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Abstract

A quantitative model can play an essential role in controlling critical quality attributes of
products and in designing the associated processes. One of the challenges in designing a
dry granulation process is to find the optimal balance between improving powder
flowability and sacrificing powder tabletability, both of which are highly affected by
ribbon solid fraction and granule size distribution (GSD). This study is focused on
developing a hybrid machine learning (ML)-assisted mechanistic model to predict ribbon
solid fraction, GSD, and throughput for the purpose of implementing model predictive
control of an integrated continuous dry granulation tableting process. It is found that the
predictability of ribbon solid fraction and throughput are improved when modification is
made to Johanson’s model by incorporating relationships between roll compaction
parameters and ribbon elastic recovery. Such relationships typically are either not
considered or assumed to be a constant in the models reported in the literature. To
describe the nature of the bimodal size distribution of roller compactor granules instead
of only using traditional D,, D5, and Dgyq values, the GSD is represented by a bimodal
Weibull distribution with five fitting parameters. Furthermore, these five GSD parameters
are predicted by ML models. The results indicate the ribbon solid fraction and screen size
are the two most significant factors affecting GSD.
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1. Introduction

The dry granulation process is an important route for producing a solid dosage form in
the pharmaceutical industry. The roller compactor is the key unit operation in a dry
granulation process. It includes two steps: (1) roll compaction in which powder blends
are compressed between two counter-rotating rolls into a ribbon, and (2) milling in which
these ribbons are crushed into granules. The benefits of dry granulation include improved
blend uniformity and flowability by enlargement of particle size. Powder flowability
plays a key role in determining the performance of the tablet manufacturing process and
final drug product quality (Lagare et al., 2023). In addition, good powder flowability can
reduce powder fouling and improve the on-line sensor performance, such as capacitance-
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based particulate flow rate sensor (Huang et al., 2022). However, particle size over-
enlargement or over-compression of powders can compromise the tabletabiltiy (Herting &
Kleinebudde, 2008). Finding the optimal balance between improving powder flowability
and sacrificing powder tabletability, which are highly affected by ribbon solid fraction
and GSD, becomes one of the challenges in designing a dry granulation process.
Therefore, quantitative models to predict ribbon solid fraction and GSD are essential to
optimally operate the roller compactor.

Mechanistic models such as Johanson’s model(Johanson, 1965) are typically used to
describe roll compaction and further predict ribbon solid fraction. However, one of the
reasons for the unsatisfactory prediction accuracy of ribbon solid fraction is due to elastic
recovery, which is either not considered or assumed to be a constant in the models
reported in the literature (Keizer & Kleinebudde, 2020). Population balance models
(PBM) can account for the milling step and can be used to predict GSD, but it is
complicated to determine the breakage function in the PBM purely based on ribbon
fracture physics. Given the unknown physical nature of ribbon elastic recovery and GSD,
machine learning (ML) is a preferred alternative to developing a mechanistic model.
Moreover, ML and mechanistic model components can be combined into a hybrid model
to maintain high physical interpretability and feasibility. Therefore, the primary objective
of this work is to develop and validate a hybrid model for the purpose of implementing
model predictive control of an integrated continuous dry granulation tableting process.

2.Methodology

2.1. Parameter Estimation
Given n experiments and m output variables, the procedure to estimate model parameters
can be formulated as a constrained optimization problem:
2

m@in] = i1 Xt W (vji —9ii) (D
subject to f(u, 9,37) =0, 6 € Qg , y € Q,
where u and y are measurements of input and output variables. 8 and J are estimated
model parameters and predicted output variables, bounded in compact sets Qg and €,
respectively. w; is the weighting for residual of output variable y;.
2.2. Machine Learning
Machine learning models are common alternatives when process outputs are difficult to
predict by pure mechanistic models. The multiple linear regression (MLR) model and the
neural network (NN) model are employed in this study. The NN models studied consist
of one hidden layer, where the hyperbolic tangent function is applied.
2.3. Experimental Methods
The material used in this study was a blend of 90 % w/w microcrystalline cellulose Avicel
PH102 and 10% w/w acetaminophen. In each experiment, the Alexanderwerks WP120
roller compactor was operated for three minutes to reach a steady state, at which point
samples were collected. The ribbons of interest were collected after the powders were
compressed into ribbons and then broken into smaller ribbons by the flake crusher. The
granulator consists of a two-stage hammer mill with two different screen sizes (screen 1
and screen 2), which produces two granule samples (granule 1 and granule 2). An in-
house flowrate sensor based on a Mettler Toledo ME 4001E weighing scale was located
at the roller compactor exit to capture the throughput of granules.
In order to measure the ribbon thickness, a Fisherbrand Traceable digital caliper was used
to measure thirty ribbons to provide a statistically significant sample size. Geopyc 1360
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pycnometer was used to measure the ribbon envelop density (p.). The ribbon solid
fraction (yz) can be computed as:

Pe
ve =2 2)

where p; is the powder true density, which is measured by an Accupyc II 1340
pycnometer. The GSD of granule 1 and granule 2 samples were measured by the Canty
SolidSizer, which measures the size and area of each particle. In this study, the circular
equivalent diameter was used and the cumulative frequency of GSD was volume-based.

3. Results and Discussion

The input and output variables of the roller compactor are shown in Figure 1. Ribbon
splitting is a phenomenon causing additional uncertainty in the model accuracy and can
be avoided when the roll gap and roll pressure are low.
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Figure 1. Roller compactor schematlc
3.1 Roll Compaction
When the materials transform from the slip condition to the non-slip condition, the stress
gradients in slip region and nip region are equal. The critical angular roller position at
which this occurs is known as the nip angle a and can be calculated by Johanson’s model:

S
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Here, &5 is the effective angle of internal friction and ¢y, is wall friction angle, K is
compressibility factor, S is roll gap, and Dy, is roll diameter.
Given roll diameter Dy and roll width W, the peak pressure (P,q,,) applied on the

powders at the minimum roll gap S is computed as follows:
2PHAcs
Prax = WDRF (5

with the force factor, F given by
e [

where Py is hydraullc pressure (or roll pressure) and A is area of the compact surface.
Based on a compression power law, the ribbon solid fraction at the gap y,; can be
computed as follows:

1
Ye = Yo(Pnax)¥ (7
where y,is the pre-consolidation solid fraction. However, y,; is not easily measured
because ribbon elastic relaxation makes ribbon density decrease when ribbons are

—_—— cosB cos6

K
l cosf db (6)
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released from the roll. Given the elastic recovery f, the ribbon solid faction yyis
represented as follows:

_Yc
Yr = 5 (3

Considering mass balance around the roll gap and roll speed Ny, the mass throughput can
be calculated as follows:

M = nDRWSNgpyc = TDRWSNppByr €))
In this work, 15 sets of training data and 4 sets of test data are used to validate and evaluate
three roll compaction models. First, a data-driven MLR model is built as a benchmark.
Secondly, roll compaction mechanistic models are highly sensitive to powder
compressibility K and powder pre-consolidation solid fraction y,(Toson et al., 2019).
Instead of using common regression approaches to estimate these two model parameters,
this study estimates parameters in a constrained optimization framework as follows:

2 . ~\2
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Thirdly, elastic recovery is known to be a function of roll compaction parameters instead

of a constant. Under the assumption that measured elastic recovery is the ratio of
measured ribbon thickness to roll gap, the predicted elastic recovery § is formulated as:

Buodgers = 0.96 + 0.12;—0+ 0.03°H 4 0.01 = (an

PHo NRg
where Suyoqer3 has training error MAPE = 4.17 % and test error MAPE = 10.67%. To
further improve the elastic recovery predictability, it is worth investigating ribbon
splitting phenomenon and other nonlinear ML models in future studies. The prediction
performances of the three roll compaction models are summarized in Table 1, which is
calculated using the test sets. By incorporating the relationships between roll compaction
parameters and ribbon elastic recovery, Model3 has the smallest mean absolute
percentage error (MAPE) for both ribbon solid fraction and mass throughput, indicating
the best model performance. The parity plot for Model3 is shown in Figure 2.
Table 1. Roll compaction model performance.

Model MAPE(yR) [%] MAPE(M) [%)]
Modell (MLR) 5.68 9.98
Model2 (Johanson’s with constant f3) 4.40 5.01
Model3 (Johanson’s with 8 = Bodei3) 2.86 4.61
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Figure 2. Performance of hybrid model of considering elastic recovery model (Model3).
3.2 Milling
The hammer milling step commonly produces granules with a bimodal size distribution,
which is not adequately described by only using D; 4, D5 and Dy, values. Therefore, the
entire cumulative size distribution Ds, Dy, ..., D95 measured with the Canty SolidSizer is
represented by a bimodal GSD, which can be characterized by a cumulative bimodal
Weibull distribution Q5 (x):

Q:(x) = a (1 - e_(%)m) +(1-a) (1 - e_(%)m) (12)
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where a is the weighting of the two modes, p, and p, are the size parameters of the small
mode and large mode, respectively, whereas m,and m, represent the shape parameters
of the associated modes. Utilizing these statistical model parameters provides a more
interpretable approach to describing GSD and reduces the GSD parameter set from 19 to
5. The bimodal Weibull distribution parameters can be computed by solving an
optimization problem:
. 2
min ] = $%a0. (155~ 0:(0)) (13)
a, P1, P2,My1,mz

subjectto0<a<1, 0<p;<p,, 1<my, m,
To link the roll compaction and milling process, the ribbon solid fraction y and ribbon
thickness (Rtck) serve as inputs of the milling model. In addition, milling speed (Mill)
and screen size(s) are also used to predict the GSD described by five bi-modal Weibull
fitting parameters. The sensitivity analysis of both granule 1 and granule 2 are shown in
Figure 3. The sensitivity analysis was determined by the MLR model coefficient, where
inputs and outputs were both rescaled by dividing the minimum values. In terms of
weighting a, ribbon solid fraction of granule 1 is dominated by ribbon solid fraction while
that of granule 2 is more sensitive to screen size. For both granule 1 and granule 2, the
size parameter p, is highly related to ribbon solid fraction. On the other hand, p, is
dominated by screen size given that screen size determines the upper boundary of the
particle size. Shape parameter m, is less sensitive to all process inputs compared to the
shape parameter m,, which is highly impacted by the solid ribbon fraction.
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Figure 3. Sensitivity analysis of the milling process.
To evaluate the performance of the milling models, the MAPE of GSD is utilized and can

be computed as:
Dpred_

i Dpi
MAPE = 2?21225:5,10,...| £ D

pi

x 100% (14)

The evaluation of the milling models is summarized in Table 2, which is based on 20
training sets and 6 test sets. MLR and NN models are used to predict GSD. The NN
models have two neurons in the hidden layer. While increasing the number of neurons
can readily make the training error of the NN model smaller than that of the MLR model,
the test error can become much worse due to overfitting. The NN model generally can
handle nonlinearity better than the MLR model, but some constraints might be hard to
enforce, e.g., predicted shape parameters m; and m, might be less than 1 in the test sets.
Figure 4 demonstrates the predictability of the granule 2 GSD by using the MLR or NN
models based on six test sets. It is worth noting that there exists a significant mismatch
between measurement and NN predictions in Exp 6, but the NN model prediction seems
more reasonable considering that screen 2 is 1.25 mm and Exp 6 has a smaller ribbon
solid fraction compared to Exp 3, which should result in a smaller GSD. In summary, the
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hybrid model successfully predicts GSD, and further investigation of different ML
models might be useful to enhance the model performance.
Table 2 Milling model performance.
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Figure 4. Model prefomance of granule2 based on test sets.

4. Conclusion

A hybrid model for the roller compactor is proposed that demonstrates satisfactory predictability of
ribbon solid fraction, throughput, and GSD. To further improve the model performance,
investigation on ribbon elastic recovery and splitting phenomenon and incorporation constraints
into ML model could be important. Future work will include relating ribbon solid fraction and GSD
to the tablet properties and implementing model predictive control of the integrated dry granulation
tableting process.
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