018; Lenc & Vedaldi, 2015; Kondor &
Trivedi, 2018; Bao & Song, 2019; Worrall et al., 2017;
Cohen & Welling, 2016b; Finzi et al., 2020; Weiler et al.,
2018b; Dieleman et al., 2016; Ghosh & Gupta, 2019;
Sosnovik et al., 2020b).

There is also a deep connection between symmetries and
physics. Noether’s law gives a correspondence between con-
served quantities and groups of symmetries. Thus, the study
of equivariant nets in learning dynamical systems has gained
popularity. Walters et al. (2021) proposed a rotationally-
equivariant continuous convolution model for improved
pedestrian and vehicle trajectory predictions. Holderrieth
et al. (2021) introduced Steerable Conditional Neural Pro-
cesses for learning stochastic processes in physics that have
invariances and equivariances. Wang et al. (2020b) designed
fully equivariant models with respect to symmetries of scal-
ing, rotation, and uniform motion in physical dynamics.

But most dynamics in real world do not have perfect
symmetry and thus the proposed models might be overly-
constrained. Recently, some work explored the idea of
building approximately equivariant networks (van der Oud-
eraa et al., 2022; Romero & Lohit, 2021). Elsayed et al.
(2020) showed that spatial invariance may be overly re-
strictive and relaxing the spatial weight sharing could out-
perform both convolution and local connectivity. Finzi
et al. (2021b) proposed a mechanism that sums equivariant
and non-equivariant MLP layers for modeling soft equiv-
ariances, but it cannot handle large data like images or
high-dimensional physical dynamics due to the number of
weights in the fully connected layers. Our method in con-
trast has more efficient convolutional layers and uses relaxed
constraints to achieve approximate equivariance.

4.2. Learning Dynamical Systems

There is an increasing number of works in modeling dy-
namical systems with deep learning (Shi et al., 2017; Chen
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et al., 2018; Kolter & Manek, 2019; Azencot et al., 2020;
Xie et al., 2018; Tompson et al., 2017; Pfaff et al., 2021).
An essential topic is physics-guided deep learning (Raissi
et al., 2017; Lutter et al., 2018; de Bezenac et al., 2018; L i  et
al., 2021; Wang et al., 2020a) which integrates inductive
biases from physical systems to improve learning. For exam-
ple, Wang et al. (2020a) proposed a hybrid model marrying
the RANS-LES coupling method and the custom-designed
U-net. Greydanus et al. (2019) and Cranmer et al. (2020)
build models on Hamiltonian and Lagrangian mechanics
that respect conservation laws. Guen et al. (2021) proposed a
framework that augments physics-based models with deep
data-driven models for forecasting dynamical systems. In
this work, we encode approximate symmetries as induc-
tive biases into DL models to improve dynamics prediction
without over-constraining the representation power.

5. Experiments

Baselines     We compare with several state-of-the-art
(SoTA) methods from those without symmetry bias to per-
fect symmetry and SoTA approximately symmetric models.

• MLP: multi-layer perceptrons, an non-equivariant baseline
with a weaker inductive bias than convolution neural nets.

• ConvNet: standard convolutional neural nets that have
full translation symmetry.

• Equiv :  fully equivariant convolutional models. It is
same as ConvNet for translation symmetry. We use
E2CNN (Weiler & Cesa, 2019a) for rotation and SESN
(Sosnovik et al., 2020a) for scaling symmetry.

• Rpp (Finzi et al., 2021b): Residual Pathway Priors, a
SOTA approximate equivariance model that sums up the
outputs from equivariant and non-equvariant layers while
posing constraints on the non-equivariant layer in the loss
function. We use the combination of MLP and ConvNet
for translation, ConvNet and E2CNN for rotation, and
ConvNet and SESN for scaling.

• Combo: models that start with non-equivariant layers
followed by equivariant layers, discussed in Section 3.4.

• CLCNN: locally connected neural networks with equivari-
ance constraints imposed in the loss function.

• L i f t  (Wang et al., 2021): Lift expansion for modeling
partial symmetry. Both the encoder and the main equiv-
ariant backbone are fed with the same input.

EMLP (Finzi et al., 2021a) is also a SoTA equivariant model,
but it cannot handle large data like images as stated in the
paper, so we do not include it as a baseline.

Experiments Setup     Al l  models are trained to perform
forward prediction of raw velocity fields given historical
data. For all datasets, we use a sliding window approach to
generate sequence samples. We perform a grid hyperpa-

rameter search as shown in Table 3, including learning rate,
batch size, hidden dimension, number of layers, number of
prediction errors steps for training. We also tune the number
of filter banks for group convolution-based models and the
coefficient of weight constraints for relaxed weight-sharing
models. The input length is fixed as 10. Meanwhile, we
make sure that the total number of trainable parameters for
every model is less than 107 for a fair comparison.

We test all models under two scenarios. For test-future,
we train and test on the same tasks but in different time
steps. For test-domain, we train and test on different sim-
ulations/regions with an 80%-20% split. Al l  models are
trained to make the prediction of the next step given the
previous steps as input. The first scenario evaluates how
well the models can extrapolate into the future for the same
task. The second scenario estimates the capability of the
models to generalize across different simulations/regions.
We forecast in an autoregressive manner to generate multi-
step predictions during inference and evaluate them based
on 20-step prediction RMSEs. All results are averaged over 3
runs with random initialization.

5.1. Experiments on Synthetic Smoke Plumes

Data Description:     The synthetic 6464 2-D smoke
datasets are generated by PhiFlow (Holl et al., 2020) and
contain smoke simulations with different initial conditions
and external forces. We explore three symmetry groups:
1) Translation: 35 smoke simulations with different
inflow positions. We also horizontally split the entire
domain into two separate sub-domains that have different
buoyant forces. Although the inflow positions are
translation equivariant, the closed boundary and the two
different buoyant forces would break the equivariance. 2)
Rotation: 40 simulations with different inflow positions
and buoyant forces. Both the inflow location and the
direction of the buoyant forces have a perfect rotation
symmetry with respect to C4  group, but the buoyancy
factor varies with the inflow positions to break the rotation
symmetry. 3) Scaling: It contains 40 simulations
generated with different spatial steps x  and temporal steps
t. And the buoyant force varies across the simulations to
break the scaling symmetry.

Prediction Performance:     Table 1 shows the prediction
RMSEs in three synthetic smoke plume datasets with differ-
ent approximate symmetries by our proposed models and
baselines. CNNs are translation-equivariant because CNNs
are inherently group convolution, where the group is the
translation group, so we do not have a relaxed steerable
model for translation. We can see, on the approximate trans-
lation dataset, our relaxed group convolution (RGroup)
significantly outperforms baselines on both test sets. And
for rotation and scaling, the proposed relaxed steerable con-
volution (RSteer)  always achieves the lowest RMSE and
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Table 1: Prediction RMSE on three synthetic smoke plume datasets with approximate symmetries. Our proposed RGroup
and R S t e e r  methods demonstrate competitive performance. Future means testing data lies in the future time of the training
data. Domain means training and test data are from different spatial domain.

Model MLP Conv E qu i v Rpp Combo CLCNN L i f t RGroup R S t e e r

Translation
Future        1.560.08         —–

Domain       1.790.13         —–
0.940.02     0.920.01     1.020.02     0.920.01     0.870.03     0.710.01              —– 0.680.05

0.930.01     0.980.01     0.890.01     0.700.00     0.620.02              —–

Rotation

Scaling

Future        1.380.06     1.210.01     1.050.06     0.960.10     1.070.00     0.960.05     0.820.08     0.820.01 Domain
1.340.03     1.100.05     0.760.02     0.830.01     0.820.02     0.840.10     0.680.09     0.730.02

Future        2.400.02     0.830.01     0.750.03     0.810.09     0.780.04     1.030.01     0.850.01     0.760.04 Domain
1.810.18     0.950.02     0.870.02     0.860.05     0.850.01     0.830.05     0.770.02     0.860.12

0.800.00
0.670.01

0.700.01
0.730.01

Figure 3: Target (ground truth) and model predictions comparison at time step 1, 5, 10, 20 for smoke simulation with
approximate translation (left) and rotation (right) symmetries.

RGroup can outperform most baselines.

Figure 3 shows the target and predictions of our proposed
models and the best baselines at time step 1, 5, 10, 20 for
smoke simulation with approximate translation (left) and
rotation (right) symmetries. From the shape and frequency
of the flows, predictions from our approximately equivari-
ant models are much closer to the target than the baselines.
Moreover, we can see that E2CNN predicts the smoke flow-
ing to the wrong direction at time step 20, which could be a
consequence of over-constraining from equivariance.

Figure 7 in Appendix A.4 shows the prediction performance
of a scaling R S t e e r  model trained with different regular-
ization parameter  discussed in the section 3.3. We see
that the soft equivariance regularization can further improve
its prediction performance on both test sets but large  may
also hinder its learning.

5.2. Learning Different Levels of Equivariance

We use PhiFlow (Holl et al., 2020) to create 10 small smoke
plume datasets with different levels of rotational equivari-
ance. In each data set, both the inflow location and the
direction of the buoyant forces have a perfect rotation sym-

metry with respect to the C4  group. By varying the amount
of difference in buoyant force between simulations with
different inflow positions, we can control the amount of
equivariance error in the data. The data equivariance error
of each dataset is the mean absolute error between the sim-
ulations after they are all rotated back to the same inflow
position.

We trained two-layer ConvNet, E2CNN and our relaxed ro-
tation equivariant steerable convolution R S t e e r R  on these
10 datasets. We calculate the equivariance error of
each well-trained model based on Definition 2.1, where G
=  C4  and the norm is L1  norm. From Figure 4, we see
that E2CNN always has zero equivariance error due to the
overly restrictive symmetry constraint even if the data
does not have perfect symmetry. And our R S t e e r R  can
learn dif-ferent levels of equivariance in the data more
accurately than other baselines. Since the prediction
errors are not zeros, the equivariance errors in the model
and data are not the same. This experiment demonstrates
that our proposed methods based on relaxed weight sharing
can learn the cor-rect amount of inductive biases from
data while avoiding the stringent symmetry constraints.
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Table 2: Prediction RMSEs on experimental jet flow data for different models. The proposed R S t e e r  and R S t e e r  are
designed for the corresponding assumed symmetry group. R S t e e r T R  and R S t e e r T S  combines relaxed translation group
convolution with relaxed rotation and scale steerable convolution.

Model Conv  L i f t RGroup E2CNN L i f t R S t e e r SESN Rpp R S t e e r RS t e e r T R  R S t e e r T S

Translation                                          Rotation                                             Scaling                                   Combination

Future      0.220.06 0.170.02 0.150.00
Domain 0.230.06 0.180.02 0.160.01

0.210.02 0.180.02 0.170.01
0.270.03 0.210.04 0.160.01

0.150.00 0.160.06 0.140.01
0.160.01 0.160.07 0.150.00

0.140.01
0.150.01

0.140.02
0.150.00

Figure 4: Model equivariance errors vs. data equivariance
errors on synthetic smoke plume with different levels of
rotational equivariance. We see that our R S t e e r  can learn
different levels of equivariance in the data much more accu-
rately than other baselines.

5.3. Experiments on Experimental Jet Flow Data

Data Description. We use real experimental data on 2D tur-
bulent velocity in NASA multi-stream jets that are measured
using time-resolved particle image velocimetry (Bridges &
Wernet, 2017). Figure 6 in the Appendix A.4 visualizes
the measurement system of the jet flow. The white boxes
show fields of view acquired on the streamwise plane at
the jet centerline for multi-stream flows. There are three
vertical stations at each axial location/white box, as
illustrated by the pink lines. In other words, the dataset
was acquired by 24 different stations at different
locations. Since the data collected at the different
locations are not acquired concur-rently, we do not have the
complete velocity fields of entire jet flows at each time step.
Thus, we trained and test models on 24 6223 sub-regions of
jet flows.

Prediction Performance. We compare three equivariant
models, three best-performing approximately equivariant
baselines in the previous experiment as well as our proposed
relaxed steerable convolution and relaxed group convolution.
Table 2 shows the prediction RMSEs on the jet flow dataset,

Figure 5: Target jet flow velocity norm fields and the predic-
tion errors (MAE) of different models over 10 time steps.

and we group the results by each symmetry in the table. For
each symmetry, our models based on relaxed weight shar-
ing achieve lower errors than not only the fully equivariant
model but also approximately equivariant baselines. We
also experimented with combining relaxed translation group
convolution with relaxed rotation and scale steerable con-
volution, which correspond to R S t e e r T R  and R S t e e r T S
respectively in the table. We observe that R S t e e r T R  out-
perform both RGroup with relaxed group convolution and
R S t e e r  with relaxed steerable convolution. This implies
relaxing more than one equivariance constraint can poten-
tially lead to even better performance. Figure 5 visualizes
the target and mean absolute errors between model jet flow
predictions and the ground truth (target), and we can see
that our relaxed steerable CNNs achieve the lowest errors.
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We also performed experiments on real-world ocean dynam-
ics. We observe that all models have very close prediction
performance after fine-tuning. Unlike the smoke plume
or jet flow experiments in which our model’s approximate
equivariance bias better matched the ground truth than either
the strictly equivariant model or the non-equivariant model,
in this case all three levels of equivariance bias perform
similarly. We hypothesize that, while strict rotational sym-
metry is a feature of ocean currents, imposing it as a strict
inductive bias does not provide a significant advantage over
the baseline CNN. Therefore, imposing a soft approximate
equivariance bias also does not provide an advantage. For
additional results, see Appendix A.2.

6. Discussion

We propose a new class of approximately equivariant net-
works that avoid stringent symmetry constraints to better fit
real-world scenarios. Our methods strike a good balance be-
tween inductive biases and model flexibility by relaxing the
weight-sharing and weight-tying schemes in group convolu-
tion and steerable convolution. Based on the experiments
on smoke plume simulations and real-world jet flow data,
we observe that our proposed approximate equivariant net-
works can outperform many state of the art baselines with
no symmetry bias or with overly strict symmetry constraints.
Future work includes applying our relaxed weight sharing
design to graph neural networks and theoretical analysis
for approximately equivariant networks, including universal
approximation and generalization.
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A. Experiments Details

A.1. Hyperparameter Tuning

We perform grid hyperparameters search as shown in Table 3, including learning rate, batch size, hidden dimension, number of
layers, number of steps of prediction errors for training. We also tune the number of filter banks for group convolution
models and the coefficient of weight constraints  for relaxed weight sharing models. The input length is fixed as 10. In the
meanwhile, we make sure the total number of trainable parameters for every model is fewer than 107 in order to make fair
comparison.

Table 3: Hyperparameter Tuninig Range.

L R

10     2   10     5

Batch size

8  64

Hid-dim

64  512

Num-layers

3  6

Num-banks

1  4

#Steps for Backprop

3  6 0; 10     2; 10     4; 10     6

A.2. Additional Experiments on Real-world Ocean Dynamics

Table 4: Prediction RMSE on ocean currents data.

Model Conv L i f t T RGroupT E2CNN L i f t R R S t e e r R      SESN RppS R S t e e r S  RS t e e r T R  R S t e e r T S

Future      0.520.02 0.520.01 0.510.00
Domain 0.460.02 0.460.01 0.450.01

0.510.03 0.560.06 0.510.01
0.450.01 0.530.04 0.450.02

0.510.01 0.500.01 0.500.01
0.450.02 0.420.03 0.420.01

0.500.01
0.420.01

0.500.02
0.420.01

Data Description:     We use the reanalysis ocean current velocity data generated by the NEMO ocean engine (Madec,
2008). We selected an area (-180  - 150, -30  0)from the Pacific Ocean from 01/01/2021 to 12/31/2021 and extracted 36 64×64
sub-regions for our experiments. We not only test all models on the test sets with different time range and spatial domain
from the training set.

Prediction Performance:     We compare three equivariant models, three best approximately equivariant baselines as well
as our proposed relaxed steerable CNNs and relaxed group convolutions.

A.3. Equivariance Error Analysis

Proposition A.1. Let f  : X  !  Y where G  acts on X  and Y by X  and Y  which are norm-preserving. Assume that f  is
approximately equivariant with k f k E E   0. Assume f  is a G-equivariant approximator for f .  Then there exists x0 2  X  such
that

kf (x0 )      f(x0 )k  kf kEE =2:

Proof. We leave implicit the action maps X  and Y  . By definition there exists x  2  X  and g 2  G  such that kf (g x)
g f (x)k =  kf k, whereas f (g x)       g f(x)  =  0: Thus by triangle inequality

kf k E E  =  kf (g x)      g f (x)k
=  kf (g x)      g f (x)       f (g x)  +  g f(x)k
kf (g x)      f(g x)k +  kgf(x)      g f (x)k

As the G-action is norm-preserving,

kf k  kf (g x)      f(g x)k +  kf(x)       f (x)k:

Thus either kf (g x)      f(g x)k or kf(x)       f (x )k is greater than kf k=2 in which case set x0 to be gx or x  respectively.

Proposition A.2. Let f f g  be an approximately equivariant model class with varying k fk E E  2  R0 . Assume a G-invariant
norm. Let f  : X  !  Y be a function with k f k E E  =  . Assume kf       f k 1   c. Then kkf kE E       kfkE E k  2c +  :
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Proof. By triangle inequality and invariance of the norm,

kgf(x)      f(g x)k  kg f(x)      g f (x)k +
kgf (x)      f (g x)k +  kf (g x)      f(g x)k

 2c +  :

A.4. Additional Figures

Figure 6: Visualization of axial measurement locations. White boxes show fields of view acquired on streamwise plane at jet
centerline for multistream flows. There are three vertical stations at each axial locations/white box, as illustrated by the pink
lines. Figure taken from (Bridges & Wernet, 2017).

Figure 7: The prediction RMSEs on test sets of a scaling R S t e e r  model trained with different regularization parameter


