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Abstract

Evaluating the performance of machine learning

models under distribution shifts is challenging, es-

pecially when we only have unlabeled data from

the shifted (target) domain, along with labeled

data from the original (source) domain. Recent

work suggests that the notion of disagreement,

the degree to which two models trained with dif-

ferent randomness differ on the same input, is a

key to tackling this problem. Experimentally, dis-

agreement and prediction error have been shown

to be strongly connected, which has been used to

estimate model performance. Experiments have

led to the discovery of the disagreement-on-the-

line phenomenon, whereby the classification error

under the target domain is often a linear func-

tion of the classification error under the source

domain; and whenever this property holds, dis-

agreement under the source and target domain

follow the same linear relation. In this work, we

develop a theoretical foundation for analyzing dis-

agreement in high-dimensional random features

regression; and study under what conditions the

disagreement-on-the-line phenomenon occurs in

our setting. Experiments on CIFAR-10-C, Tiny

ImageNet-C, and Camelyon17 are consistent with

our theory and support the universality of the the-

oretical findings.

1. Introduction

Modern machine learning methods such as deep neural net-

works are effective at prediction tasks when the input test

data is similar to the data used during training. However,
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they can be extremely sensitive to changes in the input data

distribution (e.g., Biggio et al. (2013); Szegedy et al. (2014);

Hendrycks et al. (2020), etc.). This is a significant con-

cern in safety-critical applications where errors are costly

(e.g., Oakden-Rayner et al. (2020), etc.). In such scenarios,

it is important to estimate how well the predictive model

performs on out-of-distribution (OOD) data.

Collecting labeled data from new distributions can be costly,

but unlabeled data is often readily available. As such, recent

research efforts have focused on developing methods that

can estimate a predictive model’s OOD performance using

only unlabeled data (e.g., Garg et al. (2021); Deng & Zheng

(2021); Chen et al. (2021); Guillory et al. (2021), etc.).

In particular, works dating back at least to Recht et al.

(2019) suggest that the out-of-distribution (OOD) and in-

distribution (ID) errors of predictive models of different

complexities are highly correlated. This was rigorously

proved in Tripuraneni et al. (2021) for random features

model under covariate shift. However, determining the cor-

relation requires labeled OOD data. To sidestep this require-

ment, Baek et al. (2022) proposed an alternative approach

that looks at the disagreement on an unlabeled set of data

points between pairs of neural networks with the same archi-

tecture trained with different sources of randomness. They

observed a linear trend between ID and OOD disagreement,

as for ID and OOD error. Surprisingly, the linear trend had

the same empirical slope and intercept as the linear trend

between ID and OOD accuracy. This phenomenon, termed

disagreement-on-the-line, allows estimating the linear rela-

tionship between OOD and ID error using only unlabeled

data, and finally allows estimating the OOD error.

At the moment, the theoretical basis for disagreement-on-

the-line remains unclear. It is unknown how generally it

occurs, and what factors (such as the type of models or

data used) may influence it. To better understandÐor even

demystifyÐthese empirical findings, in this paper, we de-

velop a theoretical foundation for studying disagreement.

We focus on the following key questions:

Is disagreement-on-the-line a universal phenomenon? Un-

der what conditions is it guaranteed to happen, and what

happens if those conditions fail?

To work towards answering these questions, we study dis-
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Figure 1. Target vs. source risk and shared-sample disagreement

of random features model trained on CIFAR-10. Solid lines are

derived from Theorem 4.1. Target domain is CIFAR-10-C-Fog

(Hendrycks & Dietterich, 2018). See Section 5 for details.

agreement in a widely used theoretical framework for high-

dimensional learning, random features models. We consider

a setting where input data is from a Gaussian distribution,

but possibly with a different covariance structure at train-

ing and test time, and study disagreement under the high-

dimensional/proportional limit setting. We define various

types of disagreement depending on what randomness the

two models share. We rigorously prove that depending on

the type of shared randomness and the regime of param-

eterization, the disagreement-on-the-line may or may not

happen in random feature models trained using ridgeless

least squares. Moreover, in contrast to prior observations,

the line for disagreement and the line for risk may have

different intercepts, even if they share the same slope. Addi-

tionally, we prove that adding ridge regularization breaks the

exact linear relation, but an approximate linear relation still

exists. Thus, we find that even in a simple theoretical setting,

disagreement-on-the-line is a nuanced phenomenon that can

depend on the type of randomness shared, regularization,

and the level of overparametrization.

Experiments we performed on CIFAR-10-C and other

datasets are consistent with our theory, even though the

assumptions of Gaussianity of inputs and linearity of the

data generation are not met (Figure 1, 4). This suggests that

our theory is relevant beyond our theoretical setting.

1.1. Main Contributions

We provide an overview of the paper and our results.

• We propose a framework for the theoretical study of

disagreement. We introduce a comprehensive and uni-

fying set of notions of disagreement (Definition 2.1).

Then, we find a limiting formula for disagreement in

the high-dimensional limit where the sample size, input

dimension, and feature dimension grow proportionally

(Theorem 3.1).

• Based on this characterization, we study how dis-

agreement under source and target domains are re-

lated. We identify under what conditions and for which

type of disagreement the disagreement-on-the-line phe-

nomenon holds (Section 4). Theorem 4.3 and Corollary

4.4 show an approximate linear relation when the con-

ditions are not met.

• When the disagreement-on-the-line holds in our model,

our results imply that the target vs. source line for risk

and the target vs. source line for disagreement have

the same slope. This is consistent with the findings of

Baek et al. (2022), that whenever OOD vs. ID accuracy

is on a line, OOD vs. ID agreement is also on the same

line. However, unlike their finding, in our problem, the

intercepts of the lines can be different (Remark 4.2).

• In Section 5, we conduct experiments on several

datasets including CIFAR-10-C, Tiny ImageNet-C, and

Camelyon17. The experimental results are generally

consistent with our theoretical findings, even as the the-

oretical conditions we use (e.g., Gaussian input, linear

generative model, etc.) may not hold. This suggests a

possible universality of the theoretical predictions.

• Our work shows that disagreement-on-the-line is a sub-

tle phenomenon that depends on the shared random-

ness, regularization, and regime of parameterization.

We also identify a difference between the intercept of

the line for risk and the line for disagreement. If these

factors are not properly considered, the disagreement-

on-the-line principle can lead to an inaccurate OOD

performance estimation.

1.2. Related Work

Random Features Model. Random features models were

introduced by Rahimi & Recht (2007) as an approach for

scaling kernel methods to massive datasets. Recently, they

have been used as a standard model for the theoretical study

of deep neural networks. Despite its simplicity, it is rich

enough to capture various phenomena of deep learning in-

cluding double descent (Mei & Montanari, 2022; Adlam

et al., 2022; Lin & Dobriban, 2021), adversarial training

(Hassani & Javanmard, 2022), feature learning (Ba et al.,

2022), and transfer learning (Tripuraneni et al., 2021). In

particular, in this model, the number of parameters and the

ambient dimension are disentangled, hence the effect of

overparameterization can be studied on its own.

Linear Relation Under Distribution Shift. Several in-

triguing phenomena have been observed in empirical studies

of distribution shifts. Recht et al. (2019); Hendrycks et al.
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(2021); Koh et al. (2021); Taori et al. (2020); Miller et al.

(2021) observed linear trends between OOD and ID test

error. Tripuraneni et al. (2021) proved this phenomenon in

random features models under covariate shift.

Recently, the notion of disagreement has been gaining a lot

of attention (e.g., Hacohen et al. (2020); Chen et al. (2021);

Jiang et al. (2021); Nakkiran & Bansal (2020); Baek et al.

(2022); Atanov et al. (2022); Pliushch et al. (2022), etc.).

In particular, Baek et al. (2022) empirically showed that

OOD agreement between the predictions of pairs of neu-

ral networks also has a strong linear correlation with their

ID agreement. They further observed that the slope and

intercept of the OOD vs ID agreement line closely match

that of the accuracy. This can be used to predict the OOD

performance of predictive models only using unlabeled data.

High-dimensional Asymptotics. Work on high-

dimensional asymptotics dates back at least to the 1960s

(Raudys, 1967; Deev, 1970; Raudys, 1972) and has more

recently been studied in a wide range of areas, such as

high-dimensional statistics (e.g., Raudys & Young (2004);

Serdobolskii (2007); Paul & Aue (2014); Yao et al. (2015);

Dobriban & Wager (2018), etc.), wireless communications

(e.g., Tulino & VerdÂu (2004); Couillet & Debbah (2011),

etc.), and machine learning (e.g., GyÈorgyi & Tishby (1990);

Opper (1995); Opper & Kinzel (1996); Couillet & Liao

(2022); Engel & Van den Broeck (2001), etc.).

Technical Tools. The results derived in this paper rely on

the Gaussian equivalence conjecture studied and used exten-

sively for random features model (e.g., Goldt et al. (2022);

Hu & Lu (2022); Montanari & Saeed (2022); Mei & Monta-

nari (2022); Hassani & Javanmard (2022); Tripuraneni et al.

(2021); Loureiro et al. (2021); d’Ascoli et al. (2021), etc.).

Our analytical results build upon the series of recent work

Mel & Pennington (2021); Adlam & Pennington (2020a);

Tripuraneni et al. (2021) using random matrix theory and

operator-valued free probability (Far et al., 2008; Mingo &

Speicher, 2017).

2. Preliminaries

2.1. Problem Setting

We study a supervised learning setting where the training

data (xi, yi) ∈ Rd ×R, i ∈ [n], of dimension d and sample

size n, is generated according to

xi
i.i.d.∼ N(0,Σs), and yi =

1√
d
β⊤xi + εi, (1)

where εi
i.i.d.∼ N(0, σ2

ε). Additionally, the true coefficient

β ∈ Rd is assumed to be randomly drawn from N(0, Id).
The linear relationship between (xi, yi) is not known. We

fit a model to the data, which can then be used to predict

labels for unlabeled examples at test time.

We consider two-layer neural networks with fixed, randomly

generated weights in the first layerÐa random features

modelÐas the learner. We let the width of the internal

layer be N ∈ N. For a weight matrix W ∈ RN×d with i.i.d.

random entries sampled from N(0, 1), an activation function

σ : R → R applied elementwise, and the weights a ∈ RN

of a linear layer, the random features model is defined by

fW,a(x) =
1√
N
a⊤σ

(
Wx/

√
d
)
.

The trainable parameters a ∈ RN are fit via ridge regres-

sion to the training data X = (x1, . . . , xn) ∈ Rd×n and

Y = (y1, . . . , yn)
⊤ ∈ Rn. Specifically, for a regularization

parameter γ > 0, we solve

â = argmin
a∈RN

∥∥∥∥Y − σ
(
WX/

√
d
)⊤

a/
√
N

∥∥∥∥
2

2

+ γ∥a∥22,

and use ŷ(x) = â⊤σ(Wx/
√
d)/

√
N as the model predic-

tion for a data point x ∈ Rd. Defining F = σ(WX/
√
d)

and f = σ(Wx/
√
d), we can write

ŷ(x) = Y ⊤
(

1

N
F⊤F + γIn

)−1(
1

N
F⊤f

)
. (2)

To emphasize the dependence on W,X, Y , we also use the

notation ŷW,X,Y .

It has been recognized in e.g., Adlam & Pennington (2020a);

Ghorbani et al. (2021); Mei & Montanari (2022) that

only linear data generative models can be learned in the

proportional-limit high-dimensional regime by random fea-

tures models, and the non-linear part behaves like an addi-

tive noise. Thus, we consider linear generative models as

in (1). Results for non-linear models can be obtained via

linearization, as is standard in the above work.

We also highlight that our theoretical findings are validated

by simulations on standard datasets (such as CIFAR-10-C)

where the input distribution is non-Gaussian and the data

generation model is non-linear.

2.2. Distribution Shift

At training time (1), the inputs xi are sampled from the

source domain, Ds = N(0,Σs). At test time, we assume the

input distribution shifts to the target domain, Dt = N(0,Σt).
We do not restrict the change in P(y|x) since disagreement is

independent of the label y. Previous work (Lei et al., 2021;

Tripuraneni et al., 2021; Wu et al., 2022) found that the

learning problem under covariate shift is fully characterized

by input covariance matrices. For this reason, we do not

consider shifts in the mean of the input distribution.
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2.3. Definition of Disagreement

Hacohen et al. (2020); Chen et al. (2021); Jiang et al. (2021);

Nakkiran & Bansal (2020); Baek et al. (2022) define notions

of disagreement (or agreement) to quantify the difference

(or similarity) between the predictions of two randomly

trained predictive models in classification tasks.

Prior work on disagreement considers three sources of ran-

domness that lead to different predictive models: (i) random

initialization, (ii) sampling of the training set, and (iii) sam-

pling/ordering of mini-batches.

Motivated by these results, we propose analogous notions

of disagreement in random features regression. We consider

(i), (ii) and their combination, as (iii) is not present in our

problem.

The independent disagreement measures how much the pre-

diction of two models with independent random weights

and trained on two independent sets of training datasets dis-

agree, on average. Similar notions were used in (Nakkiran

& Bansal, 2020; Pliushch et al., 2022; Jiang et al., 2021;

Baek et al., 2022).

The shared-sample disagreement measures the average dif-

ference of the predictions of two models with independent

random weights, but trained on a shared training set. Simi-

lar notions were used in (Pliushch et al., 2022; Jiang et al.,

2021; Baek et al., 2022; Atanov et al., 2022).

The shared-weight disagreement measures the average dif-

ference of the predictions of two models with shared random

weights, but trained on two independent training samples.

Similar notions were used in (Jiang et al., 2021; Baek et al.,

2022).

While the prior work typically used 0-1 loss to define agree-

ment/disagreement in classification, we use the squared loss

to measure disagreement for real-valued outputs.

Definition 2.1 (Disagreement). Consider two random fea-

tures models trained on the data (X1, Y1), (X2, Y2) ∈
Rd×n×Rn with random weight matricesW1,W2 ∈ RN×d,

respectively. We measure the disagreement of two models

by their mean squared difference

Disji (n, d,N, γ) = E
[
(ŷW1,X1,Y1

(x)− ŷW2,X2,Y2
(x))

2
]
,

where the expectation is over β,W1,W2, X1, Y1, X2, Y2,

and j ∈ {s, t} is the domain that x ∼ Dj is from, and the

index i ∈ {I, SS, SW} corresponds to one of the following

cases.

• Independent disagreement (i = I): the training data

(X1, Y1), (X2, Y2) are independently generated from

(1), with the same β. The weights W1,W2 ∈ RN×d

are independent matrices with i.i.d. N(0, 1) entries.

• Shared-Sample disagreement (i = SS): the training

samples are shared, i.e., (X1, Y1) = (X2, Y2) =
(X,Y ), where (X,Y ) is generated from (1). The

weights W1,W2 ∈ RN×d are independent matrices

with i.i.d. N(0, 1) entries.

• Shared-Weight disagreement (i = SW): the training

data (X1, Y1), (X2, Y2) are independently generated

from (1), with the same β. Two models share the

weights, i.e., W1 =W2 =W . The weights are shared,

i.e., W1 = W2 = W , where W ∈ RN×d is a matrix

with i.i.d. N(0, 1) entries.

2.4. Conditions

We characterize the asymptotics of disagreement in the pro-

portional limit asymptotic regime defined as follows.

Condition 2.2 (Asymptotic setting). We assume that

n, d,N → ∞ with d/n→ ϕ > 0 and d/N → ψ > 0.

To characterize the limit of disagreement, we need condi-

tions on the spectral properties of Σs and Σt as their dimen-

sion d grows. When multiple growing matrices are involved,

it is not sufficient to make assumptions on the individual

spectra of the matrices, but rather, they have to be consid-

ered jointly (Wu & Xu, 2020; Tripuraneni et al., 2021; Mel

& Pennington, 2021). We assume that the joint spectral dis-

tribution of Σs and Σt converges to a limiting distribution

µ on R2
+ as d→ ∞.

Condition 2.3. Let λs1, . . . , λ
s
d ≥ 0 be the eigenvalues

of Σs and v1, . . . , vd be the corresponding eigenvectors.

Define λti = v⊤i Σtvi for i ∈ [d]. We assume the joint

empirical spectral distribution of (λsi , λ
t
i), i ∈ [d] converges

in distribution to a limiting distribution µ on R2
+. That is,

1
d

∑d
i=1 δ(λs

i
,λt

i
) → µ, where δ is the Dirac delta measure.

We additionally assume that µ has a compact support. We

denote random variables drawn from µ by (λs, λt), and

write ms = Eµ[λ
s] and mt = Eµ[λ

t].

For the existence of certain derivatives and expectations,

we assume the following mild condition on the activation

function σ : R → R.

Condition 2.4. The activation function σ : R → R is

differentiable almost everywhere. There are constants c0
and c1 such that |σ(x)|, |σ′(x)| ≤ c0e

c1x, whenever σ′(x)
exists. For j ∈ {s, t} and a standard Gaussian random

variable Z ∼ N(0, 1), define

ρj =
E[Zσ(

√
mjZ)]

2

mj

, ωj =
V[σ(

√
mjZ)]

ρj
−mj . (3)

These constants characterize the non-linearity of the activa-

tion σ and will appear in the asymptotics of disagreement.

Note that when σ is ReLU activation σ(x) = max(x, 0),
we have ρj = 1/4, ωj = mj(1− 2/π) for j ∈ {s, t}.
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3. Asymptotics of Disagreement

In this section, we present our results on characterizing the

limits of disagreement defined in Definition 2.1 for random

features models. We introduce results for general ridge

regression and also study the ridgeless limit γ → 0.

3.1. Ridge Setting

For i ∈ {I, SS, SW} and j ∈ {s, t}, define the asymptotic

disagreement

Disji (ϕ, ψ, γ) = lim
n,d,N→∞

Disji (n, d,N, γ),

where the limit is in the regime considered in Condition 2.2.

Asymptotics in random features models and linear models

with general covariance (e.g., training/test error, bias, vari-

ance, etc.) typically do not have a closed form, and can only

be implicitly described through self-consistent equations

(Tulino & VerdÂu, 2004; Dobriban & Wager, 2018; Adlam

et al., 2022; Mei & Montanari, 2022; Hastie et al., 2022). To

facilitate analysis of these implicit quantities, previous work

(e.g., Dobriban & Sheng (2021; 2020); Tripuraneni et al.

(2021); Mel & Pennington (2021), etc.) proposed using

expressions containing only one implicit scalar. We show

that similar to the asymptotic risk derived in Tripuraneni

et al. (2021), the asymptotic disagreements can be expressed

using a scalar κ which is the unique non-negative solution

of the self-consistent equation

κ =
ψ + ϕ−

√
(ψ − ϕ)2 + 4κψϕγ/ρs

2ψ(ωs + Is
1,1(κ))

, (4)

where Ija,b is the integral functional of µ defined by

Ija,b(κ) = ϕEµ

[
(λs)a−1λj

(ϕ+ κλs)b

]
, j ∈ {s, t}. (5)

We omit κ and simply write Ija,b whenever the argument is

clear from the context. Recall from Condition 2.3 that µ
describes the joint spectral properties of source and target

covariance matrices, so Ija,b can be viewed as a summary of

the joint spectral properties.

The following theoremÐour first main resultÐshows that

DisjI (ϕ, ψ, γ), DisjSS(ϕ, ψ, γ), DisjSW(ϕ, ψ, γ) are well de-

fined, and characterizes them.

Theorem 3.1 (Disagreement in general ridge regression).

For j ∈ {s, t}, the asymptotic independent disagreement is

DisjI (ϕ, ψ, γ)

=
2ρjψκ

ϕγ + ρsγ(τψ + τ̄ϕ)(ωs + ϕIs
1,2)

[
γτ(ωj + ϕIj1,2)Is

2,2

+ (σ2
ε + Is

1,1)(ωs + ϕIs
1,2)(ωj + Ij1,1)

+
ϕ

ψ
γτ̄(σ2

ε + ϕIs
1,2)Ij2,2

]
,

and the asymptotic shared-sample disagreement is

DisjSS(ϕ, ψ, γ)

= DisjI (ϕ, ψ, γ)−
2ρjκ

2(σ2
ε + ϕIs

1,2)Ij2,2
ρs(1− κ2Is

2,2)
,

and the asymptotic shared-weight disagreement is

DisjSW(ϕ, ψ, γ)

= DisjI (ϕ, ψ, γ)−
2ρjψκ

2(ωj + ϕIj1,2)Is
2,2

ρs(ϕ− ψκ2Is
2,2)

,

where τ and τ̄ are the limiting normalized trace of

(F⊤F/N + γIn)
−1 and (FF⊤/N + γIN )−1, respectively.

They can be expressed as functions of κ as follows:

τ =

√
(ψ − ϕ)2 + 4κψϕγ/ρs + ψ − ϕ

2ψγ
,

τ̄ =
1

γ
+
ψ

ϕ

(
τ − 1

γ

)
. (6)

The expressions in Theorem 3.1 are written in terms of

the non-linearity constants ρs, ρt, ωs, ωt, the dimension pa-

rameters ψ, ϕ, the regularization γ, the noise level σ2
ε , the

summary statistics Is
a,b, It

a,b of µ, and τ, τ̄ , κ. Since τ, τ̄ are

algebraic functions of κ, the expressions are functions of

one implicit variable κ.

This theorem can be used to make numerical predictions for

disagreement. To do so, we first solve the self-consistent

equation (4) using a fixed-point iteration and find κ. Then,

we plug κ into the terms appearing in the theorem. Figure

2 shows an example, supporting that the theoretical predic-

tions of Theorem 3.1 match very well with simulations even

for moderately large d, n,N .

Theoretical Innovations. To prove this theorem, we first

rely on Gaussian equivalence (Section A.3, A.4) to express

disagreement as a combination of traces of rational functions

of i.i.d. Gaussian matrices. Then, we construct linear pen-

cils (Section A.5) and use the theory of operator-valued free

probability (Section A.1, A.2) to derive the limit of these

trace objects. This general strategy has been used previ-

ously in Adlam et al. (2022); Adlam & Pennington (2020b);

Tripuraneni et al. (2021); Mel & Pennington (2021).

However, in the expressions of disagreement, new traces

appear that did not exist in prior work. We construct new

suitable linear pencils to derive the limit of these traces.

While this leads to a coupled system of self-consistent equa-

tions of many variables, it turns out that they can be fac-

tored into a single scalar variable κ defined through the

self-consistent equation (4), and every term appearing in the

limiting disagreements, can be written as algebraic functions
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Figure 2. Independent, shared-sample, and shared-weight disagree-

ment under target domain in random features regression with ReLU

activation function, ϕ = lim d/n = 0.5, versus ϕ/ψ = limN/n.

We set γ = 0.01, σ2
ε = 0.25, and µ = 0.5δ(1.5,5) + 0.5δ(1,1).

Simulations are done with d = 512, n = 1024, and averaged over

300 trials. The continuous lines are theoretical predictions from

Theorem 3.1, and the dots are simulation results.

of κ. These results might also be of independent interest.

Since limiting disagreements only rely on the same implicit

variable as the variable appearing in the limiting risk, we

can derive the results in Section 4.

3.2. Ridgeless Limit

In the ridgeless limit γ → 0, the self-consistent equation (4)

for κ becomes

κ =
min(1, ϕ/ψ)

ωs + Is
1,1(κ)

. (7)

Further, the asymptotic limits in Theorem 3.1 can be simpli-

fied as follows.

Corollary 3.2 (Ridgeless limit). For j ∈ {s, t} and in the

ridgeless limit γ → 0, the asymptotic independent disagree-

ment is

lim
γ→0

DisjI (ϕ, ψ, γ) =
2ρjψκ

ρs|ϕ− ψ| (σ
2
ε + Is

1,1)(ωj + Ij1,1)

+





2ρjκ(σ
2

ε+ϕI
s

1,2)I
j

2,2

ρs(ωs+ϕIs

1,2)
ϕ > ψ,

2ρjκ(ωj+ϕIj

1,2)I
s

2,2

ρs(ωs+ϕIs

1,2)
ϕ < ψ,

and the asymptotic shared-sample disagreement is

lim
γ→0

DisjSS(ϕ, ψ, γ) =
2ρjψκ

ρs|ϕ− ψ| (σ
2
ε + Is

1,1)(ωj + Ij1,1)

+




0 ϕ > ψ,

2ρjκ
ρs

(
(ωj+ϕIj

1,2)I
s

2,2

ωs+ϕIs

1,2

− κ(σ2

ε+ϕI
s

1,2)I
j

2,2

1−κ2Is

2,2

)
ϕ < ψ,

Table 1. Existence of disagreement-on-the-line in the over-

parametrized regime for different regularization and types of dis-

agreement. The symbols ✓, ▲, ✗ correspond to exact, approxi-

mate, no linear relation, respectively.

DisI and DisSS DisSW

γ → 0 ✓ (Theorem 4.1)
✗ (Section 4.2)

γ > 0 ▲ (Theorem 4.3)

and the asymptotic shared-weight disagreement is

lim
γ→0

DisjSW(ϕ, ψ, γ) =
2ρjψκ

ρs|ϕ− ψ| (σ
2
ε + Is

1,1)(ωj + Ij1,1)

+





2ρjκ
ρs

(
(σ2

ε+ϕI
s

1,2)I
j

2,2

ωs+ϕIs

1,2

− ψκ(ωj+ϕIj

1,2)I
s

2,2

ϕ−ψκ2Is

2,2

)
ϕ > ψ,

0 ϕ < ψ,

where κ is defined in (7).

In the ridgeless limit, I and SS disagreement have a single

term that depends on ψ, which motivates the analysis in

Section 4 that examines the disagreement-on-the-line phe-

nomenon. In contrast, SW disagreement has two linearly

independent terms that are functions of ψ, leading to a dis-

tinct behavior compared to I and SS disagreement.

The asymptotics in Corollary 3.2 reveal another interesting

phenomenon regarding disagreements of random features

model in the ridgeless limit. For example, it follows from

Corollary 3.2 that SS disagreement tends to zero in the

infinite overparameterization limit where the width N of

the internal layer is much larger than the data dimension d,

so that ψ = lim d/N → 0. However, the same is not true

for the I and SW disagreement. This indicates that, in the

infinite overparameterization limit, the randomness caused

by the random weights disappears, and the model is solely

determined by the training sample.

4. When Does Disagreement-on-the-Line

Hold?

In this section, based on the characterizations of disagree-

ments derived in the previous section, we study for which

types of disagreement and under what conditions, the linear

relationship between disagreement under source and target

domain of models of varying complexity holds.

4.1. I and SS disagreement

Ridgeless. In the overparametrized regime ϕ > ψ, the

self-consistent equation (7) is independent of ψ = lim d/N ,

and so is κ. This implies the following linear trend of I and

SS disagreement, in the ridgeless limit.

6
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Figure 3. (a) Target vs. source I, SS, SW disagreement in the ridgeless and underparametrized regime (ϕ < ψ). There is no linear

trend in this regime. (b) Deviation from the line, DistSS(ϕ, ψ, γ) − aDissSS(ϕ, ψ, γ), as a function of ψ for non-zero γ. The deviation

becomes larger as γ increases. See Section D.2 for figures for I disagreement and risk. (c) Target vs. source lines for I, SS disagreement

and risk, in the overparametrized regime ψ/ϕ ∈ (0, 1). The lines have identical slopes but different intercepts. (d) Deviation from

the line, limγ→0 DistSW(ϕ, ψ, γ)− aDissSW(ϕ, ψ, γ), vs. limγ→0 DissSW(ϕ, ψ, γ), in the overparametrized regime (ϕ > ψ). This shows

disagreement-on-the-line does not happen for SW disagreement. We use ϕ = 0.5, σ2
ε = 10−4, and ReLU activation σ. We set

µ = 0.4δ(0.1,1) + 0.6δ(1,0.1) in (a), (b), (d) and µ = 0.5δ(4,1) + 0.5δ(1,4) in (c).

Theorem 4.1 (Exact linear relation). Define

a =
ρt(ωt + It

1,1)

ρs(ωs + Is
1,1)

, bSS = 0,

bI =
2κ2(σ2

ε + ϕIs
1,2)(ρtIt

2,2 − aρsIs
2,2)

ρs(1− κ2Is
2,2)

, (8)

for κ satisfying (7). We fix ϕ and regard the disagreement

Disji (ϕ, ψ, γ), i ∈ {I, SS}, j ∈ {s, t}, as a function of ψ. In

the overparametrized regime ϕ > ψ and for i ∈ {I, SS},

lim
γ→0

Disti(ϕ, ψ, γ) = a lim
γ→0

Dissi(ϕ, ψ, γ) + bi, (9)

where the slope a and the intercept bI are independent of ψ.

Recall from (3) and (5) that ρs, ρt, ωs, ωs are constants de-

scribing non-linearity of the activation σ, and Is
a,b, It

a,b are

statistics summarizing spectra of Σs,Σt. Therefore, the

slope a is determined by the property of σ,Σs,Σt. By plug-

ging in sample covariance, we can build an estimate of the

slope in finite-sample settings. Also as a sanity check, if we

set Σs = Σt, then we recover a = 1 and bI = 0 as there will

be no difference between source and target domain.

Remark 4.2. The slope a = ρt(ωt + It
1,1)/ρs(ωs + Is

1,1) is

same as the slope from Proposition C.3. This is consistent

with the empirical observations from Baek et al. (2022)

that the linear trend between ID disagreement and OOD

disagreement has the same slope as the linear trend between

ID risk and OOD risk. However, unlike in Baek et al. (2022),

in our case, the intercepts can be different. This can be seen

in Figure 1 and Figure 3 (c), and also from (51).

Our analysis provides an explicit formula for the intercepts.

Specifically, the intercepts can be numerically computed

using equations (8), (51), and Theorem C.1 if σ2
ε is known.

Note that in the general case of non-linear generative mod-

els, σ2
ε corresponds to the sum of the noise level and the

non-linear component of the data-generating function. By

estimating σ2
ε , we can obtain estimates of the intercepts

which can be potentially used for OOD performance estima-

tion.

Ridge. When γ > 0, the exact linear relation between

source disagreement and target disagreement no longer

holds in our model. However, it turns out that there is

still an approximate linear relation, as we show next.

Theorem 4.3 (Approximate linear relation of disagreement).

Let a, bSS, bI be defined as in (8). Given ϕ > ψ, deviation

from the line, for I and SS disagreement, is bounded by

|DistI (ϕ, ψ, γ)− aDissI (ϕ, ψ, γ)− bI| ≤
C(γ +

√
ψγ + ψγ + γ

√
ψγ)/(1− ψ/ϕ+

√
ψγ)2,

|DistSS(ϕ, ψ, γ)− aDissSS(ϕ, ψ, γ)| ≤
C(
√
ψγ + ψγ + γ

√
ψγ)/(1− ψ/ϕ+

√
ψγ)2,

where C > 0 depends on ϕ, µ, σ2
ε , and σ.

We see the upper bounds vanish as γ → 0, consistent with

Theorem 4.1. Also, the upper bound for SS disagreement

vanishes as ψ → 0, which is confirmed in Figure 3 (b).

We now present an analog of Theorem 4.3 for prediction

error of the random features model. This is a generalization

of Proposition C.3, which shows an exact linear relation

between risks in the ridgeless and overparametrized regime.

Corollary 4.4 (Approximate linear relation of risk). Denote

prediction risk in the source and target domains by Es, Et,

respectively (see Section C for definitions). Let a, brisk be

7
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Figure 4. (a) CIFAR-10-C-Snow (severity 3) (b) Tiny ImageNet-C-Fog (severity 3) (c) Camelyon17; For more results, see Section D.3.

defined as in (8) and (51). Given ϕ > ψ, deviation from the

line, for risk, is bounded by

|Et − aEs − brisk| ≤
C(γ +

√
ψγ + ψγ + γ

√
ψγ + ψγ2)

(1− ψ/ϕ+
√
ψγ)2

,

where C > 0 depends on ϕ, µ, σ2
ε , and σ.

Theorem 4.3 and Corollary 4.4 together show that the phe-

nomenon we discussed in Remark 4.2 occurs, at least ap-

proximately, even when applying ridge regularization.

In the underparametrized case ψ > ϕ, the self-consistent

equation (7) is dependent on ψ, and so is κ. Hence, there is

no analog of the linear relation we find in Theorem 4.1 in

this regime. Figure 3 (a) displays this phenomenon.

4.2. SW disagreement

In Corollary 3.2, unlike I and SS disagreement, SW dis-

agreement contains two linearly independent functions of

ψ. Hence, the disagreement-on-the-line phenomenon (9)

cannot occur for any choice of slope and intercept inde-

pendent of ψ. Figure 3 (a) and (d) confirm the non-linear

relation between target vs. source SW disagreement in

underparametrized and overparametrized regimes, respec-

tively.

5. Experiments

5.1. Experiments Setup

We conduct experiments on the following datasets. The as-

sociated code can be found at https://github.com/

dh7401/RF-disagreement.

CIFAR-10-C. Hendrycks & Dietterich (2018) introduced

a corrupted version of CIFAR-10 (Krizhevsky et al., 2009).

We choose two classes and assign the label y ∈ {0, 1} to

each. We use CIFAR-10 as the source domain and CIFAR-

10-C as the target domain.

Tiny ImageNet-C. Tiny ImageNet (Wu et al., 2017), a

smaller version of ImageNet (Deng et al., 2009), consists of

natural images of size 64×64 in 200 classes. Tiny ImageNet-

C (Hendrycks & Dietterich, 2019) is a corrupted version of

Tiny ImageNet. We down-sample images to 32 × 32 and

create two super-classes each consisting of 10 of the original

classes. We consider Tiny ImageNet as the source domain

and Tiny ImageNet-C as the target domain.

Camelyon17. Camelyon17 (Bandi et al., 2018) consists

of tissue slide images collected from five different hospitals,

and the task is to identify tumor cells in the images. Koh

et al. (2021) proposed a patch-based variant of the task,

where the input x is 96× 96 image and the label y ∈ {0, 1}
indicates whether the central 32 × 32 contains any tumor

tissue. We crop the central 32 × 32 region and use it as

the input in our problem. We use Hospital 0 as the source

domain and Hospital 2 as the target domain.

We run random features regression with ReLU activation

on these datasets. We use training sample size n = 1000,

random features dimension N ∈ {3000, 4000, . . . , 49000},

input dimension d = 3072, regularization γ = 0. We test

the trained model on the rest of the sample and plot target

vs. source SS disagreement and risk. Plots for I and SW

disagreements can be found in Section D.4.

We estimate the covariance Σs and Σt using the test sample

and derive the theoretical slope of target vs. source line pre-

dicted by Theorem 4.1 (see Section D.1). Since the limiting

spectral distribution of sample covariance is generally differ-

ent from that of population covariance, we remark that this

may lead to a biased estimate of the slope. As the intercept

brisk involves the unknown noise level σ2
ε , it is difficult to

make a theoretical prediction on its value. For this reason,

8
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we fit the intercept instead of using its theoretical value.

5.2. Results

While Theorem 4.1 is proved only for Gaussian input and

linear generative model, we observe the disagreement-on-

the-line phenomenon on all three datasets (Figure 4), in

which these assumptions are violated.

In this regard, a flurry of recent research (see e.g., Hastie

et al. (2022); Hu & Lu (2022); Loureiro et al. (2021); Goldt

et al. (2022); Wang et al. (2022); Dudeja et al. (2022); Mon-

tanari & Saeed (2022); Pesce et al. (2023)) has proved that

findings assuming Gaussian inputs often hold in a much

wider range of models. While none of the existing work

exactly fits the setting considered in this paper, this gives yet

another indication that our theory should remain true more

generally. The rigorous characterization of this universality

is left for future work.

Also, we find that target vs. source risk does not exhibit a

clear linear trend, especially in Tiny ImageNet and Came-

lyon17. This is because Proposition C.3 does not hold in

the case of concept shift, i.e., the shift in P(y|x). However,

since disagreement is oblivious to the change of P(y|x), the

disagreement-on-the-line is a general phenomenon happen-

ing regardless of the type of distribution shift.

6. Conclusion

In this paper, we propose a framework to study various

types of disagreement in the random features model. We

precisely characterize disagreement in high dimensions and

study how disagreement under the source and target domains

relate to each other. Our results show that the occurrence of

disagreement-on-the-line in the random features model can

vary depending on the type of disagreement, regularization,

and regime of parameterization. We show that, contrary to

the prior observation, the line for disagreement and the line

for risk can differ in their intercepts. We run experiments

on several real-world datasets and show that the results hold

in settings more general than the theoretical setting that we

consider.

When the above factors are not properly considered, OOD

performance estimation using the disagreement-on-the-line

phenomenon can be inaccurate and unreliable. Our find-

ings indicate a potential for further examination of the

disagreement-on-the-line principle.
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A. Technical Tools

A.1. Operator-valued Free Probability

Operator-valued free probability (e.g., Speicher (1998); Mingo & Speicher (2017); Helton et al. (2007)) has appeared in

various studies of random features models including Adlam et al. (2022); Adlam & Pennington (2020a;b); Mel & Pennington

(2021); Ba et al. (2022). Here, we briefly outline the most relevant concepts, which are used in our computation.

Recall that a set A is an algebra (over the field C of complex numbers) if it is a vector space over C and is endowed

with a bilinear multiplication operation denoted by ª·º. Thus, for all a, b, c ∈ A we have the distributivity relations

a · (b + c) = a · b + a · c and (b + c) · a = b · a + c · a; and the relation indicating that multiplication in the algebra is

compatible with the usual multiplication over C, namely that for and x, y ∈ C, (x · y) · (a · b) = (x · a) · (y · b). All algebras

we consider will be associative, so that the multiplication operation over the algebra is associative. Further, an algebra is

called unital if it contains a multiplicative identity element; this is denoted as ª1º. Often, we drop the ª·º symbol to denote

multiplication (both over the algebra and by scalars), and no confusion may arise.

Definition A.1 (Non-commutative probability space). Let C be a unital algebra and φ : C → C be a linear map such that

φ(1) = 1. We call the pair (C, φ) a non-commutative probability space.

Example A.2 (Deterministic matrices). For a matrix A ∈ Cm×m, we denote its normalized trace by tr(A) = 1
m

∑m
i=1Aii.

The pair (Cm×m, tr) is a non-commutative probability space.

Example A.3 (Random matrices). Let (Ω,F ,P) be a (classical) probability space and L−∞(Ω) be the set of scalar random

variables with all moments finite. The pair (L−∞(Ω)m×m,Etr) is a non-commutative probability space.

Definition A.4 (Operator-valued probability space). Let A be a unital algebra and consider a unital sub-algebra B ⊆ A. A

linear map E : A → B is a conditional expectation if E(b) = b for all b ∈ B and E(b1ab2) = b1E(a)b2 for all a ∈ A and

b1, b2 ∈ B. The triple (A, E,B) is called an operator-valued probability space.

The name ªconditional expectationº can be understood from the following example.

Example A.5 (Classical conditional expectation). Let (Ω,F ,P) be a probability space and G be a sub-σ-algebra of F . Then,

considering E = E[·|G], any unital algebra A ⊂ L1(Ω,F ,P) and its unital sub-algebra B ⊂ L1(Ω,G,P), such that all

required integrals in the definition of E(b1ab2) = b1E(a)b2 exist for all a ∈ A and b1, b2 ∈ B, form an operator-valued

probability space (A, E,B).
Example A.6 (block random matrices). Let (C, φ) = (L−∞(Ω)m×m,Etr) be the non-commutative probability space of

random matrices defined in Example A.3. Define A = CM×M ⊗ C and B = CM×M . In words, A is the space of M ×M
block matrices with entries in C, and B is the space of M ×M scalar matrices. Note that B can be viewed as a unital

sub-algebra of A by the canonical inclusion ι : A ↪→ B defined by

ι(B) = B ⊗ 1C , (10)

where 1C is the unity of C (in this example 1C = Im). We also define the block-wise normalized expected trace E =
id⊗Etr : A → B by

E(A) = (EtrAij)1≤i,j≤M , A = (Aij)1≤i,j≤M ∈ A. (11)

Remark A.7. While we have only discussed squared blocks with identical sizes in Example A.6, it is possible to extend the

definition to block matrices with rectangular blocks (Far et al., 2006; 2008; Benaych-Georges, 2009; Speicher & Vargas,

2012). The idea of Benaych-Georges (2009) is to embed each rectangular matrix into a block of a common larger square

matrix. For example, if we have rectangular blocks whose dimensions are one of q1, . . . , qK ∈ N, we consider the space of

(q1 + · · ·+ qK)× (q1 + · · ·+ qK) square matrices with a block structure




q1 × q1 · · · q1 × qK
...

. . .
...

qK × q1 · · · qK × qK


 .

Then, we identify a rectangular matrix C ∈ Cqi×qj with a square matrix C̃ ∈ C(q1+···+qK)×(q1+···+qK), having the

aforementioned block structure, whose (i, j)-block is C and all other blocks are zero. This identification preserves scalar
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multiplication, addition, multiplication, transpose, and trace, in the sense that, for rectangular matrices C,D and a scalar

c ∈ C,

cC̃ = c̃C, C̃ + D̃ = C̃ +D if C and D have same shape, (C̃)⊤ = C̃⊤,

C̃D̃ =

{
C̃D if C and D are conformable,

0 otherwise,
tr(C̃) =

{
tr(C) if C is a square matrix,

0 otherwise.

Through this identification, the space of rectangular matrices (with finitely many different dimension types) can be also

understood as an algebra over C. Further, by replacing C in Example A.6 with the space of rectangular random matrices, we

can define the space of block random matrices with rectangular blocks. The space of block random matrices with rectangular

blocks, equipped with the block-wised expected trace, will be the operator-valued probability space we consider in our

proof.

Definition A.8 (Operator-valued Cauchy transform). Let (A, E,B) be an operator-valued probability space. For a ∈ A,

define its operator-valued Cauchy transform Ga : B \ {a} → B by

Ga(b) = E[(b− a)−1].

Definition A.9 (Operator-valued freeness). Let (A, E,B) be an operator-valued probability space and (Ai)i∈I be a family

of sub-algebras of A which contain B. The sub-algebras Ai are freely independent over B, if E[a1 · · · an] = 0 whenever

E[a1] = · · · = E[an] = 0 and ai ∈ Aj(i) for all i ∈ [n] with j(1) ̸= · · · ≠ j(n). Variables a1, . . . , an ∈ A are freely

independent over B if the sub-algebras generated by ai and B are freely independent over B.

Another important transform, introduced in Voiculescu (1986; 2006), is the R-transform. It enables the characterization

of the spectrum of a sum of asymptotically freely independent random matrices. It was generalized to operator-valued

probability spaces in Shlyakhtenko (1996); Mingo & Speicher (2017). The definition of operator-valued R-transform can

be found in Definition 10, Chapter 9 of Mingo & Speicher (2017). Our work does not directly require the definition of

R-transforms, and instead uses the following property.

Proposition A.10 (Subordination property, (9.21) of Mingo & Speicher (2017)). Let (A, E,B) be an operator-valued

probability space. If x, y ∈ A are freely independent over B, then

Gx+y(b) = Gx[b−Ry(Gx+y(b))] (12)

for all b ∈ B, where Ry is the operator-valued R-transform of y.

A.2. Limiting R-transform of Gaussian Block Matrices

Shlyakhtenko (1996; 1998) proposed using operator-valued free probability to study spectra of Gaussian block matrices.

Their insight was that operator-valued free independence among Gaussian block matrices is guaranteed for general covariance

structure, whereas scalar-valued freeness among them only holds in special cases. Later Far et al. (2006; 2008); Anderson &

Zeitouni (2006) revisited this idea. We present a theorem of Far et al. (2008), which characterizes limiting R-transform of

Gaussian block matrices with rectangular blocks.

Theorem A.11 (Theorem 5 of Far et al. (2008)). For m = m1 + · · · + mM , let A = (Aij)1≤i,j≤M ∈ Rm×m be an

M ×M block random matrix whose block Aij is a mi ×mj random matrix with i.i.d. N(0, c2ij/m) entries. Define the

covariance function σ(i, j; k, l) to be cijckl if Aij/cij = A⊤
kl/ckl and 0 otherwise. We assume the proportional limit where

m1, . . . ,mM → ∞ with mi/m→ αi ∈ (0,∞), i = 1, . . . ,M . Then, the limiting R-transform of A can be expressed as

[RA(D)]ij =
∑

1≤k,l≤M
σ(i, k; l, j)αkDkl, (13)

for any D ∈ RM×M .

We remark the above statement should be understood in the space of block random matrices with rectangular blocks we

discussed in Remark A.7. Also, the original statement used a different terminology ªcovariance mappingº, but it is identical

to the R-transform of A (see discussion in Mingo & Speicher (2017) p.242 and Far et al. (2006) p.24)
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A.3. Centering Random Features

We first argue that the random features F, f can be centered without changing the asymptotics of disagreement. This

centering argument became a standard technique after it was introduced in Mei & Montanari (2022) (Section 10.4). More

generally, centering arguments are standard in random matrix theory (see e.g., Bai & Silverstein (2010)). For a standard

Gaussian random variable Z ∼ N(0, 1), define centered random features by

F̄ = F − Eσ(
√
msZ), f̄ = f − Eσ(

√
mjZ),

where j ∈ {s, t} is the domain that input x comes from. Subtracting a scalar from a matrix/vector should be understood

entry-wise. The following lemma states that model prediction obtained from these centered random features is close to the

original prediction ŷ(x) with high probability.

Lemma A.12. Define centered model prediction by

¯̂y(x) = Y ⊤
(

1

N
F̄⊤F̄ + γIn

)−1(
1

N
F̄⊤f̄

)
.

There exist constants c1, c2, c3, c4 > 0 such that

|¯̂y(x)− ŷ(x)| ≤ c1d
−c2

with probability at least 1− c3d
−c4 .

This lemma is a consequence of Lemma I.7 and Lemma I.8 of Tripuraneni et al. (2021). Since we consider the limit

n, d,N → ∞, disagreement Disi(ϕ, ψ, γ), i ∈ {I, SS, SW} are invariant to the centering. We also remark that the non-

linearity constants defined in (3) are also unchanged after this centering. For these reasons, perhaps with a slight abuse of

notation, we assume F and f are centered from now on.

A.4. Gaussian Equivalence

For domain j ∈ {s, t} that input x is drawn from, we consider the following noisy linear random features

F̃ =

√
ρs
d
WX +

√
ρsωsΘ, f̃ =

√
ρj
d
Wx+

√
ρjωjθ, (14)

where Θ ∈ RN×n and θ ∈ RN have i.i.d. standard Gaussian entries independent from all other Gaussian matrices. The

coefficients above are chosen so that the first and second moment of F̃ and f̃ match those of F and f , respectively. We call

F̃ , f̃ the Gaussian equivalent of F, f as we claim the following.

Claim A.13 (Gaussian equivalence). The asymptotic limit (Condition 2.2) of the disagreement (Definition 2.1) of the

random features model (2) is invariant to the substitution F, f → F̃ , f̃ .

This idea was introduced in the context of random kernel matrices (El Karoui, 2010; Cheng & Singer, 2013; Fan &

Montanari, 2019) and has been repeatedly used in recent studies of random feature models. Mei & Montanari (2022) proved

the Gaussian equivalence for random weights uniformly distributed on a sphere. Montanari et al. (2019) conjectured that the

same holds for classification. Adlam & Pennington (2020a;b); Tripuraneni et al. (2021) derived several asymptotic properties

of random features models building on the Gaussian equivalence conjecture. Goldt et al. (2022) provided theoretical and

numerical evidence suggesting that the Gaussian equivalence holds for a wide class of models including random features

models. Mel & Pennington (2021); d’Ascoli et al. (2021); Loureiro et al. (2021) conjectured the Gaussian equivalence

for anisotropic inputs. Hassani & Javanmard (2022) showed the Gaussian equivalence holds for the adversarial risk of

adversarially trained random features models. Hu & Lu (2022) showed the conjecture for isotropic Gaussian inputs, under

mild technical conditions. Montanari & Saeed (2022) generalized this by removing the isotropic condition and relaxing the

Gaussian input assumption.

More generally, the phenomenon that eigenvalue statistics in the bulk spectrum of a random matrix do not depend on the

specific law of the matrix entries is referred to as ªbulk universalityº (Wigner, 1955; Gaudin, 1961; Mehta, 2004; Dyson,

1962) and has been a central subject in the random matrix theory literature (ErdÈos et al., 2010; 2012; El Karoui, 2010; Tao &

Vu, 2011).
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It is known that local spectral laws of correlated random hermitian matrices can be fully determined by their first and

second moments, through the matrix Dyson equation (ErdÈos, 2019). Also, Banna et al. (2015; 2020) showed that spectral

distributions of correlated symmetric random matrices and sample covariance matrices can be characterized by Gaussian

matrices with identical correlation structures. However, these results do not directly imply Claim A.13 since we do not study

the spectral properties of F, f on their own.

A.5. Linear Pencils

After applying the Gaussian equivalence (14), each of the quantities that we study becomes an expected trace of a rational

function of random matrices. To analyze this, we use the linear pencil method (Haagerup & Thorbjùrnsen, 2005; Haagerup

et al., 2006; Anderson, 2013; Helton et al., 2018), in which we build a large block matrix whose blocks are linear functions

of variables and one of the blocks of its inverse is the desired rational function. Then, operator-valued free probability can

be used to extract block-wise spectral properties of the inverse. For example, if we want to compute E tr[(X
⊤X
d

+ γIn)
−1]

for X ∈ Rd×n, we consider

[
In − X⊤

√
γd

X√
γd

Id

]
,

inverse has as its (1, 1)-block γ(X
⊤X
d

+ γIn)
−1. Block matrices for more complicated rational functions can be constructed

using the following proposition.

Proposition A.14 (Algorithm 4.3 of Helton et al. (2018)). Let x1, . . . , xg be elements of an algebra A over a field K. For an

m×m matrix Q and vectors u, v ∈ Km, a triple (u,Q, v) is called a linear pencil of a rational function r ∈ K(x1, . . . , xg)
if each entry of Q is a K-affine function of x1, . . . , xg and r = −u⊤Q−1v. The following holds.

1. (Addition) If (u1, Q1, v1) and (u2, Q2, v2) are linear pencils of r1 and r2, respectively, then

([
u1
u2

]
,

[
Q1 0m×m

0m×m Q2

]
,

[
v1
v2

])

is a linear pencil of r1 + r2.

2. (Multiplication) If (u1, Q1, v1) and (u2, Q2, v2) are linear pencils of r1 and r2, respectively, then

([
0m
u1

]
,

[
xgv1u

⊤
2 Q1

Q2 0m×m

]
,

[
0m
v2

])

is a linear pencil of r1xgr2.

3. (Inverse) If (u,Q, v) is a linear pencil of r, then

([
1
0m

]
,

[
0 u⊤

v −Q−1

]
,

[
1
0m

])

is a linear pencil of r−1.

In this language, the example before the algorithm can be interpreted in the space we consider in Remark A.7 as r =

−γ(X⊤X
d

+ γIn)
−1 being a rational function of X and X⊤, and

([
1
0

]
,

[
In − X⊤

√
γd

X√
γd

Id

]
,

[
1
0

])
(15)

being a linear pencil of r.

In principle, repeated application of the above rules to basic building blocks such as (15) can produce a linear pencil for

any rational function of given random matrices. For example, consider X1, X2 ∈ Rd×n,Σ ∈ Rd×d and their transpose as
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elements of the algebra over R we discussed in Remark A.7. Then,







1
0
0
0


 ,




In − X⊤

1√
γd

− Σ
γ2 ·

X1√
γd

Id · ·
· · In − X⊤

2√
γd

· · X2√
γd

Id



,




0
0
1
0







is a linear pencil of r′ = −(
X⊤

1
X1

d
+ γIn)

−1Σ(
X⊤

2
X2

d
+ γIn)

−1. Here, we denote zero blocks by dots. This can be seen

by applying the multiplication rule to two copies of (15) and xg = Σ, and then switching the first and the second pairs of

columns.

However, constructing a suitably small linear pencil is a non-trivial problem of independent interest (see discussions on

reductions of linear pencils in e.g., Volčič (2018); Helton et al. (2018) and references therein). This is one of the challenges

we need to overcome in our proofs.

B. Proofs

B.1. Proof of Theorem 3.1

Starting from this section, we omit the high-dimensional limit signs limn,d,N→∞ (Condition 2.2) for a simpler presentation.

However, every expectation appearing in the derivation should be understood as its high-dimensional limit.

For j ∈ {s, t}, independent disagreement satisfies

DisjI (ϕ, ψ, γ) = E[(ŷW1,X1,Y1
(x)− ŷW2,X2,Y2

(x))2]

= E[(ŷW1,X1,Y1
(x)− EW1,X1,Y1

[ŷW1,X1,Y1
(x)] + EW2,X2,Y2

[ŷW2,X2,Y2
(x)]− ŷW2,X2,Y2

(x))2]

= Eβ,x∼Dj
[(ŷW1,X1,Y1

(x)− EW1,X1,Y1
[ŷW1,X1,Y1

(x)])2] + Eβ,x∼Dj
[(ŷW2,X2,Y2

(x)− EW2,X2,Y2
[ŷW2,X2,Y2

(x)])2]

= Eβ,x∼Dj
VW1,X1,Y1

(ŷW1,X1,Y1
(x)) + Eβ,x∼Dj

VW2,X2,Y2
(ŷW2,X2,Y2

(x)) = 2Vj .

Plugging in the variance Vj given in Theorem C.1, we obtain the formula for DisjI (ϕ, ψ, γ).

B.1.1. DECOMPOSITION OF DisjSS(ϕ, ψ, γ)

Writing Fi = σ(WiX/
√
d), fi = σ(Wix/

√
d), Ki = 1

N
F⊤
i Fi + γIn for i ∈ {1, 2}, we can write shared-sample

disagreement as

DisjSS(ϕ, ψ, γ) =
1

N2
E[(Y ⊤K−1

1 F⊤
1 f1 − Y ⊤K−1

2 F⊤
2 f2)

2]

=
2

N2
E[f⊤1 F1K

−1
1 Y Y ⊤K−1

1 F⊤
1 f1]−

2

N2
E[f⊤2 F2K

−1
2 Y Y ⊤K−1

1 F⊤
1 f1]

= D1 −D2. (16)

The term D1 was computed in (A268), (A279), (A462), (A546) of Tripuraneni et al. (2021) as

D1 = 2Vj +
2ρjκ

2

ρsϕ
Ij3,2. (17)

Plugging in Y = X⊤β/
√
d+ ε, where ε = (ε1, . . . , εn)

⊤ ∈ Rn, the term D2 becomes

D2 =
2

dN2
EWi,X tr[K−1

2 X⊤Eβ [ββ
⊤]XK−1

1 F⊤
1 Ex∼Dj ,θ[f1f

⊤
2 ]F2]

+
4√
dN2

EWi,X [K−1
2 X⊤Eβ,ε[βε

⊤]K−1
1 F⊤

1 Ex∼Dj ,θ[f1f
⊤
2 ]F2]

+
2

N2
EWi,X tr[K−1

2 Eε[εε
⊤]K−1

1 F⊤
1 Ex∼Dj ,θ[f1f

⊤
2 ]F2]

=
2

dN2
EWi,X tr[K−1

2 X⊤XK−1
1 F⊤

1 Ex∼Dj ,θ[f1f
⊤
2 ]F2] +

2σ2
ε

N2
EWi,X tr[K−1

2 K−1
1 F⊤

1 Ex∼Dj ,θ[f1f
⊤
2 ]F2].

18
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From the Gaussian equivalence (14), we have

Ex∼Dj ,θ[f1f
⊤
2 ] =

ρj
d
W1ΣjW

⊤
2 .

Therefore,

D2 =
2ρj
d2N2

EWi,X tr[W1ΣjW
⊤
2 F2K

−1
2 X⊤XK−1

1 F⊤
1 ] +

2σ2
ερj

dN2
EWi,X tr[K−1

1 F⊤
1 W1ΣjW

⊤
2 F2K

−1
2 ]

= D21 +D22. (18)

We can write X = Σ
1

2

s Z for Z ∈ Rd×n with i.i.d. standard Gaussian entries. Thus,

D21 =
2ρj
d2N2

EWi,Z tr[W1ΣjW
⊤
2 F2K

−1
2 Z⊤ΣsZK

−1
1 F⊤

1 ],

D22 =
2σ2

ερj
dN2

EWi,Z tr[K−1
1 F⊤

1 W1ΣjW
⊤
2 F2K

−1
2 ].

Now, we use the linear pencil method (Helton et al., 2018) to build a block matrix such that (1) each block is either

deterministic or a constant multiple of Z,Wi,Θi and (2) D21 or D22 appears as a trace of a block of its inverse. Then, we

compute the operator-valued Cauchy transform of the block matrix and extract D21 and D22 from the result.

B.1.2. PRELIMINARY COMPUTATIONS

We present some preliminary computations that will be used in later sections. We will also use the linear pencil Q0 as a

building block when constructing other linear pencils. Most of the computations here are adopted from Section A.9.6.1 of

Tripuraneni et al. (2021). For clarity and to be self-contained, we provide our own version of the same result updated in

some minor ways.

Using W,Z and other notations from Section 2 and Θ from (14), let

Q0 =




In
√
ρsωsΘ

⊤

γ
√
N

√
ρsZ

⊤

γ
√
d

· · ·
−Θ

√
ρsωs√
N

IN · · −
√
ρsW√
N

·
· · Id −Σ

1

2

s · ·
· −W⊤

√
N

· Id · ·
· · · · Id −Σ

1

2

s

− Z√
d

· · · · Id




.

Recall from Example A.2 that we denote the normalized trace of a matrix A by tr(A). Define the block-wise normalized

expected trace of (Q0)−1 by G0 = (id⊗Etr)((Q0)−1). From block matrix inversion, we see

G0
1,1 = γ Etr(K−1), G0

3,6 =
γ
√
ρs Etr[ΣsW

⊤K̂−1W ]

N
, G0

5,4 = −
√
ρs Etr[ΣsZK

−1Z⊤]

d
, (19)

in which K̂ = 1
N
FF⊤ + γIN . We augment the matrix Q0 to form the symmetric matrix Q̄0 as

Q̄0 =

[
· (Q0)⊤

Q0 ·

]
.

This matrix can be written as

Q̄0 = Z̄0 − Q̄0
W,Z,Θ − Q̄0

Σ

=

[
· In+4d+N

In+4d+N ·

]
−
[

· (Q0
W,Z,Θ)

⊤

Q0
W,Z,Θ ·

]
−
[
0 (Q0

Σ)
⊤

Q0
Σ ·

]
,

19
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with

Q0
W,Z,Θ =




· −
√
ρsωsΘ

⊤

γ
√
N

−
√
ρsZ

⊤

γ
√
d

· · ·
Θ
√
ρsωs√
N

· · ·
√
ρsW√
N

·
· · · · · ·
· W⊤

√
N

· · · ·
· · · · · ·
Z√
d

· · · · ·




and Q0
Σ =




· · · · · ·
· · · · · ·
· · · Σ

1

2

s · ·
· · · · · ·
· · · · · Σ

1

2

s

· · · · · ·




.

Defining Ḡ0 as below, we have

Ḡ0 =

[
· G0

(G0)⊤ ·

]
=

[
· (id⊗Etr)((Q0)−1)

(id⊗Etr)(((Q0)⊤)−1) ·

]

= (id⊗Etr)

[
· (Q0)−1

((Q0)⊤)−1 ·

]
= (id⊗Etr)((Q̄0)−1).

Thus, Ḡ0 can be viewed as the operator-valued Cauchy transform of Q̄0
W,Z,Θ + Q̄0

Σ (in the space we consider in Remark

A.7),

Ḡ0 = (id⊗Etr)(Z̄0 − Q̄0
W,Z,Θ − Q̄0

Σ)
−1 = GQ̄0

W,Z,Θ
+Q̄0

Σ

(Z̄0).

Here, we implicitly used the canonical inclusion defined in (10) to write

Z̄0 =

[
· I6
I6 ·

]
.

Since Q̄0
Σ is deterministic, the matrices Q̄0

W,Z,Θ and Q̄0
Σ are asymptotically freely independent according to Definition A.9.

Hence by the subordination formula (12),

Ḡ0 = GQ̄0

Σ

(Z̄0 −RQ̄0

W,Z,Θ
(Ḡ0)) = (id⊗Etr)(Z̄0 −RQ̄0

W,Z,Θ
(Ḡ0)− Q̄0

Σ)
−1. (20)

Since Q̄0
W,Z,Θ consists of i.i.d. Gaussian blocks, we use (13) to find the R-transform RQ̄0

W,Z,Θ
(Ḡ0) of the form

RQ̄0

W,Z,Θ
(Ḡ0) =

[
· (R0)⊤

R0 ·

]
.

For example, to find R0
1,1, we look for a block in the first row of Q̄0

W,Z,Θ and a block in the first column of Q̄0
W,Z,Θ such

that they are transpose to each other up to a constant factor. There are two such pairs, ((1, 2)-block, (2, 1)-block) and ((1,

3)-block, (6, 1)-block). Therefore, the equation (13) gives

R0
1,1 = −ρsωs

γ
G0

2,2 −
√
ρs

γ
G0

3,6.

Repeating the same procedure, the non-zero blocks of R0 are

R0
1,1 = −ρsωs

γ
G0

2,2 −
√
ρs

γ
G0

3,6, R0
2,2 = −ρsωsψ

γϕ
G0

1,1 +
√
ρsψG

0
5,4,

R0
4,5 =

√
ρsG

0
2,2, R0

6,3 = −
√
ρsG

0
1,1

γϕ
.

Plugging this into equation (20), we obtain self-consistent equations for G1. For example,

G0
3,6 = Etr[(In+4d+N −R0 −Q0

Σ)]3,6 = Etr
[
γ
√
ρsϕG

0
2,2Σs(γϕId + ρsG

0
1,1G

0
2,2Σs)

−1
]

= Eµ

[
λsγ

√
ρsϕG

0
2,2

γϕ+ λsρsG0
1,1G

0
2,2

]
.

20
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Similarly,

G0
1,1 =

γ

γ + ρsωsG0
2,2 +

√
ρsG0

3,6

, G0
2,2 =

γϕ

γϕ+ ρsωsψG0
1,1 − γ

√
ρsψϕG0

5,4

G0
3,6 = Eµ

[
λsγ

√
ρsϕG

0
2,2

γϕ+ λsρsG0
1,1G

0
2,2

]
, G0

5,4 = −Eµ

[
λs
√
ρsG

0
1,1

γϕ+ λsρsG0
1,1G

0
2,2

]
.

Now, by eliminating G0
3,6, G

0
5,4 and expressing in terms of κ, τ, and τ̄ defined in (4) and (6), we can show that Etr(K−1) =

G0

1,1

γ
= τ , and Etr(K̂−1) =

G0

2,2

γ
= τ̄ . Thus, using equation (5) we have

G0
1,1 = γτ, G0

2,2 = γτ̄ , G0
3,6 = γ

√
ρsτ̄Is

1,1, G0
5,4 = −

√
ρsτIs

1,1

ϕ
. (21)

B.1.3. COMPUTATION OF D21

Define Q1 by

Q1 =




In
√
ρsωsΘ

⊤

2

γ
√
N

√
ρsZ

⊤

γ
√
d

· · · · · · · · · · ·
−

√
ρsωsΘ2√
N

IN · · −
√
ρsW2√
N

· · · · · · · · ·
· · Id −Σ

1

2

s · · · · · · · · · ·
· −W⊤

2√
N

· Id · · · · · · · Σ
1

2
s√
ρs

· ·
· · · · Id −Σ

1

2

s · · · · · · · ·
− Z√

d
· · · · Id · · · · · · · ·

· · · · · · In
√
ρsωsΘ

⊤

1

γ
√
N

√
ρsZ

⊤

γ
√
d

· · · · ·
· · · · · · −

√
ρsωsΘ1√
N

IN · · −
√
ρsW1√
N

· · ·
· · · · · · · · Id −Σ

1

2

s · · · ·
· · · · · · · −W⊤

1√
N

· Id · · · ·
· · · · · · · · · · Id −Σ

1

2

s
Σj√
ρs

·
· · · · · · − Z√

d
· · · · Id · ·

· · · · · · · · · · · · Id −W⊤

2√
N

· · · · · · · · · · · · · IN




Define the block-wise normalized expected trace of (Q1)−1 by G1 = (id⊗Etr)((Q1)−1). Then, by block matrix inversion

we have

G1
2,14 =

ψ

d2N2
E tr[W1ΣjW

⊤
2 F2K

−1
2 Z⊤ΣsZK

−1
1 F⊤

1 ] =
ψ

2ρj
D21.

We augment Q1 to the symmetric matrix Q̄1 as

Q̄1 =

[
· (Q1)⊤

Q1 ·

]

and write

Q̄1 = Z̄1 − Q̄1
W,Z,Θ − Q̄1

Σ

=

[
· I2n+9d+3N

I2n+9d+3N ·

]
−
[

· (Q1
W,Z,Θ)

⊤

Q1
W,Z,Θ ·

]
−
[

· (Q1
Σ)

⊤

Q1
Σ ·

]
,
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where

Q1
W,Z,Θ =




· −
√
ρsωsΘ

⊤

2

γ
√
N

−
√
ρsZ

⊤

γ
√
d

· · · · · · · · · · ·
√
ρsωsΘ2√
N

· · ·
√
ρsW2√
N

· · · · · · · · ·
· · · · · · · · · · · · · ·
· W⊤

2√
N

· · · · · · · · · · · ·
· · · · · · · · · · · · · ·
Z√
d

· · · · · · · · · · · · ·
· · · · · · · −

√
ρsωsΘ

⊤

1

γ
√
N

−
√
ρsZ

⊤

γ
√
d

· · · · ·
· · · · · ·

√
ρsωsΘ1√
N

· · ·
√
ρsW1√
N

· · ·
· · · · · · · · · · · · · ·
· · · · · · · W⊤

1√
N

· · · · · ·
· · · · · · · · · · · · · ·
· · · · · · Z√

d
· · · · · · ·

· · · · · · · · · · · · · W⊤

2√
N

· · · · · · · · · · · · · ·




and

Q1
Σ =




· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
· · · Σ

1

2

s · · · · · · · · · ·
· · · · · · · · · · · − Σ

1

2
s√
ρs

· ·
· · · · · Σ

1

2

s · · · · · · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · Σ

1

2

s · · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · · · Σ

1

2

s − Σj√
ρs

·
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·




.

Then defining Ḡ1 below,

Ḡ1 =

[
· G1

(G1)⊤ ·

]
=

[
· (id⊗Etr)((Q1)−1)

(id⊗Etr)(((Q1)⊤)−1) ·

]

= (id⊗Etr)

[
· (Q1)−1

((Q1)⊤)−1 ·

]
= (id⊗Etr)((Q̄1)−1)

can be viewed as the operator-valued Cauchy transform of Q̄1
W,Z,Θ + Q̄1

Σ (in the space we consider in Remark A.7), i.e.,

Ḡ1 = (id⊗Etr)(Z̄1 − Q̄1
W,Z,Θ − Q̄1

Σ)
−1 = GQ̄1

W,Z,Θ
+Q̄1

Σ

(Z̄1).

Further by the subordination formula (12),

Ḡ1 = GQ̄1

Σ

(Z̄1 −RQ̄1

W,Z,Θ
(Ḡ1)) = (id⊗Etr)(Z̄1 −RQ̄1

W,Z,Θ
(Ḡ1)− Q̄1

Σ)
−1. (22)

Since Q̄1
W,Z,Θ consists of i.i.d. Gaussian blocks, by (13), its limiting R-transform has a form

RQ̄1

W,Z,Θ
(Ḡ1) =

[
· (R1)⊤

R1 ·

]
,

22
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where the non-zero blocks of R1 are

R1
1,1 = −ρsωs

γ
G1

2,2 −
√
ρs

γ
G1

3,6, R1
1,7 = −

√
ρs

γ
G1

3,12, R1
2,2 = −ψρsωs

γϕ
G1

1,1 +
√
ρsψG

1
5,4,

R1
2,14 =

√
ρsψG

1
5,13, R1

4,5 =
√
ρsG

1
2,2, R1

6,3 = −
√
ρs

γϕ
G1

1,1, R1
6,9 = −

√
ρs

γϕ
G1

1,7,

R1
7,1 = −

√
ρs

γ
G1

9,6 = 0, R1
7,7 = −ρsωs

γ
G1

8,8 −
√
ρs

γ
G1

9,12, R1
8,8 = −ψρsωs

γϕ
G1

7,7 +
√
ρsψG

1
11,10,

R1
10,11 =

√
ρsG

1
8,8, R1

12,3 = −
√
ρs

γϕ
G1

7,1 = 0, R1
12,9 = −

√
ρs

γϕ
G1

7,7, R1
13,5 =

√
ρsG

1
14,2 = 0.

We used the fact that G1
9,6 = G1

7,1 = G1
14,2 = 0, which we obtain from block matrix inversion of Q1.

Computing the block-matrix inverse of Q1 and from equations (19), (21), we see

G1
1,1 = G1

7,7 = γEtr(K−1) = G0
1,1 = γτ, G1

2,2 = G1
8,8 = γEtr(K̂−1) = G0

2,2 = γτ̄ ,

G1
3,6 = G1

9,12 =
γ
√
ρs Etr[ΣsW

⊤K̂−1W ]

N
= G0

3,6 = γ
√
ρsτ̄Is

1,1,

G1
5,4 = G1

11,10 = −
√
ρs Etr[ΣsZK

−1Z⊤]

d
= G0

5,4 = −
√
ρsτIs

1,1

ϕ
.

Plugging these into (22), we obtain self-consistent equations. For example,

G1
2,14 = Etr[(I2n+9d+3N −R1 −Q1

Σ)
−1]2,14

= −
γ
√
ρsψϕG

1
5,13

γϕ(−1 +
√
ρsψG1

5,4)− ψρsωsG1
1,1

= γ
√
ρsτ̄ψG

1
5,13.

Similarly,

G1
5,13 = Eµ

[
λsλjγ

√
ρsϕG

1
1,7G

1
2,2 + (λs)2λj

√
ρs(G

1
1,1)

2G1
2,2

(γϕ+ λsρsG1
1,1G

1
2,2)

2

]
=

√
ρsτ̄Ij2,2G1

1,7 +
γ
√
ρsτ

2τ̄

ϕ
Ij3,2,

G1
1,7 = −

γ
√
ρsG

1
3,12

(γ +
√
ρsG1

3,6 + ρsωsG1
2,2)

2
= −γ√ρsτ2G1

3,12,

G1
3,12 = −Eµ

[
λsγ2ϕ2 + (λs)2γρ2sϕG

1
1,7(G

1
2,2)

2

√
ρs(γϕ+ λsρsG1

1,1G
1
2,2)

2

]
= − ϕ√

ρs
Is
1,2 − γρ

3

2

s τ̄
2Is

2,2G
1
1,7.

Eliminating G1
3,12 and using κ = γρsτ τ̄ ,

G1
1,7 = γτ2ϕIs

1,2 + κ2Is
2,2G

1
1,7 ⇒ G1

1,7 =
γτ2ϕIs

1,2

1− κ2Is
2,2

.

Therefore,

G1
2,14 = γ

√
ρsτ̄ψG

1
5,13 = γρsτ̄

2ψIj2,2G1
1,7 +

γ2ρsτ
2τ̄2ψ

ϕ
Ij3,2

=
γ2ρsτ

2τ̄2ψϕIs
1,2Ij2,2

1− κ2Is
2,2

+
γ2ρsτ

2τ̄2ψ

ϕ
Ij3,2 = κ2

(
ψϕIs

1,2Ij2,2
ρs(1− κ2Is

2,2)
+
ψIj3,2
ρsϕ

)
.

Finally,

D21 =
2ρj
ψ
G1

2,14 =
2ρjκ

2

ρs

(
ϕIs

1,2Ij2,2
1− κ2Is

2,2

+
Ij3,2
ϕ

)
. (23)
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B.1.4. COMPUTATION OF D22

Let

Q2 =




In
√
ρsωsΘ

⊤

2

γ
√
N

√
ρsZ

⊤

γ
√
d

· · · · · · · · ·
−

√
ρsωsΘ2√
N

IN · · −
√
ρsW2√
N

· · · · · · ·
· · Id −Σ

1

2

s · · · · · · · ·
· −W⊤

2√
N

· Id · · · · · · · ·
· · · · Id −Σ

1

2

s · · · · · ·
− Z√

d
· · · · Id · · · · · ·

· · · · · · In
√
ρsωsΘ

⊤

1

γ
√
N

√
ρsZ

⊤

γ
√
d

· · ·
· · · · · · −

√
ρsωsΘ1√
N

IN · · −
√
ρsW1√
N

·
· · · · · · · · Id −Σ

1

2

s · ·
· · · · · · · −W⊤

1√
N

· Id · ·
· · · Σj · · · · · · Id −Σ

1

2

s

· · · · · · − Z√
d

· · · · Id




and G2 = (id⊗Etr)((Q2)−1). Then,

G2
7,1 =

γ
√
ρsϕ

dN2
E tr[K−1

1 F⊤
1 W1ΣjW

⊤
2 F2K

−1
2 ] =

γ
√
ρsϕ

2σ2
ερj

D22.

We augment Q2 to the symmetric matrix Q̄2 as

Q̄2 =

[
· (Q2)⊤

Q2 ·

]

and write

Q̄2 = Z̄2 − Q̄2
W,Z,Θ − Q̄2

Σ

=

[
· I2n+8d+2N

I2n+8d+2N ·

]
−
[

· (Q2
W,Z,Θ)

⊤

Q2
W,Z,Θ ·

]
−
[

· (Q2
Σ)

⊤

Q2
Σ ·

]
,

where

Q2
W,Z,Θ =




· −
√
ρsωsΘ

⊤

2

γ
√
N

−
√
ρsZ

⊤

γ
√
d

· · · · · · · · ·
√
ρsωsΘ2√
N

· · ·
√
ρsW2√
N

· · · · · · ·
· · · · · · · · · · · ·
· W⊤

2√
N

· · · · · · · · · ·
· · · · · · · · · · · ·
Z√
d

· · · · · · · · · · ·
· · · · · · · −

√
ρsωsΘ

⊤

1

γ
√
N

−
√
ρsZ

⊤

γ
√
d

· · ·
· · · · · ·

√
ρsωsΘ1√
N

· · ·
√
ρsW1√
N

·
· · · · · · · · · · · ·
· · · · · · · W⊤

1√
N

· · · ·
· · · · · · · · · · · ·
· · · · · · Z√

d
· · · · ·




,
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and

Q2
Σ =




· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · Σ

1

2

s · · · · · · · ·
· · · · · · · · · · · ·
· · · · · Σ

1

2

s · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · Σ

1

2

s · ·
· · · · · · · · · · · ·
· · · −Σj · · · · · · · Σ

1

2

s

· · · · · · · · · · · ·




.

Defining Ḡ2 below,

Ḡ2 =

[
· G2

(G2)⊤ ·

]
=

[
· (id⊗Etr)((Q2)−1)

(id⊗Etr)(((Q2)⊤)−1) ·

]

= (id⊗Etr)

[
· (Q2)−1

((Q2)⊤)−1 ·

]
= (id⊗Etr)((Q̄2)−1).

It can be viewed as the operator-valued Cauchy transform of Q̄2
W,Z,Θ + Q̄2

Σ (in the space we consider in Remark A.7), i.e.,

Ḡ2 = (id⊗Etr)(Z̄2 − Q̄2
W,Z,Θ − Q̄2

Σ)
−1 = GQ̄2

W,Z,Θ
+Q̄2

Σ

(Z̄2).

Further by the subordination formula (12),

Ḡ2 = GQ̄2

Σ

(Z̄2 −RQ̄2

W,Z,Θ
(Ḡ2)) = (id⊗Etr)(Z̄2 −RQ̄2

W,Z,Θ
(Ḡ2)− Q̄2

Σ)
−1. (24)

Since Q̄2
W,Z,Θ consists of i.i.d. Gaussian blocks, by (13), its limiting R-transform has a form

RQ̄2

W,Z,Θ
(Ḡ2) =

[
· (R2)⊤

R2 ·

]
,

where the non-zero blocks of R2 are

R2
1,1 = −ρsωs

γ
G2

2,2 −
√
ρs

γ
G2

3,6, R2
1,7 = −

√
ρs

γ
G2

3,12 = 0, R2
2,2 = −ψρsωs

γϕ
G2

1,1 +
√
ρsψG

2
5,4,

R2
4,5 =

√
ρsG

2
2,2, R2

6,3 = −
√
ρs

γϕ
G2

1,1, R2
6,9 = −

√
ρs

γϕ
G2

1,7 = 0, R2
7,1 = −

√
ρs

γ
G2

9,6,

R2
7,7 = −ρsωs

γ
G2

8,8 −
√
ρs

γ
G2

9,12, R2
8,8 = −ψρsωs

γϕ
G2

7,7 +
√
ρsψG

2
11,10, R2

10,11 =
√
ρsG

2
8,8,

R2
12,3 = −

√
ρs

γϕ
G2

7,1, R2
12,9 = −

√
ρs

γϕ
G2

7,7.

We used the fact that G2
3,12 = G2

1,7 = 0, which we obtain from block matrix inversion of Q2. From block matrix inversion

of Q2 and equations (19), (21), we have

G2
1,1 = G2

7,7 = γEtr(K−1) = G0
1,1 = γτ, G2

2,2 = G2
8,8 = γEtr(K̂−1) = G0

2,2 = γτ̄ ,

G2
3,6 = G2

9,12 =
γ
√
ρs Etr[ΣsW

⊤K̂−1W ]

N
= G0

3,6 = γ
√
ρsτ̄Is

1,1,

G2
5,4 = G2

11,10 = −
√
ρs Etr[ΣsZK

−1Z⊤]

d
= G0

5,4 = −
√
ρsτIs

1,1

ϕ
.
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Plugging these into (24), we have the following self-consistent equations

G2
7,1 = −

γ
√
ρsG

2
9,6

(γ +
√
ρsG2

3,6 + ρsωsG2
2,2)

2
= −γ√ρsτ2G2

9,6,

G2
9,6 = −Eµ


 (λ

s)2γρ
3

2

s ϕ(G2
2,2)

2G2
7,1 + λsλjγ2ρsϕ

2(G2
2,2)

2

(γϕ+ λsρsG2
1,1G

2
2,2)

2


 = −γρ

3

2

s τ̄
2Is

2,2G
2
7,1 − γ2ρsτ̄

2ϕIj2,2.

Solving for G2
7,1,

G2
7,1 =

κ2γϕIj2,2√
ρs(1− κ2Is

2,2)
.

Therefore,

D22 =
2σ2

ερj
γ
√
ρsϕ

G2
7,1 =

2ρjκ
2σ2
εIj2,2

ρs(1− κ2Is
2,2)

. (25)

B.1.5. COMPUTATION OF DisjSS(ϕ, ψ, γ)

Combining equations (16), (17), (18), (23), (25), we get

DisjSS(ϕ, ψ, γ) = DisjI (ϕ, ψ, γ)−
2ρjκ

2(σ2
ε + ϕIs

1,2)Ij2,2
ρs(1− κ2Is

2,2)
.

B.1.6. DECOMPOSITION OF DisjSW(ϕ, ψ, γ)

Writing Fi = σ(WXi/
√
d), f = σ(Wx/

√
d), Ki =

1
N
F⊤
i Fi + γIn for i ∈ {1, 2}, we can write SW disagreement as

DisjSW(ϕ, ψ, γ) =
1

N2
E[(Y ⊤

1 K
−1
1 F⊤

1 f − Y ⊤
2 K

−1
2 F⊤

2 f)
2]

=
2

N2
E[f⊤F1K

−1
1 Y1Y

⊤
1 K

−1
1 F⊤

1 f ]−
2

N2
E[f⊤F2K

−1
2 Y2Y

⊤
1 K

−1
1 F⊤

1 f ]

= D1 −D3. (26)

The term D1 is given in (17). Plugging in Yi = X⊤
i β/

√
d+ εi, where εi = (εi1, . . . , εin)

⊤ ∈ Rn, the term D3 becomes

D3 =
2

dN2
EW,Xi

tr[F2K
−1
2 X⊤

2 Eβ [ββ
⊤]X1K

−1
1 F⊤

1 Ex∼Dj ,θ[ff
⊤]]

+
4√
dN2

EW,Xi
[F2K

−1
2 X⊤

2 Eβ,ε1
[βε⊤1 ]K

−1
1 F⊤

1 Ex∼Dj ,θ[ff
⊤]]

+
2

N2
EW,Xi

tr[F2K
−1
2 Eεi

[ε2ε
⊤
1 ]K

−1
1 F⊤

1 Ex∼Dj ,θ[ff
⊤]]

=
2

dN2
EW,Xi

tr[F2K
−1
2 X⊤

2 X1K
−1
1 F⊤

1 Ex∼Dj ,θ[ff
⊤]].

From the Gaussian equivalence (14), we have

Ex∼Dj ,θ[ff
⊤] =

ρj
d
WΣjW

⊤ + ρjωjIN .

Therefore,

D3 =
2ρj
d2N2

EW,Xi
tr[WΣjW

⊤F2K
−1
2 X⊤

2 X1K
−1
1 F⊤

1 ] +
2ρjωj
dN2

EW,Xi
tr
[
F2K

−1
2 X⊤

2 X1K
−1
1 F⊤

1

]

= D31 +D32. (27)
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We can write Xi = Σ
1

2

s Zi for Zi ∈ Rd×n with i.i.d. standard Gaussian entries. Thus,

D31 =
2ρj
d2N2

EW,Zi
tr[WΣjW

⊤F2K
−1
2 Z⊤

2 ΣsZ1K
−1
1 F⊤

1 ],

D32 =
2ρjωj
dN2

EW,Zi
tr
[
F2K

−1
2 Z⊤

2 ΣsZ1K
−1
1 F⊤

1

]
.

Now, we use the linear pencil method to compute D31 and D32.

B.1.7. COMPUTATION OF D31

Let

Q3 =




In
√
ρsωsΘ

⊤

2

γ
√
N

√
ρsZ

⊤

2

γ
√
d

· · · · · · · · · · ·
−

√
ρsωsΘ2√
N

IN · · −
√
ρsW√
N

· · · · · · · · ·
· · Id −Σ

1

2

s · · · · · · · · · ·
· −W⊤

√
N

· Id · · · · · · · Σ
1

2
s√
ρs

· ·
· · · · Id −Σ

1

2

s · · · · · · · ·
− Z2√

d
· · · · Id · · · · · · · ·

· · · · · · In
√
ρsωsΘ

⊤

1

γ
√
N

√
ρsZ

⊤

1

γ
√
d

· · · · ·
· · · · · · −

√
ρsωsΘ1√
N

IN · · −
√
ρsW√
N

· · ·
· · · · · · · · Id −Σ

1

2

s · · · ·
· · · · · · · −W⊤

√
N

· Id · · · ·
· · · · · · · · · · Id −Σ

1

2

s
Σj√
ρs

·
· · · · · · − Z1√

d
· · · · Id · ·

· · · · · · · · · · · · Id −W⊤

√
N

· · · · · · · · · · · · · IN




and G3 = (id⊗Etr)((Q3)−1). Then,

G3
2,14 =

ψ

d2N2
EW,Zi

tr[WΣjW
⊤F2K

−1
2 Z⊤

2 ΣsZ1K
−1
1 F⊤

1 ] =
ψ

2ρj
D31.

We augment Q3 to the symmetric matrix Q̄3 as

Q̄3 =

[
0 (Q3)⊤

Q3 0

]

and write

Q̄3 = Z̄3 − Q̄3
W,Z,Θ − Q̄3

Σ

=

[
0 I2n+9d+3N

I2n+9d+3N 0

]
−
[

0 (Q3
W,Z,Θ)

⊤

Q3
W,Z,Θ 0

]
−
[
0 (Q3

Σ)
⊤

Q3
Σ 0

]
,
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where

Q3
W,Z,Θ =




· −
√
ρsωsΘ

⊤

2

γ
√
N

−
√
ρsZ

⊤

2

γ
√
d

· · · · · · · · · · ·
√
ρsωsΘ2√
N

· · ·
√
ρsW√
N

· · · · · · · · ·
· · · · · · · · · · · · · ·
· W⊤

√
N

· · · · · · · · · · · ·
· · · · · · · · · · · · · ·
Z2√
d

· · · · · · · · · · · · ·
· · · · · · · −

√
ρsωsΘ

⊤

1

γ
√
N

−
√
ρsZ

⊤

1

γ
√
d

· · · · ·
· · · · · ·

√
ρsωsΘ1√
N

· · ·
√
ρsW√
N

· · ·
· · · · · · · · · · · · · ·
· · · · · · · W⊤

√
N

· · · · · ·
· · · · · · · · · · · · · ·
· · · · · · Z1√

d
· · · · · · ·

· · · · · · · · · · · · · W⊤

√
N

· · · · · · · · · · · · · ·




and

Q3
Σ =




· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
· · · Σ

1

2

s · · · · · · · · · ·
· · · · · · · · · · · − Σ

1

2
s√
ρs

· ·
· · · · · Σ

1

2

s · · · · · · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · Σ

1

2

s · · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · · · Σ

1

2

s − Σj√
ρs

·
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·




.

Defining Ḡ3 below,

Ḡ3 =

[
0 G3

(G3)⊤ 0

]
=

[
0 (id⊗Etr)((Q3)−1)

(id⊗Etr)(((Q3)⊤)−1) 0

]

= (id⊗Etr)

[
0 (Q3)−1

((Q3)⊤)−1 0

]
= (id⊗Etr)((Q̄3)−1).

It can be viewed as the operator-valued Cauchy transform of Q̄3
W,Z,Θ + Q̄3

Σ (in the space we consider in Remark A.7), i.e.,

Ḡ3 = (id⊗Etr)(Z̄3 − Q̄3
W,Z,Θ − Q̄3

Σ)
−1 = GQ̄3

W,Z,Θ
+Q̄3

Σ

(Z̄3).

Further by the subordination formula (12),

Ḡ3 = GQ̄3

Σ

(Z̄ −RQ̄3

W,Z,Θ
(Ḡ3)) = (id⊗Etr)(Z̄3 −RQ̄3

W,Z,Θ
(Ḡ3)− Q̄3

Σ)
−1. (28)

Since Q̄3
W,Z,Θ consists of i.i.d. Gaussian blocks, by (13), its limiting R-transform has a form

RQ̄3

W,Z,Θ
(Ḡ3) =

[
0 (R3)⊤

R3 0

]
,
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where the non-zero blocks of R3 are

R3
1,1 = −ρsωs

γ
G3

2,2 −
√
ρs

γ
G3

3,6, R3
2,2 = −ψρsωs

γϕ
G3

1,1 +
√
ρsψG

3
5,4, R3

2,8 =
√
ρsψG

3
5,10, R3

2,14 =
√
ρsψG

3
5,13,

R3
4,5 =

√
ρsG

3
2,2, R3

4,11 =
√
ρsG

3
2,8, R3

6,3 = −
√
ρs

γϕ
G3

1,1, R3
7,7 = −ρsωs

γ
G3

8,8 −
√
ρs

γ
G3

9,12,

R3
8,2 =

√
ρsψG

3
11,4 = 0, R3

8,8 = −ψρsωs

γϕ
G3

7,7 +
√
ρsψG

3
11,10, R3

8,14 =
√
ρsψG

3
11,13, R3

10,5 =
√
ρsG

3
8,2 = 0,

R3
10,11 =

√
ρsG

3
8,8, R3

12,9 = −
√
ρs

γϕ
G3

7,7, R3
13,5 =

√
ρsG

3
14,2 = 0, R3

13,11 =
√
ρsG

3
14,8 = 0.

We used the fact that G3
11,4 = G3

8,2 = G3
14,2 = G3

14,8 = 0, which we obtain from block matrix inversion of Q3.

Further from block matrix inversion of Q3 and equations (19), (21), we have

G3
1,1 = G3

7,7 = γEtr(K−1) = G0
1,1 = γτ, G3

2,2 = G3
8,8 = γEtr(K̂−1) = G0

2,2 = γτ̄ ,

G3
3,6 = G3

9,12 =
γ
√
ρs Etr[ΣsW

⊤K̂−1W ]

N
= G0

3,6 = γ
√
ρsτ̄Is

1,1,

G3
5,4 = G3

11,10 = −
√
ρs Etr[ΣsZK

−1Z⊤]

d
= G0

5,4 = −
√
ρsτIs

1,1

ϕ
.

Plugging these into (28), we have the following self-consistent equations

G3
2,14 = γ2ρsτ̄

2ψ2G3
5,10G

3
11,13 + γ

√
ρsτ̄ψG

3
5,13, G3

5,10 = −
√
ρsτ

2

ϕ
Is
2,2 +

ρ
3

2

s τ2

ϕ
Is
2,2G

3
2,8,

G3
2,8 = γ2

√
ρsτ̄

2ψG3
5,10, G3

5,13 =
√
ρsτIj2,2G3

2,8 +
γ
√
ρsτ

2τ̄

ϕ
Ij3,2, G3

11,13 = −
Ij1,1√
ρs
.

Solving for G3
5,10 gives

G3
5,10 = −

√
ρsτ

2Is
2,2

ϕ− ψκ2Is
2,2

.

Plugging in G3
5,10, G

3
11,13, G

3
5,13 to find G3

2,14, we get

D31 =
2ρj
ψ
G3

2,14 =
2ρjψϕκ

2Is
2,2Ij1,2

ρs(ϕ− ψκ2Is
2,2)

+
2ρjκ

2

ρsϕ
Ij3,2. (29)

B.1.8. COMPUTATION OF D32

Let

Q4 =




In
√
ρsωsΘ

⊤

2

γ
√
N

√
ρsZ

⊤

2

γ
√
d

· · · · · · · · ·
−

√
ρsωsΘ2√
N

IN · · −
√
ρsW√
N

· · · · · · ·
· · Id −Σ

1

2

s · · · · · · · ·
· −W⊤

√
N

· Id · · · · · · Id ·
· · · · Id −Σ

1

2

s · · · · · ·
− Z2√

d
· · · · Id · · · · · ·

· · · · · · In
√
ρsωsΘ

⊤

1

γ
√
N

√
ρsZ

⊤

1

γ
√
d

· · ·
· · · · · · −

√
ρsωsΘ1√
N

IN · · −
√
ρsW√
N

·
· · · · · · · · Id −Σ

1

2

s · ·
· · · · · · · −W⊤

√
N

· Id · ·
· · · · · · · · · · Id −Σ

1

2

s

· · · · · · − Z1√
d

· · · · Id



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and G4 = (id⊗Etr)((Q4)−1). Then,

G4
2,8 = −

√
ρs

dN2
EW,Zi

tr
[
F2K

−1
2 Z⊤

2 ΣsZ1K
−1
1 F⊤

1

]
= −

√
ρs

2ρjωj
D32.

We augment Q4 to the symmetric matrix Q̄4 as

Q̄4 =

[
0 (Q4)⊤

Q4 0

]

and write

Q̄4 = Z̄4 − Q̄4
W,Z,Θ − Q̄4

Σ

=

[
0 I2n+8d+2N

I2n+8d+2N 0

]
−
[

0 (Q4
W,Z,Θ)

⊤

Q4
W,Z,Θ 0

]
−
[
0 (Q4

Σ)
⊤

Q4
Σ 0

]
,

where

Q4
W,Z,Θ =




· −
√
ρsωsΘ

⊤

2

γ
√
N

−
√
ρsZ

⊤

2

γ
√
d

· · · · · · · · ·
√
ρsωsΘ2√
N

· · ·
√
ρsW√
N

· · · · · · ·
· · · · · · · · · · · ·
· W⊤

√
N

· · · · · · · · · ·
· · · · · · · · · · · ·
Z2√
d

· · · · · · · · · · ·
· · · · · · · −

√
ρsωsΘ

⊤

1

γ
√
N

−
√
ρsZ

⊤

1

γ
√
d

· · ·
· · · · · ·

√
ρsωsΘ1√
N

· · ·
√
ρsW√
N

·
· · · · · · · · · · · ·
· · · · · · · W⊤

√
N

· · · ·
· · · · · · · · · · · ·
· · · · · · Z1√

d
· · · · ·




and

Q4
Σ =




· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · Σ

1

2

s · · · · · · · ·
· · · · · · · · · · Id ·
· · · · · Σ

1

2

s · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · Σ

1

2

s · ·
· · · · · · · · · · · ·
· · · · · · · · · · · Σ

1

2

s

· · · · · · · · · · · ·




.

Defining Ḡ4 below,

Ḡ4 =

[
0 G4

(G4)⊤ 0

]
=

[
0 (id⊗Etr)((Q4)−1)

(id⊗Etr)(((Q4)⊤)−1) 0

]

= (id⊗Etr)

[
0 (Q4)−1

((Q4)⊤)−1 0

]
= (id⊗Etr)((Q̄4)−1).
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It can be viewed as the operator-valued Cauchy transform of Q̄4
W,Z,Θ + Q̄4

Σ (in the space we consider in Remark A.7), i.e.,

Ḡ4 = (id⊗Etr)(Z̄4 − Q̄4
W,Z,Θ − Q̄4

Σ)
−1 = GQ̄4

W,Z,Θ
+Q̄4

Σ

(Z̄4).

Further by the subordination formula (12),

Ḡ4 = GQ̄4

Σ

(Z̄ −RQ̄4

W,Z,Θ
(Ḡ4)) = (id⊗Etr)(Z̄4 −RQ̄4

W,Z,Θ
(Ḡ4)− Q̄4

Σ)
−1. (30)

Since Q̄4
W,Z,Θ consists of i.i.d. Gaussian blocks, by (13), its limiting R-transform has a form

RQ̄4

W,Z,Θ
(Ḡ4) =

[
0 (R4)⊤

R4 0

]
,

where the non-zero blocks of R4 are

R4
1,1 = −ρsωs

γ
G4

2,2 −
√
ρs

γ
G4

3,6, R4
2,2 = −ρsωsψ

γϕ
G4

1,1 +
√
ρsψG

4
5,4, R4

2,8 =
√
ρsψG

4
5,10, R4

4,5 =
√
ρsG

4
2,2

R4
4,11 =

√
ρsG

4
2,8, R4

6,3 = −
√
ρs

γϕ
G4

1,1, R4
7,7 = −ρsωs

γ
G4

8,8 −
√
ρs

γ
G4

9,12, R4
8,2 =

√
ρsψG

4
11,4 = 0,

R4
8,8 = −ρsωsψ

γϕ
G4

7,7 +
√
ρsψG

4
11,10, R4

10,5 =
√
ρsG

4
8,2 = 0, R4

10,11 =
√
ρsG

4
8,8, R4

12,9 = −
√
ρs

γϕ
G4

7,7.

We used the fact that G4
11,4 = G4

8,2 = 0, which we obtain from block matrix inversion of Q4.

Further from block matrix inversion of Q4 and equations (19), (21), we have

G4
1,1 = G4

7,7 = γEtr(K−1) = G0
1,1 = γτ, G4

2,2 = G4
8,8 = γEtr(K̂−1) = G0

2,2 = γτ̄ ,

G4
3,6 = G4

9,12 =
γ
√
ρs Etr[ΣsW

⊤K̂−1W ]

N
= G0

3,6 = γ
√
ρsτ̄Is

1,1,

G4
5,4 = G4

11,10 = −
√
ρs Etr[ΣsZK

−1Z⊤]

d
= G0

5,4 = −
√
ρsτIs

1,1

ϕ
.

Plugging these into (30), we have the following self-consistent equations

G4
2,8 =

√
ρsψϕ

2G4
5,10

(ϕ+ ρsτψ(ωs + Is
1,1))

2
, G4

5,10 = −ρsτ
2

ϕ
Is
2,2 +

ρ
3

2

s τ2

ϕ
Is
2,2G

4
2,8

Solving for G4
2,8 and plugging in to D32, we get

D32 = −2ρjωj√
ρs

G4
2,8 =

2ρjωjψκ
2Is

2,2

ρs(ϕ− ψκ2Is
2,2)

. (31)

B.1.9. COMPUTATION OF DisjSW(ϕ, ψ, γ)

Combining equations (26), (17), (27), (29), (31), we get

DisjSW(ϕ, ψ, γ) = DisjI (ϕ, ψ, γ)−
2ρjψκ

2(ωj + ϕIj1,2)Is
2,2

ρs(ϕ− ψκ2Is
2,2)

.

B.2. Proof of Corollary 3.2

Since κ ≤ 1/ωs for any γ > 0 by (4), we know limγ→0 γκ = 0. Thus from (6), we have

lim
γ→0

γτ =
|ψ − ϕ|+ ψ − ϕ

2ψ
, lim

γ→0
γτ̄ = 1− ψ

ϕ
+
ψ

ϕ
lim
γ→0

γτ =
|ψ − ϕ|+ ϕ− ψ

2ϕ
.
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By Condition 2.3 and the dominated convergence theorem, the functionals Is
a,b, It

a,b and their derivatives with respect to κ
are continuous in κ. Applying the implicit function theorem to the self-consistent equation (4), viewing it as a function of

κ and γ, we find that κ is differentiable with respect to γ and thus continuous. Therefore, the limit of κ, Is
a,b, It

a,b when

γ → 0 is well defined. Plugging these limits into Theorem 3.1, we reach

lim
γ→0

DisjI (ϕ, ψ, γ) =
2ρjψκ

ρs|ϕ− ψ| (σ
2
ε + Is

1,1)(ωj + Ij1,1) +





2ρjκ(σ
2

ε+ϕI
s

1,2)I
j

2,2

ρs(ωs+ϕIs

1,2)
ϕ > ψ,

2ρjκ(ωj+ϕIj

1,2)I
s

2,2

ρs(ωs+ϕIs

1,2)
ϕ < ψ,

lim
γ→0

DisjSS(ϕ, ψ, γ) = lim
γ→0

DisjI (ϕ, ψ, γ)−
2ρjκ

2(σ2
ε + ϕIs

1,2)Ij2,2
ρs(1− κ2Is

2,2)
, (32)

and

lim
γ→0

DisjSW(ϕ, ψ, γ) = lim
γ→0

DisjI (ϕ, ψ, γ)−
2ρjψκ

2(ωj + ϕIj1,2)Is
2,2

ρs(ϕ− ψκ2Is
2,2)

. (33)

From the equation (5), we have Is
1,1 = ϕIs

1,2 + κIs
2,2. Also by (4) and (6), ωs =

1−γτ
κ

− Is
1,1. Therefore,

ωs + ϕIs
1,2 =

1− γτ

κ
− Is

1,1 + ϕIs
1,2 =

1− γτ

κ
− κIs

2,2. (34)

In the ridgeless limit γ → 0, the equation (34) gives

lim
γ→0

1

ωs + ϕIs
1,2

=




limγ→0

κ
1−κ2Is

2,2

ϕ > ψ,

limγ→0
ψκ

ϕ−ψκ2Is

2,2

ϕ < ψ.
(35)

Putting (32), (33), (35) together, we conclude

lim
γ→0

DisjSS(ϕ, ψ, γ) =
2ρjψκ

ρs|ϕ− ψ| (σ
2
ε + Is

1,1)(ωj + Ij1,1) +




0 ϕ > ψ,

2ρjκ
ρs

(
(ωj+ϕIj

1,2)I
s

2,2

ωs+ϕIs

1,2

− κ(σ2

ε+ϕI
s

1,2)I
j

2,2

1−κ2Is

2,2

)
ϕ < ψ,

lim
γ→0

DisjSW(ϕ, ψ, γ) =
2ρjψκ

ρs|ϕ− ψ| (σ
2
ε + Is

1,1)(ωj + Ij1,1) +





2ρjκ
ρs

(
(σ2

ε+ϕI
s

1,2)I
j

2,2

ωs+ϕIs

1,2

− ψκ(ωj+ϕIj

1,2)I
s

2,2

ϕ−ψκ2Is

2,2

)
ϕ > ψ,

0 ϕ < ψ.

B.3. Proof of Theorem 4.1

By Corollary 3.2, disagreement in the ridgeless and overparametrized regime is given by

lim
γ→0

DisjI (ϕ, ψ, γ) =
2ρjψκ

ρs|ϕ− ψ| (σ
2
ε + Is

1,1)(ωj + Ij1,1) +
2ρjκ(σ

2
ε + ϕIs

1,2)Ij2,2
ρs(ωs + ϕIs

1,2)
,

lim
γ→0

DisjSS(ϕ, ψ, γ) =
2ρjψκ

ρs|ϕ− ψ| (σ
2
ε + Is

1,1)(ωj + Ij1,1).

The self-consistent equation (7) in the overpametrized regime ϕ > ψ is

κ =
1

ωs + Is
1,1(κ)

,

which is independent of ψ. Consequently, the unique positive solution κ is also independent of ψ. This proves that the slope

a and the intercept bI defined in Theorem 4.1 are independent of ψ as well. Checking the equation (9) can be done by using

(35) and a simple algebra.
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B.4. Proof of Theorem 4.3

Let a(γ), bI(γ), bSS(γ) be defined by (8), but with κ in the self-consistent equation (4) with general γ, instead of the

self-consistent equation (7) in the ridgeless limit. With this notation, we have a = a(0), bI = bI(0), bSS = bSS(0). By

Theorem 3.1 and the triangle inequality, deviation from the line is bounded by

|Disti(ϕ, ψ,γ)− aDissi(ϕ, ψ, γ)− bi|
≤ |Disti(ϕ, ψ, γ)− a(γ)Dissi(ϕ, ψ, γ)− bi(γ)|+ |a(γ)− a(0)||Dissi(ϕ, ψ, γ)|+ |bi(γ)− bi(0)|
≤ A1 +A2 +Dissi(ϕ, ψ, γ)|a(γ)− a(0)|+ |bi(γ)− bi(0)|, i ∈ {I, SS}, (36)

where

A1 =
2ψγτκIs

2,2|ρt(ωt + ϕIt
1,2)− aρs(ωs + ϕIs

1,2)|
ϕγ + ρs(ψγτ + ϕγτ̄)(ωs + ϕIs

1,2)
,

A2 = 2(σ2
ε + ϕIs

1,2)|ρtIt
2,2 − aρsIs

2,2|
∣∣∣∣∣

κϕγτ̄

ϕγ + ρs(ψγτ + ϕγτ̄)(ωs + ϕIs
1,2)

− κ2

ρs(1− κ2Is
2,2)

∣∣∣∣∣ .

In what follows, we bound each of these terms. We will use O(·) notation to hide constants depending on ϕ, µ, σ2
ε , σ. For

example, we can write Ija,b = O(1) for j ∈ {s, t} since we assume in Condition 2.3 that µ is compactly supported.

B.4.1. BOUNDING A1

We know a ≤ ρt(ωt + It
1,1)/ρsωs by (8). Thus,

Is
2,2|ρt(ωt + ϕIt

1,2)− aρs(ωs + ϕIs
1,2)| = O(1). (37)

By (6) and since
√
x2 + y2 ≤ |x|+ |y| for any x, y ∈ R,

2ψγτ =
√
(ψ − ϕ)2 + 4κψϕγ/ρs + ψ − ϕ ≤

√
4κψϕγ

ρs
= O(

√
ψγ). (38)

Again by (6), ψγτ + ϕγτ̄ =
√
(ψ − ϕ)2 + 4κψϕγ/ρs. Therefore,

κ

ϕγ + ρs(ψγτ + ϕγτ̄)(ωs + ϕIs
1,2)

≤ κ

ρs(ψγτ + ϕγτ̄)(ωs + ϕIs
1,2)

= O

(
1

1− ψ/ϕ+
√
ψγ

)
. (39)

Here, we used κ ≤ 1
ωs

= O(1) by (4). Combining (37), (38), (39), we reach

A1 = O

( √
ψγ

1− ψ/ϕ+
√
ψγ

)
. (40)

B.4.2. BOUNDING A2

Similar to (37), we have

2(σ2
ε + ϕIs

1,2)|ρtIt
2,2 − aρsIs

2,2| = O(1). (41)

By (34),

κ2

ρs(1− κ2Is
2,2)

=
κ2

ρs[γτ + κ(ωs + ϕIs
1,2)]

. (42)

From (42) and κ = γρsτ τ̄ ,
∣∣∣∣∣

κϕγτ̄

ϕγ + ρs(ψγτ + ϕγτ̄)(ωs + ϕIs
1,2)

− κ2

ρs(1− κ2Is
2,2)

∣∣∣∣∣

=
κ2(ωs + ϕIs

1,2)ψγτ

[ϕγ + ρs(ψγτ + ϕγτ̄)(ωs + ϕIs
1,2)][γτ + κ(ωs + ϕIs

1,2)]
.
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From (38), (39), and κ(ωs + ϕIs
1,2)/[γτ + κ(ωs + ϕIs

1,2)] ≤ 1, we get

∣∣∣∣∣
κϕγτ̄

ϕγ + ρs(ψγτ + ϕγτ̄)(ωs + ϕIs
1,2)

− κ2

ρs(1− κ2Is
2,2)

∣∣∣∣∣ = O

( √
ψγ

1− ψ/ϕ+
√
ψγ

)
. (43)

Putting (41) and (43) together,

A2 = O

( √
ψγ

1− ψ/ϕ+
√
ψγ

)
. (44)

B.4.3. BOUNDING DissI (ϕ, ψ, γ) AND DissSS(ϕ, ψ, γ)

By Theorem 3.1 and the equations (6), (38), (39), we have

DissI (ϕ, ψ, γ) = O

(
1 +

√
ψγ

1− ψ/ϕ+
√
ψγ

)
. (45)

By Theorem 3.1 and the equations (38), (39), (43), we have

DissSS(ϕ, ψ, γ) = O

(
ψ +

√
ψγ

1− ψ/ϕ+
√
ψγ

)
. (46)

B.4.4. BOUNDING |a(γ)− a(0)|
From the argument in Section B.2, we know a(γ) is differentiable with respect to γ. By the chain rule and (5),

∂a

∂γ
=
∂κ

∂γ
×

−It
2,2(ωs + Is

1,1) + Is
2,2(ωt + It

1,1)

(ωs + Is
1,1)

2
. (47)

By implicit differentiation of (4), we have

∂κ

∂γ
= − κ

ϕγ + ρs(ψγτ + ϕγτ̄)(ωs + ϕIs
1,2)

. (48)

We have |(−It
2,2(ωs + Is

1,1) + Is
2,2(ωt + It

1,1))/(ωs + Is
1,1)

2| = O(1) and

∣∣∣∣
∂κ

∂γ

∣∣∣∣ = O

(
1√

(ψ − ϕ)2 + ψϕγ

)

since ψγτ + ϕγτ̄ =
√
(ψ − ϕ)2 + 4κψϕγ/ρs. Therefore,

|a(γ)− a(0)| =
∣∣∣∣
∫ γ

0

∂a

∂γ
(u)du

∣∣∣∣ ≤
∫ γ

0

∣∣∣∣
∂a

∂γ
(u)

∣∣∣∣ du

= O

(∫ γ

0

1√
(ψ − ϕ)2 + ψϕu

du

)
= O

(
γ

1− ψ/ϕ+
√
ψγ

)
. (49)

B.4.5. BOUNDING |bI(γ)− bI(0)|

From the argument in Section B.2, we know bI(γ) is differentiable with respect to γ. In (8), the terms κ2

1−κ2Is

2,2

, σ2
ε + ϕIs

1,2,

ρt − aρsIs
2,2 and their derivatives with respect to κ are O(1). Thus,

∣∣∣∣
∂bI

∂γ

∣∣∣∣ = O

(∣∣∣∣
∂κ

∂γ

∣∣∣∣
)

= O

(
1√

(ψ − ϕ)2 + ψϕγ

)
.
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Therefore,

|bI(γ)− bI(0)| =
∣∣∣∣
∫ γ

0

∂bI

∂γ
(u)du

∣∣∣∣ ≤
∫ γ

0

∣∣∣∣
∂bI

∂γ
(u)

∣∣∣∣ du

= O

(∫ γ

0

1√
(ψ − ϕ)2 + ψϕu

du

)
= O

(
γ

1− ψ/ϕ+
√
ψγ

)
. (50)

Theorem 4.3 is proved by combining the equations (36), (40), (44), (45), (46), (49), (50).

B.5. Proof of Corollary 4.4

By Ej = Bj + Vj = Bj +
1
2DisjI (ϕ, ψ, γ) and (51), we have

|Et − aEs − brisk| ≤
1

2
|DistI (ϕ, ψ, γ)− aDissI (ϕ, ψ, γ)− bI|+

∣∣∣∣Bt − aBs − lim
γ→0

(Bt − aBs)

∣∣∣∣ .

Since the derivatives of Ij1,1, Ij1,2 with respect to γ is O(1). We have

∣∣∣∣Bt − aBs − lim
γ→0

(Bt − aBs)

∣∣∣∣ = O(γ)

by the mean value theorem. The conclusion follows from Theorem 4.3.

C. Recap of Tripuraneni et al. (2021)

In this section, we restate some relevant results of Tripuraneni et al. (2021), in the special cases Σ∗ = Σs or Σ∗ = Σt. See

Tripuraneni et al. (2021) for the original theorems.

For a test distribution x ∼ N(0,Σ∗), define the risk by

EΣ∗ = Ex,β,X,Y,W [(β⊤x− ŷW,X,Y (x))
2].

We have the following bias-variance decomposition

EΣ∗ = Ex,β [(β
⊤x− EW,X,Y [ŷW,X,Y (x)])

2] + Ex,β [VW,X,Y (ŷW,X,Y (x))]

= BΣ∗ + VΣ∗ .

We consider the high-dimensional limit n, d,N → ∞ with d/n→ ϕ and d/N → ψ of the above quantities when Σ∗ = Σs

or Σ∗ = Σt,

Ej = lim
n,d,N→∞

EΣj
, Bj = lim

n,d,N→∞
BΣj

, Vj = lim
n,d,N→∞

VΣj
, j ∈ {s, t}.

Theorem C.1 (Theorem 5.1 of Tripuraneni et al. (2021)). For j ∈ {s, t}, the asymptotic bias and variance are given by

Bj =

(
1−

√
ρj
ρs

)2

mj + 2

(
1−

√
ρj
ρs

)√
ρj
ρs

Ij1,1 +
ρjϕ

ρs
Ij1,2,

Vj = −ρjψ
ϕ

∂κ

∂γ

[
Is
1,1(ωs + ϕIs

1,2)(ωj + Ij1,1) +
ϕ2

ψ
γτ̄Is

1,2Ij2,2

+γτIs
2,2(ωj + ϕIj1,2) + σ2

ε

(
(ωs + ϕIs

1,2)(ωj + Ij1,1) +
ϕ

ψ
γτ̄Ij2,2

)]
,

where κ, τ, τ̄ are defined in (4) and (6).

In the ridgeless limit γ → 0, the variance Vj is further simplified as follows.
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Corollary C.2 (Corollary 5.1 of Tripuraneni et al. (2021)). For j ∈ {s, t}, the asymptotic variance in the ridgeless limit is

lim
γ→0

Vj =
ρjψκ

ρs|ϕ− ψ| (σ
2
ε + Is

1,1)(ωj + Ij1,1) +





ρjκ

ρs

(
1− κ(ωs−σ2

ε)
1−κ2Is

2,2

)
Ij2,2 ϕ ≥ ψ,

ρjκ
2ψIs

2,2

ρs(ϕ−κ2ψIs

2,2)
(ωj + ϕIj1,2) ϕ < ψ,

where κ is defined in (7).

Another important observation is that there is a linear relation between the asymptotic error under the source and target

domain.

Proposition C.3 (Proposition 5.6 of Tripuraneni et al. (2021)). We assume ϕ is fixed. In the ridgeless limit γ → 0 and the

overparametrized regime ϕ ≥ ψ, the error Et is linear in Es, as a function of ψ. That is,

lim
γ→0

Et = brisk +
ρt(ωt + It

1,1)

ρs(ωs + Is
1,1)

lim
γ→0

Es,

where the intercept

brisk =
1

2
bI + lim

γ→0
(Bt − aBs) (51)

and the slope ρt(ωt + It
1,1)/ρs(ωs + Is

1,1) are independent of ψ.

D. Additional Experiments

D.1. Estimation of the Slope

Let Σ̂s, Σ̂t be sample covariance of test inputs from the source and target domain, respectively. Denote the eigenvalues

and corresponding eigenvectors of Σ̂s by λ̂s1, . . . , λ̂
s
d and v̂1, . . . , v̂d. Define λ̂ti = v̂⊤i Σ̂tv̂i for i ∈ [d]. For j ∈ {s, t}, we

estimate Ija,b(κ) by

Îja,b(κ) =
ϕ

d

d∑

i=1

(λ̂si)
a−1λ̂ji

(ϕ+ κλ̂si)
b
.

We estimate the constants defined in (3) by replacing mj with m̂j = tr(Σ̂j), j ∈ {s, t}. Now, the self-consistent equation

(7) is estimated by

κ̂ =
min(1, ϕ/ψ)

ω̂s + Îs
1,1(κ̂)

,

and its unique non-negative solution is denoted by κ̂. The existence and uniqueness of κ̂ follows from Lemma A1.2 of

Tripuraneni et al. (2021). We use

â =
ρ̂t(ω̂t + Ît

1,1(κ̂))

ρ̂s(ω̂s + Îs
1,1(κ̂))

as an estimate of the slope a = ρt(ωt + It
1,1)/ρs(ωs + Is

1,1).

D.2. Deviation from the Line

Figure 5 displays deviation from the line for I disagreement and risk, when non-zero ridge regularization γ is used. Similar

to Figure 3 (b), the deviation is smaller for γ closer to zero. However, unlike SS disagreement, the deviation is non-zero

even in the infinite overparameterization limit ψ → 0. This is consistent with the upper bound we present in Theorem 4.3

and Corollary 4.4.

D.3. Varying Corruption Severity

CIFAR-10-C and Tiny ImageNet-C have different severity of corruption ranging from 1 to 5. We only included a few

selected results in the main text due to space limitations. We present the plots for all severity levels in Figure 7.
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Figure 5. (a) Deviation from the line, DistI (ϕ, ψ, γ)− aDissI (ϕ, ψ, γ)− bI , as a function of ψ for non-zero γ. (b) Deviation from the line,

Et − aEs − brisk, as a function of ψ for non-zero γ. We use ϕ = 0.5, σ2
ε = 10−4, ReLU activation σ, and µ = 0.4δ(0.1,1) + 0.6δ(1,0.1)

D.4. I and SW disagreement

In Figure 8, Figure 9, Figure 6 (a), (b), we repeat the experiment in Section D.3 for I and SW disagreement. Since our theory

suggests that the disagreement-on-the-line phenomenon does not occur for SW disagreement, we do not plot theoretical

predictions for SW disagreement.

D.5. Accuracy and Agreement

In the main text, we consider disagreement and risk defined in terms of mean squared error, but here we present classification

accuracy and 0-1 agreement as studied in Hacohen et al. (2020); Chen et al. (2021); Jiang et al. (2021); Nakkiran & Bansal

(2020); Baek et al. (2022); Atanov et al. (2022); Pliushch et al. (2022); Kirsch & Gal (2022). See Figures 10 and Figure 6

(c).
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Figure 6. (a) Target vs. source independent disagreement of random features model trained on Camelyon17. (b) Target vs. source

shared-weight disagreement of random features model trained on Camelyon17. (c) Target vs. source accuracy and agreement of random

features model trained on Camelyon17; Experimental setting is identical to Section 5.
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Figure 7. Target vs. source shared-sample disagreeement on CIFAR-10 and Tiny ImageNet with varying corruption severity. Experimental

setting is identical to Section 5.
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Figure 8. Target vs. source independent disagreeement on CIFAR-10 and Tiny ImageNet with varying corruption severity. Experimental

setting is identical to Section 5.
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Figure 9. Target vs. source shared-weight disagreeement on CIFAR-10 and Tiny ImageNet with varying corruption severity. Experimental

setting is identical to Section 5.

40



Demystifying Disagreement-on-the-Line in High Dimensions

0.8

0.9

CIFAR10-C-Snow CIFAR10-C-Fog Tiny ImageNet-C-Snow

Accuracy Agreement

S
ev
er
it
y
1

Tiny ImageNet-C-Fog

S
ev
er
it
y
2

0.8

0.9

S
ev
er
it
y
3

0.8

0.9

S
ev
er
it
y
4

0.7

0.8

0.9

0.6 0.8 0.6 0.8

S
ev
er
it
y
5

0.8 0.9

0.7

0.8

0.9

0.8 0.9
Source

T
a
rg
et

Figure 10. Target vs. source classification accuracy and agreement on CIFAR-10 and Tiny ImageNet with varying corruption severity.

Experimental setting is identical to Section 5.
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