Constraint Optimization over Semirings”

A. Pavan (0!, Kuldeep S. Meel ()%, N. V. Vinodchandran (r)*, and Arnab Bhattacharyya®

Towa State Univerity
pavan@cs.iastate.edu
>National University of Singapore, Singapore
meell@comp.nus.edu.sqg
3University of Nebraska-Lincoln
vinod@cse.unl.edu
*National University of Singapore, Singapore
arnabb@nus.edu.sg

August 27, 2023

Abstract

Interpretations of logical formulas over semirings (other than the Boolean semiring) have applica-
tions in various areas of computer science including logic, Al, databases, and security. Such interpreta-
tions provide richer information beyond the truth or falsity of a statement. Examples of such semirings
include Viterbi semiring, min-max or access control semiring, tropical semiring, and fuzzy semiring.

The present work investigates the complexity of constraint optimization problems over semirings.
The generic optimization problem we study is the following: Given a propositional formula ¢ over n
variable and a semiring (K, +,-,0,1), find the maximum value over all possible interpretations of ¢
over K. This can be seen as a generalization of the well-known satisfiability problem (a propositional
formula is satisfiable if and only if the maximum value over all interpretations/assignments over the
Boolean semiring is 1). A related problem is to find an interpretation that achieves the maximum value.
In this work, we first focus on these optimization problems over the Viterbi semiring, which we call
optConfVal and optConf.

We first show that for general propositional formulas in negation normal form, optConfVal and
optConf are in FPNP. We then investigate optConf when the input formula ¢ is represented in the
conjunctive normal form. For CNF formulae, we first derive an upper bound on the value of optConf as
a function of the number of maximum satisfiable clauses. In particular, we show that if r is the maxi-
mum number of satisfiable clauses in a CNF formula with m clauses, then its optConf value is at most
1/4™~". Building on this we establish that optConf for CNF formulae is hard for the complexity class
FPNPlog] we also design polynomial-time approximation algorithms and establish an inapproximabil-
ity for optConfVal. We establish similar complexity results for these optimization problems over other
semirings including tropical, fuzzy, and access control semirings.

*The authors decided to forgo the old convention of alphabetical ordering of authors in favor of a randomized ordering, denoted
by (@. The publicly verifiable record of the randomization is available at https://www.aecaweb.org/journals/policies/ random-author-
order/search. An abridged version of the paper appeared in AAAI 2023.

pavan@cs.iastate.edu
meel@comp.nus.edu.sg
vinod@cse.unl.edu
arnabb@nus.edu.sg
https://www.aeaweb.org/journals/policies/ random-author-order/search
https://www.aeaweb.org/journals/policies/ random-author-order/search

1 Introduction

Classically, propositional formulae are interpreted over the Boolean semiring B = ({F, T}, vV, A, F, T) which
is the standard semantics for the logical truth. In this setting, the variables take one of the two values T (true)
or F (false). However, it is natural to extend the semantics to other semirings. Here, the idea is to interpret
logical formulae when the variables take values over a semiring K = (K, +,+,0,1). Such interpretations
provide richer information beyond the truth or falsity of a statement and have applications in several areas
such as databases, Al, logic, and security (see [ILJ89, [FR97, [Zim97, [CWWOQO0, |Cui02, |GT20] and refer-
ences therein). In particular, semiring provenance analysis has been successfully applied in several software
systems, such as Orchestra and Propolis (see, e.g., [ADT11,IDMRT14, [FGTOS| |Grel1}, [Tan13]).

Examples of semirings that are studied in the literature include Viterbi semiring, fuzzy semiring, min-

max or access control semiring, and tropical semiring. Semantics over the Viterbi semiring V = ([0, 1], max, -

has applications in database provenance, where x € [0,1] is interpreted as a confidence score [GT20,
GKTO7,Tan17,I(GM21]], in probabilistic parsing, in probabilistic CSPs, and in Hidden Markov Models [[Vit67,
KMO3l, IBMRO3]. The access control semiring can be used as a tool in security specifications [GT20]. Other
semirings of interest include the tropical semiring, used in cost analysis and algebraic formulation for short-
est path algorithms [MohO2]], and fuzzy semirings used in the context of fuzzy CSPs [BMR93]].

Optimization problems over Boolean interpretations have been central in many application as well as
foundation areas. Indeed, the classical satisfiability problem is determining whether a formula ¢(x1, - - - , z,)
has an interpretation/assignment over the Boolean semiring that evaluates to True. Even though semiring se-
mantics naturally appear in a variety of applications, the optimization problems over semirings, other than
the Boolean semiring, have not received much attention.

In this work, we introduce and investigate the complexity of optimization problems over semiring se-
mantics. Let K = (K, +,-,0, 1) be a semiring with a total order over K and ¢ be a propositional formula
over a set X of variables. A K-interpretation 7 is a function from X to K. Such an interpretation can be
naturally extended to formula ¢, which we denote by Sem(y, 7). We study the following computational
problem: Given a propositional formula ¢ in negation normal form over a set X of variables, compute the
maximum value of Sem (¢, 7) over all possible interpretations 7. We call this problem optSemVal. A related
problem, denoted optSem, is to compute an interpretation 7 that maximizes Sem(y,). Refer to Section
for a precise formulation of these problems.

There has been a rich history of work which formulated the notion of CSP over semirings and inves-
tigated local consistency algorithms in the general framework [Bis04, BG06, BMR93, BMR97, BMR 99,
MRSO06]. These works did not involve interpretations and did not focus on the computational complexity
of the above-defined problems. Relatedly, the computational complexity of sum-of-product problems over
semirings has been studied recently [EK21]]. However, the problems they study are different from ours. To
the best of our knowledge, optimization problems optSem and optSemVal that we consider over semirings
have not been studied earlier and there are no characterizations of their computational complexity.

1.1 Our Results

We comprehensively study the computational complexity of optSem and the related problem optSemVal
over various semirings such as Viterbi semiring, tropical semiring, access control semiring and fuzzy semir-
ing, from both an algorithmic and a complexity-theoretic viewpoint. When the underlying semiring is the
Viterbi semiring, we call these problems optConf and optConfVal. Our results can be summarized as fol-
lows:

1. We establish that both optConf and optConfVal are in the complexity class FPNF . The crucial underlying
observation is that even though m maps X to real values in the range [0, 1]; the solution to optConfVal
can be represented using polynomially many bits. We then draw upon connections to Farey sequences to
derive an algorithm with polynomially many NP calls (Theorem [3.2).

2. For CNF formulas, we establish an upper bound on optConfVal as a function of the number of maximum
satisfiable clauses (Theorem [3.7]).

3. We also establish a lower bound on the complexity of optConfVal and optConf. In particular, we show
that both the problems are hard for the complexity class FPNPlogl To this end, we demonstrate a re-
duction from MaxSAT Val to optConfVal; this reduction crucially relies on the above-mentioned upper
bound on optConfVal in terms of the number of maximum satisfiable clauses (Theorem [3.9).

4. We design a polynomial-time approximation algorithm for optConfVal and establish an inapproxima-
bility result. In particular, for 3-CNF formulas with m clauses, we design a 0.716"*-approximation al-
gorithm and show that the approximation factor can not be improved to 0.845™ unless P = NP (Theo-

rems [4.3] and 4.3).

5. Finally, we show that for the access control semiring, the complexity of these optimization problems is
equivalent to the corresponding problems over Boolean semiring (Theorem [5.3).

Remark 1. Since Viterbi semiring and tropical semiring are isomorphic via the mapping x < —Inux,
results established for Viterbi semiring also hold for the tropical semiring. Fuzzy semiring can be seen as an
“infinite refinement” of access control semiring with the same algebraic structure, results that we establish
for access control semiring also hold for fuzzy semiring.

Organization. The rest of the paper is organized as follows. We give the necessary notation and definitions
in Section [2| Section [3| details our results on the computational complexity of optConf and optConfVal.
Sectionfd|deals with approximate algorithms and the hardness of approximation of optConfVal. In Section5]
we give complexity results for optimization problems for the access control semiring. Finally, we conclude
in Section

2 Preliminaries

We assume that the reader is familiar with definition of a semiring. We denote a generic semiring by K =
(K,+,-,0,1) where K is the underlying set. For interpreting formulas over K, we will add a “negation”
function T : K — K. We assume 1 is a bijection so that 1(7(z)) = =, and 71(0) = 1. For ease of
presentation, we use the most natural negation function (depending on the semiring). However, many of our
results hold for very general interpretations of negation. Finally, as our focus is on optimization problems,
we will also assume a (natural) total order on the elements of K.

For a set X = {z1, 9, ...x,} of variables, we associate the set X = {—z1,...,~x,}. Wecall X U X
the literals and formulas we consider are propositional formulas over X U X in negation normal form. We
also view a propositional formula ¢ in negation normal form as a rooted directed tree wherein each leaf
node is labeled with a literal, 1, or 0 and each internal node is labeled with conjunction (A) or disjunction V.
Note that viewing ¢ as a tree ensures a similar size as its string representation. We call the tree representing
the formula ¢ as formula tree and denote it with T,,. For a propositional formula ¢(z1, - - - , z;,), in negation
normal form we use m to denote the size of the formula, i.e. the total number of occurrences of each variable
and its negation. When ¢(z1, - - - z,) is in CNF form, m denotes the number of clauses.

We interpret a propositional formula over a semiring K by mapping the variables to K and naturally
extending it. Formally, a K-interpretation is a function 7 : X — K. We extend 7 to an arbitrary propositional
formula ¢ in negation normal form, which is denoted by Sem(,) (Sem stands for ‘semantics’), as follows.

) = m(z)

- Sem(z,
- Sem(—a,) = T(r(z))
(
(

- Sem(a V B,7) = Sem(a, 7) + Sem(B,)
- Sem(a A B,7) = Sem(a,) - Sem(B,)

2.1 Optimization Problems and Complexity Classes

For a formula ¢, we define optSemVal(y) as

optSemVal(y) = max{Sem(p,)},

where max is taken over all possible K-interpretations from X to K.

Definition 2.1 (optSem and optSemVal). Given a propositional formula ¢ in negation normal form, the
optSemVal problem is to compute optSemVal(). The optSem problem is to compute a K-interpretation
that achieves optSemVal(yp), i.e, output 7* so that optSemVal(y) = Sem(p, 7*).

Notice that when K is the Boolean semiring (with 0 < 1 ordering and standard negation interpre-
tation), optSemVal is the well-known satisfiability problem: the formula ¢ is satisfiable if and only if
optSemVal(y) = 1. Also, the problem optSem is to output a satisfying assignment if the formula ¢ is
satisfiable.

In this work, we consider the following semirings.

1. Viterbi semiring V = ([0, 1], max,-,0,1). As mentioned, the Viterbi semiring has applications in
database provenance, where = € [0, 1] is interpreted as confidence scores, in probabilistic parsing, in
probabilistic CSPs, and in Hidden Markov Models.

2. The tropical semiring T = (R U {oo}, min, 4, 00, 0). The tropical semiring is isomorphic to the
Viterbi semiring via the mapping x <> —Inz.

3. The fuzzy semiring F = ([0, 1], max, min, 0, 1).

4. Access control semiring A, = ([k], max, min, 0, k). Intuitively, each ¢ € [k] is associated with an
access control level with natural ordering. Here O corresponds to public access and n corresponds to
no access at all. [k] isthe set {0 < 1 < --- < k}.

Most of our focus will be on complexity of optSem and optSemVal problems over the Viterbi semir-
ing. We call the corresponding computational problems optConf and optConfVal respectively. We call the
extended interpretation function Sem as Conf in this case.

Definition 2.2 (MaxSat and MaxSatVal). Given a propositional formula ¢ in CNF form, the MaxSat prob-
lem is to compute an assignment of ¢ that satisfies the maximum number of clauses. Given a propositional
formula ¢ in CNF form, the MaxSatVal problem is to compute the maximum number of clauses of ¢ that
can be satisfied.

We need a notion of reductions between functional problems. We use the notion of metric reductions
introduced by Krentel [Kre88|).

Definition 2.3 (Metric Reduction). For two functions f, g : {0,1}* — {0, 1}*, we say that f metric reduces
to g if there are polynomial-time computable functions hy and he where hy : {0,1}* — {0,1}* (the
reduction function) and ho : {0,1}* x {0,1}* — {0, 1}* so that for any z, f(z) = ha(z, g(hi(x))).

Definition 2.4. For a function ¢ : N — N, FPNPIE™)] denotes the class of functions that can be solved in
polynomial-time with O((n)) queries to an NP oracle where n is the size of the input. When ¢(n) is some
polynomial, we denote the class by FPNY.

Metric reductions are used to define notions of completeness and hardness for function classes FPNY

and FPNPlog] The following result due to Krentel [Kre88] characterizes the complexity of the MaxSatVal
problem.

Theorem 2.5 ([Kre88]). MaxSatVal is complete for FPNYI8l ynder metric reductions.
The following proposition is a basic ingredient in our results. It can be proved using basic calculus.

Proposition 1. Let f(z) = x%(1 — x)® where a,b are non-negative integers, the maximum value of f(x)

a b
over the domain [0, 1] is attained when x = . The maximum value of the function is (ﬁ) (ﬁ) .

3 Computational Complexity of Confidence Maximization

For semantics over Viterbi semiring we assume the standard closed world semantics and use the negation
function 71(z) = 1 — 2. Thus we have Conf(—z, 7) + Conf(x, 7) = 1. However, our upper bound proofs go
through for any reasonable negation function. We discuss this in Remark [2}

Since Conf(p, 7) can be computed in polynomial time, optConf is at least as hard as optConfVal. The
following observation states that computing optConfVal and optConf are NP-hard.

Observation 3.1. For a formula ¢, optConfVal(¢) = 1 if and only if ¢ satisfiable. Hence both optConf
and optConfVal are NP-hard.

While both optConf and optConfVal are NP-hard, we would like to understand their relation to other
maximization problems. In the study of optimization problems, the complexity classes FPN and FpNPllog]

play a key role. In this section, we investigate both upper and lower bounds for these problems in relation to
the classes FPNP and FPNPllog],

An Illustrative Example. We first provide an illustrative example that gives an idea behind the upper
bound. Consider the formula ¢(x1, z2) = (1) A (z2) A (—x1 V —x2). Clearly, the formula is not satisfiable.
Over the Viterbi semiring the value of the optConfVal = HEI%X” {z122(1 — 21), Z122(1 — 22) } by distribu-
z;€[0,
tivity. This is maximized when (by Proposition[I)) z; = 1 and z5 = 0.5 or x; = 0.5 and x5 = 1, leading
to an optimum value of 0.25. In the following section, we show that the computation of optConfVal reduces
to maximization over a set of polynomial terms wherein each polynomial term corresponds to a proof tree,
which we define. While the number of polynomial terms could be exponential, we use an NP oracle to binary

search for the term that gives the maximum value.

3.1 An Upper Bound for General Formulae

We show that optConfVal and optConf can be computed in polynomial-time with oracle queries to an NP
language.

Theorem 3.2. optConfVal for formulas in negation normal form is in FPNY.

Proof Idea: In order to show that optConfVal is in FPNY| we use a binary search strategy using a language
in NP. One of the challenges is that the confidence value could potentially be any real number in [0, 1]
and thus apriori we may not be able to bound the number of binary search queries. However, we first
argue that for any formula ¢ on n variables and with size m, optConf(y) is a fraction of the form A/B
where 1 < A < B < 2nmlogm (rdered fractions of such form are known as Farey sequence of order
2rmlogm (denoted as Fynm o m). Thus our task is to do a binary search over Fynm 1o m With time complexity
O(nmlogm). However, in general binary search for an unknown element in the Farey sequence Fy with
time complexity O(log N') appears to be unknown. We overcome this difficulty by using an NP oracle to
aid the binary search. We will give the details now.

Definition 3.3. Let p(x1,- - -, x,) be a propositional formula in negation normal form with size m. Let T,
be its formula tree. A proof tree 1" of T, is a subtree obtained by the following process: for every OR node
v, choose one of the sub-trees of v. For every AND node v, keep all the subtrees.

Note that in a proof tree every OR node has only one child.

Definition 3.4. Let ©(x1,--- ,x,) be a propositional formula in negation normal form and let 7" be a proof
tree. We define the proof tree polynomial pr by inductively defining a polynomial for the subtree at every
node v (denoted by p,): If the node v is a variable x;, the polynoimal is z; and if it is —z;, the polynomial is
(1 — ;). If v is an AND node with children vy, .. ., vs, then p, = Hle ps. If v is an OR node with a child
u, then p, = p,.

Claim 3.4.1. Let p(x1,- - ,zy) be a propositional formula in negation normal form and let T be a proof
tree of .

1. The proof tree polynomial pr is of the form

where 0 < a; + b; < m.

2. For a V-interpretation T,
Conf(T,7) = pr (w(z1),...,7(x,)) .

3. Both optConf(T") and optConfVal(T') can be computed in polynomial-time.

a; bl
4. optConfVal(T') =11 ; (a;ﬁbz) (aﬁﬁb,) .

Proof. Item (1) follows from the definition of the proof tree polynomial and a routine induction and the fact
that the size of the formula ¢ is m. Item (2) follows from the definitions.

Note that the polynomial 7", z}*(1 — ;)% can be maximized by maximizing each of the individual
terms z;*(1 — x;)%. By Proposition |I| the maximum value for a polynomial of this form is achieved at

6

z; = ;%5 - Thus the interpretation m(xz;) = %4 is an optimal V-interpretation that can be computed in

polynomial-time. Since 0 < a; + b; < m, optConfVal also can be computed in polynomial-time. Item (4)
follows from Item (3), by substituting the values 7(x;) for in the polynomial py.]

The next claim relates optConf of the formula ¢ to optConf of its proof trees. The proof of this claim
follows from the definition of proof tree and standard induction.

Claim 3.4.2. For a formula ¢,

optConfVal(p) = max optConfVal(T)

where maximum is taken over all proof trees T of T,. If T* is the proof tree for which optConf(T') is
maximized, then optConf(T™) = optConf(y).

The above claim states that optConf(y) can be computed by cycling through all proof trees 7" of ¢
and computing optConf (7). Since there could be exponentially many proof trees, this process would take
exponential time. Our task is to show that this process can be done in FPNY'. To do this we establish a claim
that restricts values that optConfVal() can take. We need the notion of Farey sequence.

Definition 3.5. For any positive integer IV, the Farey sequence of order N, denoted by Fy, is the set of all
irreducible fractions p/q with 0 < p < ¢ < N arranged in increasing order.

Claim 3.5.1. 1. For a propositional formula p(x1,--- ,), optConfVal(p) belongs to the Farey se-
quence F2nm logm.

u— ’U‘ > 1/22nmlogm

2. For any two fractions u and v from Fonmiogm,

Proof. By Claim optConfVal(p) equals optConfVal(T), for some proof tree 7. By Item (4) of
Claim this value is a product of fractions, where the denominator of each fraction is of the form
(a; + bi)‘”“’i where a; and b; are non-negative integers. Since a; + b; < m, each denominator is at most
m™, and thus the denominator of the product is bounded by m™™ = 271%™ Since the numerator is at
most the denominator, the claim follows.

For the proof of the second part, let u = p; /g1 and v = pa/qa, u > v. Now u—v = (p1¢2 —p2q1)/q1G2-
Since q1,q2 < 27198 we have u — v > pi1ga — paq1 /22 ™I8™ Since p1, p2, q1, o are all integers,
p1g2 — p2q1 > 1. Thus |u — v| > 1/22nmlogm,

O

Consider the following language
Lopt = {{p, v) | optConfVal(p) > v}
Claim 3.5.2. L, is in NP.

Proof. Consider the following non-deterministic machine M. On input ¢, M guesses a proof tree 1" of
: for every OR node, non-deterministically pick one of the subtrees. For 7', compute optConfVal(T") and
accept if optConfVal(T") > wv. This can be done in polynomial-time using Item (3) of Claim The
correctness of this algorithm follows from Claim [3.4.2] O

We need a method that given two fractions w and v and an integer NV, outputs a fraction p/q : u < p/q <
v, and p/q € Fn. We give an FPNF algorithm that makes O(N) queries to the NP oracle to achieve this.
We first define the NP language Ly,,. For this we fix any standard encoding of fraction using the binary
alphabet. Such an encoding will have O(log N) bit representation for any fraction in Fy.

Litarey = {{N,u,v, 2) | 32'5u < 22/ <v & 22’ € Fy}
The following claim is easy to see.
Claim 3.5.3. Lyyy € NP.
Now we are ready to prove the Theorem [3.2]

Proof. (of Theorem . The algorithm performs a binary search over the range [0, 1] by making adaptive
queries (p,v) to the NP language L, starting with v = 1. At any iteration of the binary search, we
have an interval I = [I;, I,] and with the invariant [; < optConfVal(¢) < I,. The binary search stops
when the size of the interval [I;,I,] = 1/22"™1°%¢™ Since each iteration of the binary search reduces
the size of the interval by a factor of 2, the search stops after making 2nm logm queries to L,,;. The
invariant ensures that optConfVal(¢) is in this interval. Moreover, optConfVal(y) € Fynmiogm (by item (1)
of Claim [3.5.1) and there are no other fractions from Fynm 1o in this interval (by item (2) of Claim [3.5.1)).
Now, by making O(nm logm) queries to Lorey with N = 2™ logm 4 — I, v = I, we can construct the
binary representation of the unique fraction in Fynmiogm that lies between [; and I, which is optConfVal(¢p).

O]

Next we show the optimal V-interpretation can also be computed in polynomial time with queries to an
NP oracle.
Theorem 3.6. optConf for formulas in negation normal form can be computed in FPNF.
Proof. Let ¢ be a propositional formula in negation normal form. We use a prefix search over the encoding of
proof trees of ¢ using an NP language to isolate a proof tree 7" such that optConfVal(y) = optConfVal(T).
For this, we fix an encoding of proof trees of ¢. Consider the following NP language L,;:

{{p,v,2) | 32’ :z7'encodes a proof tree T of ¢
& optConfVal(T) = v}
Claim 3.6.1. L,; is in NP.

Proof. Consider a non-deterministic machine that guesses a 2/, verifies that 2z’ encodes a proof tree T of
¢, and accepts if optConfVal(T)) = v. By item (3) of Claim [3.4.1} optConfVal(T") can be computed in
polynomial time. O

To complete the proof Theorem given a propositional formula ¢, we first use FPNY algorithm
from Theorem to compute v* = optConfVal(¢). Now we can construct a proof tree 7" of ¢ so that
optConfVal(T') = v* by a prefix search using language L,;. Now by Claim we can compute a V-
interpretation 7* so that Conf (7", 7*) = v*. Thus 7* is an optimal V-interpretation for ¢, by Claim O

Remark 2. We revisit the semantics of negation. As stated earlier, by assuming the closed world semantics,
we have (x) = 1 — x. We note that this assumption is not strictly necessary for the above proof to go
through. Recall that Item (1) of Claim states that the proof tree polynomial is of the form || x}*(1 —
x;)%. For a general negation function 7, the proof tree polynomial is of the form [x$ (T(z;))%. Now if the
maximum value of a term x®(7(x))? can be found, for example when 7 is an explicit differentiable function,
the result will hold.

3.2 Relation to MaxSat for CNF Formulae

In this section we study the optConfVal problem for CNF formulae and establish its relation to the MaxSat
problem. We first exhibit an upperbound on the optConfVal(p) using the maximum number of satisfiable
clauses. Building on this result, in Section [3.3| we show that optConfVal for CNF formulae is hard for the
complexity class FPNPllog]

We first define some notation that will be used in this and next subsections. Let ¢(z1,- - x,) = C1 A
-++ A\ Cy, be a CNF formula and let 7* be an optimal V-interpretation. For each clause C' from ¢, let 7*(C')
be the value achieved by this interpretation, i.e 7*(C') = Conf(C, 7). Observe that since C is a disjunction
of literals, 7*(C') = maxyec{7*(¢)}. For a clause C, let

(o = argmaxyco{n"(¢)}

In the above, if there are multiple maximums, we take the smallest literal as /- (By assuming an order
] < "y < Ty < Xy < Ty, < wy,). Observe that, since we are working over the Viterbi semiring,
Conf(C,7*) = 7*(Lc). A literal ¢ is maximizing literal for a clause C, if {c = (.

Since ¢ is a CNF formula, for any V-interpretation = Conf (¢, m) is of the form IT}" , Conf(C}, 7). Given
a collection of clauses D from ¢, the contribution of D to Conf(p,) is defined as I1.cpConf(C,).

The following theorem provides an upperbound on optConfVal(y) using MaxSatVal. This is the main
result of this section.

Theorem 3.7. Let o(x1,--- ,xy) be a CNF formula with m clauses. Let r be the maximum number of
clauses that can be satisfied. Then optConfVal(yp) < 1/4(m=7),

Proof. Let m* be an optimal V-interpretation for ¢. A clause C is called low-clause if 7*(C) < 1/2, C
is called a high-clause of 7*(C) > 1/2, and C is a neutral-clause if 7*(C') = 1/2. Let L, H, and N
respectively denote the number of low, high, and neutral clauses.

We start with the following claim that relates the number of neutral clauses and the number of high-
clauses to 7.

Claim3.7.1. § + H <r

Proof. Suppose that the number of low-clauses is strictly less than m — 7, thus number of high-clauses is
more than 7.
For a variable z, let
pz = |{C | C'is neutral and {c = x}|

and
gz = |[{C'| C is neutral and {¢ = —z}|

That is p, is the number of neutral clauses for which z is the maximizing literal and g, is the number of
neutral clauses for which —z is the maximizing literal.

Consider the truth assignment that is constructed based on the following three rules: (1) For every high-
clause C, set {¢ to True and —¢¢ to False, 2) For every variable z, if one of p, or ¢, is not zero, then if
Pz = qa, then set x to True, otherwise set x to False. (3) All remaining variables are consistently assigned
arbitrary to True/False values.

We argue that this is a consistent assignment: I.e, for every literal ¢, both £ and —¢ are not assigned the
same truth value. Consider a literal £. If there is a high clause C' such that ¢ = ¢, then this literal is assigned
truth value True and —/ is assigned False. In this case, since 7*(¢) > 1/2, 7*(=¢) < 1/2. Thus =/ can

not be maximizing literal for any high-clause and thus Rule (1) does not assign True to —¢. Again, since
7*(¢) > 1/2, there is no neutral-clause D such that { = ¢p or =¢ = {p. Thus Rule (2) does not assign a
truth value to either of ¢ or —¢. Since ¢ and —/ are assigned truth values, Rule (3) does not assign a truth
value to £ or —/.

Consider a variable x where at least one of p, or ¢, is not zero. In this case x or —x is maximizing
literal for a neutral clause. Thus 7*(x) = 7*(—x) = 1/2 and neither x nor -z is maximizing literal for a
high-clause. Thus Rule (1) does not assign a truth value to x or —x. Now x is True if and only if p, > q.,
thus the truth value assigned to x (and —z) is consistent. Since Rule (3) consistently assigns truth values of
literals that are not covered by Rules (1) and (2), the constructed assignment is a consistent assignment.

For every high clause C), literal ¢ is set to true. Thus the assignment satisfies all the high-clauses.
Consider a variable x and let D be the (non-empty) collection of neutral clauses for which either = or -z
is a maximizing literal. As x is assigned True if and only if p, > g, at least half the clauses from D are
satisfied. Thus this assignment satisfies at least H + % clauses. Since r is the maximum number of satisfiable
clauses, the claim follows. O

For a literal 4, let a; be the number of low-clauses C for which £ is a maximizing literal, i.e,
ag = |{C | C is alow-clause and (¢ = (}|,

and
by = |{C| C is a high-clause and ¢ = =/},
We show the following relation between a, and by.

Claim 3.7.2. For every literal £, ay < by.

Proof.
Conf(p,m) = HiConf(go‘xi,w) €))

Now suppose that a, > b, for some literal £. Let =; be the variable corresponding to the literal /. Note
that
Conf (i), ™) = T*(£)* x (1 — % (€)™

where 7(¢) < 1/2. Consider a new interpretation 7’ where 7’(¢) = 1 — 7*(¢), and for all other literals
the value of 7’ is the same as the value of 7*. Now

Conf(ppa;, ™) #/(0) x (1—='(£))"

Conf(p|g;, 7*) m(0)a x (1 —m(€))be
(1 — 7€) x m(0)"

m(0)a x (1 — (L))

The last inequality follows because 7(£) < 1/2 and the assumption that a; > by. Since Conf(yp,, 7) =
Conf(i|,, ') forevery x # x;, combining the above inequality with Equation we obtain that Conf (o, 7') >
Conf(¢, 7*) and thus 7* is not an optimal V-interpretation. This is a contradiction. Thus ay < by O

We next bound the contribution of neutral and low clauses to optConfVal(y). For every neutral clause
C, 7*(C) = 1/2, thus we have the following observation.

10

Observation 3.8. The contribution of neutral clauses to Conf(p, 7*) is exactly 1/2".
We establish the following claim.

Claim 3.8.1. 1

Conf(p,7*) = [(ﬂ*(e)ae (1 — 7r*(€))1”> X 2%

¢

Proof. By Observation the contribution of neutral clauses to Conf(y, 7*) is 1/2". Next we show that
the contribution of all high and low clauses is exactly.

Hw 0)% x (1 —7*(£))°e.

For this we first claim that exactly one of ¢ or —¢ contribute to the above product. For this it suffices
to prove that for every literal ¢ exactly one of ay (by resp.) or a—y (b—p) is zero. Suppose a, # 0, in this
case —/ can not be maximizing literal for any low clause. Thus a—, = 0. Suppose that by # 0, then =/ is a
maximizing literal for a high clause and thus 7*(—¢) > 1/2, and 7*(¢) < 1/2.If b_; # 0, then £ must be a
maximizing literal for a high-clause, and this is not possible as 7*(¢) < 1/2. Thus b, = 0.

Let Z be the collection of literals ¢ for which a; > 0. Now that quantity [], , 7* (€)% x (1 — 7*(¢))b
captures the contribution of all low clauses and) ,., many high-clauses. For all remaining high-clauses,
there exist a literal ¢ such that ¢ ¢ Z and by # 0. The contribution of all the remaining high- clauses is
[Teg7 (1 — 7(£))%. This quantity equals [Togz 7 () x (1 - m(€))’ asay = 0forl ¢ Z. O

Finally, we are ready to complete the proof of Theorem[3.7] For every literal ¢, By Claim[3.7.2] a;, < by.
Let by = ay + ¢y, ¢y > 0. Consider the following inequalities.

optConfVal(¢) = Conf(p, ™)
= TI(= @ x 0 —0)") x 55
V4
= T (=@ x (1= (e))eeter) x 2LN
V4
< TIw @ x a-m©)r9x o5
V4
1 1 1
< (@) < 57 = o

In the above, equality at line 2 is due to Claim [3.8.1] The inequality at line 4 follows because (1 — 7*(¢)) <
1. The last inequality follows because x(1 — x) is maximized at x = 1/2. The last equality follows as
3" ay = L. Note that the number of clauses m = N + H + L and by Clalm“H + N/2 < r. It follows
that L + N/2 > m — r. Thus optConfVal(y) = Conf (¢, 7*) < W < O

3.3 FPNPlogl. Hardness

In this subsection, we show that optConfVal is hard for the class FPNPI°gl We show this by reducing
MaxSatVal to optConfVal. Since MaxSatVal is complete for FPNPI8] the result follows. We also show
that the same reduction can be used to compute a MaxSat assignment from an optimal V-interpretation.

11

Theorem 3.9. MaxSatVal metric reduces to optConfVal for CNF formulae. Hence optConfVal is hard for
FPNPLe] for CNF formulae.

Proof. Let p(x;,...,x,) = C1 A ...\ Cy, be a formula with m clauses on variables x1, . . ., z,,. Consider
the formula ¢’ with m additional variables y1, . . ., y,, constructed as follows: For each clause C; of ¢, add
the clause C} = C; V y; in ¢’. Also add m unit clauses —y;. That is

O =(CLVYy)A. . ACoy VYm) A=yr A+ A =Y

Claim 3.9.1. optConfVal(¢') = 4”1% where 1 is the maximum number of clauses that can be satisfied in .

Proof. We show this claim by first showing that optConfVal(p’) < 4ml_T and exhibiting an interpretation 7*

so that Conf(p,) = 4W},T . We claim that if 7 is the maximum number of clauses that can be satisfied in ,
then m + 7 is the maximum number of clauses that can be satisfied in ’. We will argue this by contradiction.
Let a be an assignment that satisfies > m + r clause in ¢’. Let s be the number of y;s that are set to False.
This assignment will satisfy m — s clauses of the form C; V y;. However the total number of clauses of the
form C; V y; that are satisfied is > m 4+ — s. Thus there are > r clauses of the form C; V y; that are satisfied
where y; is set to False. This assignment when restricted to x;s will satisfy more than r clauses of ¢. Hence
the contradiction.

Thus from Theorem it follows that optConfVal(y¢') < 4,,1%. Now we exhibit an interpretation
7 so that Conf(p,) = Zlm%. Consider an assignment a = ay,...,a, for ¢ that satisfies r clauses.
Consider the following interpretation 77* over the variable of ¢': 7*(x;) = 1 if a; = True and 7*(z;) = 0
if a; = False. 7*(y;) = 0 if and only if C; is satisfied by a. Else 7*(y;) = 1/2. For every satisfiable clause
C;, Conf(C; V y;, m*) = 1 and Conf(—y;, 7*) = 1. For all other clauses C' in ¢’, Conf(C,7*) = 1/2. Since
there are r clauses that are satisfied, the number of clauses for which Conf(C, 7*) = 1/2 is 2m — 2r. Hence

the Conf(¢/, *) = 4(?1_”. Thus optConfVal(¢') = 5. O

Since optConfVal(p’) = 1/4™~", MaxSatVal for ¢ can be computed by knowing the optConfVal. [J

While the above theorem shows that MaxSatVal can be computed from optConfVal, the next theorem
shows that a maxsat assignment can be computed from an optimal V-interpretation.

Theorem 3.10. MaxSat metric reduces to optConf.

Proof. Consider the same reduction as from the previous theorem. Our task is to construct a MaxSat assign-
ment for ¢, given an optimal V-interpretation 7 for ¢’. By the earlier theorem, Conf(¢/,) = 4m—1,T, where
r is the maximum number of satisfiable clauses of .

We next establish a series of claims on the values takes by 7 (y;) and 7(x;).

Claim 3.10.1. For all y;; w(y;) € {0,1/2}.

Proof. Consider a clause C = (C; V y;) for which EC{ = y;. Now the contribution of C/ and the clause —y;
to Conf(¢',) is m(yi) x (1 — m(y;)). Since there is no clause C} for which £¢r = y;, the above value is
J

maximized when 7(y;) = 1/2. Now consider a clause C’} = (C; V y;), for which 60} # y;. Contribution of
C} and the clause —y; to Conf(¢',) is 7r(€C;) x 7(—y;). Since, KC; # y;, and there is no other clause in
which y; or —y; appear, the above expression is maximized when 7(—y;) = 1 and thus 7(y;) = 0. O

Claim 3.10.2. For every i, if y; is not maximizing literal for clause C, then m(y;) = 0.

12

Proof. Let C/ be a clause for which y; is not maximizing literal. Say ¢; is the maximizing literal. We first
consider the case m(¢;) < 1/2. By previous claim, 7(y;) € {0,1/2}, and if 7(y;) = 1/2, then ¢; can not
be maximizing literal for clause C;. Thus 7(y;) = 0. Now consider the case 7(¢;) > 1/2. Suppose that
7(y;) = 1/2. Now the contribution of the clauses C/ and —y; to Conf(p,) is w(¢;)/2. However, if we
change 7(y;) = 0, then the contribution of these clauses would become 7(¢;) and this would contradict the

optimality of 7. Thus by Claim [3.10.1} 7 (y;) = 0. O
Claim 3.10.3. For all x;, if x; or —x; is a maximizing literal, then 7(z;) € {0,1,1/2}

Proof. We argue for the case when z; is a maximizing literal. The case when —x; is a maximizing literal
follows by similar arguments. Suppose that x; is a maximizing literal and 7(x;) < 1/2 and 7(x;) is neither
0 nor 1. It must be the case that —z; is also a maximizing literal, otherwise making 7(z;) = 1 will increase
the trust value. Suppose x; is a maximizing literal for ¢ many clauses and —x; is a maximizing literal for b
many clauses. If a > b, then we can obtain a V-interpretation, by swapping 7(x;) with w(—x;). If a equals
b, then 7(x;) must be equal to 1/2 as (1 — z)? is maximized for z = 1/2. Thus a < b. For every clause
Cj for which z; or —z; is the maximizing literal, it must be the case that 7(y;) = 0, by Claim Let
C be the collection of all clauses CJ’. together with —y;, where either x; or —x; is maximizing literal. The
contribution of these clauses to Conf(p,) is 7(z;)® x (1 — 7(x;))® x 1972,

We now construct a new V-interpretation 7’ that will contradict the optimality of 7. For every clause
C’ € C in which z; is the maximizing literal, 7'(y;) = 1/2 and 7(x;) = 0. Now the contribution of clauses
from C to Conf(ip, ') is (3)® x 1° x (3)* x 1°

Since 2%(1 —) < 1/4% (when a < b),

1 a b 1 a b a b a+b
(5) x 17 x (5) X 17> m(x;)* x (1 —m(x;))” x 1

Thus Conf (¢, ') > Conf(p,) which is a contradiction. Thus if 7(z;) < 1/2, then 7(x;) = 0, a similar
argument shows that if 7(x;) > 1/2, then 7(z;) = 1. O

Claim 3.104. For every z; with w(x;) = 1/2, x; and —x; are maximizing literals for exactly the same
number of clauses.

Proof. Let C be the collection of clauses for which either x; or —z; is maximizing literal. Suppose that x;
is maximizing literal for a clauses and —~x; is maximizing literal for b clauses. If a # b, 7(z;) = 53 ¢
{0,1,1/2} and this contradicts Claim3.10.3 O

We will show how to construct a MaxSat assignment from 7: If 7(z;) = 0, set the truth value of z; to
False, else set the truth value of x; to True.

By Claim m(z;) = {0,1/2,1}. Let H be the number of clauses for which maximizing literal
¢ is a x-variable and w(¢) = 1. Note that the above truth assignment will satisfy all the H clauses. Let NV
be number of clauses for which maximizing literal ¢ is a z-variable and 7(¢) = 1/2. By Claim in
exactly N/2 clauses a positive literal is maximizing, and thus all these N/2 clauses are satisfied by our
truth assignment. Thus the total number of clauses satisfied by the truth assignment is N/2 + H. Let Y the
number of clauses in which y; is maximizing literal. By Claim 7(y;) = 1/2 when y; is maximizing
literal. Thus

1 1.9y 1 1

13

The last equality follows from Claim Thus m —r = N/2+Y, combining this withm = H+ N +Y,
we obtain that N/2 + H = r. Thus the truth assignment constructed will satisfy r clauses and is thus a
MaxSat assignment. O

4 Approximating optConfVal

We study the problem of approximating optConfVal efficiently. Below, a k-SAT formula is a CNF formula
with exactly k distinct variables in any clause. We start with the following proposition.

Lemma 4.1. Let ay,- - - ay, be an assignment, that satisfies v clauses of a CNF formula ¢(x1, - - - x,,). There

is an interpretation m so that Conf(p,) is (Z=2)™7" (L))"

Proof. If a; = 1, set m(z;) = (1 — €) and if a; = 0, then set 7w(z;) = e. For every clause C; that is
satisfied, we obtain a max value of (1 — €) and for every clause that is not satisfied, the max value is > .
Thus the optConf obtained by this assignment is (1 — €)"¢™~", and this is maximized when ¢ = %~ by
Proposition O

Hence, for example, if ¢ is a 3-SAT formula, since a random assignment satisfies 7/8 fraction of the
clauses in expectation, for a random assignment > 7m /8, and by Lemma.1] optConfVal(y) > 0.686™.
The following lemma shows that one can get a better lower bound on optConfVal in terms of the clause
sizes for CNF formulae.

1
Lemma 4.2. For every CNF formula ¢, optConfVal(p) > e 2% where k; is the arity of the i’th clause

in .

Proof. Consider the interpretation 7 that assigns every variable x; a uniformly chosen value in the interval
[0, 1]. Let the clauses in ¢ be C1, . .., C,,. Then:

log E[Conf (¢,)] > Elog Conf(p, 7) (Jensen’s Inequality)

-y log (6

_ _2/ Pr [logmai(ﬂ'(ﬁ) gt} it
_ _Z/ Pr {%%m 0) < et] dt
:_;/wekitdt:—;é

Hence, there exists a choice of 7 achieving this trust value. O

This yields a probabilistic algorithm. For example, if ¢ is a 3-SAT formula, optConfVal(yp) > 0.716™
and thus improving on the result of Lemma In fact, we can design a deterministic polynomial time
algorithm that finds an interpretation achieving the trust value guaranteed by Lemma #.2] using the well-

known ‘method of conditional expectation’ to derandomize the construction in the proof (For example,
see [ASO8, IGW94).

14

Theorem 4.3. There is a polynomial-time, e~™/*-approximation algorithm for optConf, when the input
formulas are k-CNF formulas with m-clauses.

Proof. Arbitrarily ordering the variables 1, o, . . ., z,,, the idea is to sequentially set 7*(x1), 7*(x2), . . ., 7" (zy)
ensuring that for every i:

E log Conf =)V < *
LB logConf(p,m) | m(zj) = m*(aj) Vi <] Z . (*)
Assuming 7*(x1),...,7*(x;—1) have already been fixed, we show how to choose 7*(x;) satisfying the

above. We use m<; to denote 7(z1) - - m(xi—1). For a clause C, let &« = maxXsecnia; z,:j<i} © (£), and
suppose x; € C'. Then:

0
= —/ Pr [logr?zg(w(ﬁ) <t|mei =7l (x) = p] dt
€

—OOTr

0
= —/ Pr {log max m(l) < t] dt
1

ogmax(a,p) ™ teCn{z;,x;:5>1}
1 K
= (1 — max(a, p)*)

where &’ is the number of literals in the clause C' involving variables x;1, ..., z,. One can similarly eval-
uate the conditional expectation in the cases 7; € C and C' N {x;, z;} = 0.
Summing up over all the clauses C', we get that

E [log Conf(p,m) [mei = 7w (2) = p]

is a continuous function of p that is a piecewise polynomial in at most m intervals. In polynomial tim we
can find a value of p that maximizes this function. By induction on ¢, the maximum value of this function is
at least — %, and hence (*) is satisfied. This completes the description of the algorithm.

O

Next, we show that the approximation factor e =™/ can not be significantly improved.

We use the following result on hardness of approximating MaxSat established by Hastad [HasO1].

Theorem 4.4 ([HasO1l]). For any € > 0 and any k > 3 it is NP-hard to distinguish satisfiable k-SAT
formulas from k-SAT formulae < m(1 — 27F 4 ¢) satisfiable clauses.

We are now ready to show the following.

Theorem 4.5. There is no polynomial-time e -approximation algorithm for optConf for k-SAT for-

1
4m(2*’C
mulae, unless P = NP.

Proof. Assuming such an approximation algorithm A exists, we contradict Hastad’s Theorem (Theorem
. Consider the following algorithm A’ that on input a k-SAT formula ¢, runs A(p). If A outputs a

value that is > 1 , then A’ outputs YES otherwise outputs NO. Suppose ¢ is satisfiable, then
4m(2 k_¢)

optConf(yp) = 1. Hence A will output a value > . Thus A" output YES. Suppose maximum

qm(2— k

number of satisfiable clauses for ¢ is < m(1 — 27% 4 ¢). By Theorem

'For simplicity, we ignore issues of precision here, but the error can be made inversely polynomial in 7.

15

1 1

Optconf((p) < gm—m(1-2"F4¢) - gm(2=F—¢)

Hence output of A is < 477427}’“—5) and hence A’ will output NO.
Thus A’ contradicts Theorem [4.4] unless P = NP. O

Thus, for example for 3-SAT formulas, while we have a polynomial-time, 0.716™-approximation algo-
rithm (by Theorem [4.3)), we cannot expect an efficient 0.845™-approximation algorithm by the above result
unless P equals NP. It remains an interesting open problem to determine the optimal approximation ratio
for this problem achievable by a polynomial time algorithm.

S Complexity of Access Maximization

In this section, we study the optimization problems for the access control semiring A, = ([k], max, min, 0, k).
We refer to the corresponding computational problems as optAccessVal and optAccess. For this section we
first assume the negation function is the additive inverse modulo k. That is 1(a) = b such that a + b =
0 (mod k).

Theorem 5.1. Let p(x1, - - - xy,) be a propositional formula in negation normal form and Ay, = ([k], max, min, 0, k).
The following statement holds.

e If ¢ is satisfiable, then optAccessVal(p) = k.

e [f v is not satisfiable, then optAccessVal(p) = L%J

Proof. We will first prove it for the case when ¢ is in the CNF form, i.e ¢ = C] A --- A C,,,. Suppose that
the formula is satisfiable and a; - - - a,, is a satisfying assignment to the variables x1, x2, - - - , x,,. Consider
the interpretation 7 defined as follows: If a; is true, then 7(x;) = k, else 7(x;) = TI(k). Consider a clause
C, since the formula is satisfiable, there exists a literal ¢; (either x; or —x; for some %) in C' such that ¢; is
set to true. If ¢; = x;, then 7(z;) = k and Sem(x;, 7) = k. If {; = —a;, then 7((z;) = (k) = 0 and
Sem(—z;,) = T1(0) = k. Since C'is a disjunction Sem(C, 7) = k. Thus for every clause C;, Sem(C;, 7) =
k. Since ¢ is a conjunction of C1, - - - Cyy,, it follows that Sem(p, 7) = k.

For the proof of the second item, first assume that & is even, the proof when k is odd is very similar.
Note that in this case, 1(k/2) = k/2. Let ¢ = C1 A --- A Cy, be an unsatisfiable formula. Consider an
interpretation m where 7(x;) = k/2 for every 1 < i < n. Clearly, for this interpretation, Sem(yp,) = k/2.
Suppose that 7’ be an interpretation Sem(p, ') > k/2. Consider the following satisfying assignment: a; is
true if ¢’ (x;) > k/2, else a; is false. Observe that this is a consistent assignment. We will establish that this
assignment satisfies . This establishes that optAccessVal(y) = k/2.

Note that for every clause Cj, 1 < j < m, Sem(C},n’) > k/2. Fix aclause C, since Sem(C, ') > k/2,
there exists a literal 4; in C' such that Sem(¢;, ') > k/2.If ¢; = x;, then Sem(z;, ') > k/2 which implies
that 7'(x;) > k/2. Thus a; is true and the clause C' is satisfied by the assignment. If ¢; = —z;, then
Sem(—x;, ') > k/2. Thus T(7’(z;)) > k/2. By the definition of 7, we have 7’(z;) < k/2. Thus a; is set

to false. Thus the clause C' is satisfiable. This proves that the assignment aq, - - - , a, satisfies the formula
(1,7, Tn).

The case where the general formula is in the negation normal form follows by similar ideas using the
notion of proof trees as in the case of Viterbi semiring. O

16

For a general negation function, we can establish an analogous theorem. For this, we define the notion of
the index of negation. Given a negation function 7, its index denoted by Indez () is the largest ¢ for which
there exists a € [k], such that both a and TI(a) are at least /.

Theorem 5.2. Let p(x1, - - -) be a propositional formula in negation normal form and Ay, = ([k], max, min, 0, k).
The following statement holds.

o [f v is satisfiable, then optAccessVal(p) = k.
e If p is not satisfiable, then optAccessVal(p) = Index (7).

The following is a corollary to the above result and its proof which states that the complexity of opti-
mization problems over access control semiring is equivalent to their complexity over the Boolean semiring.

Theorem 5.3. The problem optAccessVal and SAT are equivalent under metric reductions. Similarly, the
problem optAccess and the problem of computing a satisfying assignment of a given Boolean formula are
equivalent under metric reductions.

6 Conclusion

In this work, we provided a comprehensive study of the computational complexity of optSem and the re-
lated problem optSemVal over various semirings such as Viterbi semiring, tropical semiring, access control
semiring and fuzzy semiring, from both an algorithmic and a complexity-theoretic viewpoint. An exciting
recent development in the field of CSP/SAT solving has been the development of solvers for LexSAT, which
seeks to find the smallest lexicographic satisfying assignment of a formula [MSAGL11]. In this regard,
Theorem [3.2] opens up exciting directions of future work to develop efficient techniques for optConf.

7 Acknowledgements

We thank Val Tannen for introducing us to the world of semiring semantics and for helpful conversations
during the nascent stages of the project. We thank the anonymous reviewers of AAAI-23 for valuable
comments. This research is supported by the National Research Foundation under the NRF Fellowship
Programme [NRF-NRFFAI1-2019-0004] and Campus for Research Excellence and Technological Enter-
prise (CREATE) program. Bhattacharyya was supported in part by the NRF Fellowship Programme [NRF-
NRFFAI1-2019-0002] and an Amazon Research Award. Vinod was supported in part by NSF CCF-2130608
and NSF HDR:TRIPODS-1934884 awards. Pavan was supported in part by NSF CCF-2130536, and NSF
HDR:TRIPODS-1934884 awards.

References

[ADT11] Yael Amsterdamer, Daniel Deutch, and Val Tannen. Provenance for aggregate queries. In
Proc. of PODS, pages 153-164, 2011.

[ASO8] Noga Alon and Joel H. Spencer. The Probabilistic Method, Third Edition. Wiley-Interscience
series in discrete mathematics and optimization. Wiley, 2008.

17

[BGO6]

[Bis04]

[BMRO5]

[BMRO7]

[BMR199]

[Cui02]

[CWWO00]

[DMRT14]

[EK21]

[FGTO8]

[FR97]

[GKTO07]

[GM21]

[Grell]

[GT20]

[GW94]

Stefano Bistarelli and Fabio Gadducci. Enhancing constraints manipulation in semiring-based
formalisms. In ECAI, volume 141, pages 6367, 2006.

Stefano Bistarelli. Semirings for soft constraint solving and programming, volume 2962.
Springer Science & Business Media, 2004.

Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Constraint solving over semirings.
In IJCAI (1), pages 624-630. Citeseer, 1995.

Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based constraint satisfac-
tion and optimization. J. ACM, 44(2):201-236, 1997.

Stefano Bistarelli, Ugo Montanari, Francesca Rossi, Thomas Schiex, Gérard Verfaillie, and
Hélene Fargier. Semiring-based csps and valued csps: Frameworks, properties, and compari-
son. Constraints, 4(3):199-240, 1999.

Yingwei Cui. Lineage tracing in data warehouses. PhD thesis, Stanford University, 2002.

Yingwei Cui, Jennifer Widom, and Janet L Wiener. Tracing the lineage of view data in a
warehousing environment. ACM Transactions on Database Systems (TODS), 25(2):179-227,
2000.

Daniel Deutch, Tova Milo, Sudeepa Roy, and Val Tannen. Circuits for datalog provenance. In
Proc. of ICDT, pages 201-212. OpenProceedings.org, 2014.

Thomas FEiter and Rafael Kiesel. On the complexity of sum-of-products problems over semir-
ings. In Proc. of AAAI, pages 6304-6311. AAAI Press, 2021.

J Nathan Foster, Todd J Green, and Val Tannen. Annotated xml: queries and provenance. In
Proceedings of the twenty-seventh ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 271-280, 2008.

Norbert Fuhr and Thomas Rolleke. A probabilistic relational algebra for the integration of in-
formation retrieval and database systems. ACM Transactions on Information Systems (TOIS),
15(1):32-66, 1997.

Todd J. Green, Gregory Karvounarakis, and Val Tannen. Provenance semirings. In Proc. of
PODS, pages 31-40, 2007.

Erich Gridel and Lovro Mrkonjic. Elementary equivalence versus isomorphism in semiring
semantics. In Proc. of ICALP, volume 198 of LIPIcs, pages 133:1-133:20, 2021.

Todd J Green. Containment of conjunctive queries on annotated relations. Theory of Comput-
ing Systems, 49(2):429-459, 2011.

Erich Gridel and Val Tannen. Provenance analysis for logic and games. Moscow Journal of
Combinatorics and Number Theory, 9(3):203 — 228, 2020.

Michel X. Goemans and David P. Williamson. New 3/4-approximation algorithms for the
maximum satisfiability problem. SIAM J. Discret. Math., 7(4):656-666, 1994,

18

[HasO1] Johan Hastad. Some optimal inapproximability results. J. ACM, 48(4):798-859, 2001.

[ILJ89] Tomasz Imielifiski and Witold Lipski Jr. Incomplete information in relational databases. In
Readings in Artificial Intelligence and Databases, pages 342-360. Elsevier, 1989.

[KMO3] Dan Klein and Christopher D. Manning. A* parsing: Fast exact viterbi parse selection. In
Marti A. Hearst and Mari Ostendorf, editors, Proc. of HLT-NAACL. The Association for Com-
putational Linguistics, 2003.

[Kre88] Mark W. Krentel. The complexity of optimization problems. J. Comput. Syst. Sci., 36(3):490-
509, 1988.

[MohO2] Mehryar Mohri. Semiring frameworks and algorithms for shortest-distance problems. J.
Autom. Lang. Comb., 7(3):321-350, jan 2002.

[MRS06] Pedro Meseguer, Francesca Rossi, and Thomas Schiex. Soft constraints. In Foundations of
Artificial Intelligence, volume 2, pages 281-328. Elsevier, 2006.

[MSAGL11] Joao Marques-Silva, Josep Argelich, Ana Graga, and Inés Lynce. Boolean lexicographic
optimization: algorithms & applications. Annals of Mathematics and Artificial Intelligence,
62(3):317-343, 2011.

[Tan13] Val Tannen. Provenance propagation in complex queries. In In Search of Elegance in the
Theory and Practice of Computation, pages 483-493. Springer, 2013.

[Tan17] Val Tannen. Provenance analysis for fol model checking. ACM SIGLOG News, 4(1):24-36,
2017.

[Vit67] Andrew Viterbi. Error bounds for convolutional codes and an asymptotically optimum decod-
ing algorithm. IEEE transactions on Information Theory, 13(2):260-269, 1967.

[Zim97] Esteban Zimdanyi. Query evaluation in probabilistic relational databases. Theoretical Com-
puter Science, 171(1-2):179-219, 1997.

19

	Introduction
	Our Results

	Preliminaries
	Optimization Problems and Complexity Classes

	Computational Complexity of Confidence Maximization
	An Upper Bound for General Formulae
	Relation to MaxSat for CNF Formulae
	 FP NP[log]- Hardness

	Approximating optConfVal
	Complexity of Access Maximization
	Conclusion
	Acknowledgements

