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Abstract 

A quantitative model can play an essential role in controlling critical quality attributes of 

products and in designing the associated processes. One of the challenges in designing a 

dry granulation process is to find the optimal balance between improving powder 

flowability and sacrificing powder tabletability, both of which are highly affected by 

ribbon solid fraction and granule size distribution (GSD). This study is focused on 

developing a hybrid machine learning (ML)-assisted mechanistic model to predict ribbon 

solid fraction, GSD, and throughput for the purpose of implementing model predictive 

control of an integrated continuous dry granulation tableting process. It is found that the 

predictability of ribbon solid fraction and throughput are improved when modification is 

made to Johanson’s model by incorporating relationships between roll compaction 

parameters and ribbon elastic recovery. Such relationships typically are either not 

considered or assumed to be a constant in the models reported in the literature. To 

describe the nature of the bimodal size distribution of roller compactor granules instead 

of only using traditional 𝐷𝐷10, 𝐷𝐷50 and 𝐷𝐷90 values, the GSD is represented by a bimodal 

Weibull distribution with five fitting parameters. Furthermore, these five GSD parameters 

are predicted by ML models. The results indicate the ribbon solid fraction and screen size 

are the two most significant factors affecting GSD. 
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1. Introduction 

The dry granulation process is an important route for producing a solid dosage form in 

the pharmaceutical industry. The roller compactor is the key unit operation in a dry 

granulation process. It includes two steps: (1) roll compaction in which powder blends 

are compressed between two counter-rotating rolls into a ribbon, and (2) milling in which 

these ribbons are crushed into granules. The benefits of dry granulation include improved 

blend uniformity and flowability by enlargement of particle size. Powder flowability 

plays a key role in determining the performance of the tablet manufacturing process and 

final drug product quality (Lagare et al., 2023). In addition, good powder flowability can 

reduce powder fouling and improve the on-line sensor performance, such as capacitance-
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based particulate flow rate sensor (Huang et al., 2022). However, particle size over-

enlargement or over-compression of powders can compromise the tabletabiltiy (Herting & 

Kleinebudde, 2008). Finding the optimal balance between improving powder flowability 

and sacrificing powder tabletability, which are highly affected by ribbon solid fraction 

and GSD, becomes one of the challenges in designing a dry granulation process. 

Therefore, quantitative models to predict ribbon solid fraction and GSD are essential to 

optimally operate the roller compactor. 

Mechanistic models such as Johanson’s model(Johanson, 1965) are typically used to 

describe roll compaction and further predict ribbon solid fraction. However, one of the 

reasons for the unsatisfactory prediction accuracy of ribbon solid fraction is due to elastic 

recovery, which is either not considered or assumed to be a constant in the models 

reported in the literature (Keizer & Kleinebudde, 2020). Population balance models 

(PBM) can account for the milling step and can be used to predict GSD, but it is 

complicated to determine the breakage function in the PBM purely based on ribbon 

fracture physics. Given the unknown physical nature of ribbon elastic recovery and GSD, 

machine learning (ML) is a preferred alternative to developing a mechanistic model. 

Moreover, ML and mechanistic model components can be combined into a hybrid model 

to maintain high physical interpretability and feasibility. Therefore, the primary objective 

of this work is to develop and validate a hybrid model for the purpose of implementing 

model predictive control of an integrated continuous dry granulation tableting process. 

2.Methodology 

2.1. Parameter Estimation 

Given 𝑛𝑛 experiments and 𝑚𝑚 output variables, the procedure to estimate model parameters 

can be formulated as a constrained optimization problem: 

min𝜃𝜃� 𝐽𝐽 = ∑ ∑ 𝑤𝑤𝑗𝑗�𝑦𝑦𝑗𝑗,𝑖𝑖 − 𝑦𝑦�𝑗𝑗,𝑖𝑖�2𝑚𝑚𝑗𝑗=1𝑛𝑛𝑖𝑖=1        (1) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡  𝑓𝑓�𝑠𝑠,𝜃𝜃�,𝑦𝑦�� = 0, 𝜃𝜃�  ∈ Ω𝜃𝜃 , 𝑦𝑦�  ∈ Ω𝑦𝑦 

where 𝑠𝑠 and 𝑦𝑦 are measurements of input and output variables. 𝜃𝜃� and 𝑦𝑦� are estimated 

model parameters and predicted output variables, bounded in compact sets Ω𝜃𝜃 and Ω𝑦𝑦, 

respectively. 𝑤𝑤𝑗𝑗 is the weighting for residual of output variable 𝑦𝑦𝑗𝑗.  
2.2. Machine Learning  

Machine learning models are common alternatives when process outputs are difficult to 

predict by pure mechanistic models. The multiple linear regression (MLR) model and the 

neural network (NN) model are employed in this study. The NN models studied consist 

of one hidden layer, where the hyperbolic tangent function is applied. 

2.3. Experimental Methods 

The material used in this study was a blend of 90 % w/w microcrystalline cellulose Avicel 

PH102 and 10% w/w acetaminophen. In each experiment, the Alexanderwerks WP120 

roller compactor was operated for three minutes to reach a steady state, at which point 

samples were collected. The ribbons of interest were collected after the powders were 

compressed into ribbons and then broken into smaller ribbons by the flake crusher. The 

granulator consists of a two-stage hammer mill with two different screen sizes (screen 1 

and screen 2), which produces two granule samples (granule 1 and granule 2). An in-

house flowrate sensor based on a Mettler Toledo ME 4001E weighing scale was located 

at the roller compactor exit to capture the throughput of granules. 

In order to measure the ribbon thickness, a Fisherbrand Traceable digital caliper was used 

to measure thirty ribbons to provide a statistically significant sample size. Geopyc 1360 
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pycnometer was used to measure the ribbon envelop density (𝜌𝜌𝑒𝑒 ).  The ribbon solid 

fraction (𝛾𝛾𝑅𝑅) can be computed as: 𝛾𝛾𝑅𝑅 =
𝜌𝜌𝑒𝑒𝜌𝜌𝑡𝑡         (2)  

where 𝜌𝜌𝑡𝑡  is the powder true density, which is measured by an Accupyc II 1340 

pycnometer. The GSD of granule 1 and granule 2 samples were measured by the Canty 

SolidSizer, which measures the size and area of each particle. In this study, the circular 

equivalent diameter was used and the cumulative frequency of GSD was volume-based. 

3. Results and Discussion 

The input and output variables of the roller compactor are shown in Figure 1. Ribbon 

splitting is a phenomenon causing additional uncertainty in the model accuracy and can 

be avoided when the roll gap and roll pressure are low. 

 
Figure 1. Roller compactor schematic. 

3.1 Roll Compaction 

When the materials transform from the slip condition to the non-slip condition, the stress 

gradients in slip region and nip region are equal. The critical angular roller position at 

which this occurs is known as the nip angle 𝛼𝛼 and can be calculated by Johanson’s model: 4�𝜋𝜋2−𝛼𝛼−𝜈𝜈�tanδEcot(𝐴𝐴−𝜇𝜇)−cot (𝐴𝐴+𝜇𝜇)
− 𝐾𝐾�2𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼−1− 𝑆𝑆𝐷𝐷𝑅𝑅�𝑡𝑡𝑡𝑡𝑛𝑛𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼 = 0      (3) 

where 𝐴𝐴 =
𝛼𝛼+𝜈𝜈+𝜋𝜋22  ,        𝜈𝜈 =

12 �𝜋𝜋 − sin−1 �𝑐𝑐𝑖𝑖𝑛𝑛𝜙𝜙𝑤𝑤𝑐𝑐𝑖𝑖𝑛𝑛𝛿𝛿𝐸𝐸� − 𝜙𝜙𝑊𝑊�,        𝜇𝜇 =
𝜋𝜋4 − 𝛿𝛿𝐸𝐸2   (4) 

Here, 𝛿𝛿𝐸𝐸  is the effective angle of internal friction and 𝜙𝜙𝑊𝑊  is wall friction angle, K is 

compressibility factor, S is roll gap, and 𝐷𝐷𝑅𝑅 is roll diameter. 

Given roll diameter 𝐷𝐷𝑅𝑅  and roll width 𝑊𝑊 , the peak pressure (𝑃𝑃𝑚𝑚𝑡𝑡𝑚𝑚 ) applied on the 

powders at the minimum roll gap 𝑆𝑆 is computed as follows: 𝑃𝑃𝑚𝑚𝑡𝑡𝑚𝑚 =
2𝑃𝑃𝐻𝐻𝐴𝐴𝑐𝑐𝑐𝑐𝑊𝑊𝐷𝐷𝑅𝑅𝐹𝐹          (5) 

with the force factor, 𝐹𝐹, given by 𝐹𝐹 = ∫ � 𝑆𝑆𝐷𝐷𝑅𝑅�1 − 
𝑆𝑆𝐷𝐷𝑅𝑅 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃�𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃�𝛼𝛼0 𝐾𝐾 𝑠𝑠𝑡𝑡𝑠𝑠𝜃𝜃 𝑑𝑑𝜃𝜃      (6) 

where 𝑃𝑃𝐻𝐻 is hydraulic pressure (or roll pressure) and 𝐴𝐴𝑐𝑐𝑐𝑐 is area of the compact surface. 

Based on a compression power law, the ribbon solid fraction at the gap 𝛾𝛾𝐺𝐺  can be 

computed as follows: 𝛾𝛾𝐺𝐺 = 𝛾𝛾0(𝑃𝑃𝑚𝑚𝑡𝑡𝑚𝑚)
1𝐾𝐾         (7) 

where 𝛾𝛾0 is the pre-consolidation solid fraction. However, 𝛾𝛾𝐺𝐺  is not easily measured 

because ribbon elastic relaxation makes ribbon density decrease when ribbons are 
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released from the roll. Given the elastic recovery 𝛽𝛽 , the ribbon solid faction 𝛾𝛾𝑅𝑅 is 

represented as follows: 𝛾𝛾𝑅𝑅 =
𝛾𝛾𝐺𝐺
 𝛽𝛽           (8) 

Considering mass balance around the roll gap and roll speed 𝑁𝑁𝑅𝑅, the mass throughput can 

be calculated as follows: 𝑀̇𝑀 = 𝜋𝜋𝐷𝐷𝑅𝑅𝑊𝑊𝑆𝑆𝑁𝑁𝑅𝑅𝜌𝜌𝑡𝑡𝛾𝛾𝐺𝐺 =  𝜋𝜋𝐷𝐷𝑅𝑅𝑊𝑊𝑆𝑆𝑁𝑁𝑅𝑅𝜌𝜌𝑡𝑡𝛽𝛽𝛾𝛾𝑅𝑅      (9) 
In this work, 15 sets of training data and 4 sets of test data are used to validate and evaluate 

three roll compaction models. First, a data-driven MLR model is built as a benchmark. 

Secondly, roll compaction mechanistic models are highly sensitive to powder 

compressibility 𝐾𝐾 and powder pre-consolidation solid fraction 𝛾𝛾0(Toson et al. , 2019). 

Instead of using common regression approaches to estimate these two model parameters, 

this study estimates parameters in a constrained optimization framework as follows: 

min𝜙𝜙𝑊𝑊, 𝛿𝛿𝐸𝐸, 𝐾𝐾, 𝛾𝛾0,𝛽𝛽 𝐽𝐽 =  ∑ [𝑊𝑊𝛾𝛾�𝛾𝛾𝑅𝑅,𝑖𝑖 − 𝛾𝛾�𝑅𝑅,𝑖𝑖�2 +𝑊𝑊𝑀𝑀 �𝑀̇𝑀𝑖𝑖 − 𝑀̇𝑀�𝑖𝑖�2]𝑛𝑛𝑖𝑖=1     (10) 

Thirdly, elastic recovery is known to be a function of roll compaction parameters instead 

of a constant. Under the assumption that measured elastic recovery is the ratio of 

measured ribbon thickness to roll gap, the predicted elastic recovery 𝛽𝛽 is formulated as: 𝛽𝛽𝑀𝑀𝑐𝑐𝑀𝑀𝑒𝑒𝑀𝑀3 = 0.96 + 0.12
𝑆𝑆𝑆𝑆0 + 0.03

𝑃𝑃𝐻𝐻𝑃𝑃𝐻𝐻0 + 0.01
𝑁𝑁𝑅𝑅𝑁𝑁𝑅𝑅0     (11) 

where 𝛽𝛽𝑀𝑀𝑐𝑐𝑀𝑀𝑒𝑒𝑀𝑀3 has training error MAPE = 4.17 % and test error MAPE = 10.67%. To 

further improve the elastic recovery predictability, it is worth investigating ribbon 

splitting phenomenon and other nonlinear ML models in future studies. The prediction 

performances of the three roll compaction models are summarized in Table 1, which is 

calculated using the test sets. By incorporating the relationships between roll compaction 

parameters and ribbon elastic recovery, Model3 has the smallest mean absolute 

percentage error (MAPE) for both ribbon solid fraction and mass throughput, indicating 

the best model performance. The parity plot for Model3 is shown in Figure 2. 
Table 1. Roll compaction model performance. 

Model MAPE(𝛾𝛾𝑅𝑅) [%] MAPE(𝑀̇𝑀) [%] 

Model1 (MLR) 5.68 9.98 

Model2 (Johanson’s with constant 𝛽𝛽) 4.40 5.01 

Model3 (Johanson’s with 𝛽𝛽 = 𝛽𝛽𝑚𝑚𝑐𝑐𝑀𝑀𝑒𝑒𝑀𝑀3) 2.86 4.61 

 
Figure 2. Performance of hybrid model of considering elastic recovery model (Model3). 

3.2 Milling 

The hammer milling step commonly produces granules with a bimodal size distribution, 

which is not adequately described by only using 𝐷𝐷10,𝐷𝐷50 and 𝐷𝐷90 values. Therefore, the 

entire cumulative size distribution 𝐷𝐷5,𝐷𝐷10, … ,𝐷𝐷95 measured with the Canty SolidSizer is 

represented by a bimodal GSD, which can be characterized by a cumulative bimodal 

Weibull distribution 𝑄𝑄3(𝑥𝑥): 𝑄𝑄3(𝑥𝑥) =  𝑎𝑎 �1− 𝑠𝑠−� 𝑥𝑥𝑝𝑝1�𝑚𝑚1�+ (1− 𝑎𝑎)�1− 𝑠𝑠−� 𝑥𝑥𝑝𝑝2�𝑚𝑚2�    (12) 
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where 𝑎𝑎 is the weighting of the two modes, 𝑝𝑝1 and 𝑝𝑝2 are the size parameters of the small 

mode and large mode, respectively, whereas 𝑚𝑚1and 𝑚𝑚2 represent the shape parameters 

of the associated modes. Utilizing these statistical model parameters provides a more 

interpretable approach to describing GSD and reduces the GSD parameter set from 19 to 

5. The bimodal Weibull distribution parameters can be computed by solving an 

optimization problem:   

min𝑡𝑡, 𝑝𝑝1, 𝑝𝑝2,𝑚𝑚1,𝑚𝑚2 𝐽𝐽 =  ∑ � 𝑖𝑖100− 𝑄𝑄3(𝐷𝐷𝑖𝑖)�295𝑖𝑖=5,10…       (13) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 0 ≤ 𝑎𝑎 ≤ 1, 0 < 𝑝𝑝1 < 𝑝𝑝2, 1 < 𝑚𝑚1,  𝑚𝑚2  

To link the roll compaction and milling process, the ribbon solid fraction 𝛾𝛾𝑅𝑅 and ribbon 

thickness (𝑅𝑅𝑠𝑠𝑠𝑠𝑅𝑅) serve as inputs of the milling model. In addition, milling speed (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) 
and screen size(s) are also used to predict the GSD described by five bi-modal Weibull 

fitting parameters. The sensitivity analysis of both granule 1 and granule 2 are shown in 

Figure 3. The sensitivity analysis was determined by the MLR model coefficient, where 

inputs and outputs were both rescaled by dividing the minimum values. In terms of 

weighting 𝑎𝑎, ribbon solid fraction of granule 1 is dominated by ribbon solid fraction while 

that of granule 2 is more sensitive to screen size. For both granule 1 and granule 2, the 

size parameter 𝑝𝑝1  is highly related to ribbon solid fraction. On the other hand, 𝑝𝑝2  is 

dominated by screen size given that screen size determines the upper boundary of the 

particle size. Shape parameter 𝑚𝑚1 is less sensitive to all process inputs compared to the 

shape parameter 𝑚𝑚2, which is highly impacted by the solid ribbon fraction.  

 
Figure 3. Sensitivity analysis of the milling process. 

To evaluate the performance of the milling models, the MAPE of GSD is utilized and can 

be computed as:  𝑀𝑀𝐴𝐴𝑃𝑃𝑀𝑀 =  ∑ ∑ �𝐷𝐷𝑝𝑝,𝑖𝑖𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝−𝐷𝐷𝑝𝑝,𝑖𝑖𝐷𝐷𝑝𝑝,𝑖𝑖 � × 100%95𝑝𝑝=5,10,…
𝑛𝑛𝑖𝑖=1       (14) 

The evaluation of the milling models is summarized in Table 2, which is based on 20 

training sets and 6 test sets. MLR and NN models are used to predict GSD. The NN 

models have two neurons in the hidden layer. While increasing the number of  neurons 

can readily make the training error of the NN model smaller than that of the MLR model, 

the test error can become much worse due to overfitting. The NN model generally can 

handle nonlinearity better than the MLR model, but some constraints might be hard to 

enforce, e.g., predicted shape parameters 𝑚𝑚1 and 𝑚𝑚2 might be less than 1 in the test sets.  

Figure 4 demonstrates the predictability of the granule 2 GSD by using the MLR or NN 

models based on six test sets. It is worth noting that there exists a significant mismatch 

between measurement and NN predictions in Exp 6, but the NN model prediction seems 

more reasonable considering that screen 2 is 1.25 mm and Exp 6 has a smaller ribbon 

solid fraction compared to Exp 3, which should result in a smaller GSD. In summary, the 
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hybrid model successfully predicts GSD, and further investigation of different ML 

models might be useful to enhance the model performance. 
Table 2 Milling model performance. 

Model 
Granule1 Granule2 𝑀𝑀𝐴𝐴𝑃𝑃𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛 (%) 𝑀𝑀𝐴𝐴𝑃𝑃𝑀𝑀𝑡𝑡𝑒𝑒𝑐𝑐𝑡𝑡  (%) 𝑀𝑀𝐴𝐴𝑃𝑃𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛 (%) 𝑀𝑀𝐴𝐴𝑃𝑃𝑀𝑀𝑡𝑡𝑒𝑒𝑐𝑐𝑡𝑡  (%) 

MLR 9.79 11.21 10.89 8.95 

NN 9.66 12.20 13.03 8.37 

 

 
Figure 4. Model prefomance of granule2 based on test sets. 

4. Conclusion 
A hybrid model for the roller compactor is proposed that demonstrates satisfactory predictability of 

ribbon solid fraction, throughput, and GSD. To further improve the model performance, 

investigation on ribbon elastic recovery and splitting phenomenon and incorporation constraints 

into ML model could be important. Future work will include relating ribbon solid fraction and GSD 

to the tablet properties and implementing model predictive control of the integrated dry granulation 

tableting process. 
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