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Abstract

We propose MASTAFE, a Model-Agnostic Spatio-
Temporal Attention Fusion network for few-shot video
classification. MASTAF takes input from a general video
spatial and temporal representation,e.g., using 2D CNN,
3D CNN, and Video Transformer. Then, to make the most
of such representations, we use self- and cross-attention
models to highlight the critical spatio-temporal region
to increase the inter-class variations and decrease the
intra-class variations. Last, MASTAF applies a lightweight
fusion network and a nearest neighbor classifier to classify
each query video. We demonstrate that MASTAF im-
proves the state-of-the-art performance on three few-shot
video classification benchmarks(UCF101, HMDB51, and
Something-Something-V2), e.g., by up to 91.6%, 69.5%,
and 60.7% for five-way one-shot video classification,
respectively.

1. Introduction

Few-shot learning has received increasing attention in
video classification for its potential to reduce the video an-
notation cost significantly [3]. In few-shot video classifica-
tion, the video samples in the training and test sets are from
different classes (i.e., unseen classes in the test set). To clas-
sify an unlabeled video sample (query), a few-shot video
classification model aims to classify the query to the unseen
class (support set). Inspired by the development in few-shot
image classification[7, 13, 21], recent few-shot video clas-
sification approaches using metric-learning-based methods
achieve state-of-the-art performance[3, 20]. This paper tar-
gets metric-learning-based few-shot video classification.

A metric-learning-based few-shot video learning algo-
rithm classifies a query based on the similarity between
the representation of the query video and the representa-
tion of each class in the support set. Therefore, the core
to metric-learning-based few-shot video classification is to
design feature extraction and representation for the support

sets and the query. Many feature embedding networks have
been designed for this purpose. Perrett [20] leverages at-
tention mechanism in temporally-ordered frames from sup-
port sets to match query frames after extracting representa-
tion for each frame with pre-trained 2D Convolutional Neu-
ral Network(2D CNN). Zhang [36] introduces permutation-
invariant pooling and self-supervised learning tasks to en-
hance representations after extracting from a 3D Convolu-
tional Neural Network(3D CNN) embedding network.

In few-shot scenarios, prior efforts with a 2D CNN em-
bedding network outperformed those with a 3D CNN em-
bedding network [3, 20, 40]. However, there are two con-
siderable limitations in existing work with a 2D CNN em-
bedding network. The first limitation is that a complex tem-
poral alignment strategy between the video frames for better
accuracy increases computational demand and model infer-
ence runtime. For example, Perrett [20] achieves SOTA per-
formance on few-shot video classification by exploring all
the combinations of two and three ordered sampled frames
from a video for temporal information. As the number of
sampled frames from a video grows, the computational cost
and inference runtime increase significantly.

The second limitation is their inability to maintain high
performance when replacing a 2D CNN embedding net-
work with other advanced video representation models such
as 3D CNN [5, 11, 28, 33] and Video Transformer [1]. With
the release of large-scale video datasets, video classifica-
tion models’ performance based on 3D CNN and Video
Transformer surpasses those with 2D CNN [1, 5, 12], which
means such models can generate a better representation for
discrimination. Therefore, one would expect that if we re-
place the 2D CNN in the existing few-shot video classifica-
tion models with an advanced video representation model,
performance should improve. However, this did not happen.
Instead, Zhu [40] found that 3D CNN models [5, 28, 33]
do not perform better than 2D CNN models in PAL [40],
a SOTA 2D-CNN based few-shot video classification algo-
rithm. The main reason is that 2D-CNN approaches rely
on the frame-level similarity score and temporal alignment,
which do not exist in a 3D CNN embedding network.
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Figure 1. Illustration of the Model-Agnostic Spatio-Temporal Attention Fusion(MASTAF) on a 2-way 2-shot video classification.
First, we extract spatio-temporal features with a pre-trained embedding network for each video. Then, we compute a prototypical
representation(Rsc) for each class in the support set, which is the mean of all the representations of each class. After that, we use the
self-attention module to highlight spatio-temporal features for each query and support class representation and compute the similarity
score of each pair of query representation and support class representation using cosine distance. In parallel, we use the cross-attention
module to highlight the spatio-temporal correlation features for each pair of query representation and support class representation, and com-
pute the similarity score using the cosine distance. The cross-attention representations of each class in the support set are fed into a global
video classifier as a multi-task training set. And the fusion results of similarity scores from the self-attention module and cross-attention
module are fed into the nearest neighbor classifier. Details are in Section 3.

In this paper, we propose a model-agnostic few-shot
video learning algorithm named Model-Agnostic Spatio-
Temporal Attention Fusion network(MASTAF). Our key
motivation is to make the most of the rapid advances in
video representation learning to build a simple and efficient
few-shot video learning framework. To achieve this goal,
we have to address the limitations discussed above. Ad-
vanced video representation networks, such as 3D CNN
and Transformer, extract spatio-temporal representations
directly instead of frame-level information. To make good
use of such representations, we use self- and cross-attention
models to increase the weight of the critical spatio-temporal
region to increase the inter-class variations and decrease
the intra-class variations as shown in Figure 1. The self-
attention network emphasizes the regions of the represen-
tation that are essential for representing each class and the
query, while the cross-attention network emphasizes the re-
gions of the representation that enhance the discriminability
between the query and the unseen classes in the support set.
Then, we measure the similarity between the query and each
unseen class based on the feature maps from each attention
network. Last, we classify the query video by a simple yet
efficient fusion network. We also add one multi-task train-
ing setting,i.e., global video classification task, to regularize
the embedding module and further improve generalization
performance. More details are presented in Section 3
Contributions We make the following contributions.
1.We propose MASTAF, a simple and efficient attention-
based network compatible with different video classifica-
tion models for few-shot video classification. MASTAF can

benefit from advanced video classification models such as
3D CNN and Video Transformer that extract good spatial-
temporal representations.

2.We design a fusion mechanism to integrate self-attention
and cross-attention networks, which greatly enhances the
essential spatial and temporal regions of video representa-
tion.

3.We extensively evaluate MASTAF using three bench-
marks, i.e., UCF101 [25], HMDBS5I1 [15], and Something-
Something V2 [10]. Compared to the existing work,
MASTAF achieves state-of-the-art performance with a 2D
CNN embedding network and improves the state-of-the-
art performance with a 3D CNN embedding network with-
out additional computational cost. Our code is avail-
able at https://anonymous.4open.science/r/
STAF-30CF1.

2. Related work

Few shot learning Most existing few-shot learning algo-
rithms can be divided into three categories: model-based
methods [18, 23], optimization-based methods [9, 22],
and metric-learning-based methods [3, 20, 24]. Metric-
learning-based methods are more promising than other two
methods in few-shot video classification since the previ-
ous work with metric-learning-based achieved better per-
formance [3, 20].

Metric-learning-based method measures the distance be-
tween the representation of support samples and query sam-
ples and classifies them with the aid of the nearest neighbor
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to keep similar classes close and dissimilar classes far away.
Particularly, Prototypcal Network [24] is based on the idea
that each class has a Prototypical representation which is the
mean value of support set in embedding space. The few-
shot learning problem then becomes the nearest neighbor
in the embedding space. Our work is one of the metric-
learning-based methods. We can take input from general
video spatial and temporal representations extracted from
different video representation models. To make the most
of representations in the embedding space, we highlight the
spatio-temporal features that need attention for each class
while increasing the differences from other classes.

Few shot video classification The first module of most
metric-learning based methods for a few-shot video classifi-
cation model is an embedding network that extracts features
from each video. The two most commonly used approaches
for embedding network are 2D CNN [3, 20, 27, 38, 39, 40]
and 3D CNN [2, 8, 36]. After using 2D CNN to extract
features from each video frame, Zhu and Yang [38, 39] in-
troduce a memory network structure to learn optimal rep-
resentations in a larger video representation space. Instead
of creating a memory structure to memorize long-term in-
formation for video representation, more recent work with
2D CNN embedding networks focus on temporal align-
ment exploration between the query video and the sup-
port set. Cao [3] aligns the frames between the query
video and support video by temporal ordering information.
Perrett [20] achieves SOTA on 5-way 5-shot video learn-
ing by computing the distance of temporal-relational rep-
resentations between each frame of query video and sup-
port video. In comparison, the features extracted from
the 3D CNN embedding network already contain temporal
information. Therefore, recent work focus on generating
general spatio-temporal video representations for unseen
classes. Dwivedi [8] leverages GAN to generate the spatio-
temporal video representations for the prototype of the un-
seen classes. Zhang [36] introduces permutation-invariant
pooling and self-supervised learning tasks to enhance repre-
sentations whereas Bishay [2] uses segment-based attention
and deep metric learning. Recently, Video Transformers
have become a promising option for video representation
due to their long-term reasoning ability [1, 16]. Although
Video Transformer are not widely used in few-shot video
classification, SOTA performance in video classification in-
dicates the promise of being applied in a few-shot scenario.

Attention-based learning Attention mechanism enhances
the learning ability of long-range dependencies in the net-
work to highlight the critical regions of visual represen-
tations [29]. These critical regions are useful in discrim-
inating the differences between different classes. There-
fore, the recent work with attention mechanisms achieve
SOTA accuracy for few-shot learning tasks [20, 27, 32].
Perrett [20] applies a cross transformer with a multi-head

attention mechanism for the representation of each frame
to locate the representative frames for similarity computa-
tion. Thatipelli [27] proposes a self-attention module for
the patch’s representation of each frame in a video to high-
light critical regions. These works adopt 2D CNN to extract
the features and apply attention mechanisms for temporal
alignment and frame-level feature enrichment. However,
these works cannot maintain high performance when us-
ing a 3D CNN embedding network without the help from
complex temporal alignment and frame-level feature en-
richment. Our work is compatible with any video classi-
fication model and uses attention fusion network to high-
light the spatio-temporal features, which help increase the
inter-class variations and decrease the intra-class variations.
Wang [32] applies multi-head self-attention for video-level
feature enrichment, increasing GPU memory and computa-
tional consumption. However, our approach adopts a sim-
ple and efficient fusion layer for self-attention and cross-
attention modules with a lower computational cost.

3. MASTAF: Model-Agnostic Spatio-Temporal
Attention Fusion Network

3.1. Problem definition

The few-shot video classification problem aims to clas-
sify one unannotated query video into one of several anno-
tated categories set, which we call “support set”. Each cate-
gory has only a few video instances in this support set, and
the model did not see these categories during the training
process. Our paper focuses on C-way K-shot video classi-
fication, where C denotes the number of categories in the
support set and K represents the number of video instances
for each category in the support set. We follow the same
episodic training as in the previous study [3, 20, 36, 38, 39]
that randomly select C classes with K video clips for the
support set. Then we select one query video from these C
classes, which is different from the K video clips in the sup-
port set. For each C-way K-shot episode, the support set
contains C classes, and each class has K video clips.

We use S¢ = {ff,, fq,--., fC,} to denote the k"
video clip of class ¢, where ¢ belongﬁ to C' and £ belongs
to K, f,‘éz denotes the " extracted frame from the video
and n denotes the total number of frames extracted from the
video. For the query video, we use Sy = {f1, ..., fis -, fn}s
where f; denotes the i*" frame extracted from the query
video and n denotes the total number of frames extracted
from the query video. The final goal is to predict S, to one
of the classes.

3.2. The MASTAF Model

The design principle of the MASTAF model is to high-
light the critical spatio-temporal region to minimize the
intra-class variations while maximizing the inter-class vari-



ations between the query video and support set. To tackle
the challenge of only having few samples for the unseen
class, we first extract spatio-temporal features using any
video classification model. Then, we use the attention fu-
sion module to further highlight the critical spatio-temporal
region for metric learning. In parallel, we use a global clas-
sification task to regularize the embedding network. Next,
we analyze each module in the MASTAF model, which is
described in Figure 1.
Embedding module In the MASTAF model, the goal of the
embedding module f, is to learn the spatio-temporal repre-
sentations for each video. We evenly extract frames from
each video, where n is the total number of frames extracted
from each video. We can use any video classification model
as the spatio-temporal embedding module.

Given a frame sequence extracted from the video S, =
{f1, fare ooy fu) let R, € REXTXH'XW" denote the rep-
resentation learned from the embedding model:

Ry = fo(Sh)- (1)

For a video clip in the support set Sy, we use Rg¢ to denote
the representation learned from the embedding module. We
use Rg- to denote the representation of the class ¢, which is
the mean of all the representations of video clips for class
c in the support set. And since we have only one query
video in the few-shot learning task, we use qu to denote
the representation for the query video clip. After we get the
representations for the support set and query video, we go
through two separate attention modules in parallel,.i.e, the
self-attention module and the cross-attention module.

Self-attention module Our goal of the self-attention mod-
ule is to highlight the critical information in the represen-
tation of each class. As shown in Figure 2, we first re-
shape each representation to R, € R %L, where L(L =
T’ x H' x W) is the number of spatio-temporal positions
on each feature cubic map. After that, for each class in the
support, Rge becomes R/Sc, ie., [Rfc, .. Risc e RLC],
where RY“ denotes the feature vectors at the ' spatio-
temporal position in the R:gc. For each query video, Rs,
becomes R/Sq, ie., [Rf“7 .. qu . 7Rf“], where RiS“ de-
notes the feature vectors at the 7*" spatio-temporal position

in the R/Sq. Then we compute the self-relation map for each
representation as:

M = (R)TR], )

where M*¢!f € REXL that denotes the self-relation map
for each video, where M"Y denotes the self-relation at the
it" spatio-temporal position in the feature map. Then we
apply convolutional operation with a kernel d, i.e., d € R”,
to fuse each position self-relation vector into an attention
scalar, which is in RT'XH'XW’  Then we leverage a soft-
max function to draw self-attention for each i*" position:

eap((dTM;Y) /1)
S eap((dTM) /7))’

where 7 is the temperature hyperparameter to amplify the
variance and Afelf denotes the 7*" position of self-attention
map Aself je. Aself ¢ RT/XH xW'

Instead of assigning equal weight to every position, we
add a meta-learner to learn the kernel d dynamically to
pay attention to the critical positions in the feature cubic
map. First, we leverage row-wise global average pooling for

—sel . | ==sel
M# to get an averaged vector M ,which 17°°" € RZ.

Then we use a meta-learner to learn the kernel d dynami-
cally:

A;elf _ (3)

d= f,(c(fAr))), @)

where fs : RL — R! and Iy R! — RZL i.e, [ denotes the
scaled dimension and o represents the ReLU function[19].
After we get the self-attention cubic map A*¢!f, we
leverage a residual attention mechanism to weigh each el-
ement of the original map R, with 1 4+ A*°!/ to get the
self-attention representation R/ for each class:

B = R, (14 A%, (5)

where Rs€lf c RC’XT’XH’XW’_

Cross-attention module While the self-attention module
highlights the critical spatio-temporal region in the repre-
sentation itself, the cross-attention module focuses on the
correlation between the query video and the support set.
As shown in Figure 3, we follow the same steps as in
the self-attention module to reshape each representation to
R; € RE'*L_ After that, we compute the correlation map
for each pair of the query video and the support class proto-
type. For example, for the pair of the query video Rg, and
support class c,i.e., Rge, we compute the correlation map
for the query video M §Z<‘f§c between the query video and
support class:

Mg, = (Rs)TR,. ©)

Then for the support class c, the correlation map
Mg, between the query video and support class is:

MGy = (Rls,)TR.. )

After getting the correlation map for query video and sup-
port class in each pair, we go through the same steps as in
the self-attention module, which are shown in the Figure 3,
to get the cross-attention representation for query video and
support class in each pair,i.e., RG %’ and RG> .

Attention fusion module After we get the self-attention
and cross-attention representation from the two attention
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modules, we compute the probability of predicting S, as
the class k using self-attention representation:

exp(_Dcos (Rsszlf7 Rz'c;clf))

25:1 exp(—Deos (Rgilf7 ngej‘lj ) ’

()
where D,,s denotes the cosine distance and Pser(y =
k|S,) denotes the probability of predicting S, as the class
k € {1,2,...,C} using self-attention representations. Then
we compute the probability of predicting S as the class k
using cross-attention representation:

Pieif(y = k|Sq) =

CT0SS
SqSk?

CT 0SS
SkS,

)

exp(_Dcos<

Pcross(y = k‘Sq) =

C
5 eap(~Deos (R, BES,
)

where Peros5(y = k|S,) denotes the probability of predict-
ing Sy, as the class k € {1,2,...,C} using cross-attention
module.

To take advantage of the discriminative information from
two attention mechanisms, we leverage the attention fusion
module with the nearest neighbor classifier:

Ply = HIS,) = 3 [Pty (y = k1Sg) + Parons (y = kIS,
(10)

where P(y = k|S;) denotes the final probability of predict-

ing S, as the class k € {1,2,...,C}.

Multi-task training To reduce the risk of overfitting in the

training dataset and generate a general representation for

)’

unseen class, we train the MASTAF model in a multi-task
setting to regularize the embedding network. We combine
the nearest neighbor classifier and the global video classi-
fier.

During the training process, after the attention fusion
module computes the probability of predicting query video
to one of the classes in the support set, we use a negative
log-probability as the loss function of the nearest neighbor
classifier based on the actual class label:

C
Li=-> logP(y = k|S,).
k=1

Y

Since the representations after the cross-attention mod-
ule contain highlighting regions related to the query video,
we choose these representations to predict the global class
in the whole training dataset. The total class number in
the training dataset is Z. We feed these cross-attention
representations to a fully connected layer and a softmax
layer to get the probability of predicting the global class,i.e.,
P(y = z|58°) where z € {1,2,...,Z}. Then we define the
loss function of the global video classifier as:

z
Ly=-— ZlogP(y = 2]5°).

12)
z=1
Finally, the loss function of the MASTAF model is defined
as:
L=1Ly+ XLy, 13)



where we use A to weigh the impact of different classifi-
cation tasks. Note that a multi-task training setting is only
used during the training process. This setting is discarded
at the inference stage.

4. Evaluation
4.1. Experimental Setup

Datasets. We compare MASTAF with existing work on
UCF101 [25], HMDBS5I1 [15], and Something-Something
V2 (SSv2) [10]. We do not use Kinetics-100 [38] to
avoid bias because one of our MASTAF models is pre-
trained on Kinetics-700 [4]. In these datasets, SSv2 is
more challenging because it focuses on actions related to
temporal relationships such as ‘pretending to take some-
thing from somewhere’ versus ‘take something from some-
where’ [37]. There are two few-shot splits for SSv2 pro-
posed by CMN [38] and OTAM [3], containing 64, 12, and
24 classes as the training, validation, and test set. We use
SSv2-part and SSv2-all denote the split from CMN [38] and
the split from OTAM [3]. The difference between these two
splits is the number of video samples in each class. For
SSv2-part, Zhu and Yang [38] randomly selects 100 sam-
ples for each class, whereas for SSv2-all, Cao [3] uses all
the samples in the original SSv2. We evaluate our method
in these two splits. Additionally, we also follow the split in
ARN [36] for HMDB51 and UCF101.

Evaluation and baseline. Following the evaluation pro-
cess in TRX [20], we evaluate the 5-way 1-shot and 5-way
5-shot video classification task and report the average accu-
racy over 10,000 randomly selected episodes from the test
set. We compare our results with ten SOTA algorithms,
i.e., TSN++ [31], CMN-J [39], OTAM [3], FEAT [34],
PAL [40], TRX [20], Baseline [6], MatchingNet [30], Pro-
toGAN [8], ARN [36]. In particular, the idea of Base-
line (Notation from [6]) is to train a new classifier with
the given labeled examples in novel classes after extract-
ing the representation from the embedding network. For a
fair comparison, we use three MASTAF models with three
different types of embedding networks, i.e., MASTAF-
{TSN}, MASTAF-{R3D} and MASTAF-{ViViT}. For
MASTAF-{TSN}, we follow the same embedding network
configuration with [3, 20, 34, 40], using an ImageNet pre-
trained ResNet-50 as the backbone network. For MASTAF-
{R3D}, we use the merged video dataset with Kinetics-
700 [4],Moment-in-time [17], and START-action [35] to
pre-train 3D ResNet-50 embedding network. We also com-
pare our approach against the previous work based on a 2D
CNN embedding network where we replace 2D CNN with
3D CNN. We use Baseline-{R3D}, MatchingNet-{R3D},
TRX-{R3D} as the baselines by replacing the 2D CNN em-
bedding network with a 3D CNN embedding network(same
pre-trained R3D model as MASTAF-{R3D}). We extract

one representation using pre-trained R3D from each video
and then go through the matching part proposed in Base-
line [6], MatchingNet [30] and TRX [20]. For MASTAF-
{ViViT} and TRX-{ViViT}, we use ViViT [1] as our em-
bedding network. We initialize ViViT from a ViT [14] im-
age model trained on the JFT [26] dataset. Due to the huge
computation demand for ViViT [1], we only perform 5-way
1-shot learning for MASTAF-{ViViT} and TRX-{ViViT}.
Experimental Configuration. For MASTAF-{TSN},
MASTAF-{ViViT} and TRX-{ViViT}, we evenly sam-
ple 8 frames from each video as 8 segments for each
video. For 3D CNN-based Baseline, MatchingNet, TRX
and MASTAF-{R3D}, we evenly sample 16 frames from
each video sample. After that, we resize each frame to
256 x 256. Then we randomly flip each frame horizon-
tally and crop the center region of 224 x 224 to augment
the training data. For test data, we only crop the center
with the same size without the horizontal flipping. Then for
MASTAF-{TSN}, we use an ImageNet pre-trained ResNet-
50 as the backbone and average all the frame representa-
tions as to the video representation. For 3D CNN-based
Baseline, MatchingNet, TRX and MASTAF-{R3D}, we
use a 3D ResNet-50[12] with the weights pre-trained on
the combined dataset with Kinetics-700[4], Moments in
Time[17], and Start Action[35] as the embedding network.
After finetuning in the validation dataset, we set 0.025 as
the temperature hyperparameter(r in Eq 3) and set 6 as the
meta-learner scaled dimension({ is the scaled dimension of
f+ in Eq 4), and set 2 as the loss weight hyperparameter(A
in Eq 13). We train our model for 128,000 episodes in eight
NVIDIA RTX A5000 GPU(except for the larger SSv2-all,
we train our model for 256,000 episodes). We optimize the
MASTAF model with SGD, in which the learning rate is
0.01. After fine-tuning, we adopt the batch-size of 128, 64,
32, 32 for UCF101, HMDB51, SSV2-part, and SSV2-all,
respectively.

4.2. Comparison with State-of-the-art Algorithms

Table 1 tabulates the overall 5-way 1-shot and 5-way
5-shot performance compared with existing methods on
two splits of SSv2. We can categorize these comparative
methods into three groups based on the embedding net-
work. In 2D CNN embedding group, TSN++ [31], CMN-
J [39], FEAT [34] are model agnostic and do not apply
any frame-level temporal alignment. Compared with these
three methods, the other three methods,i.e., OTAM [3],
PAL [40], and TRX [20], adopt frame-level temporal align-
ment, which further improves the performance of few-shot
video classification. MASTAF-{TSN} outperforms exist-
ing 5-way 1-shot video classification algorithms in the 2D
CNN group. TRX [20] achieves SOTA performance for
5-way 5-shot learning because it leverages the temporal
information from different frames in different videos in
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the support set. However, this complex alignment strat-
egy leads to huge computation costs and increases model
inference’s runtime. Figure 4 and Figure 5 compare the
TFLOPs and model inference’s runtime of TRX [20] and
MASTAF-{TSN}. Our approach achieves SOTA accuracy
without increased computational cost and is more efficient
than TRX [20]. As the number of frames sampled from a
video increases, TRX [20] consumes more computational
resources and takes longer for the inference process. In
the 3D CNN group, the accuracy of the TRX-{R3D} is
lower than TRX because it cannot perform the frame-level
temporal alignment. For PAL [40], Zhu [40] also men-
tioned that 3D CNN models [5, 28, 33] do not perform
better than 2D CNN models due to the lacking of frame-
level similarity scores. In comparison, MASTAF-{R3D}
takes advantage of the spatio-temporal representation from
R3D and further improves the performance. In the Trans-
former group, MASTAF-{ViViT} further enhances the per-
formance. These results demonstrate MASTAF works best
when spatio-temporal information is well represented in ad-
vanced video classification models. In contrast, existing
work with a 2D embedding network cannot maintain high
performance when replacing a 2D CNN embedding net-
work with other advanced video representation models.

Table 2 tabulates the overall 5-way 1-shot and 5-way
5-shot performance compared with existing methods on
UCF101 and HMDBS51. Our MASTAF with a 2D embed-
ding network achieves decent performance while TRX and
PAL achieve SOTA accuracy on these two datasets. The rea-
son is that TSN does not provide enough spatio-temporal
information for MASTAF to distinguish the query video
from the videos in the support set. So to benefit the most
from MASTAF, we explore our MASTAF with a 3D CNN
embedding network and Video Transformer. As shown in
Table 2, our MASTAF-{R3D} outperforms other methods
based on 3D models and MASTAF-{ViViT} outperforms
TRX-{ViViT} and achieves new SOTA performance. Com-

— TRX
140 MASTAF-{TSN}
MASTAF-{R3D}

Runtime: Milliseconds / task

20

E 8 1 1 L 1B W 15 I
Frames {uniformly sampled)
Figure 5. Model inference’s runtime analysis for TRX, MASTAF-
{TSN} and MASTAF-{R3D} in one NVIDIA RTX A5000 GPU
as the number of sampled frames varies from 8 to 16 frames on
UCF1011

pared with MASTAF-{TSN}, MASTAF-{R3D} has signif-
icantly lower resource consumption and running time, as
shown in Figure 4 and Figure 5.

4.3. Ablation study

We have shown in Section 4.2 that our MASTAF can
make the most of the advanced video classification model
to improve the accuracy without more computational cost.
We now perform detailed ablation studies on two dataset
UCF101 and SSV2-all to show each module’s influence.
The ablation studies about multi-task learning setting, meta-
learner and residual structure are in the Appendix. In
these ablation studies, all MASTAF models use the 3D
ResNet-50 model pre-trained on the merged video dataset
with Kinetics-700 [4],Moment-in-time [17], and START-
action [35] as the embedding network.

4.3.1 Attention fusion mechanism

To explore the effectiveness of the attention fusion
mechanism, we introduce three comparison models, i.e.,
MASTAF-Neighbor, MASTAF-Self, MASTAF-Cross. In
MASTAF-Neighbor, representations learned from the em-
bedding network are fed into the nearest neighbor classi-
fier and a global video classifier directly without our at-
tention mechanisms. For MASTAF-Self and MASTAF-
Cross, before being fed into two classifiers, representations
go through the self-attention and cross-attention mecha-
nism, respectively. Table 3 shows the comparison results.
Compared with MASTAF-Neighbor, after adding the at-
tention mechanism, all three other models have a signifi-
cant performance improvement, demonstrating that repre-
sentations after the embedding network have some spatio-
temporal features related to the non-target action region.
The cross-attention mechanism in MASTAF-Cross aid in
highlighting the spatio-temporal features associated with
the target action region among the query video and support



Table 1. Comparison on 5-way 1-shot and 5-shot benchmarks of SSv2-part, and SSv2-all. The best performance in each group is high-

lighted. t: Results from [3]. *: Results from [40]

Embedding SSv2-part SSv2-all
Method Groups 1-shot 5-shot 1-shot 5-shot
TSN-++T [31] - - 344 4338
CMN-J [39] 36.2 48.8 - -
FEAT* [34] - - 453 61.2
OTAM [3] 2D CNN - - 42.8 523
PAL [40] - - 46.4 62.6
TRX [20] 36.0 59.1 42.0 64.6
MASTAF-{TSN} 37.5 50.2 46.9 62.4
Baseline-{R3D} 249 36.1 25.6 39.8
MatchingNet-{R3D} 34.1 45.2 43.2 54.4
TRX-{R3D} 3D CNN 26.1 47.0 349 58.9
MASTAF-{R3D} 39.9 52.2 50.3 66.7
TRX-{ViViT} Transformer 34.7 - 42.7 -
MASTAF-{ViViT} 45.6 - 60.7 -

Table 2. Comparison on 5-way 1-shot and 5-shot benchmarks of UCF101, and HMDBS51. The best performance in each group is high-

lighted. *: Results from [40]

Method Embedding UCF101 HMDBS51
Groups I-shot 5-shot 1-shot 5-shot

FEAT* [34] 839 945 604 752
PAL [40] 853 952 609 758
TRX [20] DENN T 961 - 756
MASTAF-{TSN} 79.3 903 548 677
ProtoGAN [8] 57.8 80.2 347 54
ARN [36] 66.3 83.1 455 60.6
Baseline-{R3D} 534 88.7 40.1 68.1
MatchingNet-{R3D} 3D CNN 827 935 618 75.6
TRX-{R3D} 825 941 570 743
MASTAF-{R3D} 9.6 976 679 812
TRX-{ViViT} Transformer 84.8 - 58.1 -
MASTAF-{ViViT} 91.6 - 69.5 -

Table 3. Comparison results with three variants of MASTAF for
5-way 1-shot video classification
Method

UCF101 SSv2-all

MASTAF-Neighbor  82.7 43.2
MASTAEF-Self 90.3 494
MASTAF-Cross 90.5 49.2
MASTAF 90.6 50.3

set. MASTAF-Self’s self-attention module helps highlight
spatio-temporal features related to the action in each video
itself. Therefore, combining two different attention mod-
ules can take advantage of each module to further extract
more discriminative spatio-temporal representations. The
results in Table 3 demonstrate our argument.

5. Conclusion

This paper proposes a Model-Agnostic Spatio-Temporal
Attention Fusion network(MASTAF) for few-shot video
classification. MASTAF is a simple and efficient few-shot
video classification framework compatible with different
video classification models. MASTAF make the most of
the knowledge learned from the advanced video classifica-
tion model and uses self- and cross-attention to highlight
the spatio-temporal features. MASTAF works best when
spatio-temporal information is well represented in advanced
video classification models and improves the state-of-the-
art performance of 5-way 1-shot, and 5-shot video classi-
fication on UCF101, HMDBS51, and SSv2, e.g., MASTAF
improves the accuracy of 5-way 1-shot video classification
to 91.6%, 69.5%, and 60.7% for UCF101, HMDB51, and
SSv2, respectively.
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