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ABSTRACT

We propose to study a new learning task, mobile construction, to enable an agent
to build designed structures in 1/2/3D grid worlds while navigating in the same
evolving environments. Unlike existing robot learning tasks such as visual nav-
igation and object manipulation, this task is challenging because of the interde-
pendence between accurate localization and strategic construction planning. In
pursuit of generic and adaptive solutions to this partially observable Markov de-
cision process (POMDP) based on deep reinforcement learning (RL), we design
a Deep Recurrent Q-Network (DRQN) with explicit recurrent position estimation
in this dynamic grid world. Our extensive experiments show that pre-training this
position estimation module before Q-learning can significantly improve the con-
struction performance measured by the intersection-over-union score, achieving
the best results in our benchmark of various baselines including model-free and
model-based RL, a handcrafted SLAM-based policy, and human players. Our
code is available at: https://ai4ce.github.io/SNAC/.

1 INTRODUCTION

Intelligent agents, from animal architects (e.g., mound-building termites and burrowing rodents)
to human beings, can simultaneously build structures while navigating inside such a dynamically
evolving environment, revealing robust and coordinated spatial skills like localization, mapping, and
planning. Can we create artificial intelligence (AI) to perform similar mobile construction tasks?

To handcraft such an AI using existing robotics techniques is difficult and non-trivial. A fundamental
challenge is the tight interdependence of robot localization and long-term planning for environment
modification. If GPS and techniques alike are not available (often due to occlusions), robots have
to rely on simultaneous localization and mapping (SLAM) or structure from motion (SfM) for pose
estimation. But mobile construction violates the basic static-environment assumption in classic vi-
sual SLAM methods, and even challenges SfM methods designed for dynamic scenes (Saputra et al.,
2018). Thus, we need to tackle the interdependence challenge to strategically modify the environ-
ment while efficiently updating a memory of the evolving structure in order to perform accurate
localization and construction, as shown in Figure 1.

Deep reinforcement learning (DRL) offers another possibility, especially given its recent success in
game playing and robot control. Can deep networks learn a generic and adaptive policy that controls
the AI to build calculated structures as temporary localization landmarks which eventually evolve
into the designed one? To answer this question, we design an efficient simulation environment with
a series of mobile construction tasks in 1/2/3D grid worlds. This reasonably simplifies the environ-
ment dynamics and sensing models while keeping the tasks nontrivial, and allows us to focus on the
aforementioned interdependence challenge before advancing to other real-world complexities.

To show the tasks in grid worlds are still non-trivial and challenging, we benchmark the performance
of several baselines, including human players, a handcrafted policy with rudimentary SLAM and
planning, some model-free DRL algorithms which have achieved state-of-the-art performance in
other learning tasks (see Table 1 for comparisons), and a model-based DRL using Deep Q-Networks
(DQN) augmented with Monte Carlo tree search (MCTS) as planning mechanism. Although our
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Figure 1: Challenge in mobile construction. An AI needs to navigate in an environment (square
area) and build a structure according to a design (stacked cubes in a/e). The AI in (a-d) builds poorly
because it learns localization and construction jointly from raw observations. Specifically, similar
structures seen in (c) confuse the AI due to the wrong localization. In contrast, a better construction
is achieved in (e-h) using a pre-trained localization even in this non-static environment.

Loc Plan Env-Mod Env-Eval
Robot Manipulation (Fan et al., 2018; Yang et al., 2019; Labbé et al., 2020; Li et al., 2020) 7 X X 7

Robot Locomotion (Duan et al., 2016) 7 7 7 7
Visual Navigation (Zhu et al., 2017; Gupta et al., 2017; Mo et al., 2018; Zeng et al., 2020) X X 7 7

Atari (Mnih et al., 2013) 7 X/7 X 7
Minecraft (Oh et al., 2016; Guss et al., 2019; Platanios et al., 2020) 7 X/7 X 7

First-Person-Shooting (Lample & Chaplot, 2017) X 7 7 7
Real-Time Strategy Games (Synnaeve et al., 2016; Jaderberg et al., 2019) X X X 7

Physical Reasoning Bapst et al. (2019); Bakhtin et al. (2019) 7 X X 7
Mobile Construction (Ours) X X X X

Table 1: Mobile construction vs. existing learning tasks. Loc: robot localization. Plan: long-term
planning. Env-Mod: environment structure modification. Env-Eval: evaluation of the accuracy of
environment modifications. This shows the novelty of the task with fundamentally different features
than typically benchmarked tasks, requiring joint efforts of localization, planning, and learning.

tasks may seem similar to other grid/pixelized tasks such as Atari games (Mnih et al., 2013), the
results reveal the significantly worse performance of those baseline algorithms, especially model-
free DRL methods, than the human baseline.

A recent study (Stooke et al., 2021) found that decoupling representation learning from RL policy
learning can outperform the joint learning of the two in standard RL algorithms. Inspired by this,
we propose to pre-train an explicit position estimation module using recurrent neural networks in
the above DRL baselines. Our experiment results show that this proposed method outperforms other
RL baselines.

In summary, our contributions include:

• a suite of novel and easily extensible learning tasks focusing on the interdependent local-
ization and planning problem, which are released as open-source fast Gym environments;

• a comprehensive benchmark of baseline methods, which demonstrates the learning chal-
lenge in these tasks;

• an effective approach which combines DRQN with an explicit position estimation deep
network, outperforming other baselines;

• a detailed ablation study providing insights about the causes of the challenge, which could
inspire future algorithms to solve the problem more effectively.

2 RELATED WORKS

RL baselines. With the great success of model-free RL methods in game-playing (Mnih et al., 2013;
Silver et al., 2016) and robot control (Cheng et al., 2019; Zhang et al., 2015), we consider a family
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of common model-free RL methods as baselines. Since our tasks are in grid worlds, similar to many
Atari games such as the Pac-Man, our first choice is DQN (Mnih et al., 2013). However, DQN
has limited capability to tackle POMDP due to its poor latent state representation from long-term
history, we benchmark DRQN (Hausknecht & Stone, 2015) which uses recurrent Q-network for
integrating historical information. Since our tasks may require explicit long-term planning, similar
to (Silver et al., 2016; Bapst et al., 2019), we also include a model-based method which uses DQN
as the prior and MCTS (Coulom, 2006) as the planning mechanism.

In addition, we add an actor-critic-based baseline, Proximal Policy Optimization (PPO) (Schulman
et al., 2017). Whereas the standard policy gradient method performs one gradient update per data
sample, PPO enables multiple epochs of minibatch updates by a novel objective with clipped proba-
bility ratios. We also include Rainbow (Hessel et al., 2017), SAC (Haarnoja et al., 2018), and DRQN
combined with Hindsight Experience Replay (HER) (Andrychowicz et al., 2017) as additional base-
lines in supplementary Section B.

Representation learning for RL. Although the aforementioned RL methods work well on many
robot learning tasks, it is still challenging to end-to-end learn meaningful representations and control
policies jointly via DRL (Stooke et al., 2021). Recently, a variety of studies improve the performance
of RL methods through representation learning, such as internal feature learning (Lample & Chaplot,
2017), and auxiliary tasks (Jaderberg et al., 2016; Mirowski et al., 2016). Echoing these studies,
we also find in our experiments that direct end-to-end DRL from raw observations without any
representation learning could not solve our task efficiently. Therefore, we propose to introduce a
position-related representation learning module in our DRL framework, and pre-train this module to
decouple its training from DRL.

Position-related representation learning is not new in DRL. For example, DRL-based visual naviga-
tion studies (Zhu et al., 2017; Chaplot et al., 2020; Datta et al., 2021) use neural networks to extract
from visual inputs latent representations encoding position information for RL agents to navigate
in a static environment. Differently, our task involves a dynamically evolving environment. While
work like (Hoeller et al., 2021) indeed navigates robots in dynamic environments using latent state
representations in RL, distinctively, our task further involves active modification of the environment.
Thus, we do not include this line of work as our baseline.

Non-learning baseline. Besides the above methods, one may wish to see the performance of more
classical approaches such as either dynamic (Saputra et al., 2018) or active (Mu et al., 2016) vi-
sual SLAM which has been studied for decades in robotics, even though they are not designed to
work in dynamic environments like ours, nor do they study the planning for better construction ac-
curacy. Therefore, we implement a naive handcrafted policy (pseudo code in Algorithm 1 in the
supplementary Section B) with basic localization and planning modules as a non-learning baseline.
The localization module borrows the idea from visual SLAM (Saputra et al., 2018) which relies on
finding the common features through successive images to estimate the robot’s pose. The planning
module simply controls the robot to always build at the nearest possible location.

3 MOBILE CONSTRUCTION IN GRID WORLD

3.1 TASK OVERVIEW

We formulate a mobile construction task as a 6-tuple POMDP 〈S,A, T ,O,R, D〉, in which a robot
is required to accurately create geometric shapes according to a design D in a grid world. The state
space S is represented as S = G × P , where G is a space of all possible grid states G storing the
number of bricks at each grid, and P is a space of all possible robot positions p in the grid world.

At each time step, the robot takes an action a ∈ A, either moving around or dropping a brick at or
near its location. Moving a robot will change its location according to the unknown probabilistic
transition model T (p′|p,G, a). Dropping a brick will change the grid state G at (for 1D & 2D
tasks) or near (for 3D tasks) position p without any uncertainty for simplicity. This is reasonable
because, in mobile construction settings, motion uncertainty is often the key challenge to ensure
accuracy (Sandy et al., 2016).

The robot can make a local observation o ∈ O of G centering around its current location, with a
sensing region defined by a half window size Ws. We pad the constant value −1 outside the grid
world boundary to ensure valid observations in P , which is distinguished from empty (= 0) or filled
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(> 0) grid states. This could help the robot localize itself near the boundary. Finally, the design
D ∈ G is simply a goal state of the grid world the robot needs to achieve, and R(s, a;D) is the
reward function depending on this design.

The aforementioned interdependence challenge in localization and planning is reflected via two
factors in this setting. First, partial observability makes robot localization necessary. Second, the
environment uncertainty in T simulates real-world scenarios where the motion control of the mobile
robot is imperfect and the odometry is error-prone. We implement this by sampling the robot’s
moving distance d in each simulation time step from a uniform distribution.

3.2 TASK VARIATIONS

Next, we specialize the above formulation into a suite of progressively more challenging tasks which
varies in the setup of dimension, design D type, and obstacle mechanism, as summarized in Table 2
and Figure 2.

(a) 1D environment (b) 2D environment (c) 3D environment

Figure 2: (a) 1D grid world environment: a robot moves along the x-axis and drops bricks (red)
along -y direction. The two vertical blue dash lines indicate its sensing region for vector o. The
o = (5, 1, 1, 0, 1) in this case. The blue curve is the design D. (b) 2D environment: a robot moves
in a 2D plane and lays bricks (red/yellow: in/correct dropping). The blue box is its sensing region
for o, which is a 2D array with size (2Ws + 1)2. The green ring is the ground-truth design D. (c)
3D environment: a robot moves in a 2D x-y plane and lays bricks (dark blue cubes). The bottom
left/right is the 3D/top view. The blue box is similar to 2D. The red ring in the bottom left is the
topmost surface of D.

Dimension 1D 2D 3D

Action a Move-left/-right, Move-left/-right/-up/-down, Move-left/-right/-forward/-backward,
drop-brick at current location drop-brick at current location drop-brick on left/right/front/rear side

Grid state G RW [0, 1]
W×H RW×H

Observation o R2Ws+1 [0, 1]
(2Ws+1)×(2Ws+1) R(2Ws+1)×(2Ws+1)

Constant & Variable X X X
Dense & Sparse 7 X X

Obstacle 7 7 X

Table 2: Detail setups of each character for 1/2/3D environment. Each character is described in
Section 3 and illustrated in Figure 2. In 1D environments, the grid state G ∈ RW is a vector, where
W is the width of the environment and o ∈ R2Ws+1 is a vector with size 2Ws + 1. The grid state
G for 2D and 3D environment are 2D binary matrix and 2D matrix with width W and height H
respectively. We only add obstacle mechanism in 3D environment.

Dimension. We vary our tasks by the grid world dimension in 1/2/3D respectively. The robot is
restricted to moving along the x-axis in 1D and x-y plane for 2D and 3D environments.

Constant vs. Variable Design. The design of our tasks could be either constant or variable. The
constant design task requests a robot to build the same shape D in all episodes in both training
and testing. For the variable design task, the design D will vary for each episode. For a variable
design task, to account for real-world situations where robots should have access to the design,
we augment the local observation with additional information such as the design D as a 4-tuple
oenv = 〈o,Ns, Nb, D〉, where Ns is the number of actions the robot has taken, and Nb is the
number of bricks used.
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Dense vs. Sparse Design. A dense design is a solid shape, and a sparse design is an unfilled shape
(Figure A.2e and Figure A.2f).

Obstacles. Different from 1D and 2D tasks where the robot size is ignored, the robot in the 3D tasks
occupies 1 grid so its motion could be obstructed by the built bricks.

Stop criteria. Each episode ends when Ns = Nsmax or Nb = Nbmax, where the former is the
maximum number of steps and the latter the maximum number of bricks (the integrated area of the
design D within each episode). We set Nsmax reasonably large to ensure the design completion.
In addition to the same stop criteria as in the 1D/2D cases, the game will stop when the robot is
obstructed by the built bricks and cannot move anymore in a 3D environment.

4 RECURRENT POSITION ESTIMATION IN DYNAMIC ENVIRONMENTS

After formulating mobile construction tasks, we benchmarked our naive model-free DRL baselines
on these tasks. We found that these DRL policies perform worse than our human baselines, es-
pecially on 2D and 3D tasks. We believe the low performance is due to the difficulty in learning
meaningful representations and an effective control policy jointly via RL training alone. Especially,
the aforementioned interdependence challenge of mobile construction tasks requires the agent to lo-
calize itself in a dynamic environment where the surrounding structure could change after the agent
build a new brick. Inspired by some recent studies (Stooke et al., 2021; Lample & Chaplot, 2017;
Jaderberg et al., 2016; Mirowski et al., 2016) which decouple representation learning from RL, we
propose our method which combines (1) a pre-trained localization network (L-Net) to estimate the
current agent position and (2) a DRQN to select the best action based on the predicted positions
and observations. Section 4.1 introduces our proposed method and section 4.2 explains the training
process of L-Net.

DRQN

DRQN
Baseline

𝑜𝑡

LSTM 𝑦𝑡 LinearƸ𝑝𝑡−1

ℎ𝑡−1

ℎ𝑡

LSTM
Ƹ𝑝𝑡

ℎ𝑡+1

𝑦𝑡+1 Linear Ƹ𝑝𝑡+1

DRQN Env

L-Net

Overall Pipeline

L-Net

.

.

.

.

.

.

.

.

.

.

.

.

DRQN Env

（a） （b）

.

.

.

𝑜𝑡−1

.

.

𝐷𝑡
𝑐𝑟𝑜𝑝

Ƹ𝑝𝑡

𝐷

𝐷

𝐷

𝐷𝑡+1
𝑐𝑟𝑜𝑝

𝑜𝑡

𝑜𝑡

𝑜𝑡+1

𝑜𝑡

𝑜𝑡+1

𝑜𝑡+1

𝑜𝑡+2

𝑎𝑡−1

𝑎𝑡

𝑎𝑡

𝑎𝑡

𝑎𝑡+1

Move up/down/left/right, drop brick

Figure 3: Illustration of the DRQN baseline and our proposed method. (a) We use the standard
DRQN model which takes the raw observation ot and goal design D as input and outputs an action
at in each time step t as our baseline. (b) Our pipeline contains two main components: (1) a
pre-trained L-Net which is an LSTM taking the ot−1, at−1, hidden state ht−1, and the predicted
robot position p̂t−1 from the previous frame and ot of the current frame as input and outputting a
predicted p̂t and hidden state ht in the current step. Then, we crop a local design Dcrop

t centering
at the predicted position p̂t from goal D. This Dcrop

t has the same size as ot. (2) we feed the Dcrop
t

and ot to a DRQN to make an action at of current step. The detailed training process of L-Net is
explained in section 4.2, and shown in supplementary Figure B.1

4.1 DRQN WITH L-NET

Our method is shown in Figure 3, consisting of two main components: (1) an L-Net which is pre-
trained via supervised learning, using an LSTM to predict position p̂t at each time step t; (2) a
standard DRQN which takes predicted positions p̂t, observations ot, and cropped goal design Dcrop

as input and outputs the actions at at current frame.
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Let us use the 2D dynamic task as an example to explain the overall pipeline. Firstly, the raw
observations ot−1, ot of the previous and current time steps respectively, are flattened to vectors.
Then these two vectors are concatenated with the predicted position p̂t−1 and the action at−1 in the
previous time step. This concatenated vector z and hidden state ht−1 are fed to an LSTM to output
a hidden feature yt and its hidden state ht. Finally, a linear layer is used to map the input hidden
feature yt to a predicted position p̂t. The L-Net which is composed of the LSTM and the linear layer
is pre-trained through supervised learning.

As shown in Figure 3a, the observation ot and the design D are given to the DRQN to output
an action at in the baseline. We tried this way of inputting information to DRQN similarly in our
pipeline in Figure 3b, and we additionally input the predicted position pt to the DRQN in our method
at the beginning. But the resulting performance is not significantly better than our model-free RL
baselines. This suggests that the raw input (the predicted robot position and the complete design) is
not an efficient representation for DRQN-based training.

Inspired by our human volunteers who choose to only refer to a local region of the D near the
current position to make decisions when solving our tasks, we crop a local design Dcrop

t centering
at the predicted position p̂t from the complete design D. Then, the Dcrop

t , p̂t, and ot are given
to the DRQN-based policy network to output an action. Note that when training this pipeline, the
pre-trained L-Net is frozen and only the initial position p0 is assumed known. All other positions
p̂t|t=1,2,..., used in each DRQN step are predicted by L-Net based on predicted positions p̂t−1 from
its previous time step.

4.2 L-NET PRE-TRAINING

Since the L-Net is trained apart from the overall pipeline training by supervised learning, we
collect a dataset which contains 30000 episodes of games. Each game leads to a replay buffer
{Mi}|i=1,2,...,N , where Mi = (oi−1, ai−1, pi−1, oi). Each data in such a buffer is collected by let-
ting the agent perform random actions until an episode ends. When training the L-Net, we randomly
sample a chunk of data {Mi}|i=t+1,t+2,...,t+L, where L is a constant sequence length, from the en-
tire sequence. As shown in supplementary Figure B.1, we firstly feed the data Mt+1 and a randomly
initialized hidden state ht to the L-Net that predicts position p̂t+1 and its hidden state ht+1. Note that
we always use the first ground-truth (GT) position pt as input and the input positions of following
steps are all outputs from previous steps. This means we do not perform teacher-forcing to train the
LSTM. Then, we just repeat L steps and compute L predicted positions p̂i|i=t+1,t+2,...,t+L. Finally,
the L-Net is trained by minimizing the L2 loss between the predicted positions and GT positions.

5 EXPERIMENTS

We conduct comprehensive experiments to test baselines and our proposed method on mobile con-
struction tasks. In this section, we only pick representative baselines from different classes to show
the results. All experiment results are listed in supplementary Table 7 and the best qualitative re-
sults are shown in supplementary Figure C.3. The evaluation metric, reward function, and training
protocol are described in this section.

Baselines. We choose two Q-learning methods, an actor-critic method, a search-based method, a
non-learning method, and human players as representative baselines. Detailed architecture designs
and hyperparameter setups for each algorithm are explained in the supplementary Section B.

• DQN. For constant design tasks, we use an MLP-based Q network. For variable design
tasks, the design D is mapped to a feature vector by a 3 convolutional layers.

• DRQN. We add one recurrent LSTM layer to the Q network as the DRQN baseline.
• PPO. We benchmark discrete PPO in the Stable Baselines (Hill et al., 2018).
• DQN+MCTS. For this model-based method, we simply combine DQN with standard

MCTS algorithm, similar to Bapst et al. (2019).
• Handcrafted policy. It consists of basic localization and planning modules.
• Human. A simple GUI game that allows a human player to attempt our tasks in identical

environments with the same limitations of partial observability and step size uncertainty.
They act as the agent, using the ARROW keys to maneuver, and SPACE to drop a brick.
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Evaluation metric: we use the Intersection over Union (IoU) score as our evaluation criteria which
is measured between the terminal grid state GT and the ground-truth design D. Here, we use IoU
as our evaluation criteria because it is more straightforward for us to evaluate the quality of the built
structure to the ground-truth design D. The IoU is defined as:

IoU =
GT ∩D
GT ∪D

=
∑
p∈P

min(GT (p), D(p))

max(GT (p), D(p))
. (1)

Reward function. The reward functionR for 1D and 3D environments is shown in Table 3. For the
2D environment, R is simply designed as: the agent gets 5/0 for dropping bricks at correct/wrong
positions and gets 0 for movement. Note that in the 2D environment we tried to add a similar
penalty as in Table 3 for incorrect brick dropping, but we found this led to more frequent ac-
tions of moving instead of dropping bricks because of the higher chance of negative rewards of
the latter (especially for sparse plans). Consequently, this led to bad performance of all tested
methods. Therefore, we removed the penalty from the reward function in all 2D environments.

Drops brick Drops brick Drops brick Move Obstructedon D below D over D
1D 10 1 -1 0 7
3D 10 1 -1 0 -100

Table 3: Reward function for 1D and 3D tasks.

Training protocol. To validate the proposed
framework and its robustness, all baselines are
trained with the same set of 4 random seeds and
averaged results are reported. For the constant de-
sign tasks in 1D/2D/3D, we test the trained agent
for 500 times for each task and report the average and the standard deviation (stddev) of IoU scores
among 500 tests. For the variable design tasks, we randomly generated 500 ground-truth designs
and split them to 8/1/1 for training/validation/testing. Following the same protocol as constant de-
sign tasks, we test all baselines on the testing set for 500 times for each task and report the average
and the stddev of IoU scores among 500 tests.

5.1 BENCHMARK RESULTS
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Figure 4: Experiment results of baselines and our method. (a) & (b) present the average and the
stddev (errorbars) of IoU of examined methods on constant and variable design tasks in 1D/2D/3D
environments. (c) & (d) show the best qualitative results of RL w/ and w/o L-Net, respectively.

Figure 4 summarizes the quantitative testing results and the best qualitative testing results of the
baselines and our method. In general, we see that the performance of each method drops as the
dimension of the environment increases. This clearly shows that the larger the exploration space
is and that the more complex the construction mechanisms are (e.g., obstacles in 3D tasks, further
studied in Section 5.2), the worse the tested method performs. Especially in 3D environments,
most of the baselines learn ineffective policies or fail to learn any policies. Meanwhile, most of the
methods consistently perform worse on the sparse design tasks than on the dense ones. We believe
that such poor performance is due to the much sparser reward signals in sparse design tasks.

Moreover, we notice that all RL baselines have more difficulties dealing with variable design tasks
compared to constant ones. We posit that the RL baselines lack the capacity to learn effective
representations for variable designs. DRQN is expected to be the best among all RL baselines in
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most of the tasks because it can learn better from a long period of history. Compared with all
examined RL baselines, our proposed method achieves better performance consistently in all tasks.
In some cases, it can even surpass the human baseline and the handcrafted policy which relies on
prior knowledge of the environment setups. Next, we will compare them in detail.

RL w/ v.s. w/o L-Net. Besides the proposed method described in section 4, we also include another
baseline which combines DQN with L-Net to further test the effectiveness of our method. We find
that RL w/ L-Net methods outperform all other RL baselines consistently among all tasks. For 1D
constant tasks, the DRQN w/ L-Net achieves 0.896 ave IoU score, which even surpasses the human
baseline (IoU 0.83). It also performs the best among other learning-based baselines in 1D variable
tasks. As shown in Figure 4(c), DRQN w/ L-Net can perfectly build the Gaussian-shaped design.
In contrast, most of the RL baselines are only able to build a flattened shape (See the first column
of Figure C.3 in supplementary). All these suggest the importance of representation learning that
enables a reasonable position estimation, even in our dynamic environments.

On the 2D constant dense task, all methods reach similar performance. However, the gap between
RL w/ L-Net and RL w/o L-Net becomes significantly larger in more difficult 2D tasks, such as the
2D constant sparse task. The DRQN w/ L-Net can achieve a reasonable performance of median
IoU 0.301 and best IoU 0.545 in the 2D variable sparse task where others only learn very limited
policies. The qualitative results in Figure 4(c) show that DRQN w/ L-Net can complete half of the
triangle shape in best cases while RL baselines can only drop a few bricks around the goal design
(see the 6th column of Figure 4(d)). This indicates that with the help of position prediction by the
pre-trained L-Net, DRQN is able to learn a better construction policy.

Similarly, the DRQN w/ L-Net method outperforms RL baselines in 3D tasks. From the bar chart
of Figure 4(a), we can see that DRQN w/ L-Net can still learn reasonable policies which achieve
average IoU 0.3074 and 0.315 on the 3D constant dense and sparse tasks. Our method is almost able
to construct the complete hollow cylinder in Figure 4(c). Moreover, it is remarkable that DRQN w/
L-Net manages to learn a rough construction policy while other RL baselines fail to learn any useful
policies. We conclude that explicit localization via representation learning is crucial for tackling 3D
tasks, though the performance is still limited due to the potential challenges of obstacles.

Handcrafted policy. Although our handcrafted method performs seemingly well on 1D tasks, one
should not draw a hasty conclusion that it must be the ultimate direction for solving mobile con-
struction. Because the good performance of this method relies on prior knowledge of the distribution
parameters of the probabilistic transition model T : our handcrafted localization has a very low error
rate (especially in 1D settings) by leveraging this privileged information, which is not accessible in
other baseline methods and in reality. Moreover, from Figure 4, we can see that the obstacle mech-
anism, the sparse designs, and the environment uncertainty in 2D and 3D are still challenging for
this method. We believe learning-based methods have a good potential to adaptively address these
variations, while solving them one by one via different handcrafted methods is less effective.

Human baseline. We collected 30 groups of human test data, totaling 490 episodes played, and
report the average IoU shown in the Figure 4 with dot line. All humans were required to play the
same maximum number of steps for each game as other baselines. From the feedback, we found
that humans could learn effective policies (building landmarks to help localization) very efficiently
in at most a few hours, which is much sooner than training an RL model.
5.2 ABLATION STUDY

Shape IoU 2D 3D
DRQN +GPS(↑) -Uncertainty(↑) +Obstacle(↓) +Landmark(↑) DRQN -Obstacle(↑)

Dense
Avg 0.818 +0.033 +0.027 -0.334 +0.154 0.071 +0.728

Stddev 0.032 -0.005 -0.032 +0.037 -0.002 0.048 -0.009
Min 0.724 +0.027 +0.121 -0.591 +0.156 0 +0.714

Sparse
Avg 0.538 +0.402 +0.238 -0.306 +0.406 0.009 +0.184

Stddev 0.078 -0.037 -0.078 -0.010 -0.043 0.015 +0.037
Min 0.2 +0.186 +0.576 -0.163 +0.56 0 0

Table 4: Ablation study on constant design tasks using DRQN. ↑/↓:
expecting better/worse performance.

We performed ablation
studies to comprehen-
sively analyze the reasons
associated with the poor
RL baseline perfor-
mances on 2D and 3D
tasks. We identify four potential challenges: (1) the obstacles in 3D environments, (2) the
lack of localization information, (3) the step size d uncertainty, and (4) the lack of landmarks
in the environment for localization. We use DRQN results on constant tasks as the basis
of this ablation study and all the ablation experiments were conducted using the same setup
and test criteria described in Section 5. We also try imitation learning to train DRQN with
expert experience and conduct an ablation study for Rainbow (see supplementary Section C).
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Figure 5: Influences of obstacles. Top rows show the base-
line results on 2D and 3D constant tasks. The first two im-
ages of bottom row show results of adding obstacle to 2D
world. Compared with baseline, the performance drops no-
tably. The last two images of bottom row show results of re-
moving obstacle from 3D world. The performance increases
significantly, especially for 3D dense design task.

Obstacles. To explore the influ-
ence of the obstacles, we conducted
two experiments: adding the obsta-
cle mechanism in a 2D task and re-
moving it from the 3D one (Figure 5).
As shown in Table 4, the performance
of the 3D task increases significantly
from 0.071 to 0.799 for dense de-
signs. Similarly, when we add obsta-
cles into 2D, the IoU score drops by
more than 40%. These results sug-
gest that the presence of obstacles is
an important reason for the poor per-
formance on 3D tasks.

Localization. From the previous experiments, we conclude that good position estimation via repre-
sentation learning could help RL learn better construction policies. Moreover, it is interesting to test
what are RL methods’ performance upper bound with the help of perfect localization. To test this,
we provided GT position p for DRQN on 2D constant tasks. From Table 4, we can see that with the
help of position information, 2D constant sparse is perfectly solved (see Figure 6a).

Environment uncertainty. Besides the limited sensing range, the random step size could be another
reason for the poor performance of baselines. Therefore, we conduct an experiment where the step
size uncertainty is removed. From Table 4, we can see that the IoU increases by more than 40%
compared to the sparse designs (see Figure 6b).

(a) Add GPS (b) Fixed step size (c) Initial environment (d) Add landmark results

Figure 6: Influence of localization and environment uncertainty. Either adding GPS in (a) or remov-
ing step size uncertainty in (b) largely improves DRQN on sparse design tasks compared with the
first two columns on the top row of Figure 5.Influence of landmarks. (c) We randomly add land-
marks in the initial environment (marked as a gray triangle). (d) Compared with the baseline, adding
landmarks improves DRQN obviously on both dense and sparse design tasks.

Landmarks. An empty initial environment lacks landmarks widely used in SLAM methods for the
robot to localize itself. This could be another potential challenge of mobile construction tasks. We
conduct an experiment: randomly adding some landmarks in the initial environment. From Table 4,
we can see that IoU increases dramatically both on dense and sparse tasks (see Figure 6c and 6d).

6 CONCLUSION AND FUTURE WORK

To stimulate the joint effort of robot localization, planning, and deep RL research, we proposed a
suite of mobile construction tasks, where we benchmarked the performance of common model-free
and model-based deep RL algorithms, a handcrafted policy with basic localization and planning, and
human baselines. Meanwhile, we propose our method which incorporates a pre-trained L-Net and
DRQN to solve these tasks. The experiment results indicate that learning an explicit position estima-
tion can effectively improve the performance of RL methods on mobile construction tasks. Although
the performance of the proposed method is limited on the hardest tasks, we believe augmenting RL
frameworks with representation learning is a promising direction to solve the interdependence chal-
lenge in mobile construction tasks. We believe that the limitations of current methods could be
overcome by designing a localization function which is able to localize more precisely in dynamic
environments. In the future, we plan to further extend our mobile construction task suite with more
features such as allowing a new action of explicitly placing landmarks, physics-based simulation in
continuous worlds, and multi-agent mobile construction.
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7 REPRODUCIBILITY STATEMENT

To make all our experiment results reproducible, we submit codes with hyperparameters used for
each method on each task in the supplementary material. We also provide an instruction on how to
use our code to reproduce the experiment results.

8 ACKNOWLEDGEMENT

The research is supported by NSF CPS program under CMMI-1932187. The authors gratefully
thank our human test participants, Dongdong Liu and Armand Jordana for implementing the SAC
and PPO baselines and the helpful comments from Bolei Zhou, Zhen Liu, and the anonymous re-
viewers, and also Congcong Wen for paper revision.

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. In Advances in neural information processing systems, pp. 5048–5058, 2017. 3, 15

Hadi Ardiny, Stefan Witwicki, and Francesco Mondada. Construction automation with autonomous
mobile robots: A review. In 2015 3rd RSI International Conference on Robotics and Mechatronics
(ICROM), pp. 418–424. IEEE, 2015. 14

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2):235–256, 2002. 17

Anton Bakhtin, Laurens van der Maaten, Justin Johnson, Laura Gustafson, and Ross Girshick.
Phyre: A new benchmark for physical reasoning. arXiv preprint arXiv:1908.05656, 2019. 2

Victor Bapst, Alvaro Sanchez-Gonzalez, Carl Doersch, Kimberly Stachenfeld, Pushmeet Kohli, Pe-
ter Battaglia, and Jessica Hamrick. Structured agents for physical construction. In International
Conference on Machine Learning, pp. 464–474. PMLR, 2019. 2, 3, 6, 16

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
Jun 2013. ISSN 1076-9757. doi: 10.1613/jair.3912. 18

T Bonswetch, Daniel Kobel, Fabio Gramazio, and Matthias Kohler. The informed wall: applying
additive digital fabrication techniques on architecture. Proceedings of the 25th annual conference
of the association for computer-aided design in architecture, pp. 489–495, 2006. 14

Jonas Buchli, Markus Giftthaler, Nitish Kumar, Manuel Lussi, Timothy Sandy, Kathrin Dörfler,
and Norman Hack. Digital in situ fabrication-challenges and opportunities for robotic in situ
fabrication in architecture, construction, and beyond. Cement and Concrete Research, 112:66–
75, 2018. 14

Devendra Singh Chaplot, Ruslan Salakhutdinov, Abhinav Gupta, and Saurabh Gupta. Neural topo-
logical slam for visual navigation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 12875–12884, 2020. 3
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Vlad Mnih, Rémi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell, and Shane Legg.
Noisy networks for exploration. CoRR, abs/1706.10295, 2017. 15

Markus Giftthaler, Timothy Sandy, Kathrin Dörfler, Ian Brooks, Mark Buckingham, Gonzalo Rey,
Matthias Kohler, Fabio Gramazio, and Jonas Buchli. Mobile robotic fabrication at 1: 1 scale: the
in situ fabricator. Construction Robotics, 1(1-4):3–14, 2017. 14

Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra Malik. Cognitive
mapping and planning for visual navigation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2616–2625, 2017. 2

William H Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel, Manuela
Veloso, and Ruslan Salakhutdinov. Minerl: A large-scale dataset of minecraft demonstrations.
arXiv preprint arXiv:1907.13440, 2019. 2

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. ICML, pp. 1856–1865,
2018. 3

Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps.
arXiv preprint arXiv:1507.06527, 2015. 3

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning, 2017. 3, 16, 18

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene Traore,
Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Rad-
ford, John Schulman, Szymon Sidor, and Yuhuai Wu. Stable baselines, 2018. 6, 15

David Hoeller, Lorenz Wellhausen, Farbod Farshidian, and Marco Hutter. Learning a state repre-
sentation and navigation in cluttered and dynamic environments. IEEE Robotics and Automation
Letters, 6(3):5081–5088, 2021. 3

iRobot®. irobot®root® coding robot. 14

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397, 2016. 3, 5

Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia
Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al. Human-
level performance in 3d multiplayer games with population-based reinforcement learning. Sci-
ence, 364(6443):859–865, 2019. 2

Sasa Jokic, Petr Novikov, Stuart Maggs, Dori Sadan, Shihui Jin, and Cristina Nan. Robotic posi-
tioning device for three-dimensional printing. arXiv preprint arXiv:1406.3400, 2014. 14
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A MOBILE CONSTRUCTION TASKS

Mobile construction robots. Recently we have seen a rising trend of 3D printing using mobile
robots all around the globe for construction and manufacturing (Werfel et al., 2014; Jokic et al.,
2014; Ardiny et al., 2015; Nan, 2015; Marques et al., 2017; Buchli et al., 2018; Zhang et al., 2018;
Melenbrink et al., 2020). All of those are carefully engineered systems that either assume some
global localization ability or only work for specific scenarios, which restricts their feasibility in large
scale. Moreover, none of them address the aforementioned challenge from a theoretical perspective.
To stimulate both robot localization and planning and deep RL research community to work on this
problem, we design an efficient mobile construction simulation environment with a series of tasks
in 1/2/3D grid worlds. Several types of goal design D used in each task of 1/2/3D environments
are shown in Figure A.2. We also show some real world examples of mobile construction tasks in
Figure A.1.

Figure A.1: a) A real world example of 1D environment (left), a programmed wall project (Bon-
swetch et al., 2006), and 1D grid world environment (right). b) A real world example of 2D envi-
ronment iRobot® (left), a painting robot and 2D grid world environment (right). c) A real world
example of 3D environment, mobile robot construction project (Giftthaler et al., 2017) (top) and 3D
grid world environment (bottom).

For the 1D constant tasks, we consider three types of shape designs D ∈ RW : sin function curve,
Gaussian curve and Step function curve (see Figure A.2a to Figure A.2c). For the dynamic tasks,
we generate D (Figure A.2d) based on the following equation: D = a sin(bx + c),where a ∼
U(3, 12), b ∈ {1, 2, 3}, and c ∼ U(−π, π). The coefficients a, b and c are chosen randomly for
each episode. For 2D variable tasks shown in Figures A.2g and A.2h,three vertexes of a triangle are
randomly picked within the grid world. The setup of designs D in 3D is similar to the ones in 2D as
shown in Figures A.2i-A.2l.

B BASELINE SETUP

Several common model-free and model-based RL baselines, and one handcrafted policy are consid-
ered in our paper. Here, we fix the environment constants as follows: (1) for 1D environments, half
window sizeWs = 2, and the environment widthW = 30; (2) for 2D and 3D environmentsWs = 3
and W = H = 20. Detailed architecture designs and hyperparameter setups for each baseline are
explained as follows.
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(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l)

Figure A.2: Example plans. 1) (a-d) shows the curve shapes for 1D tasks. 2) (e/f) are design shapes
for 2D constant dense and sparse tasks and (g/h) are 2D variable tasks; 3) (i/j) are 3D constant tasks
and (k/l) are 3D variable tasks. The 3D red patches are the top-most surfaces of ground-truth plans.

DQN. For the constant design tasks, we use an MLP with three hidden layers containing
[64,128,128] nodes with ReLU activation function for each layer. Three convolutional layers with
kernel size of 3, and ReLU activation functions are used to convert the ground-truth D to feature
vector for variable design tasks. We train DQN on each task for 3,000 episodes. Batch size is 2,000,
and replay buffer size 50,000. For tuning the learning rate, we try a relatively small value 1e-8 to
make sure convergence initially and gradually increase it until finding a proper value. Addition-
ally, instead of only using the current frame, we try to stack ten frames of historical observations
in the replay buffer. This is similar to how the original DQN handles history information for Atari
games (Mnih et al., 2013), but no significant difference was found.

DRQN. We benchmark DRQN by simply adding one recurrent LSTM layer to the Q network in
the DQN. The hidden state dimension is 256 for LSTM layer for all tasks. We train it for 10,000
episodes with batch size of 64 and replay memory size of 1,000.

DRQN+Hindsight. We augment the DRQN baseline with hindsight experience re-
play (Andrychowicz et al., 2017) as another baseline. At the end of each training
episode, the transitions 〈otenv, at,R(st, at;D), ot+1

env〉 of each time step t will be relabeled as
〈otenv, at,R(st, at;GT ), ot+1

env〉, where we change the D to the grid state G at the terminate step
T . Both transitions are stored into the replay buffer. We train this DRQN+Hindsight for 10,000
episodes with batch size of 64 and replay memory size of 1,000.

PPO. We benchmark PPO in discrete settings using the Stable Baselines implementation (Hill et al.,
2018). We train PPO for 10 million time steps with a shared network of 3 layers of 512 neurons
with tanh activation function. For the hyperparameters, we use the 1D constant environment to tune
the learning rate, the batch size, the number of minibatches size, and the clipping threshold. We
found that the most sensitive parameters were the batch size and the minibatch size and chose the
following values: 1× 105 for the batch size, 1× 102 for the number of minibatches, 2.5× 10−4 for
the learning rate and 0.1 for the clipping threshold.

Rainbow. For the Rainbow implementation, we use 3 noisy hidden layers (Fortunato et al., 2017)
with 128 nodes in each layer, and ReLU nonlinear activation functions. Rainbow has a large set of

1D 2D 3D

Constant Variable Constant Variable Constant Variable
Dense Sparse Dense Sparse Dense Sparse Dense Sparse

Simulation time (seconds)
Avg 0.0078 0.0123 0.0069 0.0033 0.0040 0.0017 0.0064 0.0072 0.006 0.0058
Max 0.0136 0.023 0.0072 0.0046 0.0065 0.0029 0.0313 0.0316 0.0209 0.0268
Stddev 0.0003 0.0006 0.00004 0.0003 0.0011 0.0003 0.0052 0.0051 0.0046 0.0044

Table 5: Simulation time of our environments. We test each simulation environment for 500 episodes
of games on Intel(R) Core(TM) i9-9920X CPU @ 3.50GHz using a single thread and report the
average, maximum, and standard deviation of the simulation time of each game. Our environments
can be simulated faster by batch processing.

15



Published as a conference paper at ICLR 2023

LSTM 
Cell 𝑦𝑡+1 Linear Ƹ𝑝𝑡+1

ℎ𝑡

ℎ𝑡+1

LSTM 
CellƸ𝑝𝑡+1

𝑦𝑡+2 Linear Ƹ𝑝𝑡+2

L-Net

.

.

.

L-Net

𝑝𝑡+1
𝐿2 ො𝑝𝑡+1, 𝑝𝑡+1

𝑝𝑡+2

𝐿𝑜𝑠𝑠:෍

𝑖=1

𝐿

𝐿2 ො𝑝𝑡+𝑖 , 𝑝𝑡+𝑖

GT PositionEst. Position

𝑝𝑡

Loop for L steps

ℎ𝑡+𝐿−1

LSTM 
Cell

Ƹ𝑝𝑡+𝐿−1

𝑦𝑡+𝐿 Linear Ƹ𝑝𝑡+𝐿

L-Net
𝑝𝑡+𝐿

𝑜𝑡

𝑜𝑡+1

𝑜𝑡+1

𝑜𝑡+2

𝑜𝑡+𝐿−1

𝑜𝑡+𝐿

.

.

.

L-Net Training

𝐿2 ො𝑝𝑡+1, 𝑝𝑡+1

𝐿2 ො𝑝𝑡+𝐿, 𝑝𝑡+𝐿

Move up/down/left/right, drop brick

𝑎𝑡

𝑎𝑡+1

𝑎𝑡+𝐿−1

Figure B.1: Illustration of training process of L-Net.

hyperparameters, as each of the six components adds additional hyperparameters. We used those
suggested in (Hessel et al., 2017) as a starting point, but they led to poor results on our specific task
and environment designs. As a grid search over such a large hyperparameter space was impractical,
we used a random search approach. Based on empirical results, the algorithm was most sensitive
to learning rate, as well as Vmin, Vmax, and natoms, which define the value distribution support
predicted by the distributional Q-network. Generally, a Vmin value of−5, Vmax of 35, and natoms =
101 provided stable performance, and were chosen heuristically based on an approximate range of
discounted rewards possible in our environments. We used a prioritized experience replay buffer of
size 1× 104, with priority exponent ω of 0.5, and a starting importance sampling exponent β of 0.4.
Additionally, we used multi-step returns with n = 3, and noisy network σ0 = 0.1. Finally, we used
a learning rate of 5× 10−5 for 1D and 2D, and 1× 10−4 for 3D environments.

SAC. We use the implementation of (Christodoulou, 2019) for SAC in discrete settings which has
automatic tuning mechanism for entropy hyperparameters. We use a learning rate 3× 10−4 for
target networks for most plans. We use ReLU activation functions for the hidden layers and Softmax
for the final layer of the policy network. We use interpolation factor τ=5× 10−3 for target networks
and the start steps before running the real policy is 400 with mini batch size 64. We first search the
main hyperparameters based on 1D constant case. Next, we use different network architectures for
relatively complex 2D and 3D cases with the same hyperparameters as 1D constant case. For 1D
environment, we use 2 hidden layers with 64 nodes each for both actor and critic networks. For 2D
environment, we use 3 hidden layers with 512 nodes each for the variable design and 3 hidden layers
containing [64, 128, 64] nodes for the constant design. A 5-layer network architecture containing
[64,128,256,128,64] nodes is applied in the 3D cases.

DQN+MCTS. For this model-based method, we simply combine DQN with standard MCTS algo-
rithm, similar to Bapst et al. (2019). In each time step, the tree search method uses the current state
st as the root node and the latest Q network as a guide to evaluate values for each node of the search
tree. When the search process ends, the action at is selected based on the highest visit counts among
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all possible actions from the root node. In all experiments, we use the true environment simulator
as our transition model. We use same architecture design for each task as we use in the DQN exper-
iments. The rollout of each tree search is 20 and the Upper Confidence Bound (UCB) (Auer et al.,
2002) is used to balance the exploration and exploitation in the search process. The UCB constant
is set to 0.5 for each experiment. We use learning rate 1× 10−3, batch size 2000, and replay buffer
size 50,000 for all tasks and train the DQN on each task for 3000 episodes.

Handcrafted policy. Besides these RL baselines, we also consider a handcrafted policy with basic
localization and planning modules. The localization module borrows the idea of SLAM which uses
the common features between successive frames to localize the robot. For the planning modules, we
simply let the robot move to the nearest empty grid which should be built. The detail handcrafted
algorithm is shown in Algorithm 1. The algorithm is divided into two sub-modules, localization and
planning. Localization receives current location lt, current observation ot and next observation ot+1

to determine next position lt+1 by finding the common features from two successive observations
ot and ot+1. We borrow this idea from visual SLAM which uses similar mechanism to localize.
The planning function will find all candidate target location Lcandidate for next step by comparing the
current observation with the ground truth design D. Based on these candidate positions, the agent
will decide whether to move to nearest candidate position or build at current position. The priority
action space Aprior is used to decide the action a when the robot does not receive any specific action
commend from the nearest planning policy. This priority action will change when robot touches
the boundary of the environment. This mechanism helps robot explore more spaces of the unknown
environment.

(a) Training (1D). (b) Evaluation (2D).

Figure B.2: Game GUI for measuring human per-
formance. (a) 1D Variable design: user can see
the ground truth design in dynamic environments.
(b) 2D Constant design in evaluation mode: only
step and brick count are shown, while rewards are
hidden.

Human. For assessing human performance, we
made a simple GUI game (details and video
samples of the game in supplementary material)
that allows a human player to attempt our tasks
in identical environments with the same limita-
tions of partial-observability and step size un-
certainty. They act as the agent, using the AR-
ROW keys to maneuver, and SPACE to drop a
brick. The human baseline GUI game is shown
in Figure B.2. In constant task environments,
human players are required to complete the task
without the access to the ground-truth design,
while in variable task environments, they can
reference the current ground truth design. Ad-
ditionally, players can toggle between training
or evaluation mode. In training mode, they can view per-step reward as well as their cumulative
reward over the episode, whereas in evaluation mode, they can only see the number of bricks used
and steps taken. For each episode played, players reported their episode-IoU.

C BENCHMARK RESULT

In this section, we show the quantitative results of each baseline on all tasks in Table 7. We also
explain imitation learning and the Rainbow method ablation study here.

IoU 2D
Constant sparse Variable dense

DRQN
Avg

Stddev
Min

0.538
0.078
0.2

0.016
0.014

0

+Expert experience(↑)
Avg

Stddev
Min

0.633
0.054
0.303

0.3
0.08
0.12

Table 6: Quantitative results of training
DRQN with expert experience.

Learning from expert experience. Because most of
the model-free and model-based RL methods cannot
perform well on 2D and 3D tasks due to the afore-
mentioned challenges, we are curious to study whether
learning from expert experience could be one potential
solution to mobile construction tasks. Therefore, we
collect expert experiences on 2D constant sparse and
variable dense tasks via our handcrafted policy which
performs better than the RL methods. Then we train
the DRQN baseline with these (instead of random) ex-
periences in the initial replay buffer. Table 6 shows that
learning from expert can indeed boost the performance of DRQN, especially for the worst perform-
ing cases.
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Figure C.1: Training history of IoU: the full Rainbow algorithm does not always outperform its
pruned configurations.

Rainbow method ablation study. We observed similar performance across most tasks when com-
paring the base DQN algorithm with DQN plus Rainbow. To better understand the effect of each
individual extension on the whole, we conducted six separate runs: in each, we removed one ex-
tension from the complete Rainbow algorithm, similar to (Hessel et al., 2017). Figure C.1 displays
the IoU running average over training in the 2D variable environment for each of these pruned
configurations. Overall, we find that the complete Rainbow algorithm initially learns faster than
all but one of the pruned configurations, suggesting that the combination of optimizations indeed
leads to better sample-efficiency in the learning process. Removing noisy networks (reverting to an
epsilon-greedy exploration approach) led to the largest decrease in learning efficiency. Over a longer
horizon, the top testing performance plateaus to nearly the same across all configurations. In the case
of distributional learning, multi-step learning, and double DQN, removing each individual actually
improved top test performance, from 0.676 to 0.685, 0.701, and 0.714 respectively. While this study
is not exhaustive, it suggests that the Rainbow algorithm does not easily generalize from the Arcade
Learning Environment (Bellemare et al., 2013) (which it was designed for) to our specific tasks.

Figure C.2: Results of construction ac-
curacy with respect to position estima-
tion error. The red line shows linear re-
lation between two examined values

Construction accuracy with respect to position estima-
tion error. We also conduct an experiment to test how
the position prediction precision of L-Net could effect
the construction performance of DRQN agent. We test
DRQN w/ L-Net on 2D variable sparse task for 500 times
and get average L2 distance between predicted and GT
positions and IoU of each game. As shown in the Fig-
ure C.2, we find that the construction performance of the
policy is expected to be effected by the accuracy of posi-
tion estimation by L-Net. With higher localization error,
the construction will also be poorer. This indicates that
designing an appropriate localization module is key path
to solving mobile construction tasks.
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1D 2D 3D
IoU Constant Variable Constant Variable Constant Variable

Dense Sparse Dense Sparse Dense Sparse Dense Sparse

Human Avg 0.83 0.881 0.803 0.606 0.853 0.93 0.843 0.759 0.871 0.863
Min 0.448 0.686 0.306 0.053 0.254 0.156 0.3 0.232 0.313 0.101

Handcraft Avg 0.948 0.995 0.953 0.655 0.633 0.42 0.336 0.679 0.353 0.379
Min 0.839 0.970 0.816 0.143 0.279 0.029 0.074 0.031 0 0
Stddev 0.03 0.013 0.034 0.177 0.218 0.249 0.09 0.221 0.178 0.267

DQN Avg 0.799 0.781 0.744 0.234 0.061 0.044 0.024 0.022
Min 0.439 0.353 0.164 0 0 0 0 0
Stddev 0.061 0.092 0.075 0.052 0.060 0.042 0.014 0.013

DRQN Avg 0.861 0.850 0.818 0.538 0.427 0.068 0.071 0.009
Min 0.67 0.502 0.724 0.2 0 0 0 0
Stddev 0.034 0.075 0.032 0.078 0.165 0.053 0.048 0.015

DRQN+Hindsight Avg 0.842 0.804 0.645 0.191 0.361 0.045 0.069 0.054
Min 0.67 0.467 0.545 0.083 0 0 0.018 0
Stddev 0.034 0.075 0.033 0.036 0.171 0.045 0.023 0.02

SAC Avg 0.424 0.438 0.142 0.14 0.053 0.021 0.013 0.009
Min 0.189 0.136 0.06 0.023 0 0 0 0
Stddev 0.102 0.13 0.034 0.019 0.047 0.033 0.011 0.014

PPO Avg 0.788 0.794 0.65 0.294 0.358 0.140 0.317 0.007
Min 0.57 0.446 0.457 0.179 0 0 0.04 0
Stddev 0.039 0.065 0.055 0.038 0.114 0.068 0.092 0.012

Rainbow Avg 0.823 0.792 0.725 0.507 0.072 0.021 0.112
Min 0.533 0.484 0.175 0.172 0 0 0.022
Stddev 0.064 0.061 0.093 0.093 0.087 0.035 0.038

DQN+MCTS Avg 0.745 0.738 0.752 0.154 0.135 0.020 0.032 0.015 0.013 0.007
Min 0.059 0.313 0.587 0.031 0 0 0.013 0 0 0
Stddev 0.109 0.084 0.075 0.046 0.106 0.030 0.015 0.01 0.02 0.012

DQN w/ L-Net Avg 0.829 0.799 0.869 0.662 0.687 0.065 0.098 0.083
Min 0.388 0.366 0.693 0.246 0.069 0 0.015 0.008
Stddev 0.043 0.072 0.038 0.094 0.132 0.066 0.053 0.024

DRQN w/ L-Net Avg 0.896 0.863 0.854 0.684 0.7 0.301 0.374 0.315 0.143 0.053
Min 0.624 0.38 0.696 0.289 0.132 0 0.072 0.049 0 0
Stddev 0.059 0.079 0.036 0.091 0.137 0.151 0.107 0.095 0.076 0.041

Table 7: Benchmark quantitative results. Empty cells indicate the agents failed at the these task
without learning any control policy. Blue & purple represent best performance of learning-based
methods w/ & w/o L-Net.

19



Published as a conference paper at ICLR 2023

Figure C.3: The best testing cases of baselines and our method on all tasks.
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Algorithm 1 Handcrafted Policy

1: function MAIN
2: Initialize environment and get initial observation ot=0

3: Get initial location pt=0

4: Initialize priority action space Aprior
5: for t← 0, Nsmax do
6: at,Aprior=PLANNING(pt, ot,Aprior)
7: Execute at and obtain next observation ot+1, reward, and terminal sign Done from en-

vironment.
8: pt+1 = LOCALIZATION(pt, ot, ot+1, at)
9: if Done then

10: Break

11: function LOCALIZATION(pt,ot,ot+1,at)
12: Common Feature = FEATUREMATCHING(ot, ot+1)
13: if Common Feature is empty or ot = ot+1 then
14: Determine pt+1 using Odometry, here we assume step size is always 1. return pt+1

15: else
16: Determine step size using Common Feature.
17: Calculate pt+1 using step size and at. return pt+1

18: function PLANNING(pt, ot,Aprior)
19: Pcandidate = COMPARE(ot, D(pt))
20: Update Aprior based on the current boundary condition
21: if Pcandidate is empty then
22: at is random sampled from Aprior return at,Aprior
23: else
24: Find nearest location pnear from Pcandidate

25: if pnear = pt then return a=Drop brick, Aprior
26: else
27: Determine action at based on the corresponding direction of pnear to pt return at,Aprior
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