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the uncertainty of such models. In slogan form, we propose

that continuous learning for security tasks is enabled by (hi-

erarchical) contrastive learning plus end-to-end measures of

uncertainty.

We show that contrastive learning is well-suited for dealing

with concept drift in our dataset. Figure 1 summarizes our

results: active learning is necessary to deal with concept drift,

and our methods improve on past state-of-the-start schemes,

reducing the false negative rate from 14% to 9% and ensuring

more stable performance of the classifier.

We hypothesize that contrastive learning is well-suited to

security tasks because it provides a way to measure similar-

ity of samples. In contrastive learning, we learn an encoder

where similar samples are mapped to nearby vectors in the

embedding space, so we can measure the similarity of two

samples by calculating the distance between their two embed-

dings. When a new malware family or new benign application

emerges, we expect it will be dissimilar to all prior samples,

hence an appropriate uncertainty measure can recognize that

its classification is uncertain and we should have humans

analysts label it. When a malware app experiences gradual

drift, or a benign app receives small updates, we can expect

that new samples will be similar to past samples and hence

a classifier that uses the output of the contrastive encoder

may automatically adapt to gradual drift (as the input to the

classifier doesn’t change much), yielding an architecture that

is robust to gradual drift. Recent work provides evidence that,

for image classification, contrastive learning improves robust-

ness against distribution shift [59]. We provide evidence in

this paper that contrastive learning is a good fit for security

tasks as well.

Security applications pose two unique challenges for con-

trastive learning that have not been explored before: detecting

new threats while dealing with class imbalance, and measur-

ing uncertainty.

First, in security applications, new threats emerge from time

to time, which we must detect and learn to classify correctly.

Also, security applications exhibit severe class imbalance: in

real-world scenarios, most apps are benign (for instance, 94%

of Android apps in the AndroZoo dataset [1] are benign). We

are inspired by CADE [54], which showed that contrastive

learning is promising for detecting new threats (specifically,

new malware families). However, when we experimented with

CADE on realistic datasets with class imbalance matching

real-world scenarios, we found that CADE struggles to detect

new malware families, often misclassifying them as benign.

To address this, we propose using hierarchical contrastive

learning. Hierarchical contrastive learning allows us to cap-

ture the intuition that two malicious samples from the same

malware family should be considered very similar; and two

malicious samples from different malware families can be

considered weakly similar. In comparison, non-hierarchical

contrastive learning treats pairs of malicious training samples

as dissimilar if they are from different families, and pairs of

malicious and benign samples as equally dissimilar. Thus, hi-

erarchical contrastive learning allows us to take advantage of

the additional information that different malware families are

weakly similar. Thereby, hierarchical contrastive learning can

more accurately capture that unseen new malware families

are more similar to malicious samples than benign samples.

Second, there is no existing measure of uncertainty for a

model trained with contrastive learning. Standard models map

a single sample to a predicted classification, so there are ways

to measure the certainty of this prediction. In comparison,

with contrastive learning, training involves a pair of similar

or dissimilar samples, so there is no obvious way to assign

uncertainty to a single sample. To solve this problem, we

introduce a new uncertainty measure for contrastive learning,

which we call pseudo loss. Concretely, given a test sample

x, we use the classifier to predict the label of x. Then, we

construct many pairs of samples that include x and another

training sample, compute the contrastive loss on each pair, and

average these losses. A higher average loss value means the

model is more uncertain about x. Our active learning scheme

then uses this uncertainty measure to select samples with a

high uncertainty score for human labelling.

Third, we identify several engineering improvements that

are unique to continuous learning for security. Active learn-

ing can use either cold state learning (where we train a new

model from scratch each time) or warm start learning (where

we take an older model and continue training it with new sam-

ples). Past work has made little distinction between these two

approaches, perhaps because they perform about the same

for image classification. However, we found in our experi-

ments that warm start can offer significant improvements for

security classification, when using deep learning. We suspect

this is due to sample imbalance, where in malware detection

we typically have a large volume of old labelled samples but

few new labelled samples. Warm start addresses this sample

imbalance issue by focusing more on the newest samples.

To evaluate our approach, we collect the APIGraph

dataset [58] spanning across seven years from 2012 to 2018,

and a new AndroZoo dataset [1] from 2019 to 2021. On the

APIGraph dataset, we train an initial model using data from

2012. Then, every month, human analysts label a fixed set of

new samples, we expand the training set, and we update the

classifier. We evaluate the performance of this classifier on the

next month. If human analysts label 200 samples each month,

our approach reduces the false negative rate from 14% to

9% (see Figure 1), while also reducing the false positive rate

(from 0.86% to 0.48%). As another comparison, if we wish to

maintain the same performance of the classifier, our scheme

reduces the labelling effort from analysts by 8× compared to

prior methods. On the AndroZoo dataset, the improvement

of F1 score ranges from 8.99% to 16.50% across different

labeling budgets compared to the best prior method.

Our case study reveals one reason why our scheme per-

forms better: our sample selection method does a better job
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of identifying new samples for analysts to label. For example,

our method identifies samples from the malware family that

caused the most false negatives and labels them; the baseline

method does not. This allows our model to quickly recover

from a sudden increase of false negatives and avoid future

spikes, which prior methods struggle with.

The contribution of this paper is to develop methods for

continuous learning for classifying Android malware. In par-

ticular, we evaluate many previously proposed schemes and

introduce a new approach that improves significantly on past

work in this space. Borrowing from past work, we show that

hierarchical contrastive learning can help address the concept

drift problem in malware classification. We also introduce

a novel uncertainty score and method for sample selection,

the pseudo loss (Section 3.2); this is the first method we are

aware of for measuring uncertainty for a contrastively learned

encoder. We also highlight several engineering lessons (Sec-

tion 4.5) and show that, in one setting, we can reduce the

labeling effort for analysts by 8×. Our code is available at

https://github.com/wagner-group/active-learning.

2 Background and Related Work

Active Learning. Many active learning schemes have been

proposed in the literature for image and text classification [30,

40, 41, 44, 56]. There are many ways to select samples and

update models for active learning. In comparison, relatively

few previous works have studied active learning for malware

detection [53,54,58]. In our experience, uncertainty sampling

is a strong baseline that is hard to beat for malware detection.

OOD Detection. We focus on the active learning problem in

this paper, which needs a sample selection method for continu-

ous learning. Selecting OOD samples is one way to do sample

selection. For instance, uncertainty sampling selects samples

with the highest uncertainty score, which can be viewed as a

measure of how OOD each sample is. The prediction confi-

dence of a classifier is commonly used to detect OOD sam-

ples [28], and researchers have proposed various methods to

calibrate the model’s prediction confidence [12, 17]. TRAN-

SCENDENT builds on conformal prediction theory [46] to de-

tect OOD samples. TRANSCENDENT [8,21] uses two metrics,

credibility and confidence, both utilizing the nonconformity

measure to reject test samples that may have drifted. The

paper did not provide a way to use the two metrics for active

learning. We extend TRANSCENDENT to an active learning

scheme by using its metrics to select samples for labeling

(Section 4.4.1) and compare this to our scheme. CADE [54]

uses supervised contrastive learning and a distance-based

OOD score to detect OOD samples. In the paper, the authors

have provided a way to use CADE OOD score for retrain-

ing a binary SVM classifier. Therefore, we follow the exact

same setup as one of the baseline methods in our experi-

ments. Moreover, we use new ideas to improve CADE for

deep active learning and compare our technique against the

improved versions. Previous works have also proposed meth-

ods to estimate uncertainty for neural networks, including

Monte-Carlo dropout [15], variance of predictions made by

a deep ensemble [25], energy score [31], focal loss [33], and

distance to the k-th nearest neighbor in the training set [47].

OpenOOD [52] shows that the detection performance of dif-

ferent methods vary across different OOD datasets. Instead

of evaluating the detection accuracy on OOD datasets, we

are interested in using uncertainty measures to select samples

for active learning, in order to improve the performance of

the classifier. Researchers have also proposed hierarchical

novelty detection by combining hierarchical classification

with OOD detection [27]. However, they don’t provide an

OOD score so we cannot adapt it for active learning. Open set

recognition [16, 37] is not helpful in our setting because we

need to always predict a binary label (malicious or benign).

Contrastive Learning. Contrastive learning is a type of

self-supervised learning method that does not require labels

for individual inputs. The only information required is simi-

lar and dissimilar pairs of samples, i.e., the positive pairs and

negative pairs. In image applications, we can use data augmen-

tation over each input image to generate positive pairs, and

consider the rest as negative pairs. Unsupervised contrastive

learning has been proposed for OOD detection [50] in the

image domain, but it requires data augmentation techniques

that are not available for malware detection. In this paper, we

use supervised contrastive learning [23, 54], where informa-

tion about positive and negative pairs come from ground truth

malware family and benign labels. We are inspired by the

promising results from CADE [54] on using supervised con-

trastive learning to detect drifted samples in Android malware

datasets. However, CADE did not experiment with real-world

distributions of benign apps. We find that when the majority

of data is benign, CADE struggles to detect new malware

families as drifted samples. Our new hierarchical contrastive

learning scheme can mitigate the class imbalance issue.

Common contrastive learning loss functions include

distance-based loss for pairs [19, 54], triplet loss [42], and

normalized cross-entropy loss [10, 20]. We build on these

ideas to design our loss function for hierarchical contrastive

learning. Hierarchical contrastive learning in the image do-

main combines clustering with contrastive learning. Related

papers contrast between cluster assignments [9, 13], contrast

between sample and different cluster centroids [29, 48], or

select negative samples with probability proportional to dis-

similarity of clusters [18]. In comparison, our method does

not require any clustering procedure. The novelty of our work

is that we show evidence about what techniques are effective

for malware classification, and we improve significantly on

past work in this space. Also, our pseudo loss (Section 3.2),

used for uncertainty estimation and sample selection, has not
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These sets capture multiple degrees of similarity: P(i,yi,y
′
i)

contains pairs that are considered weakly similar, Pz(i,yi,y
′
i)

contains pairs that are highly similar, and N(i,yi) pairs that

are dissimilar.

Let di j denote the euclidean distance between two arbitrary

samples i and j in the embedding space: di j = ‖enc(xi)−
enc(x j)‖2. Let m denote a fixed margin (a hyperparameter).

The hierarchical contrastive loss is defined as:

Lhc = ∑
i

Lhc(i) (4)

Lhc(i) =
1

|P(i,yi,y
′
i)|

∑
j∈P(i,yi,y

′
i)

max(0,di j −m)

+
1

|Pz(i,yi,y
′
i)|

∑
j∈Pz(i,yi,y

′
i)

di j

+
1

|N(i,yi)|
∑

j∈N(i,yi)

max(0,2m−di j)

(5)

The hierarchical contrastive loss has three terms. The first

term asks positive pairs from P(i,yi,y
′
i) to be close together,

but we don’t require them to be too close. We only penalize

the distance between these pairs if it is larger than m. Specifi-

cally, these are (benign, benign) and (malicious, malicious)

pairs. This term is helpful for us to learn properties that are

common to all malicious apps or all benign apps. The second

term asks samples from the same malware family to be treated

as very similar, and we penalize any non-zero distance di j

between them. The last term aims to separate benign and ma-

licious samples from each other, hopefully at least 2m apart

from each other; if the distance is already larger than 2m, we

don’t care how far apart they might be.

3.2 Pseudo Loss Sample Selector

Next, we introduce a novel way to compute an uncertainty

score for a test sample, for a hierarchical contrastive classifier.

This score is used in active learning: the samples with the

highest uncertainty scores are selected for analysts to label.

We face three challenges:

(i) We need to take into account the uncertainty of both the

encoder and the classifier subnetworks in our model.

(ii) We need a new way to measure uncertainty for the hi-

erarchical contrastive encoder. Past work has only con-

sidered uncertainty scores for classifiers, but not for con-

trastive encoders.

(iii) The uncertainty measure should be efficient to compute.

3.2.1 Key Idea

Our design is motivated by an unsupervised learning view

on how researchers measure uncertainty for neural network

classifiers. The basic idea is, if we use the predicted label

instead of the ground truth label to compute the classification

loss for an input, the loss value represents the uncertainty of

the classifier. We call this the pseudo loss, since we can view

the predicted label as a pseudo label for the input and compute

the loss with respect to this pseudo label.

For example, a common uncertainty measure for a neural

network is to use one minus the max softmax output of the

network. For our encoder-classifier model, using the notations

introduced in Section 3.1.2, the uncertainty score would be:

U(x) = 1−max( f (x),1− f (x)). (6)

Alternatively, we can view this as an instance of a pseudo loss.

Let ŷ denote the binary label predicted by f (x), i.e., ŷ = 1 if

f (x)≥ 1− f (x) or ŷ = 0 otherwise. Then the cross-entropy

loss with respect to ŷ is given by

Lce(x, ŷ) =− ŷ log f (x)− (1− ŷ) log(1− f (x))

=−max(log f (x), log(1− f (x))).
(7)

Since log is a monotonic function, combining Equation (6)

and Equation (7), we have Lce(x, ŷ) =− log(1−U(x)). Thus,

ranking samples by U(x) gives the same ranking as Lce(x, ŷ).
Therefore, the pseudo loss Lce(x, ŷ) is a reasonable uncer-

tainty score, one that is equivalent to the standard softmax

confidence uncertainty.

The benefit of the pseudo loss formulation is that it can be

applied to any learned model, not just classification. Therefore,

our main insight is that we can derive an uncertainty score

for a hierarchical contrastive model by constructing a pseudo

loss from the training loss defined in Equation (1).

3.2.2 Pseudo Loss for Contrastive Learning

To realize our idea of the pseudo loss for contrastive learning,

there is still a key difference from supervised learning. The un-

certainty of a sample in supervised learning depends on only

the sample, but the uncertainty of the sample in contrastive

learning depends on other samples as well. Since our goal is

to measure uncertainty in a way that reflects the encoder’s

similarity measure, we compare the test sample with nearby

training samples.

We use the following procedure to compute the pseudo loss

for contrastive learning. Given a test sample xi, we compute

its embedding enc(xi), as well as the embedding of all training

samples.1 Then, we find the 2N −1 nearest neighbors in the

training set to xi, with distances computed in the normalized

embedding space. We obtain a batch of 2N samples, contain-

ing xi and its 2N −1 neighbors. We use the predicted binary

label ŷi for xi as a pseudo label for xi, and use the ground

truth label for all 2N −1 training samples. These labels allow

us to compute the positive and negative pairs in the batch,

1In our experiments, we normalize the embeddings to have unit length,

but in retrospect, we expect normalization is unnecessary.
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Year
Malicious

Apps

Benign

Apps
Total

Malware

Families

2012 3,061 27,472 30,533 104

2013 4,854 43,714 48,568 172

2014 5,809 52,676 58,485 175

2015 5,508 51,944 57,452 193

2016 5,324 50,712 56,036 199

2017 2,465 24,847 27,312 147

2018 3,783 38,146 41,929 128

Table 1: We collect Android apps from the APIGraph

dataset [58] spanning across seven years. Within total apps,

10% of them are malicious apps.

tics of the AndroZoo dataset. In the year of 2021, the available

malware apps on AndroZoo is fewer than the previous years.

We query VirusTotal and then use AVClass2 [43] to obtain

the family label for malicious apps. If an app does not have

any family label2, we use the “unknown” family label.

We extract DREBIN features [7] from the apps to train

all models. DREBIN uses 8 sets of features to capture the

app’s required access to hardware components, requested

permissions, names of app components, filtered intents, usage

of restricted API calls, actually used permissions, suspicious

API calls, and network addresses.

As is typical for research on active learning in malware

classification, we simulate the human analyst using post-facto

data from VirusTotal and AVClass2. Our assumption is that

over time VirusTotal scores converge to the correct label; we

treat current VirusTotal and AVClass2 labels as ground truth,

and whenever an active learning scheme calls for a human

analyst to label a sample, we use these ground-truth labels.

We apply each active learning scheme to select new sam-

ples each month, update/retrain the classifier, and then predict

on samples from the next month.

4.2 Active Learning Setup

We found out that, hyperparameter tuning makes a big differ-

ence in the performance of the classifier in the active learning

setting. Moreover, for deep active learning schemes including

our method, warm start performs better than cold start. Warm

start continues training the model from previously learned

weights, and cold start retrains the model from scratch. We

will summarize engineering lessons learned in Section 4.5.

Time-consistent data split. We choose hyperparameters

that perform the best in active learning. We split the data into a

training set (the first year of apps), a validation set (the next six

months), train an initial classifier on the training set, and then

use active learning with a labeling budget of 50 samples per

month on the validation set to select the best hyperparameters.

After finding the best hyperparameters, we test the active

learning performance using data from the remaining months.

2The output from AVClass2 does not have a family label other than

“Android” or “grayware”.

Year
Malicious

Apps

Benign

Apps
Total

Malware

Families

2019 4,542 40,947 45,489 121

2020 3,982 34,921 38,904 82

2021 1,676 13,985 15,662 51

Table 2: We collect a new AndroZoo dataset by randomly

sampling malware and benign apps from AndroZoo [1]. In

the dataset, 10% of all apps are malicious.

For the APIGraph dataset, the training set is 2012 data, the

validation set is 2013-01 to 2013-06, and the test set covers

2013-07 to 2018-12. For the AndroZoo dataset, the training

set is 2019 data, the validation set is 2020-01 to 2020-06,

and the test set is 2020-07 to 2021-12. The test performance

is averaged across all test months. More details about the

training samples are in Appendix A.

4.3 Comparison against Baselines

4.3.1 Baseline Active Learning Schemes

The first baseline is active learning with uncertainty sampling.

We experiment with uncertainty sampling for both binary and

multiclass classifiers. The binary classifiers include a fully-

connected neural network (NN), a linear SVM, and gradient

boosted decision trees (GBDT) [53, 58]. We normalize the

prediction score from the classifier to between 0 and 1 using

softmax for NN, sigmoid for SVM, and the logistic function

for GBDT. The multiclass classifiers include MLP and SVM.

We also experiment with a “Multiclass MLP + Binary SVM"

classifier: we train a multiclass MLP first, and then take the

penultimate layer as embeddings to train a binary SVM. We

consider the “Multiclass MLP + Binary SVM" a binary clas-

sifier. The uncertainty score is one minus the max prediction

score from all classes. For NN, this is equivalent to the max

softmax uncertainty measure.

Our second baseline is active learning with a SVM classifier

using the CADE OOD score [54]. As originally proposed,

CADE was primarily envisioned as a way to detect drifted

samples; they also use the CADE OOD score to perform one

round of active learning using a binary SVM, and we apply

that in our setting. CADE trains a contrastive autoencoder,

treating pairs of samples from the same family as similar, and

pairs from different families as dissimilar. After training, they

define the OOD score of a test sample to be the normalized

distance to the nearest known family. We perform active

learning, each month using their OOD score to select the

samples with the highest OOD score for human labelling.

For all baselines, we use cold start for active learning (i.e.,

each month we retrain the classifier afresh, from scratch),

consistent with past work. We follow the procedure described

in Section 4.2 to find the best hyperparameters to train MLP,

SVM, and GBDT baseline models, with details in Appendix C.

For our model, we use warm start, with details in Appendix B.
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Monthly

Sample

Budget

Model

Architecture

Sample

Selector

APIGraph Dataset AndroZoo Dataset

Average Performance (%) Average Performance (%)

FNR FPR F1 FNR FPR F1

50

Binary MLP Uncertainty 23.77 0.52 83.84 53.12 0.46 59.50

Multiclass MLP Uncertainty 16.10 4.64 73.77 49.86 28.52 28.65

Multiclass MLP

+ Binary SVM
Uncertainty 38.40 1.01 71.38 73.13 2.87 34.04

Binary SVM
Uncertainty 16.92 0.61 87.72 48.77 0.29 63.42

CADE OOD 36.11 12.9 71.70 62.01 0.55 50.26

Multiclass SVM Uncertainty 35.79 0.17 87.43 65.77 0.09 46.91

Binary GBDT Uncertainty 31.75 0.54 77.92 50.35 0.47 61.06

Ours: Enc + MLP Pseudo Loss
15.15 0.52 89.23 27.65 0.53 79.92

(↓ 1.77) (↓ 0.09) (↑ 1.51) (↓ 21.12) (↑ 0.24) (↑ 16.50)

100

Binary MLP Uncertainty 20.64 0.49 86.03 46.39 0.30 65.26

Multiclass MLP Uncertainty 14.77 6.44 69.91 35.34 32.64 33.72

Multiclass MLP

+ Binary SVM
Uncertainty 30.45 1.76 74.11 73.47 3.88 31.69

Binary SVM
Uncertainty 15.41 0.68 88.38 43.07 0.32 68.33

CADE OOD 23.48 0.96 82.22 58.78 0.70 52.47

Multiclass SVM Uncertainty 28.36 0.17 82.18 54.29 0.12 58.26

Binary GBDT Uncertainty 27.76 0.67 80.15 48.59 0.76 62.58

Ours: Enc + MLP Pseudo Loss
13.69 0.44 90.42 27.35 0.41 80.07

(↓ 1.72) (↓ 0.24) (↑ 2.04) (↓ 15.72) (↑ 0.09) (↑ 11.74)

200

Binary MLP Uncertainty 19.71 0.39 86.97 42.57 0.34 68.47

Multiclass MLP Uncertainty 14.56 4.26 75.65 39.78 34.76 28.59

Multiclass MLP

+ Binary SVM
Uncertainty 29.46 1.98 74.09 70.32 0.93 39.51

Binary SVM
Uncertainty 14.07 0.86 88.47 40.31 0.37 70.24

CADE OOD 21.68 0.67 84.50 51.32 0.78 59.11

Multiclass SVM Uncertainty 21.19 0.21 86.90 44.77 0.13 66.55

Binary GBDT Uncertainty 24.71 0.56 82.71 42.97 0.80 67.28

Ours: Enc + MLP Pseudo Loss
9.42 0.48 92.72 27.67 0.39 80.51

(↓ 4.65) (↓ 0.38) (↑ 4.25) (↓ 12.64) (↑ 0.02) (↑ 10.27)

400

Binary MLP Uncertainty 16.04 0.40 89.25 36.25 0.34 73.70

Multiclass MLP Uncertainty 15.07 4.15 75.94 34.48 24.44 38.34

Multiclass MLP

+ Binary SVM
Uncertainty 28.85 1.68 75.69 73.94 1.92 33.74

Binary SVM
Uncertainty 12.86 0.90 89.02 34.73 0.43 74.12

CADE OOD 20.61 0.59 85.52 49.98 0.94 59.53

Multiclass SVM Uncertainty 17.87 0.24 88.88 40.99 0.14 69.61

Binary GBDT Uncertainty 20.16 0.46 86.24 33.62 0.38 76.82

Ours: Enc + MLP Pseudo Loss
7.84 0.50 93.50 21.49 0.31 85.81

(↓ 8.20) (↑ 0.10) (↑ 4.25) (↓ 12.13) (↓ 0.07) (↑ 8.99)

Table 3: Given a fixed monthly labeling budget, we compute the average FNR, FPR, and F1 for different baseline active learning

techniques and our method. On the APIGraph dataset, we decrease the labeling cost by 8× to achieve an average F1 score of

over 89%: our method needs 50 samples / month, and binary MLP needs 400 samples / month. On the AndroZoo dataset, our

method reduces the FNR by 1.6× on average, while maintaining under 1% FPR.

4.3.2 Results

We evaluate how much our new technique improves the per-

formance of the classifier on future data compared to the

baseline methods. We experiment with a budget for analyst

labels of 50, 100, 200, and 400 samples per month.

Table 3 shows the performance of each classifier, averaged

across 2013-07 to 2018-12 on the APIGraph dataset, and

across 2020-07 to 2021-12 on the AndroZoo dataset, by false

negative rate (FNR), false positive rate (FPR), and F1 score.
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Budget
Model

Arch

Sample

Selector

Warm

or

Cold

APIGraph Dataset AndroZoo Dataset

Average Performance (%) Average Performance (%)

FNR FPR F1 FNR FPR F1

50

MLP

Uncertainty Warm 21.85 0.57 84.89 48.95 0.37 62.81

CADE OOD Cold 17.13 0.90 86.36 43.09 0.66 67.18

CADE OOD Warm 13.51 1.46 86.32 43.04 0.54 67.45

SVM
TRANSCENDENT (cred) Cold 17.48 0.58 87.55 49.06 0.41 62.29

TRANSCENDENT (cred*conf) Cold 18.67 0.55 86.92 47.21 0.41 64.72

Enc + SVM TRANSCENDENT (cred) Cold 19.75 0.59 86.02 42.52 0.52 68.56

Ours:
Pseudo Loss Warm

15.15 0.52 89.23 27.65 0.53 79.92

Enc + MLP (↓ 2.33) (↓ 0.06) (↑ 1.68) (↓ 14.87) (↑ 0.01) (↑ 11.36)

100

MLP

Uncertainty Warm 17.40 0.50 87.95 47.48 0.39 64.04

CADE OOD Cold 14.71 0.79 88.40 49.60 0.62 61.20

CADE OOD Warm 12.35 1.41 87.22 39.33 0.48 70.92

SVM
TRANSCENDENT (cred) Cold 17.02 0.72 87.33 43.26 0.42 67.57

TRANSCENDENT (cred*conf) Cold 17.71 0.50 87.75 44.04 0.40 66.93

Enc + SVM TRANSCENDENT (cred) Cold 17.03 0.54 87.96 34.85 0.52 74.97

Ours:
Pseudo Loss Warm

13.69 0.44 90.42 27.35 0.41 80.07

Enc + MLP (↓ 1.02) (↓ 0.35) (↑ 2.02) (↓ 7.50) (↓ 0.11) (↑ 5.10)

200

MLP

Uncertainty Warm 15.87 0.59 88.53 40.52 0.49 70.04

CADE OOD Cold 13.25 0.77 89.26 41.99 0.68 67.70

CADE OOD Warm 11.78 0.80 89.99 40.16 0.46 71.15

SVM
TRANSCENDENT (cred) Cold 16.15 0.61 88.22 40.85 0.38 69.89

TRANSCENDENT (cred*conf) Cold 18.04 0.48 87.66 38.25 0.42 71.08

Enc + SVM TRANSCENDENT (cred) Cold 13.45 0.52 90.17 28.54 0.50 80.26

Ours:
Pseudo Loss Warm

9.42 0.48 92.72 27.67 0.39 80.51

Enc + MLP (↓ 4.03) (↓ 0.04) (↑ 2.55) (↓ 0.87) (↓ 0.11) (↑ 0.25)

400

MLP

Uncertainty Warm 14.74 0.59 89.21 33.32 0.48 75.52

CADE OOD Cold 11.09 1.09 89.06 29.78 0.63 77.89

CADE OOD Warm 11.01 0.76 90.55 43.10 0.37 67.99

SVM
TRANSCENDENT (cred) Cold 15.46 0.60 88.71 36.99 0.40 72.44

TRANSCENDENT (cred*conf) Cold 17.45 0.50 87.90 37.11 0.38 72.52

Enc + SVM TRANSCENDENT (cred) Cold 11.30 0.52 91.46 27.86 0.45 80.84

Ours:
Pseudo Loss Warm

7.84 0.50 93.50 21.49 0.31 85.81

Enc + MLP (↓ 3.46) (↓ 0.02) (↑ 2.04) (↓ 6.37) (↓ 0.14) (↑ 4.97)

Table 4: Given a fixed monthly labeling budget, we compute the average FNR, FPR, and F1 for improved active learning

techniques and our method. On the APIGraph dataset, our method performs better than improved schemes in all metrics. On the

AndroZoo dataset, we reduce the FNR by 1.3× on average while maintaining under 1% FPR.

with neural networks.

We adapt TRANSCENDENT [8] to active learning. TRAN-

SCENDENT [8] was originally designed to support classifica-

tion with rejection, so that the classifier can decline to make

any prediction for samples that appear to have drifted. In par-

ticular, they construct two scores to recognize drifted samples:

credibility and confidence. Given a new test sample, they first

compute the non-conformity score of the sample, representing

how dissimilar it is from the training set. Given the predicted

label of the test sample, they find the set of calibration data

points with the same ground truth label. Then, they compute

credibility as the percentage of samples in the calibration set

that have higher non-conformity scores than the test sample.

They compute confidence as one minus the credibility of the

opposite label. A lower credibility score or a lower confidence

score means the test sample is more likely to have drifted.

We design two active learning sample selectors based on

TRANSCENDENT. The first one uses only the credibility score:

samples with the lowest credibility scores are prioritized. The

second one uses both credibility and confidence: we multiply

the credibility and confidence, and samples with the lowest

score are prioritized. To compute non-conformity scores, we

use Cross-Conformal Evaluator (CCE) with 10-fold cross

validation, with details in Appendix D.

To the best of our knowledge, these two sample selectors

have not been documented in published research papers. The

most related papers BODMAS [53] and CADE [54] experi-

mented with using the non-conformity score to select samples

for active learning. They sort samples by credibility first, and

then use confidence to break ties.3 This is different from our

sample selectors.

We evaluate these TRANSCENDENT-derived sample selec-

3This was confirmed via communication with the authors.
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tors with a binary SVM classifier, trained from the input fea-

tures. We also apply the TRANSCENDENT credibility score

sample selector to the embedding space learned by hierar-

chical contrastive learning (Equation 4), and train a binary

SVM classifier on these embeddings. We also evaluate im-

proved variants of NN uncertainty sampling and CADE OOD

sampling, improved with the engineering insights from Sec-

tion 4.5, to help us separate out the benefit from engineering

improvements vs our hierarchical contrastive classifier and

pseudo loss.

We improve CADE to make it more suitable for deep ac-

tive learning. CADE uses a contrastive autoencoder to learn

embeddings and build a similarity measure, but CADE’s clas-

sifier takes the original features as input, not the embedding

produced by the encoder. Our insight is that it is better for

the classifier to use the embedding as input rather than the

original features, so we improve CADE in this way. We also

replace CADE’s SVM classifier with a neural network, which

performed better in our experiments. We examine both a cold-

start and warm-start version of CADE, as CADE did not

experiment with repeated retraining and thus did not examine

this tradeoff, but we found that it made a difference for our

scheme (see Section 4.5.2). Finally, we modified the architec-

ture of the encoder to further improve performance.

We follow the procedure described in Section 4.2 to find the

best hyperparameters to train models from improved active

learning schemes, with details in Appendix E. The details of

our model is in Appendix B.

4.4.2 Results

Table 4 shows the results of comparing our scheme with these

improved schemes. Here are some highlight results:

• On the AndroZoo dataset, compared to the best improved

scheme, our method reduces the FNR by 1.3× on average,

and maintains under 1% FPR. In other words, even when

improving previously published methods as much as we

were able, with all the improvements we could find, our

scheme still performs significantly better than prior meth-

ods.

• On the APIGraph dataset, our scheme is better in all metrics,

including FNR, FPR, and F1 scores, compared to the best

improved scheme.

• If we exclude our method, TRANSCENDENT (cred) applied

to the embedding space of hierarchical contrastive learning

(Enc + SVM) is the best improved scheme. In one out of

eight cases, TRANSCENDENT (cred) on the hierarchical

embedding space has similar performance as ours, i.e., 200

samples / month for the AndroZoo dataset.

• Our improved CADE schemes are better than the original

CADE. For MLP, warm start works better than cold start.

4.5 Engineering Lessons

4.5.1 Hyperparameters for Active Learning

Lesson 1: concept drift requires a separate hyperparameter

tuning procedure for the active learning process.

To learn a fixed classifier, we typically choose hyperparam-

eters of a model such that the performance in the validation

set is the best, where the validation set and training set are

drawn from the same data distribution. This represents the

performance when the classifier is evaluated on the same

distribution it is trained on. However, to be robust against

concept drift, we need the classifier to perform well on future

data that is from a different distribution. Therefore, we need

to use temporally-consistent validation to choose hyperparam-

eters that will perform the best for active learning. We include

examples of this phenomenom in Appendix F.

4.5.2 Cold Start vs Warm Start

Lesson 2: warm start is better than cold start when using deep

active learning for malware detection.

In active learning, there are two options to train a new

model after labeling new samples: cold start or warm start.

Cold start re-initializes the model weights and retrains the

model from scratch. Warm start continues training from the

previous model weights in each active learning iteration.

Previous works have not studied the benefits of warm start

vs cold start. The active learning experiments from previous

security papers use cold start [53,54,58]. Deep active learning

papers for image applications have used both cold start [14,

24, 26] and warm start [55, 57], but they did not find much

difference between the two strategies.

We find that warm start is better than cold start when us-

ing deep active learning for Android malware detection. The

main reason is sample imbalance: there are very few newly

labeled samples, compared to a large amount of initial train-

ing samples. Several past works [53, 58] have trained the first

classifier using one year of labeled samples, containing 30K

apps, then labelled a few of the new incoming samples every

month. If we label 5% of new samples every month, that the

new samples will be less than 1% of the training set. During

active learning, we add new samples to the training set and

continue training from the previous model weights. Therefore,

batches from the new training set typically contain a mix of

old and new samples. Since new samples might represent the

trend of concept drift, it is beneficial for the classifier to learn

more from the newer samples than the older ones, but does

not forget about the oldest samples. Warm start can address

the sample imbalance issue. When we continue training a

new model from previously learned weights, newly labeled

samples have the largest loss values and thus largest gradients,

previously labeled samples have relatively smaller loss val-

ues, and samples from the initial training set have the smallest

loss values. Since newly labeled samples have the largest
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6 Discussion

All machine learning based detection schemes are subject to

evasion attacks, for instance using adversarial examples or

even simpler methods of evasion (e.g., obfuscation or pack-

ing). It is an open challenge for the field how to solve this

problem. As a machine-learning-based scheme, we inherit

these same challenges. It is beyond the scope of this paper

to address this challenge. One potential direction is to ex-

tract dynamic features from the apps, or use a combination of

static and dynamic features to be more robust against evasion

attacks.

Continuous learning introduces new risks of poisoning

attacks, where an attacker may be able to carefully craft mali-

cious samples and introduce them into the training process.

Clean-label poisoning attacks may be especially dangerous,

because they do not require any misbehavior or malice on the

part of analysts [45]. The attacker can submit carefully crafted

Android apps, hope that they have high pseudo loss values so

our sample selector will choose them for human labels, and

then let analysts generate clean labels. Even if the poisoning

apps have the correct label, they may slowly influence the

decision boundary of the classifier, and allow other malware

apps evade the detection. All active learning schemes in the

literature—including ours—share this potential risk, and it

is an open problem how to defend active learning against

poisoning attacks.

We show that with 50 samples per month labeling budget,

our technique can achieve 89% F1 score. In our dataset, 50

samples is 1% of all apps in a month. To the best of our

knowledge, our classifier performance with 1% labeling bud-

get is the best result compared to the literature of using active

learning for Android malware detection. Android malware

classification can achieve 99% F1 score when there is no con-

cept drift. But with concept drift, the performance gap is still

quite large, even with our best techniques. It would be great

to reach 95% F1 score with 1% labeling budget, or to narrow

this gap. We suggest it as a valuable open problem for future

research to identify new methods that close this gap. One

potential direction might be to study a richer set of features.

When there is no concept drift, DREBIN features have been

very effective, and using richer features does not appear to

offer significant improvements. Perhaps richer features would

be more useful for the concept drift problem.

Like most prior work in this space, we use the same set of

features in every time window. Studying how to periodically

choose new features to combat drift is an interesting direction

for future work, but beyond the scope of this work. One recent,

concurrent work [11] found that adding new features was

not effective at addressing concept drift, so new ideas seem

needed.

7 Conclusion

Our work points a way towards a framework for continuous

learning in security, based on hierarchical contrastive classi-

fiers and active learning with pseudo loss uncertainty scores.

We have validated this approach on Android malware clas-

sification and shown that it provides improvements over all

prior methods. We speculate that it might be useful for other

security tasks as well.
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A Details about Initial Training Samples

We start with the following set of initial training samples

to train all models before doing active learning. We extract

DREBIN features from both datasets. On the APIGraph

dataset, we train on 2012 data, containing 3,061 malicious

apps and 27,472 benign apps. We select features with larger

than 0.001 variance. We end up with 1,159 selected features.

On the AndroZoo dataset, we train on the 2019 data, con-

sisting of 4,542 malicious apps and 40,947 benign apps. We

increase the variance threshold such that we select under 20K

features with the largest variance. We end up with 16,978

features with the largest variance.

B Details about Our Model

Our encoder subnetwork has fully connected layers with

ReLU activation. The encoder layers gradually reduce the

input features to a 128-dimension embedding space, i.e., ‘512-

384-256-128’. The classifier subnetwork uses two hidden

layers, each with 100 neurons and ReLU activation, and two

output neurons normalized with Softmax. The two outputs

represents the normalized prediction scores for benign and

malicious classes, respectively. We train our encoder-classifier

model end-to-end using the loss function in Equation (1). We

use batch size 1,024, since a larger batch size produces more
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pairs for contrastive learning, which typically performs better

than smaller batch sizes.

The candidate hyperparameters to train our model are the

following. We consider two optimizers: SGD and Adam; 4

initial learning rate choices: 0.001, 0.003, 0.005, 0.007; 3

learning rate schedulers: cosine annealing learning rate decay

without restart, step-based learning rate decay by a factor

of 0.95 or 0.5 every 10 epochs; 4 choices for first classifier

epochs: 100, 150, 200, 250; warm start optimizers: SGD and

Adam; warm start learning rate: 1%, 5% of the initial learning

rate, same learning rate decay as the first model; warm start

epochs: 50, 100.

We use the following hyperparameters for the APIGraph

dataset: use SGD optimizer to train the first model, initial

learning rate 0.003, step-based learning rate decay by a factor

of 0.95 every 10 epochs, 250 training epochs; during warm

start, use Adam optimizer, 1.5∗10−4 warm learning rate (5%

of the initial learning rate), 100 warm training epochs after

adding the new samples from every month.

We use the following hyperparameters for the AndroZoo

dataset: use SGD optimizer to train the first model, initial

learning rate 0.001, step-based learning rate decay by a factor

of 0.5 every 10 epochs, 200 training epochs; during warm

start, use Adam optimizer, 1∗10−5 warm learning rate (1%

of the initial learning rate), 50 warm training epochs after

adding the new samples from every month.

Using one NVIDIA A5000 GPU, training or updating a

model takes 10 minutes for the APIGraph dataset. Training

and/or testing time is generally fast enough that it is unlikely to

be a barrier to deployment; accuracy is the primary challenge.

C Details about Baselines

For MLP with uncertainty sampling, we use the same archi-

tecture as our classification subnetwork: two hidden layers,

each with 100 neurons and ReLU activation, and two output

neurons normalized with Softmax. We use batch size 32, and

Adam optimizers. We search for learining rate from 0.0001

to 0.0009 with a step size 0.0002; training epochs 25, 50, 75,

100. The best hyperparameters are: 0.007 learning rate and

50 epochs for the APIGraph dataset, 0.001 learning rate and

25 epochs for the AndroZoo dataset.

For SVM with uncertainty sampling, we search for C from

the set: 0.001, 0.01, 0.1, 1, 10, 100, 1000. The best C is 0.1 for

the APIGraph dataset and 0.01 for the AndroZoo dataset. For

SVM with CADE OOD sample selection, we use the exact

same setup described in the paper, including their model ar-

chitecture and batch size, and we will adapt and improve their

method in Section 4.4.1. We train the linear SVM classifier

with L2 regularization, squared hinge loss, with prediction

probabilities calibrated by logistic regression.

For the multiclass MLP, multiclass MLP embedding (+

SVM), we search through learning rate from 0.001 to 0.009

with a step size 0.002, training epochs 25 and 50. The final

setting of multiclass MLP for the APIGraph dataset is: 0.001

learning rate and 50 epochs; for the AndroZoo dataset is:

0.003 learning rate and 50 epochs. Since the benign class

is the majority, using random batch sampler gives us a de-

generate solution of multiclass MLP classifiers that always

predict the benign class. Therefore, we randomly select 10

samples from each class within a batch, such that the number

of samples are balanced across different classes. We also tried

upsampling all classes to have the same number of samples

as the benign class, which has the same effect as randomly

selecting 10 samples / class.

For SVM used in the multiclass experiments, we search

through the same set of C values mentioned above. The best

C is 0.1 for the APIGraph dataset; and 0.01 for the AndroZoo

dataset.

For GBDT with uncertainty sampling, we search for maxi-

mal tree depth: 4, 6, 8, 10, 20, 30, 40, 50; boosting rounds: 10,

20, 30, 40, 50, 60, 80, 100. The best choices for APIGraph

dataset are max depth 10 and 60 rounds of boosting; and

the best ones for AndroZoo dataset are max depth 10 and 80

rounds of boosting.

D Details about TRANSCENDENT CCE

We use Cross-Conformal Evaluator (CCE) with 10-fold cross

validation for TRANSCENDENT, since CCE has the best per-

formance for sample rejection in TRANSCENDENT [8]. For

each fold of train / validation split, we train a SVM classifier,

and compute non-conformity scores for data in the valida-

tion set. Then, we can compute the credibility and confidence

score of the test sample for that fold. TRANSCENDENT’s im-

plementation of CCE compares the score in each fold to a

threshold and takes the majority vote of these comparisons

to decide whether to reject the sample [8]. We extend this to

a numeric score rather than a binary decision. We note that

TRANSCENDENT’s approach is equivalent to computing the

median of the scores in each fold, and comparing this median

to a threshold. Therefore, in our active learning scheme, we

compute the median credibility and median confidence across

the 10 folds for each test sample.

E Details about Improved Baselines

We retrain SVM for two sample selectors: TRANSCENDENT

(cred), and TRANSCENDENT (cred * conf). To retrain SVM,

we search for C from the set: 0.001, 0.01, 0.1, 1, 10, 100, 1000.

For the APIGraph dataset, the best C for cred is 0.1 , the best

C for cred*conf is 0.01. For the AndroZoo dataset, the best C

is 0.01.

We adapt MLP uncertainty sampling with warm start. We

search for learning rate from 0.0001 to 0.0009 with a step size

0.0002; training epochs 25, 50, 75, 100; warm learning rate:

1%, 5% of the initial learning rate; warm training epochs: 25,
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Classifier Hyperparameters
Average Validation F1 Score (%)

2012 (initial classifier) 2013-01 to 2013-06 (active learning, uncertainty sampling)

GBDT
trees: 100, max depth: 10 99.67% 88.62%

trees: 60, max depth: 10 99.52% 89.54%

SVM
C=1 96.27% 87.90%

C=0.1 95.78% 89.97%

Table 6: On the APIGraph dataset, the best hyperparameters to train the first classifier may not be the best ones to maintain good

performance when there are drifted samples. Using different hyperparameters to train GBDT and SVM, the average validation

F1 scores for the initial classifier are very similar. However, the average monthly validation F1 score during six months of active

learning in 2013 can be very different. In this example, hyperparameters that generalize better (smaller depth for GBDT, smaller

C for SVM) help active learning perform better.

50. The best hyperparameters for the APIGraph dataset are:

0.0009 learning rate, 25 initial training epochs, warm learning

rate 4.5 ∗ 10−5 (5% of the initial one), and warm training

epochs is 25. The best hyperparameters for the AndroZoo

dataset are: 0.0001 learning rate, 25 initial training epochs,

warm learning rate 5∗10−6 (5% of the initial one), and warm

training epochs is 25.

We adapt CADE OOD sample selector for MLP in both

cold start and warm start. To have a fair comparison, we use

the same encoder dimensions as ours, and mirror that as the

decoder in CADE. We use the same MLP structure as our clas-

sifier subnetwork. We use batch size 1,536. We fix the MLP

learning rate (0.001) and training epochs (50), but perform

grid search over the same set of parameters for the CADE

autoencoder as described in Section B. Note that the original

active learning experiment in CADE did not tune hyperpa-

rameters (Section 6 in [54]). But we tune hyperparameters

including optimizer, initial learning rate, learning rate schedul-

ing, epochs to train the contrastive autoencoder model, warm

start learning rate and epochs.

The best cold start parameters for CADE, APIGraph

dataset: Adam optimizer, initial learning rate 0.001, step-

based decay with a factor 0.95 every 10 epochs, and 150

training epochs. For the AndroZoo dataset: Adam optimizer,

initial learning rate 0.001, step-based decay with a factor 0.5

every 10 epochs, and 100 training epochs.

The best warm start parameters for CADE for the API-

Graph dataset: Adam optimizer for both initial classifier and

active learning; autoencoder: initial learning rate 0.001, co-

sine annealing learning rate decay without restart, 250 initial

training epochs; active learning: for both the autoencoder and

MLP, 5% of initial learning rate for warm start, and 50 warm

training epochs. For the AndroZoo dataset: Adam optimizer

for both initial classifier and active learning; autoencoder: ini-

tial learning rate 0.001, cosine annealing learning rate decay

without restart, 100 initial training epochs; active learning:

for both the autoencoder and MLP, 1% of initial learning rate

for warm start, and 50 warm training epochs.

F Hyperparameter Examples

Table 6 shows examples where the best hyperparameters to

train the first classifier are not the best ones for active learning.

To evaluate the performance of the initial classifier, we ran-

domly separate apps from 2012 data of the APIGraph dataset

into five train/validation splits and average the validation F1

score of the classifier over the splits. The third column of Ta-

ble 6 shows that different hyperparameters do not make much

difference in the validation F1 score for the initial classifier.

To evaluate the performance of the classifier trained with

active learning, we train an initial model on all 2012 data.

Then, we use the first six months in 2013 for active learn-

ing. We perform uncertainty sampling by adding 50 new

samples to the training set every month, retrain the classifier,

and evaluate the F1 score with data from the future month.

We average the monthly F1 scores to evaluate the perfor-

mance during active learning. As shown in the last column

of Table 6, different hyperparameters can make a significant

difference to performance from 2013-01 to 2013-06. The best

hyperparameters for active learning are not the best to train

the initial model, but they are better for generalization. For

GBDT, a smaller number of trees makes the model simpler

and less prone to overfitting, which makes the model more ro-

bust against concept drift. For SVM, a smaller C value allows

more classification mistakes when maximizing the margin,

which encourages the generalization of the classifier under

concept drift.
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