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Abstract

Existing equivariant neural networks require prior knowledge of the symmetry
group and discretization for continuous groups. We propose to work with Lie
algebras (infinitesimal generators) instead of Lie groups. Our model, the Lie algebra
convolutional network (L-conv) can automatically discover symmetries and does
not require discretization of the group. We show that L-conv can serve as a building
block to construct any group equivariant feedforward architecture. Both CNNs
and Graph Convolutional Networks can be expressed as L-conv with appropriate
groups. We discover direct connections between L-conv and physics: (1) group
invariant loss generalizes field theory (2) Euler-Lagrange equation measures the
robustness, and (3) equivariance leads to conservation laws and Noether current.
These connections open up new avenues for designing more general equivariant
networks and applying them to important problems in physical sciences.1

1 Introduction

Incorporating symmetries into a deep learning architecture can reduce sample complexity, improve
generalization, while significantly decreasing the number of model parameters (Cohen et al., 2019b;
Cohen & Welling, 2016b; Ravanbakhsh et al., 2017; Ravanbakhsh, 2020; Wang et al., 2020). For
instance, Convolutional Neural Networks (CNN) (LeCun et al., 1989, 1998) implement translation
symmetry through weight sharing. General principles for constructing symmetry-aware group
equivariant neural networks were introduced in Cohen & Welling (2016b), Kondor & Trivedi (2018),
and Cohen et al. (2019b).

However, most work on equivariant networks requires knowing the symmetry group a priori. A
different equivariant model needs to be re-designed for each symmetry group. In practice, we may not
have a good inductive bias and such knowledge of the symmetries may not be available. Constructing
and selecting the equivariant network with the appropriate symmetry group becomes quite tedious.
Furthermore, many existing works are limited to finite groups such as permutations Hartford et al.
(2018); Ravanbakhsh et al. (2017); Zaheer et al. (2017), 90 degree rotations Cohen et al. (2018) or
dihedral groups DN and E(2) Weiler & Cesa (2019).

1Code: github.com/nimadehmamy/L-conv-code
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For a continuous group, existing approaches either discretize the group Weiler et al. (2018a,b);
Cohen & Welling (2016a), or use a truncated sum over irreducible representations (irreps) Weiler &
Cesa (2019); Weiler et al. (2018a) via spherical harmonics in Worrall et al. (2017) or more general
Clebsch-Gordon coefficients Kondor et al. (2018); Bogatskiy et al. (2020). These approaches are
prone to approximation error. Recently, Finzi et al. (2020) propose to approximates the integral over
the Lie group by Monte Carlo sampling. This approach requires implementing the matrix exponential
and obtaining a local neighborhood for each point. Both parametrizing Lie groups for sampling and
finding irreps are computationally expensive. Finzi et al. (2021) provide a general algorithm for
constructing equivariant multi-layer perceptrons (MLP), but require explicit knowledge of the group
to encode its irreps, and solving a set of constraints.

We provide a novel framework for designing equivariant neural networks. We leverage the fact that
Lie groups can be constructed from a set of infinitesimal generators, called Lie algebras. A Lie
algebra has a finite basis, assuming the group is finite-dimensional. Working with the Lie algebra
basis allows us to encode an infinite group without discretizing or summing over irreps. Additionally,
all Lie algebras have the same general structure and hence can be implemented the same way. We
propose Lie Algebra Convolutional Network (L-conv), a novel architecture that can automatically
discover symmetries from data. Our main contributions can be summarized as follows:

• We propose the Lie algebra convolutional network (L-conv), a building block for construct-
ing group equivariant neural networks.

• We prove that multi-layer L-conv can approximate group convolutional layers, including
CNNs, and find graph convolutional networks to be a special case of L-conv.

• We can learn the Lie algebra basis in L-conv, enabling automatic symmetry discovery.

• L-conv also reveals interesting connections between physics and learning: equivariant
loss generalizes important Lagrangians in field theory; robustness and equivariance can be
expressed as Euler-Lagrange equations and Noether currents.

Learning symmetries from data has been studied in limited settings for commutative Lie groups as in
Cohen & Welling (2014), 2D rotations and translations in Rao & Ruderman (1999), Sohl-Dickstein
et al. (2010) or permutations (Anselmi et al., 2019). In the non-commutative case, GeoManCEr (Pfau
et al., 2020) uses data points related by small transformations to learn non-abelian Lie groups, but it
does not introduce an equivariant layer architecture. (Zhou et al., 2020) propose a general method for
symmetry discovery. Yet, their weight-sharing scheme and the symmetry generators are very different
from ours. Our approach use much fewer parameters and has a direct interpretation using Lie algebras
(SI B.3). Benton et al. (2020) propose Augerino to learn a distribution over data augmentations. It
also involves Lie algebras, but is restricted to a subgroup of 2D affine transformations and requires
matrix logarithm and sampling (SI B.3). In contrast, our approach is simpler and more general. Our
approach uses composition of small transformations to achieve large transformations. In this sense
bears some resemblance to symnets (Gens & Domingos, 2014), but the rest of the construction is
different.

2 Background

We review the core concepts L-conv builds upon: equivariance, group convolution and Lie algebras.

Notations. Unless explicitly stated, a in Aa is an index, not an exponent. We use the Einstein
summation AaBab =

∑

a A
aBab = [AB]b, where a repeated upper and lower index are summed.

Equivariance. Let S be a topological space on which a Lie group G (continuous group) acts from
the left, meaning for all x ∈ S and g ∈ G, gx ∈ S. We refer to S as the base space. Let F , the
“feature space”, be the vector space F = R

m. Each data point is a feature map f : S → F . The
action of G on the input of f induces an action on feature maps. For “scalar” features, for u ∈ G, the
transformed features u · f are given by

u · f(x) = f(u−1x). (1)

Denote the space of all functions from S to F by FS , so that f ∈ FS . Let F be a mapping to a new

feature space F ′ = R
m′

, meaning F : FS → F ′S . We say F is equivariant under G if G acts on F ′
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Figure 1: Lie group and Lie algebra: Illustration of the group manifold of a Lie group G (left).
The Lie algebra g = TIG is the tangent space at the identity I . Li are a basis for TIG. If G is
connected, ∀g ∈ G there exist paths like γ from I to g and g can be written as a path-ordered integral
g = P exp[

∫

γ
dtiLi]. Base space Right is a schematic of the base space S as a manifold. The

lift x = gx0 takes x ∈ S to g ∈ G, and maps the tangent spaces TxS → TgG. Each Lie algebra

basis Li ∈ g = TIG generates a vector field L̂i on the tangent bundle TG via the pushforward

L̂i(g) = gLig
−1. Via the lift, Li also generates a vector field L̂i = L̂α

i (x)∂α = [gLix0]
α∂α.

and for u ∈ G, we have

u · (F (f)) = F (u · f). (2)

Group Convolution. Kondor & Trivedi (2018) showed that F is a linear equivariant map if and
only if it performs a group convolution (G-conv). To define G-conv, we first lift x to elements in G
(Kondor & Trivedi, 2018). Specifically, we pick an origin x0 ∈ S and replace each point x = gx0 by

g. We will often drop x0 for brevity and write f(g) ≡ f(gx0). Let κ : G → R
m′

⊗ R
m be a linear

transformation from F to F ′. G-conv is defined as

[κ ⋆ f ](g) =

∫

G

κ(g−1v)f(v)dv =

∫

G

κ(v)f(gv)dv, (3)

We denote the Haar measure on G as dv ≡ dµ(v) for brevity.

Equivariance of G-conv. G-conv in equation 3 is equivariant (Kondor & Trivedi, 2018). By
definition, for w ∈ G we have

[κ ⋆ w · f ](g) =

∫

G

κ(v)w · f(gv)dv =

∫

G

κ(v)f(w−1gv)dv

= [κ ⋆ f ](w−1g) = w · [κ ⋆ f ](g) (4)

Existing works on equivariance networks implement
∫

G
by discretizing the group or summing over

irreps. We take a different approach and use the infinitesimal generators of the group. While a
Lie group G is infinite, usually it can be generated using a small number of infinitesimal generator,
comprising its “Lie algebra”. We use the Lie algebra to introduce a building block to approximate
G-conv. Figure 1 visualizes a Lie group, Lie algebra and the concept we discuss below.

Lie algebra. Let G be a Lie group, which includes common continuous groups. Group elements
u ∈ G infinitesimally close to the identity element I can be written as u ≈ I + ǫiLi (note Einstein
summation), where Li ∈ g with the Lie algebra g = TIG is the tangent space of G at the identity
element. The Lie algebra has the property that it is closed under a Lie bracket [·, ·] : g× g → g

[Li, Lj ] = cij
kLk, (5)

which is skew-symmetric and satisfies the Jacobi identity. Here the coefficients cij
k ∈ R or C

are called the structure constants of the Lie algebra. For matrix representations of g, [Li, Lj ] =
LiLj − LjLi is the commutator. The Li are called the infinitesimal generators of the Lie group.

Exponential map. If the manifold of G is connected 2, an exponential map exp : g → G can be
defined such that g = exp[tiLi] ∈ G. For matrix groups, if G is connected and compact, the matrix

2When G has multiple connected components, these results hold for the component containing I , and
generalize easily for mutli-component groups such as Zk ⊗G (Finzi et al., 2021).
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exponential is such a map and it is surjective. For most other groups (except GLd(C) and nilpotent
groups) it is not surjective. Nevertheless, for any connected group every g ∈ G can be written as a
product g =

∏

a exp[t
i
aLi] (Hall, 2015). Making tia infinitesimal steps dti(s) tangent to a path γ from

I to g on G yields the surjective path-ordered exponential in physics, denoted as g = P exp[
∫

γ
dtiLi]

(SI A, and see Time-ordering in Weinberg (1995, p143)).

Pushforward. Li ∈ TIG can be pushed forward to L̂i(g) = gLig
−1 ∈ TgG to form a basis for

TgG, satisfying the same Lie algebra [L̂i(g), L̂j(g)] = cij
kL̂k(g). The manifold of G together with

the set of all TgG attached to each g forms the tangent bundle TG, a type of fiber bundle (Lee et al.,

2009). L̂i is a vector field on TG. The lift maps L̂i to an equivalent vector field on TS, which we

will also denote by L̂i. Figure 1 illustrates the flow of these vector fields on TG and TS .

3 Lie Algebra Convolutional Network

We can use the Lie algebra basis Li ∈ g to construct the Lie group G with the exponential map.
Similarly, we show that Lie algebras can also serve as building blocks to construct G-conv layers. We
propose the Lie algebra convolutional network (L-conv). The key idea is to approximate the kernel
κ(u) using localized kernels which can be constructed using the Lie algebra (Fig. 2). This is possible
because the exponential map is a generalization of a Taylor expansion. We show that a G-conv whose
kernel is concentrated near the identity can be expanded in the Lie algebra.

Let δη(u) ∈ R denote a normalized localized kernel, meaning
∫

G
δη(g)dg = 1, and with support on

a small neighborhood of size η centered around the identity I (i.e., δη(I + ǫiLi) → 0 if ‖ǫ‖2 > η2).

We pick δη(vǫ) ∼ θ(η2 −‖ǫ‖2), for vǫ = I + ǫiLi ∈ TIG and δη(v) = 0 for all other v /∈ TIG (θ(·)

being the Heaviside step function). Let κ0 : G → R
m′

⊗ R
m be given by

[κ0]
b
a (u) =

[

W 0
]c

a
δη

(

u
(

I −
[

ǫi
]b

c
Li

))

(6)

where W 0 ∈ R
m′

⊗ R
h and ǫi ∈ R

h ⊗ R
m are constants, and we choose

∣

∣[ǫi]ab
∣

∣ < η. Note that

(I + ǫiLi)(I − ǫjLj) = I + [ǫ− ǫ]iLi +O(η2). Therefore,
∫

ǫidǫδη
(

(I + ǫiLi)(I − ǫjLj)
)

= ǫi (7)

The localized kernels κ0 can be used to approximate G-conv.

Linear expansion of G-conv with localized kernel. We can expand a G-conv whose kernel is
κ0(u) = W 0δη(u) in the Lie algebra of G to linear order. With vǫ = I + ǫiLi, we have (see SI A)

Q[f ](g) = [κ0 ⋆ f ](g) =

∫

G

dvκ0(v)f(gv) =

∫

‖ǫ‖<η

dvǫκ0(vǫ)f(gvǫ)

= W 0

∫

dǫδη(vǫ)

[

f(g) + ǫigLi ·
d

dg
f(g) +O(ǫ2)

]

= W 0

[

I + ǫigLi ·
d

dg

]

f(g) +O(η2) (8)

with W 0 ∈ R
m′

⊗ R
h and ǫi ∈ R

h ⊗ R
m, as before. Here dǫ is the integration measure on the Lie

algebra g = TIG induced by the Haar measure dvǫ on G.

Interpreting the derivatives. In a matrix representation of G, we have gLi ·
df
dg = [gLi]

β
α

df

dgβ
α

=

Tr
[

[gLi]
T df

dg

]

. This can be written in terms of partial derivatives ∂αf(x) = ∂f/∂xα as follows.

Using xρ = gρσx
σ
0 , we have

df(gx0)
dgα

β

= x
β
0∂αf(x), and so

L̂if(x) ≡ gLi ·
df

dg
= [gLi]

α
βx

β
0∂αf(x) = [gLix0] · ∇f(x) (9)

Hence, for each Li, the pushforward gLig
−1 generates a flow on S through the vector field L̂i ≡

gLi · d/dg = [gLig
−1x]α∂α (Fig. 1).
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Figure 2: Sketch of the procedure for approximating G-conv using L-conv. First, the kernel is written
as the sum of a number of localized kernels κk with support around uk (left). Each of the κk is then
moved toward identity by composing multiple L-conv layers Qǫ′ ◦Qǫ . . . κk (right).

Lie algebra convolutional (L-conv) layer. Equation 8 states that for a kernel localized near the

identity, the effect of the kernel can be summarized in W 0 and ǫiL̂i. Note that we do not need to
perform the integral over G explicitly anymore. Instead of working with a kernel κ0, we only need to
specify W 0 and ǫi. Hence, in general, we define the Lie algebra convolution (L-conv) as

Q[f ](x) = W 0
[

I + ǫiL̂i

]

f(x)

= W 0
[

I + ǫi[gLix0]
α∂α

]

f(x) (10)

Being an expansion of G-conv, L-conv inherits the equivariance of G-conv, as we show next.

Proposition 1 (Equivariance of L-conv). With assumptions above, L-conv is equivariant under G.

Proof: First, note that the components of L̂i transform as [L̂i(vx)]
α = [vgLix0]

α = vαβ L̂i(x)
β ,

while the partial transforms as ∂/∂[vx]α = [v−1]γα∂γ . As a result in L̂i = [gLix0]
α∂α all factors of

v cancel, meaning for v ∈ G, L̂i(vx) = L̂i(x). This is because of the fact that L̂i ∈ TS is a vector
field (i.e. 1-tensor) and, thus, invariant under change of basis. Plugging into equation 10, for w ∈ G

w ·Q[f ](x) = Q[f ](w−1x) = W 0
[

I + ǫiL̂i(w
−1x)

]

f(w−1x)

= W 0
[

I + ǫiL̂i(g)
]

f(w−1x) = W 0
[

I + ǫiL̂i(g)
]

w · f(x) = Q[w · f ](x)(11)

which proves L-conv is equivariant. �

Examples. Using equation 9 we can calculate L-conv for specific groups (details in SI A.2). For

translations G = Tn = (Rn,+), we find the generators become simple partial derivatives L̂i = ∂i (SI

A.2.2), yielding f(x)+ǫα∂αf(x). For 2D rotations (SI A.2.1) the generator L̂ ≡ (x∂y − y∂x) = ∂θ,
which is the angular momentum operator about the z-axis in quantum mechanics and field theories.

For rotations with scaling, G = SO(2)×R
+, we have two Li, one L̂θ = ∂θ from so(2) and a scaling

with Lr = I , yielding L̂r = x∂x + y∂y = r∂r. Next, we discuss the form of L-conv on discrete data.

3.1 Approximating G-conv using L-conv

L-conv can be used as a basic building block to construct G-conv with more general kernels. Figure 2
sketches the argument described here (see also SI A.1).

Theorem 1 (G-conv from L-convs). G-conv equation 3 can be approximated using L-conv layers.

Proof: The procedure involves two steps, as illustrated in Fig. 2: 1) approximate the kernel using
localized kernels as the δη in L-conv; 2) move the kernels towards identity using multiple L-conv
layers. The following lemma outline the details. �

Lemma 1 (Approximating the kernel). Let the kernel κ : G → F ′ ⊗ F with
∫

G
‖κ(g)‖2dg < ∞

be continuously differentiable with ‖dκ(g)/dg‖2 < ξ2, and with compact support over G0 ⊂ G.

Let κk(g) = ckδη(u
−1
k g) be a set of N kernels with support on an η neighborhood of uk ∈ G.

Then there exist ck ∈ F ′ ⊗ F and uk ∈ G such that κ̃ =
∑N

k=1 κk approximates κ, meaning
∫

G
‖κ(g)− κ̃(g)‖2dg < ζ2 for arbitrary small ζ ∈ R+.
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Proof: See SI A.1 for details. The intuition is similar to the universal approximation theorem for
neural networks (Hornik et al., 1989; Cybenko, 1989), only generalized to a group manifold instead
of R. Let B0 be the set of vǫ = I + ǫiLi ∈ g, with ‖ǫ‖2 < η2. Choose a set of uk ∈ G such that the
neighborhoods Bk = ukB0 ⊂ G cover the support G0 of κ. The bound ‖dκ(g)/dg‖2 < ξ2 means
that on small enough neighborhoods Bk ⊂ G, for any two u, v ∈ Bk we have ‖κ(u)−κ(v)‖2 ≤ η2ξ2,
where |G0| is the volume of the support of κ. Hence, for g ∈ Bk, κ(g) can be approximated

with κk(g) = κ(uk)δη(u
−1
k g), with normalized localized kernels δη(g), and any element uk ∈

Bk. We show that the approximation error of using κ̃ =
∑

k κk to approximate κ is bounded by
∫

G
dg‖κ(g)− κ̃(g)‖2 < |G0|η

2ξ2. Any desired error bound ζ can then be attained by choosing small
enough η for neighborhood sizes. �

Thus, we can approximate a large class of kernels as κ(g) ≈
∑

k κk(g) where the local kernels

κk(g) = ckδη(u
−1
k g) have support only on an η neighborhood of uk ∈ G. Here ck ∈ R

m′

⊗ R
m are

constants and δη(u) is as in equation 8. Using this, G-conv equation 3 becomes

[κ ⋆ f ](g) =
∑

k

ck

∫

dvδη(u
−1
k v)f(gv) =

∑

k

ck[δη ⋆ f ](guk). (12)

The kernels κk are localized around uk, whereas in L-conv the kernel is around identity. We can
compose L-conv layers to move κk from uk to identity.

Lemma 2 (Moving kernels to identity). κk can be moved near identity using a multilayer L-conv.

Proof: In equation 12, write uk = vǫu
′
k, with vǫ = I+ ǫiLi ∈ g. Using the definition equation 10 an

L-conv layer Qǫ = I− ǫiL̂i performs a first order Taylor expansion (SI A.1) and so Qǫ[δη](u
′−1
k v) =

δη(u
−1
k v) + O(ǫ2). Thus, applying one L-conv layer moves the localized kernel along vǫ on G.

Writing uk as the product of a set of small group elements uk =
∏p

a=1 va, with va = I + ǫiaLi ∈ g.

Defining L-conv layers Qa = I − ǫiaL̂i, we can write

κk(g) ≈ ckQp ◦ · · · ◦Q1 ◦ δη(g) (13)

meaning κk localized around uk can be written as a p layer L-conv acting on a kernel δη(g), localized

around the identity of the group. With ‖ǫa‖ < η, the error in uk is O(ηp+1). �

Thus, we conclude that any G-conv equation 3 can be approximated by multilayer L-conv. Further-
more, for compact G, using the theorem in Kondor & Trivedi (2018), we can show that any equivariant
feedforward neural network can be approximated using multilayer L-conv with nonlinearities.

Equivariance of nonlinearity. Pointwise nonlinearities give equivariant maps between scalar feature
maps. To see this, let σ : R → R. We extend σ : F → F by applying σ component-wise. Let
f : S → F be a scalar feature map (i.e., g · f(x) = f(g−1x)). Then

g · (σ ◦ (f))(x) = σ ◦ (f)(g−1x) = σ ◦ (g · f)(x).

Since the composition of equivariant maps is equivariant, given equivariant linear mapping Q : FS →
F ′S (i.e. g ·Q[f ] = Q[g · f ]), the layer f 7→ σ ◦Q[f ] is equivariant. Hence we have the corollary:

Corollary 1. Assume G is compact and acts on S transitively. Then any equivariant feedforward
neural network (FNN) can be approximated using multilayer L-conv with point-wise nonlinearities.

Proof: A FNN is defined as σp ◦ Fp[· · · [σ1 ◦ F1[f ]](x) where Fk are linear and σk are point-wise
nonlinearities. By Theorem 1 of Kondor & Trivedi (2018), any linear layer in the equivariant FNN is
a G-conv, which by Theorem 1 can be approximated by multilayer L-conv. Therefore, multilayer
L-conv with nonlinearity can approximate any equivariant FNN. �

Finally, to our knowledge it is not known whether every equivariant function can be approximated
by equivariant FNN for a Lie group G. Hence, the corollary above is not a universal approximation
theorem for equivariant scalar functions in terms of L-conv. However, it does show that multilayer
L-conv is equally expressive as other equivariant networks. Next, we discuss implementation details.

4 Discretized space and implementation: the tensor notation

In many datasets, such as images, f(x) is not given as continuous function, but rather as a discrete
array, with S = {x0, . . .xd−1} containing d points. Each xµ represents a coordinate in higher
dimensional space, e.g. on a 10× 10 image, x0 is (x, y) = (0, 0) point and x99 is (x, y) = (9, 9).
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Feature maps and group action In the tensor notation, we encode xµ ∈ S as the canonical basis

(one-hot) vectors in xµ ∈ R
d with [xµ]ν = δµν (Kronecker delta), e.g. x0 = (1, 0, . . . , 0). The

features become f ∈ F = R
d ⊗ R

m, meaning d×m tensors, with f(xµ) = xT
µf = fµ. Although

S is discrete, the group acting on F can be continuous (e.g. image rotations). Any G ⊆ GLd(R)
of the general linear group (invertible d × d matrices) acts on xµ ∈ R

d and f ∈ F . We define

f(g · xµ) = xT
µ g

Tf , ∀g ∈ G, so that for w ∈ G we have

w · f(xµ) = f(w−1 · xµ) = xT
µw

−1Tf = [w−1xµ]
Tf (14)

Dropping the position xµ, the transformed features are matrix product w ·f = w−1Tf . We can write
G-conv in this notation (SI B). Similarly, we can rewrite L-conv equation 8 in the tensor notation.
Defining vǫ = I + ǫiLi

Q[f ](g) = W 0f
(

g
(

I + ǫiLi

))

= xT
0

(

I + ǫiLi

)T
gTfW 0T

=
(

x+ ǫi[gLix0]
)T

fW 0T . (15)

Here, L̂i = gLix0 is exactly the matrix analogue of pushforward vector field L̂i in equation 9. The
equivariance of L-conv in tensor notation is again evident from the gTf , resulting in

Q[w · f ](g) = xT
0 v

T
ǫ g

Tw−1TfW 0T = Q[f ](w−1g) = w ·Q[f ](g) (16)

Tensor L-conv layer implementation The discrete space L-conv equation 15 can be rewritten

using the global Lie algebra basis L̂i

Q[f ] =
(

f + L̂ifǫ
i
)

W 0T , Q[f ]aµ = f b
µ[W

0T ]ab + [L̂i]
ν
µf

c
ν

[

W i
]a

c
(17)

Where W i = W 0ǫi, W 0 ∈ R
min ⊗R

mout and ǫi ∈ R
min ⊗R

min are trainable weights. The L̂i can
be either inserted as inductive bias or they can be learned to discover symmetries.

Li

Wi

Li

Wi

Li

Wi

fin

min mout

S
pa

tia
l i

nd
ex

d

L-conv layer
features

d
fout

Weights shared among d dims.
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features

^

^

Figure 3: L-conv layer architecture. Li only
act on the d flattened spatial dimensions, and
W i only act on the min input features and
returns mout output features. For each i, L-
conv is analogous to a GCN with d nodes and
min features.

To implement L-conv, note that the formula of equa-
tion 17 is quite similar to a Graph Convolutional
Network (GCN) (Kipf & Welling, 2016). For each
i, the shared convolutional weights are ǫiW 0T and
the aggregation function of the GCN, a function of

the graph adjacency matrix, is L̂i in L-conv. Thus, L-
conv can be implemented as GCN modules for each

L̂i, plus a residual connection for the fW 0T term.

Figure 3 shows the schematic of the L-conv layer.

In a naive implementation, L̂i can be general d× d
matrices. However, being vector fields generated by

the Lie algebra, L̂i has a more constrained structure
which allows them to be encoded and learned using
much fewer parameters than a d× d matrix. Specif-
ically, encoding the topology of S as a graph (see SI
B.1), the incidence matrix replaces partial derivatives
(Schaub et al., 2020) in equation 9 and the Li become
weighting of the edges. This weighting is similar to
Gauge Equivariant Mesh (GEM) CNN (Cohen et al., 2019a). Indeed, in L-conv the lift xµ = gµx0

fixes the gauge by mapping neighbors of x0 to neighbors of xµ. Changing how the discrete S samples
an underlying continuous space will change gµ and hence the gauge.

Choosing the number of Li. Beside the width of W 0 and ǫi, the number nL of Li is a hyperpa-
rameter in L-conv. For instance, if S is a discretization of n dimensional space the symmetry group
is likely G ⊂ GLn(R) ⋉ Tn, with nL ∼ O(n2). Note that nL is independent of the size d of the
discretized space (e.g. number of pixels) and generally n2 ≪ d. Choosing nL larger than the true
number of Li only results in an over-complete basis and shouldn’t be a problem. We conducted small
controlled experiments to verify how multilayer L-conv approximates G-conv (SI C).
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Figure 4: Learning the infinitesimal generator of SO(2) Left shows the architecture for learning
rotation angles between pairs of images (SI C.3). Next to it is the L learned using recursive L-conv in
this experiment. Middle L is learned using a fixed small rotation angle θ = π/10, and right shows L
found using the numeric solution from the data.

Learning symmetries using L-conv. Rao & Ruderman (1999) introduced a basic version of L-
conv and showed that it can learn 1D translation and 2D rotation. We conducted experiments to learn
large rotation angle between two images (SI C), shown in Fig. 4. Left shows the architecture for
learning the rotation angles between a pair of 7× 7 random images f and R(θ)f with θ ∈ [0, π/3).
Second left is the learned L ∈ SO(2) using 3 recursive layer L-conv. Middle is the L learned
using L-conv with fixed small rotation angle θ = π/10 (SI C.2) and right is the exact solution
R = (Y XT )(XTX)−1. While the middle L is less noisy, it does not capture weights beyond first
neighbors of each pixel. (also see SI C for a discussion on symmetry discovery literature.)

L-conv can potentially replace other equivariant layers in a neural network. We conducted limited ex-
periments for this on small image datasets (SI D). L-conv allows one to look for potential symmetries
in data which may have been scrambled or harbors hidden symmetries.

5 Relation to other architectures

CNN. This is a special case of expressing G-conv as L-conv when the group is continuous 1D
translations. The arguments here generalize trivially to higher dimensions. Rao & Ruderman (1999,
sec. 4) used the Shannon-Whittaker Interpolation (Whitaker, 1915) to define continuous translation on

periodic 1D arrays as f ′
ρ = g(z)νρfν . Here g(z)νρ = 1

d

∑d/2
p=−d/2 cos

(

2πp
d (z + ρ− ν)

)

approximates

the shift operator for continuous z. These g(z) form a 1D translation group G as g(w)g(z) = g(w+z)
with g(0)νρ = δνρ . For any z = µ ∈ Z, gµ = g(z = µ) are circulant matrices that shift by µ as

[gµ]
ρ
ν = δρν−µ. Thus, a 1D CNN with kernel size k can be written suing gµ as

F (f)aν = σ

(

k
∑

µ=0

f c
ν−µ[W

µ]ac + ba

)

= σ

(

k
∑

µ=0

[gµf ]
c
ν [W

µ]ac + ba

)

(18)

where W, b are the filter weights and biases. gµ can be approximated using the Lie algebra and
written as multi-layer L-conv as in sec. 3.1. Using g(0)νρ ≈ δ(ρ − ν), the single Lie algebra

basis [L̂]0 = ∂zg(z)|z→0, acts as L̂f(z) ≈ −∂zf(z) (because
∫

∂zδ(z − ν)f(z) = −∂νf(ν)). Its

components are L̂ν
ρ = L(ρ − ν) =

∑

p
2πp
d2 sin

(

2πp
d (ρ− ν)

)

, which are also circulant due to the

(ρ− ν) dependence. Hence, [L̂f ]ρ =
∑

ν L(ρ− ν)fν = [L⋆f ]ν is a convolution. Rao & Ruderman

(1999) already showed that this L̂ can reproduce finite discrete shifts gµ used in CNN. They used a

primitive version of L-conv with gµ = (I + ǫL̂)N . Thus, L-conv can approximate 1D CNN. This
result generalizes easily to higher dimensions.

Graph Convolutional Network (GCN). Let A be the adjacency matrix of a graph. In equation 17

if L̂i = h(A), such as L̂i = D−1/2AD−1/2, we obtain a GCN (Kipf & Welling, 2016) (Dµν =
δµν

∑

ρ Aµρ being the degree matrix). So in the special case where all neighbors of each node

< µ > have the same edge weight, meaning [L̂i]
ν
µ = [L̂i]

ρ
µ, ∀ν, ρ ∈< µ >, equation 8 is uniformly

aggregating over neighbors and L-conv reduces to a GCN. Note that this similarity is not just

superficial. In GCN h(A) = L̂ is in fact a Lie algebra basis. When L̂ = h(A), the vector field is the
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flow of isotropic diffusion df/dt = h(A)f from each node to its neighbors. This vector field defines
one parameter Lie group with elements g(t) = exp[h(A)t]. Hence, L-conv for flow groups with a
single generator are GCN. These flow groups include Hamiltonian flows and other linear dynamical
systems. The main difference between L-conv and GCN is that L-conv can assign a different weight
to each neighbor of the same node, similar to GEM-CNN (Cohen et al., 2019a) with a fixed gauge set
by gµ. Next, we discuss the mathematical properties of the loss functions for L-conv.

6 Group invariant loss

Loss functions of equivariant networks are rarely discussed. Yet, recent work by Kunin et al. (2020)
showed the existence of symmetry directions in the loss landscape. To understand how the symmetry
generators in L-conv manifest themselves in the loss landscape, we work out the explicit example of
a mean square error (MSE) loss. Because G is the symmetry group, f and g · f should result in the
same optimal parameters. Hence, the minima of the loss function need to be group invariant. One
way to satisfy this is for the loss itself to be group invariant, which can be constructed by integrating
over G (global pooling (Bronstein et al., 2021)). A function I =

∫

G
dgF (g) is G-invariant (SI A.3).

We can also change the integration to
∫

S
dnx by change of variable dg/dx (see SI A.3 for discussion

on stabilizers).

MSE loss and Field Theory. The MSE is given by I =
∑

n

∫

G
dg‖Q[fn](g)‖

2, where fn are data

samples and Q[f ] is L-conv or another G-equivariant function. In supervised learning the input
is a pair fn, yn. G can also act on the labels yn. We assme that yn are either also scalar features
yn : S → R

my with a group action g · yn(x) = yn(g
−1x) (e.g. fn and yn are both images), or that

yn are categorical. In the latter case g · yn = yn because the only representations of a continuous G
on a discrete set are constant. We can concatenate the inputs to φn ≡ [fn|yn] with a well-defined
G action g · φn = [g · fn|g · yn]. The collection of combined inputs Φ = (φ1, . . . , φN )T is an
(m + my) × N matrix. Using equations 8 and 9, the MSE loss with parameters W = {W 0, ǫ}
becomes (SI A.3.1)

I[Φ;W ] =

∫

G

dgL[Φ;W ] =

∫

G

dg
∥

∥

∥
W 0

[

I + ǫi[L̂i]
α∂α

]

Φ(g)
∥

∥

∥

2

=

∫

S

dnx
∣

∣

∣

∂x
∂g

∣

∣

∣

[

ΦT
m2Φ+ ∂αΦ

T
h
αβ∂βΦ+ [L̂i]

α∂α
(

ΦT
v
iΦ
)

]

(19)

Equation 19 generalizes the free field theories in physics (Polyakov, 2018). Here

∣

∣

∣

∂x
∂g

∣

∣

∣
is the

determinant of the Jacobian, W i = W 0ǫi and

m2 = W 0TW 0, h
αβ(x) = ǫiTm2ǫ

j [L̂i]
α[L̂j ]

β , v
i = m2ǫ

i. (20)

Note that h has feature space indices via [ǫiTm2ǫ
j ]ab, with index symmetry h

αβ
ab = h

βα
ba . When

F = R (i.e. f is a 1D scalar), hαβ becomes a a Riemannian metric for S. In general h combines a

2-tensor hab = h
αβ
ab ∂α∂β ∈ TS ⊗ TS with an inner product hT

h
αβf on the feature space F .

In field theory, the motivation is to preserve spatial symmetries for the metric h. In equation 19, h
transforms equivariantly as a 2-tensor v · hαβ = [v−1]αρ [v

−1]βγh
ργ(x) for v ∈ G (SI A.3). The last

term in equation 19 vanishes for many groups (SI A.3) and it is also absent in physics.

Robustness and Euler-Lagrange Equation. Equivariant neural networks are more robust. To check
this, we can quantify how the network would perform for an input φ′ = φ+ δφ which adds a small
random perturbation δφ to a data point φ. Robustness to such perturbation would mean that, for
optimal parameters W ∗ , the loss function would not change, i.e. I[φ′;W ∗] = I[φ;W ∗], requiring I
to be minimized around real data points φ.

This can be cast as a variational equation δI[φ;W ∗] = 0, which yield the familiar Euler-Lagrange
(EL) equation (SI A.4). Therefore, for an equivariant network to be robust, i.e. δI[φ;W ∗]/δφ = 0,
we would require the data points φ to satisfy the EL equations for optimal parameters W ∗:

Robustness to random noise ⇐⇒ EL:
∂L

∂φb
− ∂α

∂L

∂(∂αφb)
= 0 (21)
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where the partial derivative terms appear because of the L-conv layer.

Equivariance and Conservation laws. Conserved currents, via Noether’s theorem provide a way to
find hidden symmetries (see also Kunin et al. (2020)). The idea is that the equivariance condition
equation 2 can be written for the integrand of the loss, L[φ,W ]. If we write the equivariance equation
for infinitesimal vǫ, we obtain a vector field which is divergence free. Since G is the symmetry of
the system, transforming an input φ → w · φ by w ∈ G the integrand should change equivariantly,
meaning L[w · φ] = w · L[φ]. When robustness error is minimized as in equation 21, an infinitesimal

w ≈ I + ηiLi, with δφ = ǫiL̂iφ, results in a conserved current (SI A.4)

Noether current: Jα =
∂L

∂(∂αφb)
δφb −

∂L

∂xα
δxα, δI[φ;W ∗] = 0 ⇒ ∂αJ

α = 0 (22)

The above equation shows that for equivariant networks with a given symmetry, the deviation in data

along the symmetry direction (L̂i) yields a divergence free current Jα, known as Noether current.
It also provides an alternative means to discover symmetry generators Li by minimizing ‖∂αJ

α‖.
Note that this Noether current is the “stress-energy” tensor, associated with space (or space-time)
variations δx (Landau, 2013) (SI A.5). We can potentially design more general equivariant networks
leading to other Noether currents.

7 Conclusion and Discussions

We propose the Lie algebra convolutional neural network (L-conv), an infinitesimal version of G-
conv. L-conv layers do not require encoding irreps or discretizing the group, and can be combined
to approximate any feedforward equivariant networks on compact groups. Additionally, L-conv’s
universal and simple structure allows us to discover symmetries from data. It is easy to implement,
with a formula similar to GCN. We validated that L-conv can learn the correct Lie algebra basis in a
synthetic experiment.

We discover several intriguing connections between L-conv and physics. Our derivation shows
that equivariant neural networks based on L-conv lead to Noether’s theorem and conservation laws.
Conversely, we can also optimize Noether current to discover symmetries. Furthermore, the current
equivariance formulation only pertains to “spatial symmetries” (i.e. G acts on S). In physics, more
general “internal symmetries” are quite common (e.g. particle physics). We can potentially design
more general equivariant networks with L-conv encoding such symmetries.

Our method also shed lights on scientific machine learning, especially for physical sciences. Physicists
generally use simple polynomial forms for the Lagrangian, or the loss function. These “perturbative”
Lagrangian lead to divergences in quantum field theory. However, it is believed the true Lagrangian
is more complicated. Hence, more expressive L-conv based models can potentially provide more
advanced ansatze for solving scientific problems.
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(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]
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Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13


