
SMART-eFlo: An Integrated SUMO-Gym Framework for Multi-Agent
Reinforcement Learning in Electric Fleet Management Problem

Shuo Liu∗, Yunhao Wang∗, Xu Chen, Yongjie Fu, Xuan Di Member, IEEE

Abstract— Electric vehicles (EVs) have been used in the
ride-hailing system in recent years, which brings the elec-
tric fleet management problem (EFMP) critical. This paper
aims to leverage multi-agent reinforcement learning (MARL)
in EFMP. In particular, we focus on how EVs learn to
manage battery charging, pick up and drop off passengers.
We propose an integrated SUMO-Gym framework based on
the SUMO simulator to capture EVs’ asynchronous decision-
making regarding charging and ride-hailing in complex traffic
environments. We adopt a hierarchical reinforcement learning
(HRL) scheme, where each EV decides to get charged or pick
up a passenger on the upper level and chooses a charging
station or passenger on the lower level. We develop a learning
algorithm for the HRL scheme to solve EFMP and present
numerical results about the efficiency of our algorithm and
policies EVs have learned in EFMP. Our codes are available at
https://github.com/LovelyBuggies/SUMO-Gym, which provides
an open-source environment for researchers to design traffic
scenarios and test RL algorithms for EFMP.

I. INTRODUCTION

EVs are anticipated to reduce emissions, save energy and
improve mobility. However, the increasing use of EVs in the
ride-hailing system raises many challenges: The detour time
of idle EVs when searching for passengers in the system can
lead to more frequent charging needs. The lack of charging
stations and slow charging speed can heavily affect the ride-
hailing service. This paper leverages MARL to solve the
EFMP.

A. Related Work

Recent years have seen a growing trend of applying
MARL in fleet management problems, including vehicle
dispatching and repositioning [1], order dispatching [2], [3],
online matching [4] and reward design [5]. There are a
few studies focusing on EFMP. [6], [7], [8], [9] apply deep
reinforcement learning to vehicle routing for EVs in the
ride-hailing system. [10], [11], [12] study charging station
recommendation. However, these studies do not fully cap-
ture factors that can affect EVs’ decision-making, including
the battery status, the spatial distribution of passengers,

(Corresponding author: Xuan Di.)
Shuo Liu and Yunhao Wang are with the Department of Computer

Science, Columbia University, New York City, NY 10027 USA (e-mail:
sl4921@columbia.edu, yw3736@columbia.edu). (∗: Shuo Liu and Yunhao
Wang equally contributed to this work.)

Xu Chen and Yongjie Fu are with the Department of Civil Engineering
and Engineering Mechanics, Columbia University, New York City, NY
10027 USA (e-mail: xc2412@columbia.edu, yf2578@columbia.edu).

Xuan Di is with the Department of Civil Engineering and Engineering
Mechanics, Columbia University, New York, NY, 10027 USA, and also with
the Data Science Institute, Columbia University, New York, NY, 10027 USA
(e-mail: sharon.di@columbia.edu).

the waiting time in charging stations and road congestion.
Therefore, we propose an integrated SUMO-Gym framework
based on the SUMO simulator [13], which incorporates EVs,
passengers, charging stations, traffic signals and background
vehicles into traffic environments.

Existing literature has used the SUMO simulator to create
complex traffic environments for MARL, including multi-
agent routing game [14] and traffic signal control [15].
However, these studies cannot provide a reliable framework
that allows researchers to implement various traffic scenarios
for MARL. Therefore, we resort to Gym [16], a flexible
paradigm to test RL algorithms, and combine it with SUMO
in this work. In particular, we adopt the multi-agent Gym,
i.e., Petting-Zoo [17], to develop the integrated framework
SUMO-Gym for MARL in EFMP. Compared to some ex-
isting work like Flow [18] and SMARTS [19], SUMO-
Gym allows users to flexibly create a wide range of multi-
agent problem scenarios and its environments are highly
configurable. By leveraging SUMO-Gym, users can easily
implement different scenarios and embed RL algorithms.

B. Contributions

Contributions of this paper include:
1) We propose an integrated SUMO-Gym framework,

which incorporates traffic environments from the
SUMO simulator into Petting-Zoo for MARL research.

2) Based on SUMO-Gym framework, we adopt an HRL
scheme to solve EFMP using deep Q-learning algo-
rithm.

3) We implement the HRL scheme for EFMP on two road
networks, i.e., Jumbo and COSMOS [20].

The rest of the paper is organized as follows. Sec. II
describes the EFMP we study in this paper. Sec. III intro-
duces the workflow of our proposed SUMO-Gym framework.
Sec. IV introduces the HRL scheme to solve EFMP. Sec. V
presents numerical results. Sec. VI concludes this study.

II. EFMP

In this section, we use a small road network to demonstrate
the EFMP. In Fig. 1, the road network is represented by a
grid world. There are three EVs, two charging stations, and
four passengers who need to be picked up. Flags represent
the destinations of passengers. EVs, denoted by green, blue,
and red cars, make decisions regarding charging and picking
up passengers. Arrows represent the trajectories of EVs.
For example, the dashed red line marked by 1⃝ shows that
an idle EV (red car) first picks up a passenger and drops
the passenger off at the destination (the solid red line). As

2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC)
October 8-12, 2022, Macau, China

978-1-6654-6880-0/22/$31.00 ©2022 IEEE 3026

20
22

 IE
EE

 2
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 In
te

lli
ge

nt
 T

ra
ns

po
rt

at
io

n
Sy

st
em

s (
IT

SC
) |

 9
78

-1
-6

65
4-

68
80

-0
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IT

SC
55

14
0.

20
22

.9
92

20
47

Authorized licensed use limited to: Columbia University Libraries. Downloaded on August 21,2023 at 13:39:58 UTC from IEEE Xplore. Restrictions apply.

demonstrated by red line 2⃝ and 3⃝, this EV then goes to
a charging station and then picks up another passenger after
its battery is charged. In this work, the goal of EFMP is to
find the optimal strategy in EVs’ sequential decision making
about charging and picking up passengers.

Fig. 1: EFMP.

III. SUMO-GYM FRAMEWORK

In this section, we introduce the details of the integrated
SUMO-Gym framework (See Fig. 2).

A. SUMO

We first demonstrate the settings of traffic environments
configured in the SUMO simulator as follows:

• Travel demand: The spatio-temporal distribution of pas-
sengers, including origins and destinations.

• Road network: Users can design road networks for
simulation. In this work, we use Jumbo and COSMOS
networks. The COSMOS network is created based on
the road information extracted by OpenStreetMap API.

• EV settings: The set-up of each EV includes its current
location, battery status, battery capacity and maximum
driving speed.

• Charging station settings: The set-up of each charging
station includes its location, charging speed and charg-
ing delay.

SUMO-Gym obtains the settings of traffic environments
from SUMO initial xml configurations and through TraCI at
run time.

B. Multi-Agent Gym

We then introduce the set-up of multi-agent Gym:
• Reset: The initial locations of fully-charged EVs are

randomized at the beginning of each episode. All charg-
ing stations are not occupied.

• Step: In each step, agents who need to make decisions
will select actions, draw their private observations and
get rewards. Their experiences are stored in replay
buffers. Agents who do not need to make decisions only
update their own states through the move function.

• Close: The terminal states are when the EVs pick up
all passengers or all of them run out of power.

C. MARL Algorithm

The MARL algorithm used to study EFMP in the SUMO-
Gym framework will be introduced in Sec. IV.

IV. HRL SCHEME

In this section, we introduce an HRL scheme to solve
EFMP based on the proposed SUMO-Gym framework (See
Fig. 3). The HRL scheme incorporates hierarchical decision-
making of agents into the learning process [21]. [22] provides
a more comprehensive review of HRL. We describe the
details of our HRL scheme we apply in the following
subsections.

A. Upper-Level

On the upper level, EVs need to make decisions about
whether to pick up passengers or go to charging stations.
We adopt a partially observable Markov decision process
(POMDP), denoted by ⟨S̄, Ā, P̄, R̄, Ō, γ̄⟩, to capture EVs’
decision making because each EV can only obtain its neigh-
borhood information with the environment state s̄ ∈ S̄ not
fully observable to the agent. We specify each element in the
POMDP as follows:

• m. There are m EVs in the environment, denoted by
{1, 2, · · · ,m}.

• s̄ ∈ S̄. On the upper level, state s̄ refers to the battery
status of all EVs and the spatial distribution of all
road users. Non-strategic background vehicles generated
from SUMO are introduced in the environment.

• ā ∈ Ā. The action space is discrete. Joint ac-
tion is ā = (ā1, ā2, · · · , ām) where āi ∈ Āi =
{charge, pick-up}, i = 1, 2, ...,m.

• p̄ ∈ P̄ . After taking action ā in state s̄, an agent arrives
at a new state s̄′ with conditional transitions probability
p̄h(s̄′|s̄, ā). p̄ is typically unknown to the agent, thus the
agent needs to repeatedly interact with the environment
to gain state transition experiences, i.e., (s̄, ā, s̄′).

• r̄ ∈ R̄. When state s̄ transits to s̄′ by taking action ā,
the agent receives a reward r̄(s̄, ā, s̄′). An EV will get
a positive reward when it is charged successfully or it
drops the passenger off at the destination. When the EV
runs out of its power before reaching a charging station,
it gets a negative reward.

• ō ∈ Ō. Each EV is able to draw a private observation ō.
We assume each agent can only observe its neighbor-
hood environment, which is part of the traffic environ-
ment s̄. Joint observation is ō = (ō1, ō2, · · · , ōm) and
ōi, i = 1, ..,m includes the battery status of agent i and
locations of vehicles in the agent’s neighborhood.

• γ̄ is the discount factor for discounting future rewards.
When γ̄ = 1, the agent does not differentiate future
rewards from the immediate rewards. As γ̄ gets smaller,
the agent cares less about rewards received in the distant
future, therefore the decision-making gets more myopic.

3027

Authorized licensed use limited to: Columbia University Libraries. Downloaded on August 21,2023 at 13:39:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: SUMO-Gym framework with user-friendly interfaces in Petting-Zoo style.

The Q-value function Q̄i for agent i is an estimate of
expected future reward that can be obtained from observation
ō and joint action ā, namely:

Q̄i = Q̄i(ōi, ā) (1)

In this work, we use deep Q-networks (DQNs) [23] as
a function approximator of the Q-value function. DQN Q̄θ

updates its parameter θ by minimizing the loss function L̄.

L̄(θ) = Eō,ā,s̄′
[
(r̄(ō, ā, ō′) + γ̄max

ā′
Q̄θ−(ō′, ā′)− Q̄θ(ō, ā))

2
]
.

where Q̄θ− is the target network parameterized by θ−.

∇θLc(θ) =∇θEoc,ac,oc′
[
(− Qc

θ
(oc, ac)

+ rc(oc, ac, oc′) + γc max
ac′

Qc

θ−(o
c′, ac′))2

]
.

B. Lower-Level

On the lower level, an EV needs to choose a charging
station on the road network if the decision on the upper
level is charging. The EV chooses a specific passenger if
the decision on the upper level is to pick up. We specify
elements on the lower level as follows:

Charge:
• sc ∈ Sc. State sc includes the status of charging stations

(i.e., whether a charging station is occupied or not) and
locations of EVs.

• ac ∈ Ac. The action of an EV is to choose a charging
station. Once EV chooses a charging station, it will
follow the shortest path from the current location to
the station.

• rc ∈ Rc. rc depends on the battery status and the
waiting time of an EV to be charged successfully.

• oc ∈ Oc. Each EV draws a private observation, includ-
ing whether each charging station is occupied or not
and its current location.

Algorithm 1 EFMP-HRL

Input: exploration parameter ϵ = ϵ0, learning rate η = η0,
network update period k, target network update period τ .
Initialize DQNs on the upper and lower level for each
agent.
for episode← 1 to M do

while s is not terminal do
On the upper level:
Each agent selects action āi (ϵ greedy method).
On the lower level:
Each agent selects action ai (aci or api).
Execute actions and update observations.
Store (ōi, āi, r̄i, ō

′
i) on the upper level.

Store (oi, ai, ri, o
′
i) on the lower level.

end while
Sample a batch of experience from replay buffers and
Update parameter θ̄i of Q̄i, θi of Q

i
by minimizing

the loss function every k episode.
Decrease the exploration parameter ϵ.
Decrease the learning rate η.
Update target networks every τ episodes.

end for

The Q-value function is formulated as:

Qc

i
= Qc

i
(oci , a

c) (2)

Pick-up:
• sp ∈ Sp. State sp includes whether passengers have

been picked up or not and locations of EVs.
• ap ∈ Ap. The action of an EV is to choose a passenger

to pick up. The EV will use the shortest path from its
current location to the passenger.

• rp ∈ Rp. rp depends on the trip fare.
• op ∈ Op. Each EV draws a private observation, includ-

ing whether passengers have been picked up and its

3028

Authorized licensed use limited to: Columbia University Libraries. Downloaded on August 21,2023 at 13:39:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: HRL scheme to solve EFMP.

current location.
The Q-value function is formulated as:

Qp

i
= Qp

i
(opi , a

p) (3)

C. Algorithm

The algorithm to solve EFMP is summarized in Alg. 1.
We first initialize DQNs and target DQNs on the upper
and lower level for each agent. According to the widely
used ϵ-greedy method, i.e., to choose action randomly with
probability ϵ and from optimal policy with probability 1− ϵ,
each agent first selection action āi, i = 1, ...,m on the upper
level and then selection action ai on the lower level until
reaching some terminal state. Joint action is executed in the
environment to trigger the state transition s→ s′. Each agent
keeps drawing private observations and getting their rewards.
Their experience (ōi, āi, r̄i, ō

′
i) and (oi, ai, ri, o

′
i) are stored

in replay buffers on the lower and upper level networks,
respectively. Batching training is then used to update Q
function by minimizing the loss function. Target networks
are updated every τ periods.

V. EXPERIMENTS

In this section, we apply the HRL scheme to two road
networks: Jumbo and COSMOS. We first introduce the set-
up of our traffic environments for EFMP and then present
numerical results.

A. Set-up

The set-up of Jumbo and COSMOS networks is demon-
strated in Table. I. On the upper level, we construct a DQN
for each agent, using multi-layer perceptions with 5 fully
connected layers. We use an adaptive learning rate starting
from 0.003 and the learning rate decays 5% in every 25
episode. The Q-network gradient descents every 10 episode
and the target Q-network is synchronized every 20 episode.
On the lower level, we construct two DQNs for each agent
with respect to the upper-level decisions: charging and pick-
up. The learning rate starts from 0.02 and decays 5% in every
25 episode. The training batch size of DQNs on Jumbo and
COSMOS are 8 and 32, respectively. Other hyperparameters
on the lower level are the same as those on the upper level.
We use the Adam optimizer for all DQNs in our study.

B. Results and Discussion

We first look into the algorithm performance. The conver-
gence of the reward and loss function for an agent in the
Jumbo network is illustrated in Fig. 4a and 4b, respectively.
Fig. 4c and 4d demonstrate the algorithm performance in
the COSMOS network. It takes around 200 and 80 episodes
for EVs to stabilize their policy learning in the Jumbo and
COSMOS networks, respectively.

Fig. 5a, 5b and 5c demonstrate sample trajectories of an
EV in the COSMOS network. The blue arrows in Fig. 5a

3029

Authorized licensed use limited to: Columbia University Libraries. Downloaded on August 21,2023 at 13:39:58 UTC from IEEE Xplore. Restrictions apply.

(a) Reward curves in Jumbo. (b) Loss curves in Jumbo.

(c) Reward curves in COSMOS. (d) Loss curves in COSMOS.

Fig. 4: Algorithm performance.

Node Link Passenger EV Charging Station Traffic Light Background Vehicle
Jumbo 31 74 17 10 2 14 1000

COSMOS 75 202 49 12 2 56 5000

TABLE I: Set-up of Jumbo and COSMOS networks.

show that when an EV is in a safe battery status, it first picks
up a passenger and drops off the passenger at the destination.
The EV then picks up another passenger. The yellow arrow
in Fig. 5b shows that when an EV is in an alert battery
status, it first picks up a passenger. After dropping off the
passenger, the EV goes to a charging station before picking
up another passenger. The green arrows in Fig. 5c show that
an EV chooses the charging station that is not fully loaded
before picking up the second passenger.

We adopt the trained policy of EVs for 100 runs and look
into several performance measures in the EFMP, which are
defined as follows:

• TBC: Total battery consumption (TBC) refers to how
much power EVs need to consume to finish all tasks.

• CWT: Charging waiting time (CWT) is the average
waiting time for each EV to get charged.

• PWT: Passenger waiting time (PWT) refers to the
average waiting time for a passenger to be picked up.

• PFR: Pick-up failure rate (PFR) refers to the proportion
of cases in 100 runs that all EVs have run out of power
before picking up all passengers.

We make a comparison of performance measures in the
proposed HRL scheme and in the case when all EVs
randomly select charging stations or pick up passengers
(Table. II). It is shown that EVs in the HRL scheme complete

tasks with lower energy consumption and less waiting time.

VI. CONCLUSIONS

In this paper, we propose an integrated SUMO-Gym
framework for MARL studies. This framework incorporates
the SUMO simulator into the multi-agent Gym, which al-
lows researchers to easily implement different scenarios and
embed RL algorithms. Based on the proposed SUMO-Gym
framework, we adopt an HRL scheme to solve the EFMP.
We implement numerical experiments to study EVs’ policy
learning on Jumbo and COSMOS networks. Results show
that compared to the strategy that EVs randomly go to
charging stations or pick up passengers, the trained policy in
the HRL scheme allows EVs to complete tasks with lower
energy consumption and less waiting time.

REFERENCES

[1] John Holler, Risto Vuorio, Zhiwei Qin, Xiaocheng Tang, Yan Jiao,
Tiancheng Jin, Satinder Singh, Chenxi Wang, and Jieping Ye. Deep
reinforcement learning for multi-driver vehicle dispatching and repo-
sitioning problem. In 2019 IEEE International Conference on Data
Mining (ICDM), pages 1090–1095. IEEE, 2019.

[2] Zhiwei Qin, Xiaocheng Tang, Yan Jiao, Fan Zhang, Zhe Xu, Hongtu
Zhu, and Jieping Ye. Ride-hailing order dispatching at didi via
reinforcement learning. INFORMS Journal on Applied Analytics,
50(5):272–286, 2020.

3030

Authorized licensed use limited to: Columbia University Libraries. Downloaded on August 21,2023 at 13:39:58 UTC from IEEE Xplore. Restrictions apply.

(a) When an agent is in the safe battery
status and charging stations are all vacant.

(b) When an agent is in an
alert battery status.

(c) When a charging station
(grey) is fully loaded.

(d) A real-world map of the
COSMOS network.

Fig. 5: Routing choice of an EV.

TBC CWT PWT PFR
HRL Random HRL Random HRL Random HRL Random

Jumbo 273.35 kWh 334.28 kWh 2.53s 3.64s 213.42s 221.57s 32% 61%

COSMOS 279.61 kWh 427.67 kWh 2.98s 3.25s 106.98s 148.05s 18% 35%

TABLE II: Performance measures.

[3] Kaixiang Lin, Renyu Zhao, Zhe Xu, and Jiayu Zhou. Efficient large-
scale fleet management via multi-agent deep reinforcement learning.
In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 1774–1783, 2018.

[4] Jintao Ke, Feng Xiao, Hai Yang, and Jieping Ye. Optimizing online
matching for ride-sourcing services with multi-agent deep reinforce-
ment learning. arXiv preprint arXiv:1902.06228, 2019.

[5] Zhenyu Shou and Xuan Di. Reward design for driver repositioning
using multi-agent reinforcement learning. Transportation Research
Part C: Emerging Technologies, 119:102738, 2020.

[6] Bo Lin, Bissan Ghaddar, and Jatin Nathwani. Deep reinforcement
learning for the electric vehicle routing problem with time windows.
IEEE Transactions on Intelligent Transportation Systems, 2021.

[7] Jie Shi, Yuanqi Gao, Wei Wang, Nanpeng Yu, and Petros A Ioannou.
Operating electric vehicle fleet for ride-hailing services with rein-
forcement learning. IEEE Transactions on Intelligent Transportation
Systems, 21(11):4822–4834, 2019.

[8] Nicholas D Kullman, Martin Cousineau, Justin C Goodson, and
Jorge E Mendoza. Dynamic ride-hailing with electric vehicles.
Transportation Science, 2021.

[9] Xindi Tang, Meng Li, Xi Lin, and Fang He. Online operations
of automated electric taxi fleets: An advisor-student reinforcement
learning framework. Transportation Research Part C: Emerging
Technologies, 121:102844, 2020.

[10] Weijia Zhang, Hao Liu, Fan Wang, Tong Xu, Haoran Xin, Dejing Dou,
and Hui Xiong. Intelligent electric vehicle charging recommendation
based on multi-agent reinforcement learning. In Proceedings of the
Web Conference 2021, pages 1856–1867, 2021.

[11] Anyun Yang, Hongbin Sun, and Xiao Zhang. Deep reinforcement
learning strategy for electric vehicle charging considering wind power
fluctuation. Journal of Engineering Science & Technology Review,
14(3), 2021.

[12] Enshu Wang, Rong Ding, Zhaoxing Yang, Haiming Jin, Chenglin
Miao, Lu Su, Fan Zhang, Chunming Qiao, and Xinbing Wang.
Joint charging and relocation recommendation for e-taxi drivers via
multi-agent mean field hierarchical reinforcement learning. IEEE
Transactions on Mobile Computing, 2020.

[13] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob
Erdmann, Yun-Pang Flötteröd, Robert Hilbrich, Leonhard Lücken,
Johannes Rummel, Peter Wagner, and Evamarie Wießner. Microscopic
traffic simulation using sumo. In The 21st IEEE International
Conference on Intelligent Transportation Systems. IEEE, 2018.

[14] Zhenyu Shou, Xu Chen, Yongjie Fu, and Xuan Di. Multi-agent
reinforcement learning for markov routing games: A new modeling
paradigm for dynamic traffic assignment. Transportation Research
Part C: Emerging Technologies, 137:103560, 2022.

[15] Wangzhi Li, Zhaobin Mo, Yongjie Fu, Kangrui Ruan, and Xuan Di.
Cvlight: Decentralized learning for adaptive traffic signal control with
connected vehicles. arXiv preprint arXiv:2104.10340, 2021.

[16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv
preprint arXiv:1606.01540, 2016.

[17] Justin K Terry, Benjamin Black, Nathaniel Grammel, Mario Jayaku-
mar, Ananth Hari, Ryan Sullivan, Luis Santos, Clemens Dieffendahl,
Caroline Horsch, Rodrigo Perez-Vicente, et al. Pettingzoo: Gym for
multi-agent reinforcement learning. Advances in Neural Information
Processing Systems, 34, 2021.

[18] Nishant Kheterpal, Kanaad Parvate, Cathy Wu, Aboudy Kreidieh,
Eugene Vinitsky, and Alexandre Bayen. Flow: Deep reinforcement
learning for control in sumo. EPiC Series in Engineering, 2:134–151,
2018.

[19] Zhou Ming and Luo Jun. Smarts: Scalable multi-agent reinforcement
learning training school for autonomous driving. 2021.

[20] PAWR NSF. Cosmos: Cloud enhanced open software defined mobile
wireless testbed for city-scale deployment.

[21] Tejas D. Kulkarni, Karthik R. Narasimhan, Ardavan Saeedi, and
Joshua B. Tenenbaum. Hierarchical deep reinforcement learning:
Integrating temporal abstraction and intrinsic motivation. In Pro-
ceedings of the 30th International Conference on Neural Information
Processing Systems, NIPS’16, page 3682–3690, Red Hook, NY, USA,
2016. Curran Associates Inc.

[22] Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek.
Hierarchical reinforcement learning: A comprehensive survey. ACM
Comput. Surv., 54(5), 2021.

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,
Joel Veness, Marc G. Bellemare, Alex Graves, Martin A. Riedmiller,
Andreas Fidjeland, Georg Ostrovski, Stig Petersen, Charlie Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control
through deep reinforcement learning. Nature, 518:529–533, 2015.

3031

Authorized licensed use limited to: Columbia University Libraries. Downloaded on August 21,2023 at 13:39:58 UTC from IEEE Xplore. Restrictions apply.

