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Abstract—Network coding allows distributed information
sources such as sensors to efficiently compress and transmit
data to distributed receivers across a bandwidth-limited net-
work. Classical network coding is largely task-agnostic — the
coding schemes mainly aim to faithfully reconstruct data at the
receivers, regardless of what ultimate task the received data is
used for. In this paper, we analyze a new task-driven network
coding problem, where distributed receivers pass transmitted
data through machine learning (ML) tasks, which provides an
opportunity to improve efficiency by transmitting salient task-
relevant data representations. Specifically, we formulate a task-
aware network coding problem over a butterfly network in
real-coordinate space, where lossy analog compression through
principal component analysis (PCA) can be applied. A lower
bound for the total loss function for the formulated problem is
given, and necessary and sufficient conditions for achieving this
lower bound are also provided. We introduce ML algorithms
to solve the problem in the general case, and our evaluation
demonstrates the effectiveness of task-aware network coding
on distributed image classification tasks on MNIST, CIFARI10,
CIFAR100, and satellite imagery datasets.

I. INTRODUCTION

Distributed sensors measure rich sensory data which po-
tentially are consumed by multiple distributed data receivers.
On the other hand, network bandwidths remain limited and
expensive, especially for wireless networks. For example, low
Earth orbit satellites collect high-resolution Earth imagery,
whose size goes up to a few terabytes per day and is sent
to geographically distributed ground stations, while in the
best case one ground station can only download 80 GB
from one satellite in a single pass [1]. Therefore, one is
motivated to make efficient use of existing network bandwidth
for distributed data sources and receivers.

Network coding [2] is an important technology which aims
at maximizing the network throughput for multi-source mul-
ticasting with limited network bandwidth. Classical network
coding literature [3]-[8] considers a pure network information
flow problem from the information-theoretic view, where the
demands for all the data receivers, either homogeneous or
heterogeneous, are specified and the objective is to satisfy
each demand with a rate (i.e., mutual information between the
demand and the received data) as high as possible. However,
in reality, each data receiver may apply the received data to a
different task, such as inference, perception and control, where
different lossy data representations, even with the same rate,
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can produce totally different task losses. Hence it is crucial
to transmit fask-relevant data representations to distributed
receivers that satisfy the network topology and bandwidth
constraints, rather than representations with the highest rate.

We formulate a concrete task-aware network coding prob-
lem in this paper — task-aware linear network coding over
a butterfly network, as shown in Fig. 1(b). The butterfly
network is a representative topology in many existing net-
work coding works [9]-[11], and hence a good example
to demonstrate the benefit of making network coding task-
aware. Moreover, the domain of our problem is the multi-
dimensional real-coordinate space R™ rather than finite field
GF(+) as in classical network coding literature, which enables
us to consider lossy analog compression (similar to [12])
through principal component analysis (PCA) [13] rather than
information-theoretic discrete compression.

Related work. Our work is broadly related to network
coding and task-aware representation learning. First, beyond
the classical network coding literatures the two closest works
to ours are [14] and [15], where a data-driven approach is
adopted in the general network coding and distributed source
coding settings respectively, to determine a coding scheme
that minimizes task-agnostic reconstruction loss. In stark
contrast, we aim at finding a linear network coding scheme
that minimizes an overall fask-aware loss which incorporates
heterogeneous task objectives of different receivers, and we
show that in some cases such linear coding schemes can
even be determined analytically. Second, our work is also
related to network functional compression [16]-[22], where
a general function with distributed inputs over finite space
is compressed. There’s a similar task-aware loss function in
our work, yet it corresponds to machine learning tasks over
multi-dimensional real-coordinate spaces. Lastly, there have
been a variety of works [23]-[27] focusing on task-aware data
compression for inference, perception and control tasks under
a single-source single-destination setting which is similar to
Shannon’s rate-distortion theory [28], while in contrast we
consider task-aware data compression in a distributed setting.

Contributions. In light of prior work, our contributions are
three-fold. First, we formulate a task-aware network coding
problem over a butterfly network in real-coordinate space
where lossy analog compression through PCA can be applied
(Sec. III). Second, we give a lower bound for the formulated
problem, and provide necessary and sufficient conditions for
achieving such a lower bound (Sec. IV). Third, we adopt
standard gradient descent algorithms to solve the formulated
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Fig. 1. Network coding over butterfly network. Left (classical setting): Task-agnostic network coding in finite field. Node 3 can decode B through A+(A+B)
where ‘+ represents exclusive or logic. Right (our setting): Task-aware network coding in real-coordinate space. Salient task-relevant data representations are

transmitted to make efficient use of network bandwidths.

problem in the general case, and validate the effectiveness of
task-aware network coding in our evaluation (Sec. V - VI).

II. PRELIMINARIES
A. Network Coding with a Classical Example

Network coding [2] is a technique to increase the net-
work throughput for multi-source multicasting under lim-
ited network bandwidths. A classical example over butter-
fly network in finite field GF(2), as shown in Fig. 1(a),
is widely used to illustrate the benefit of network coding.
The butterfly network can be represented by a directed
graph G = (V,€), where V {1,2,---,6} and & =
{(1,3),(1,5),(2,4),(2,5), (5,6), (6,3),(6,4)} are the set of
nodes and edges, respectively. Suppose each edge in £ can
only carry a single bit, and node 1 and 2 each have a single
bit of information, denoted by A and B respectively, which are
supposed to be multicast to both node 3 and 4. In this case,
network coding makes such multicasting possible by encoding
A and B as A+B at node 5, while routing cannot.

B. Task-aware PCA

PCA is a widely-used dimensionality-reduction technique
for determining the optimal orthogonal linear transformation
that compresses a random vector x € R™ to a Z-dimensional
representation, where Z < n. For task-aware data com-
pression under a single-source single-destination setting [24],
[27], we assume mean E.[z] = O and covariance matrix
U £ E.[z2"] = 0 (i.e, rank(¥) = n), and consider the

following problem
. _ L raN12
min L= E.[[|f(z) — F(2)ll2] M
st. #=DEz,D e R"™? EcR?*" )

where % is the reconstructed vector through a bottlenecked
channel which only transmits a low-dimensional vector in
RZ, and E € RZ*" and D € R"*Z are the corresponding
encoding and decoding matrices respectively. Loss function
L is associated with a task function f(-) € R™ and cap-
tures the mean-squared error between f(z) and f(Z). In
this paper we consider linear task function f(x) Kz,
where K € R"™*" is called task matrix. According to
PCA, the optimal task loss £* can be determined as follows.
Suppose the Cholesky decomposition of ¥ is W = LLT
where L € R™ ™ is a lower triangular matrix with positive
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diagonal entries, and the eigen-values in descending order
and the corresponding normalized eigen-vectors of Gram
matrix S = LT KTKL are iy, jia, -, jtn, and uy, ug, - -+ , Uy
respectively. Then we have £* = > " 41 Mi, and if the
eigen-gap pz — piz+1 > 0 (define pp41 = 0), we must have
col(ET) = span({L~ Tuy, L™ Tug,--- , L™ Tuz}) to achieve
minimum task loss, where col(-) denotes the column space of
a matrix and span(-) denotes the linear span of a set of vectors.

IIT. PROBLEM FORMULATION

We now formulate a task-aware network coding problem
over a butterfly network, as shown in Fig. 1(b). The key
differences between our formulation and the classical example
in Fig. 1(a) are: 1) our formulation has a heterogeneous task
objective for each receiver while the classical example does
not; 2) the domain of our code is multi-dimensional real-
coordinate space rather than a finite space as in the classical
example, and hence PCA can be applied.

Data. The original data is a random vector x
[x1,29, - ,2,]" € R™, where z; € R is a random variable,
Vi € {1,2,---,n}. Without loss of generality, we assume
E.[z] = 0, or else we replace x by x — E,[z]. We also let
U = E,[zz "] be the covariance matrix of z.

Data observations. Node 1 and 2 have immutable partial
observations of x, denoted by @™ e R* and 2(® € RY,
respectively. Here observations z(!) and 2(?) are composed
of a and b different dimensions of x, respectively; and each
x; exists in at least one of the two observations. There-
fore, we have max{a,b} < n < a + b. Without loss of
generality, we let () = [z, 25, -+ ,2,]" and z® =
[Tn_bi1,Tn_br2, - ,Tp] . That is, 1., and x441., are
node 1’s and node 2’s exclusive observations respectively, and
Tp—bt1:q are their mutual observations.

Data transmission. We assume all the edges have the
same capacity Z, which represents the number of dimensions
in real-coordinate space here. And V(i,j) € &, we use
¢ € RZ to denote the random vector that transmits
over the edge (i,j). Notice that for each edge (i,j) €
& ={(1,3),(1,5),(2,4),(2,5),(5,6)}, the overall number
of input dimensions for node 7 can be larger than Z, so we
use linear mappings to transform the input signal to a low-
dimensional signal in R%:

¢(173) - E(lvg)x(l)) ¢(175) — E(LS)JJ(l),
52D = B L@) 4(25) _ p25),0)

3)
“4)

7August 27,2023 at 21:06:24 UTC from IEEE Xplore. Restrictions apply.



2023 IEEE International Symposium on Information Theory (ISIT)

15
58 = g6 [¢(2,5) ) &)

where E(13) E(15) ¢ RZxa  pE4) E(25) ¢ , and
E(®6) ¢ RZ*2Z are encoding matrices. Node 6 simply
multicasts the data received from node 5 to node 3 and 4,
ie., ¢(6,3) _ ¢(6,4) _ ¢(5,6)_

Data reconstructions. Node 3 and 4 aim to reconstruct the
original data x, through the aggregated inputs they received
from their input edges. The decoder functions are:

(1,3) (2,4)
#3) = pB) [2(6,3)] ,#W = pW {5(6,4)} (6)

where D), D(*) ¢ R"*2Z are decoding matrices for node 3
and node 4 respectively, and z:(®) and #(*) are the reconstructed
data at node 3 and node 4 respectively.

Task objectives. Node ¢ (Vi € {3, 4}) uses the reconstructed
data () as the input for a task with loss function

LD =B [/ (@) — fD@D)3],

where () (z) = KWz with task matrix K(*) € R™i*",
Task-aware network coding problem. The problem can
be written as an optimization problem:

Eq.(3) — (6) ®)

Rbe

Vie{3,4} ()

min L s.t.
B D) total y
where we find the optimal encoder and decoder parameters to
minimize the overall task 10ss Lo = LB 4 £®),

IV. ANALYSIS

In this section, we summarize the main results towards
the task-aware network coding problem. We first provide a
lower bound Lo b Which may not be always achievable, and
then discuss necessary condition and sufficient conditions for
L = Liotallb-

A. Lower bound Lo

We start the analysis by making the assumption of
rank(¥) = n, which doesn’t make the task-aware network
coding problem lose generality. Next, we let the Cholesky
decomposition of U be LLT, where L € R™*™, Moreover,
notice that ¢(*7) is a linear transformation from x and hence is
also a linear transformation from L~'z. Therefore, for the con-
venience of the following analysis we let () = &) T [~ 1y
where &) € R"*Z ig a transformation matrix. Furthermore,
we assume Z < n, or else the network bandwidth is enough
to make L, =

For task matrix K®, Vi € {3,4}, we define Gram
matrix S0 = LTKOTKOL e R™" Moreover, let
the eigen-values in descending order and the correspond-
ing normalized eigen-vectors of S() be ,Jg),;ﬁ) .- ,MSR
and ug),ué), x u%), respectively. Since node 3 and 4
both receive 27 dlmenswns accordlng to PCA, we have

LB >3 =271 uj ) and £&) > > 2z+1 ,uj ) Therefore,
Liotal > Etotal,lb = 216{3 4} EJ 2741 ,U;
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Fig. 2. Two illustrative examples for Theorem 1, where the left one doesn’t
achieve Ly, While the right one does.

Clearly, the lower bound L1 may not be always achiev-
able. Hence in the next two subsections, we focus on ex-
ploring the necessary conditions and sufficient conditions for

L = Leotarp- For further analysis, Vi € {3,4}, we define
U(l) — [ugl), Uél), . 7ux(ril)in{22,n}] c ]RnX]min{QZ,n}7 (9)

where the column vectors of U() are the top-min{2Z,n}
normalized eigen-vectors of S(). Making col(U®)) C
col([@13) &(5:9)]) and col(UW) C col([®@>D, 6 6>])
one way to achieve Lo, 15. Moreover, we let U (1) ¢ Rnxa g
U®) € R"*® be matrices whose column vectors are the ﬁrst a
and last b column vectors of matrix L, respectively. The net-
work topology constrains col(®(13)), col(®@(1:2)) C col(UM))
and col(®4)) col(®2) C col(U?). Therefore, we say
®13) is valid if col(®(H3)) C col(UM), and &34 is valid
if col(®(4) C col(U?). On the other hand, any &6 is
valid, since VP56 ¢ R"*Z 315 $(25 and EG0) st
@(5,6)1’ — E(5,6) [@(1,5)7(1)(2,5)}1" Col(q)(l,s)) c COl(U(l)),
and col(®(>)) C col(UP).

Furthermore, we also let rsrm) = dim(col([U®, UU)])) and
) = dim(col(U®) Neol(UW))), Vi, j € {1,2,3, 4}, where
dim(+) is the dimension of a vector space.

B. Necessary condition

The following theorem provides a necessary condition for
achieving Lo, 1p under a mild assumption. It constrains vector
spaces’ dimensions from the network bandwidth perspective.

Theorem 1. Assume

the  eigen-gap MEQin{?Z”}

Horniozmys1 > O (define (), = 0), Vi € {3,4}.
Then Lipq 1 is achievable only when

r$% <37, and (10)

p3) G > min{Z,n — Z}. (11)

To show the conditions in Theorem 1 are only necessary
but not sufficient, we present two examples in Fig. 2, where
the left one doesn’t achieve L, While the right one does.
Here we have n =3, W =1, Z =1, a = b= 2. And we also
assume eigen-gap ;Lg) — M;(;) > 0, Vi € {3,4}. Therefore, to
achieve Lo, we must have col ([®(13), &5:0)]) = col(U®))
and col([®4) (:6)]) = col(U™). In Fig. 2(a), we assume

u = Wl = 0,107, uf¥ = [0,0,1]7 and uf? =
[1,0,0]". So we have r* = 3 and r"* = % — 1. The
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conditions in Theorem 1 are satisfied, but we cannot make
col([@1+3), &(:0)]) = col(U®)) and col([@2D, dG-0)]) =
col(U(4)) simultaneously, and hence Ly is not achievable.

In Fig. 2(b), we assume u\® = u{¥ = f[1,1,3]T,

ugg) = %[4,—77 1]T and Ugl) = %[ 7a4a I]T For

(13 = [0,1,1]T, @4 = [1,0,1]7 and &6 = [1,3,1]7,
6)]

Liotalib 18 achlevable because col([®(13) dG:60]) = col(U®))

and col([<1>(2 1 dG:0)]) = col(UW).
C. Sufficient Conditions

We have seen that constrain the dimensions of vector
spaces, as in Theorem 1, is not enough to achieve Lol b-
In the following theorem, we add a requirement of the data
dependencies between different U(?)’s on top of the necessary
conditions, which guarantees the achievability of Lioa1p.

Theorem 2. If Eq. (10) and (11) hold, and

col(U®)) = span((col(UM) N col(U®)))U
(col(T®) Neol(T™))),  (12)

col(U®) = span((col(U®) N col(UW))U
(col(T®) Neol(T@))),  (13)

then Lo is achievable.

Eq. (12) (and similarly for Eq. (13)) has the following
interpretation: we can find vectors in col(U(!)) that extend
a basis of col(U®)) Ncol(U®) to a basis of col(U®)). This
makes it possible for us to assign column vectors of ®(3) to
achieve Ly p (Which is not possible for Fig. 2(a)).

We further have the following two corollaries.

Corollary 3. If Eq. (10), (12) and (13) hold, and

col(U®) ncol(UW) C col(UM) Neol(UP),  (14)
then Liparip is achievable.
Corollary 4. If Eq. (10), (12) and (13) hold, and
n < Z + min{a, b}, (15)

then Lo p is achievable.

V. ALGORITHM

In the last section we have discussed the sufficient condi-
tions for achieving Lo b, and corresponding optimal encoder
and decoder parameters can be determined analytically. In the
general case when these sufficient conditions are not satisfied,
we resort to standard gradient descent algorithms to determine
the encoder and decoder parameters jointly. The encoders and
decoders are connected as per network information flow (i.e.,
Eq. (3)-(6)). We initialize £(*) and D) randomly and update
them for multiple epochs through back-propagation:

r V»C'total

Bl plid) _ il V(i,j) €& (16)
. . V Lot
(Z) (z) . total .
DY« D Ok vie {34t (A7)

where 7 is the learning rate.
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Fig. 3. Slmulatlon result with synthetic data: overall task loss L, under
different ri_ (left) and different a (right). The task losses for task-agnostic
coding are too large and have to be omitted from this figure.

To show our algorithm converges to a near-optimal solution
for low-dimensional data and to verify our conclusions in the
last section numerically, we run simulations with synthetic
data for our task-aware coding approach and compare against
three benchmark approaches. The benchmark approaches are:
1) Task-aware no coding approach, where network coding at
node 5 is not allowed, i.e., each dimension of ¢(5’6) can only
be a dimension of ¢(1:%) or $(>); 2) Task-agnostic coding
approach (used in [14]), where the objective is to minimize the
reconstruction loss at node 3 and 4, ie., K® = K& = ;.
3) Coding benchmark approach, which is also a task-aware
coding approach but the encoder parameters associated with
edge (5,6) is determined greedily first and then other parame-
ters. Such a greedy approach doesn’t ensure global optimality
but provides a general analytical solution.

The simulation results are shown in Fig. 3. The parameters
are as follows: we fix n =32, W =1, a=b2> 16, Z = 8.
Next we let eigen-values N(1 ),~ ,uégz) and p(4) . ,ung)
be positive, and other eigen-values of S and S be 0.
Hence Lo = 0. In Fig. 3(a), we fix a = b = 24
and change eigen-vectors u§3),--- ,ug)’z) and u§4),-~- uglz)
to make rf’4) different, while in the meantime keep Eq.
(12), (13) and (14). We can observe our task-aware coding
approach achieves Lo, When rf ) < 24, ie., Eq. (10)
is satisfied, which verifies our conclusion in Corollary 3. We
also notice that the task-aware no coding approach achieves
4 < 24 as well, since coding is not required
to achieve Limp. In Fig. 3(b), we fix u(s) u;3Z)
u§4)7 cee u;4Z) such that r(?’ Y _ 18, and change a, while in
the meantime keep Eq. (1 2) and (13). We can observe our task-
aware coding approach achieves Ly p When a = b > 24, ie.,
Eq. (15) is satisfied, which verifies our conclusion in Corollary
4. Furthermore, in both Fig. 3(a) and 3(b), our task-aware
coding approach beats all the other benchmark approaches

under varying rf’4)’s with respect to overall task loss Lioy-

Liotal b When ri
and

VI. EVALUATION

Our evaluation compares the performance of our task-aware
coding approach and other benchmark approaches (as in Sec.
V) over a few standard ML datasets, including MNIST [29],
CIFAR-10, CIFAR-100 [30] and SAT-6 [31]. For MNIST, each
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Fig. 4. Evaluation setup and result with MNIST, CIFAR-10, CIFAR-100 and the SAT-6 satellite imagery dataset.

data sample is a 28 x 28 handwritten digit image, and we
let « be a horizontally-concatenated image (28 x 56) of two
images. Node 1 and 2 observe the upper and the lower half part
of the concatenated image (both 14 x 56) respectively. Task
matrices K and K¥ are formulated as follows: we pre-
train a convolutional neural network (CNN) to classify original
MNIST digits by their labels. Task matrix K () requires both
the reconstruction of the feature map (i.e., the output of the
first layer of CNN) of the left MNIST digit in the concatenated
image, and the reconstruction of the concatenated image itself:

K® =  yE®T (1-9I . (18)
——

recon. of left feature map recon. of concatenated image

]T

where K (3) represents the mapping between = and the feature
map of the left MNIST digit, and v is a weight coefficient.
Here we use v = 0.9. Task matrix K () is formulated similarly
while the feature map of the right MNIST digit is considered
instead. For CIFAR-10/CIFAR-100/SAT-6, each data sample
is a 32 x 32 or 28 x 28 colored image with 3 or 4 channels
and we let x represent the original image. We similarly let
node 1 and 2 observe the upper and the lower half part of
the image respectively, and let node 3 and node 4 require the
reconstruction of the left and the right half part respectively.
The setup is illustrated in Fig. 4(a).

The evaluation result is shown in Fig. 4. In Fig. 4(c)-4(f),
we plot the overall task loss Ly, under different edge capacity
Z. In these figures, we see task-aware coding and coding
benchmark approach outperform task-aware no coding and
task-agnostic coding approach, and the overall task loss Ly
of our task-aware coding approach is the closet to Ly, 1p- The
maximum improvements of overall task loss L, for task-
aware coding approach are 26.1%, 26.4%, 25.3% and 17.1%
respectively, compared to task-agnostic coding approach; and
are 9.1%, 103.3%, 97.8% and 28.4% respectively, compared
to task-aware no coding approach. We also notice that, task-
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agnostic coding approach doesn’t always outperform task-
aware no coding approach, and vice versa. Therefore, it is
beneficial to combine network coding and task-awareness.

In Fig. 4(b), we compare the utilities of ¢(>%) ¢(1:3) and
#2% in terms of minimizing the overall task loss L
when Z = 10, v = 0.9. Here we consider the utility of
#6) in the absence of ¢(13) and $(*>%), and the utility of
#13) and ¢4 in the presence of ¢(>%). We observe that
the coding benchmark approach outperforms other approaches
with respect to the utility of ¢(>-%), but underperforms our task-
aware coding approach by 4.2% with respect to the overall
task loss L. This is because coding benchmark approach
greedily determines the encoder parameters associated with
edge (5, 6) first which however could not guarantee optimality.
On the other hand, our task-aware coding approach tunes all
the encoding and decoding parameters jointly and achieves a
lower Lioal.

VII. CONCLUSION

This paper considers task-aware network coding over a
butterfly network in real-coordinate space. We prove a lower
bound Ly b Of the total loss, as well as conditions for achiev-
ing Lo - We also provide a machine learning algorithm in
the general setting. Experimental results demonstrate that our
task-aware coding approach outperforms the benchmark ap-
proaches under various settings. Regarding future extensions,
although the butterfly network is a representative topology
in network coding, it is worth extending the analysis of the
task-aware network coding problem to general networks. A
similar L1 1b can still be derived, yet the associated necessary
and sufficient conditions for achieving L depend on the
specific network topology in a manner that needs further
investigation to be fully understood.
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