
Task-aware Network Coding over Butterfly Network

Jiangnan Cheng∗, Sandeep Chinchali†, Ao Tang∗

∗School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
†Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA

{jc3377, atang}@cornell.edu, sandeepc@utexas.edu

AbstractÐNetwork coding allows distributed information
sources such as sensors to efficiently compress and transmit
data to distributed receivers across a bandwidth-limited net-
work. Classical network coding is largely task-agnostic ± the
coding schemes mainly aim to faithfully reconstruct data at the
receivers, regardless of what ultimate task the received data is
used for. In this paper, we analyze a new task-driven network
coding problem, where distributed receivers pass transmitted
data through machine learning (ML) tasks, which provides an
opportunity to improve efficiency by transmitting salient task-
relevant data representations. Specifically, we formulate a task-

aware network coding problem over a butterfly network in
real-coordinate space, where lossy analog compression through
principal component analysis (PCA) can be applied. A lower
bound for the total loss function for the formulated problem is
given, and necessary and sufficient conditions for achieving this
lower bound are also provided. We introduce ML algorithms
to solve the problem in the general case, and our evaluation
demonstrates the effectiveness of task-aware network coding
on distributed image classification tasks on MNIST, CIFAR10,
CIFAR100, and satellite imagery datasets.

I. INTRODUCTION

Distributed sensors measure rich sensory data which po-

tentially are consumed by multiple distributed data receivers.

On the other hand, network bandwidths remain limited and

expensive, especially for wireless networks. For example, low

Earth orbit satellites collect high-resolution Earth imagery,

whose size goes up to a few terabytes per day and is sent

to geographically distributed ground stations, while in the

best case one ground station can only download 80 GB

from one satellite in a single pass [1]. Therefore, one is

motivated to make efficient use of existing network bandwidth

for distributed data sources and receivers.

Network coding [2] is an important technology which aims

at maximizing the network throughput for multi-source mul-

ticasting with limited network bandwidth. Classical network

coding literature [3]±[8] considers a pure network information

flow problem from the information-theoretic view, where the

demands for all the data receivers, either homogeneous or

heterogeneous, are specified and the objective is to satisfy

each demand with a rate (i.e., mutual information between the

demand and the received data) as high as possible. However,

in reality, each data receiver may apply the received data to a

different task, such as inference, perception and control, where

different lossy data representations, even with the same rate,
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can produce totally different task losses. Hence it is crucial

to transmit task-relevant data representations to distributed

receivers that satisfy the network topology and bandwidth

constraints, rather than representations with the highest rate.

We formulate a concrete task-aware network coding prob-

lem in this paper ± task-aware linear network coding over

a butterfly network, as shown in Fig. 1(b). The butterfly

network is a representative topology in many existing net-

work coding works [9]±[11], and hence a good example

to demonstrate the benefit of making network coding task-

aware. Moreover, the domain of our problem is the multi-

dimensional real-coordinate space R
n rather than finite field

GF(·) as in classical network coding literature, which enables

us to consider lossy analog compression (similar to [12])

through principal component analysis (PCA) [13] rather than

information-theoretic discrete compression.

Related work. Our work is broadly related to network

coding and task-aware representation learning. First, beyond

the classical network coding literatures the two closest works

to ours are [14] and [15], where a data-driven approach is

adopted in the general network coding and distributed source

coding settings respectively, to determine a coding scheme

that minimizes task-agnostic reconstruction loss. In stark

contrast, we aim at finding a linear network coding scheme

that minimizes an overall task-aware loss which incorporates

heterogeneous task objectives of different receivers, and we

show that in some cases such linear coding schemes can

even be determined analytically. Second, our work is also

related to network functional compression [16]±[22], where

a general function with distributed inputs over finite space

is compressed. There’s a similar task-aware loss function in

our work, yet it corresponds to machine learning tasks over

multi-dimensional real-coordinate spaces. Lastly, there have

been a variety of works [23]±[27] focusing on task-aware data

compression for inference, perception and control tasks under

a single-source single-destination setting which is similar to

Shannon’s rate-distortion theory [28], while in contrast we

consider task-aware data compression in a distributed setting.

Contributions. In light of prior work, our contributions are

three-fold. First, we formulate a task-aware network coding

problem over a butterfly network in real-coordinate space

where lossy analog compression through PCA can be applied

(Sec. III). Second, we give a lower bound for the formulated

problem, and provide necessary and sufficient conditions for

achieving such a lower bound (Sec. IV). Third, we adopt

standard gradient descent algorithms to solve the formulated
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Fig. 1. Network coding over butterfly network. Left (classical setting): Task-agnostic network coding in finite field. Node 3 can decode B through A+(A+B)
where ‘+’ represents exclusive or logic. Right (our setting): Task-aware network coding in real-coordinate space. Salient task-relevant data representations are
transmitted to make efficient use of network bandwidths.

problem in the general case, and validate the effectiveness of

task-aware network coding in our evaluation (Sec. V - VI).

II. PRELIMINARIES

A. Network Coding with a Classical Example

Network coding [2] is a technique to increase the net-

work throughput for multi-source multicasting under lim-

ited network bandwidths. A classical example over butter-

fly network in finite field GF(2), as shown in Fig. 1(a),

is widely used to illustrate the benefit of network coding.

The butterfly network can be represented by a directed

graph G = (V, E), where V = {1, 2, · · · , 6} and E =
{(1, 3), (1, 5), (2, 4), (2, 5), (5, 6), (6, 3), (6, 4)} are the set of

nodes and edges, respectively. Suppose each edge in E can

only carry a single bit, and node 1 and 2 each have a single

bit of information, denoted by A and B respectively, which are

supposed to be multicast to both node 3 and 4. In this case,

network coding makes such multicasting possible by encoding

A and B as A+B at node 5, while routing cannot.

B. Task-aware PCA

PCA is a widely-used dimensionality-reduction technique

for determining the optimal orthogonal linear transformation

that compresses a random vector x ∈ R
n to a Z-dimensional

representation, where Z ≤ n. For task-aware data com-

pression under a single-source single-destination setting [24],

[27], we assume mean Ex[x] = 0 and covariance matrix

Ψ ≜ Ex[xx
⊤] ≻ 0 (i.e., rank(Ψ) = n), and consider the

following problem

min
D,E

L = Ex[∥f(x)− f(x̂)∥22] (1)

s.t. x̂ = DEx,D ∈ R
n×Z , E ∈ R

Z×n (2)

where x̂ is the reconstructed vector through a bottlenecked

channel which only transmits a low-dimensional vector in

R
Z , and E ∈ R

Z×n and D ∈ R
n×Z are the corresponding

encoding and decoding matrices respectively. Loss function

L is associated with a task function f(·) ∈ R
m and cap-

tures the mean-squared error between f(x) and f(x̂). In

this paper we consider linear task function f(x) = Kx,

where K ∈ R
m×n is called task matrix. According to

PCA, the optimal task loss L∗ can be determined as follows.

Suppose the Cholesky decomposition of Ψ is Ψ = LL⊤

where L ∈ R
n×n is a lower triangular matrix with positive

diagonal entries, and the eigen-values in descending order

and the corresponding normalized eigen-vectors of Gram

matrix S = L⊤K⊤KL are µ1, µ2, · · · , µn and u1, u2, · · · , un

respectively. Then we have L∗ =
∑n

i=Z+1 µi, and if the

eigen-gap µZ − µZ+1 > 0 (define µn+1 = 0), we must have

col(E⊤) = span({L−⊤u1, L
−⊤u2, · · · , L

−⊤uZ}) to achieve

minimum task loss, where col(·) denotes the column space of

a matrix and span(·) denotes the linear span of a set of vectors.

III. PROBLEM FORMULATION

We now formulate a task-aware network coding problem

over a butterfly network, as shown in Fig. 1(b). The key

differences between our formulation and the classical example

in Fig. 1(a) are: 1) our formulation has a heterogeneous task

objective for each receiver while the classical example does

not; 2) the domain of our code is multi-dimensional real-

coordinate space rather than a finite space as in the classical

example, and hence PCA can be applied.

Data. The original data is a random vector x =
[x1, x2, · · · , xn]

⊤ ∈ R
n, where xi ∈ R is a random variable,

∀i ∈ {1, 2, · · · , n}. Without loss of generality, we assume

Ex[x] = 0, or else we replace x by x − Ex[x]. We also let

Ψ = Ex[xx
⊤] be the covariance matrix of x.

Data observations. Node 1 and 2 have immutable partial

observations of x, denoted by x(1) ∈ R
a and x(2) ∈ R

b,

respectively. Here observations x(1) and x(2) are composed

of a and b different dimensions of x, respectively; and each

xi exists in at least one of the two observations. There-

fore, we have max{a, b} ≤ n ≤ a + b. Without loss of

generality, we let x(1) = [x1, x2, · · · , xa]
⊤ and x(2) =

[xn−b+1, xn−b+2, · · · , xn]
⊤. That is, x1:n−b and xa+1:n are

node 1’s and node 2’s exclusive observations respectively, and

xn−b+1:a are their mutual observations.

Data transmission. We assume all the edges have the

same capacity Z, which represents the number of dimensions

in real-coordinate space here. And ∀(i, j) ∈ E , we use

ϕ(i,j) ∈ R
Z to denote the random vector that transmits

over the edge (i, j). Notice that for each edge (i, j) ∈
E ′ = {(1, 3), (1, 5), (2, 4), (2, 5), (5, 6)}, the overall number

of input dimensions for node i can be larger than Z, so we

use linear mappings to transform the input signal to a low-

dimensional signal in R
Z :

ϕ(1,3) = E(1,3)x(1), ϕ(1,5) = E(1,5)x(1), (3)

ϕ(2,4) = E(2,4)x(2), ϕ(2,5) = E(2,5)x(2), (4)
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ϕ(5,6) = E(5,6)

[
ϕ(1,5)

ϕ(2,5)

]

, (5)

where E(1,3), E(1,5) ∈ R
Z×a, E(2,4), E(2,5) ∈ R

Z×b, and

E(5,6) ∈ R
Z×2Z are encoding matrices. Node 6 simply

multicasts the data received from node 5 to node 3 and 4,

i.e., ϕ(6,3) = ϕ(6,4) = ϕ(5,6).

Data reconstructions. Node 3 and 4 aim to reconstruct the

original data x, through the aggregated inputs they received

from their input edges. The decoder functions are:

x̂(3) = D(3)

[
ϕ(1,3)

ϕ(6,3)

]

, x̂(4) = D(4)

[
ϕ(2,4)

ϕ(6,4)

]

, (6)

where D(3), D(4) ∈ R
n×2Z are decoding matrices for node 3

and node 4 respectively, and x̂(3) and x̂(4) are the reconstructed

data at node 3 and node 4 respectively.

Task objectives. Node i (∀i ∈ {3, 4}) uses the reconstructed

data x̂(i) as the input for a task with loss function

L(i) = Ex[∥f
(i)(x)− f (i)(x̂(i))∥22], ∀i ∈ {3, 4} (7)

where f (i)(x) = K(i)x with task matrix K(i) ∈ R
mi×n.

Task-aware network coding problem. The problem can

be written as an optimization problem:

min
E(i,j),D(i)

Ltotal, s.t. Eq.(3)− (6) (8)

where we find the optimal encoder and decoder parameters to

minimize the overall task loss Ltotal ≜ L
(3) + L(4).

IV. ANALYSIS

In this section, we summarize the main results towards

the task-aware network coding problem. We first provide a

lower bound Ltotal,lb which may not be always achievable, and

then discuss necessary condition and sufficient conditions for

L∗
total = Ltotal,lb.

A. Lower bound Ltotal,lb

We start the analysis by making the assumption of

rank(Ψ) = n, which doesn’t make the task-aware network

coding problem lose generality. Next, we let the Cholesky

decomposition of Ψ be LL⊤, where L ∈ R
n×n. Moreover,

notice that ϕ(i,j) is a linear transformation from x and hence is

also a linear transformation from L−1x. Therefore, for the con-

venience of the following analysis we let ϕ(i,j) = Φ(i,j)⊤L−1x

where Φ(i,j) ∈ R
n×Z is a transformation matrix. Furthermore,

we assume Z ≤ n, or else the network bandwidth is enough

to make L∗
total = 0.

For task matrix K(i), ∀i ∈ {3, 4}, we define Gram

matrix S(i) = L⊤K(i)⊤K(i)L ∈ R
n×n. Moreover, let

the eigen-values in descending order and the correspond-

ing normalized eigen-vectors of S(i) be µ
(i)
1 , µ

(i)
2 , · · · , µ

(i)
n

and u
(i)
1 , u

(i)
2 , · · · , u

(i)
n , respectively. Since node 3 and 4

both receive 2Z dimensions, according to PCA, we have

L(3) ≥
∑n

j=2Z+1 µ
(3)
j and L(4) ≥

∑n

j=2Z+1 µ
(4)
j . Therefore,

Ltotal ≥ Ltotal,lb ≜
∑

i∈{3,4}
∑n

j=2Z+1 µ
(i)
j .

col(U (1)) col(U (2)) col(U (3)) col(U (4))

x1

x2

x3

(a)

x1

x2

x3

(1, 3, 1)

(0, 1, 1)(1, 1, 0)

(b)

Fig. 2. Two illustrative examples for Theorem 1, where the left one doesn’t
achieve Ltotal,lb while the right one does.

Clearly, the lower bound Ltotal,lb may not be always achiev-

able. Hence in the next two subsections, we focus on ex-

ploring the necessary conditions and sufficient conditions for

L∗
total = Ltotal,lb. For further analysis, ∀i ∈ {3, 4}, we define

U (i) = [u
(i)
1 , u

(i)
2 , · · · , u

(i)
min{2Z,n}] ∈ R

n×min{2Z,n}, (9)

where the column vectors of U (i) are the top-min{2Z, n}
normalized eigen-vectors of S(i). Making col(U (3)) ⊆
col([Φ(1,3),Φ(5,6)]) and col(U (4)) ⊆ col([Φ(2,4),Φ(5,6)]) is

one way to achieve Ltotal,lb. Moreover, we let U (1) ∈ R
n×a and

U (2) ∈ R
n×b be matrices whose column vectors are the first a

and last b column vectors of matrix L, respectively. The net-

work topology constrains col(Φ(1,3)), col(Φ(1,5)) ⊆ col(U (1))
and col(Φ(2,4)), col(Φ(2,5)) ⊆ col(U (2)). Therefore, we say

Φ(1,3) is valid if col(Φ(1,3)) ⊆ col(U (1)), and Φ(2,4) is valid

if col(Φ(2,4)) ⊆ col(U (2)). On the other hand, any Φ(5,6) is

valid, since ∀Φ(5,6) ∈ R
n×Z , ∃Φ(1,5),Φ(2,5) and E(5,6) s.t.

Φ(5,6)⊤ = E(5,6)[Φ(1,5),Φ(2,5)]⊤, col(Φ(1,5)) ⊆ col(U (1)),
and col(Φ(2,5)) ⊆ col(U (2)).

Furthermore, we also let r
(i,j)
+ = dim(col([U (i), U (j)])) and

r
(i,j)
− = dim(col(U (i))∩ col(U (j))), ∀i, j ∈ {1, 2, 3, 4}, where

dim(·) is the dimension of a vector space.

B. Necessary condition

The following theorem provides a necessary condition for

achieving Ltotal,lb under a mild assumption. It constrains vector

spaces’ dimensions from the network bandwidth perspective.

Theorem 1. Assume the eigen-gap µ
(i)
min{2Z,n} −

µ
(i)
min{2Z,n}+1 > 0 (define µ

(i)
n+1 = 0), ∀i ∈ {3, 4}.

Then Ltotal,lb is achievable only when

r
(3,4)
+ ≤ 3Z, and (10)

r
(1,3)
− , r

(2,4)
− ≥ min{Z, n− Z}. (11)

To show the conditions in Theorem 1 are only necessary

but not sufficient, we present two examples in Fig. 2, where

the left one doesn’t achieve Ltotal,lb while the right one does.

Here we have n = 3, Ψ = I , Z = 1, a = b = 2. And we also

assume eigen-gap µ
(i)
2 − µ

(i)
3 > 0, ∀i ∈ {3, 4}. Therefore, to

achieve Ltotal,lb, we must have col([Φ(1,3),Φ(5,6)]) = col(U (3))
and col([Φ(2,4),Φ(5,6)]) = col(U (4)). In Fig. 2(a), we assume

u
(3)
1 = u

(4)
1 = [0, 1, 0]⊤, u

(3)
2 = [0, 0, 1]⊤ and u

(4)
2 =

[1, 0, 0]⊤. So we have r
(3,4)
+ = 3 and r

(1,3)
− = r

(1,4)
− = 1. The
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conditions in Theorem 1 are satisfied, but we cannot make

col([Φ(1,3),Φ(5,6)]) = col(U (3)) and col([Φ(2,4),Φ(5,6)]) =
col(U (4)) simultaneously, and hence Ltotal,lb is not achievable.

In Fig. 2(b), we assume u
(3)
1 = u

(4)
1 = 1√

11
[1, 1, 3]⊤,

u
(3)
2 = 1√

66
[4,−7, 1]⊤ and u

(4)
2 = 1√

66
[−7, 4, 1]⊤. For

Φ(1,3) = [0, 1, 1]⊤, Φ(2,4) = [1, 0, 1]⊤ and Φ(5,6) = [1, 3, 1]⊤,

Ltotal,lb is achievable because col([Φ(1,3),Φ(5,6)]) = col(U (3))
and col([Φ(2,4),Φ(5,6)]) = col(U (4)).

C. Sufficient Conditions

We have seen that constrain the dimensions of vector

spaces, as in Theorem 1, is not enough to achieve Ltotal,lb.

In the following theorem, we add a requirement of the data

dependencies between different U (i)’s on top of the necessary

conditions, which guarantees the achievability of Ltotal,lb.

Theorem 2. If Eq. (10) and (11) hold, and

col(U (3)) = span((col(U (1)) ∩ col(U (3)))∪

(col(U (3)) ∩ col(U (4)))), (12)

col(U (4)) = span((col(U (2)) ∩ col(U (4)))∪

(col(U (3)) ∩ col(U (4)))), (13)

then Ltotal,lb is achievable.

Eq. (12) (and similarly for Eq. (13)) has the following

interpretation: we can find vectors in col(U (1)) that extend

a basis of col(U (3)) ∩ col(U (4)) to a basis of col(U (3)). This

makes it possible for us to assign column vectors of Φ(1,3) to

achieve Ltotal,lb (which is not possible for Fig. 2(a)).

We further have the following two corollaries.

Corollary 3. If Eq. (10), (12) and (13) hold, and

col(U (3)) ∩ col(U (4)) ⊆ col(U (1)) ∩ col(U (2)), (14)

then Ltotal,lb is achievable.

Corollary 4. If Eq. (10), (12) and (13) hold, and

n ≤ Z +min{a, b}, (15)

then Ltotal,lb is achievable.

V. ALGORITHM

In the last section we have discussed the sufficient condi-

tions for achieving Ltotal,lb, and corresponding optimal encoder

and decoder parameters can be determined analytically. In the

general case when these sufficient conditions are not satisfied,

we resort to standard gradient descent algorithms to determine

the encoder and decoder parameters jointly. The encoders and

decoders are connected as per network information flow (i.e.,

Eq. (3)-(6)). We initialize E(i,j) and D(i) randomly and update

them for multiple epochs through back-propagation:

E(i,j) ← E(i,j) − η
∇Ltotal

∇E(i,j)
, ∀(i, j) ∈ E ′; (16)

D(i) ← D(i) − η
∇Ltotal

∇D(i)
, ∀i ∈ {3, 4} (17)

where η is the learning rate.

Task-aware coding Task-aware no coding Coding benchmark Ltotal,lb
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Fig. 3. Simulation result with synthetic data: overall task loss Ltotal under

different r
(3,4)
+ (left) and different a (right). The task losses for task-agnostic

coding are too large and have to be omitted from this figure.

To show our algorithm converges to a near-optimal solution

for low-dimensional data and to verify our conclusions in the

last section numerically, we run simulations with synthetic

data for our task-aware coding approach and compare against

three benchmark approaches. The benchmark approaches are:

1) Task-aware no coding approach, where network coding at

node 5 is not allowed, i.e., each dimension of ϕ(5,6) can only

be a dimension of ϕ(1,5) or ϕ(2,5); 2) Task-agnostic coding

approach (used in [14]), where the objective is to minimize the

reconstruction loss at node 3 and 4, i.e., K(3) = K(4) = I;

3) Coding benchmark approach, which is also a task-aware

coding approach but the encoder parameters associated with

edge (5, 6) is determined greedily first and then other parame-

ters. Such a greedy approach doesn’t ensure global optimality

but provides a general analytical solution.

The simulation results are shown in Fig. 3. The parameters

are as follows: we fix n = 32, Ψ = I , a = b ≥ 16, Z = 8.

Next we let eigen-values µ
(3)
1 , · · · , µ

(3)
2Z and µ

(4)
1 , · · · , µ

(4)
2Z

be positive, and other eigen-values of S(3) and S(4) be 0.

Hence Ltotal,lb = 0. In Fig. 3(a), we fix a = b = 24

and change eigen-vectors u
(3)
1 , · · · , u

(3)
2Z and u

(4)
1 , · · · , u

(4)
2Z

to make r
(3,4)
+ different, while in the meantime keep Eq.

(12), (13) and (14). We can observe our task-aware coding

approach achieves Ltotal,lb when r
(3,4)
+ ≤ 24, i.e., Eq. (10)

is satisfied, which verifies our conclusion in Corollary 3. We

also notice that the task-aware no coding approach achieves

Ltotal,lb when r
(3,4)
+ ≤ 24 as well, since coding is not required

to achieve Ltotal,lb. In Fig. 3(b), we fix u
(3)
1 , · · · , u

(3)
2Z and

u
(4)
1 , · · · , u

(4)
2Z such that r

(3,4)
+ = 18, and change a, while in

the meantime keep Eq. (12) and (13). We can observe our task-

aware coding approach achieves Ltotal,lb when a = b ≥ 24, i.e.,

Eq. (15) is satisfied, which verifies our conclusion in Corollary

4. Furthermore, in both Fig. 3(a) and 3(b), our task-aware

coding approach beats all the other benchmark approaches

under varying r
(3,4)
+ ’s with respect to overall task loss Ltotal.

VI. EVALUATION

Our evaluation compares the performance of our task-aware

coding approach and other benchmark approaches (as in Sec.

V) over a few standard ML datasets, including MNIST [29],

CIFAR-10, CIFAR-100 [30] and SAT-6 [31]. For MNIST, each
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Fig. 4. Evaluation setup and result with MNIST, CIFAR-10, CIFAR-100 and the SAT-6 satellite imagery dataset.

data sample is a 28 × 28 handwritten digit image, and we

let x be a horizontally-concatenated image (28 × 56) of two

images. Node 1 and 2 observe the upper and the lower half part

of the concatenated image (both 14 × 56) respectively. Task

matrices K(3) and K(4) are formulated as follows: we pre-

train a convolutional neural network (CNN) to classify original

MNIST digits by their labels. Task matrix K(3) requires both

the reconstruction of the feature map (i.e., the output of the

first layer of CNN) of the left MNIST digit in the concatenated

image, and the reconstruction of the concatenated image itself:

K(3) = [ γK̃(3)⊤
︸ ︷︷ ︸

recon. of left feature map

, (1− γ)I
︸ ︷︷ ︸

recon. of concatenated image

]⊤, (18)

where K̃(3) represents the mapping between x and the feature

map of the left MNIST digit, and γ is a weight coefficient.

Here we use γ = 0.9. Task matrix K(4) is formulated similarly

while the feature map of the right MNIST digit is considered

instead. For CIFAR-10/CIFAR-100/SAT-6, each data sample

is a 32 × 32 or 28 × 28 colored image with 3 or 4 channels

and we let x represent the original image. We similarly let

node 1 and 2 observe the upper and the lower half part of

the image respectively, and let node 3 and node 4 require the

reconstruction of the left and the right half part respectively.

The setup is illustrated in Fig. 4(a).

The evaluation result is shown in Fig. 4. In Fig. 4(c)-4(f),

we plot the overall task loss Ltotal under different edge capacity

Z. In these figures, we see task-aware coding and coding

benchmark approach outperform task-aware no coding and

task-agnostic coding approach, and the overall task loss Ltotal

of our task-aware coding approach is the closet to Ltotal, lb. The

maximum improvements of overall task loss Ltotal for task-

aware coding approach are 26.1%, 26.4%, 25.3% and 17.1%

respectively, compared to task-agnostic coding approach; and

are 9.1%, 103.3%, 97.8% and 28.4% respectively, compared

to task-aware no coding approach. We also notice that, task-

agnostic coding approach doesn’t always outperform task-

aware no coding approach, and vice versa. Therefore, it is

beneficial to combine network coding and task-awareness.

In Fig. 4(b), we compare the utilities of ϕ(5,6), ϕ(1,3) and

ϕ(2,4) in terms of minimizing the overall task loss Ltotal

when Z = 10, γ = 0.9. Here we consider the utility of

ϕ(5,6) in the absence of ϕ(1,3) and ϕ(2,4), and the utility of

ϕ(1,3) and ϕ(2,4) in the presence of ϕ(5,6). We observe that

the coding benchmark approach outperforms other approaches

with respect to the utility of ϕ(5,6), but underperforms our task-

aware coding approach by 4.2% with respect to the overall

task loss Ltotal. This is because coding benchmark approach

greedily determines the encoder parameters associated with

edge (5, 6) first which however could not guarantee optimality.

On the other hand, our task-aware coding approach tunes all

the encoding and decoding parameters jointly and achieves a

lower Ltotal.

VII. CONCLUSION

This paper considers task-aware network coding over a

butterfly network in real-coordinate space. We prove a lower

bound Ltotal,lb of the total loss, as well as conditions for achiev-

ing Ltotal,lb. We also provide a machine learning algorithm in

the general setting. Experimental results demonstrate that our

task-aware coding approach outperforms the benchmark ap-

proaches under various settings. Regarding future extensions,

although the butterfly network is a representative topology

in network coding, it is worth extending the analysis of the

task-aware network coding problem to general networks. A

similar Ltotal,lb can still be derived, yet the associated necessary

and sufficient conditions for achieving Ltotal,lb depend on the

specific network topology in a manner that needs further

investigation to be fully understood.
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