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ABSTRACT
Deep learning-based topology optimization predictors have

been shown to be effective in generating optimal designs. How-
ever, these predictors are prone to topological errors, partic-
ularly for high-resolution domains. Although various methods
have been developed to enhance the accuracy of predicted struc-
tures, such as using large training datasets, complex networks,
and physics-based loss functions, they do not include topologi-
cal metrics in the deep learning models. Similar issues arise in
other applications, such as blood vessels, neurons, or road seg-
mentation from images, and several modifications to typical loss
functions have been proposed to improve the topological validity
of the predictions. In this study, we evaluate and compare four
distinct topological loss functions to explore their influence on
the performance of deep learning-based topology optimization
predictors. Our findings offer insights into the advantages and
limitations of these modified loss functions and provide a ba-
sis for future research and development aimed at improving the
accuracy and efficiency of deep learning predictors in topology
optimization.
Keywords: Topology Optimization, Topological loss func-
tions, Deep learning

1. INTRODUCTION
Various deep learning algorithms have been used in topol-

ogy optimization (TO) to efficiently predict optimal designs.
These approaches have successfully generated exemplary designs
through gradient-based TO and have shown some level of gen-
eralizability in exploring the design space. However, a major
drawback of these methods is that the predicted structures of-
ten suffer from topological errors, resulting in weaker structural
performance and decreased manufacturability compared to the
ground truths obtained from gradient-based optimization meth-
ods [1]. To address this challenge, different approaches have
been proposed, such as using large training datasets [2], em-
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ploying complex networks [3], and incorporating a physical loss
function into the training process [4]. Although these methods
show promise in improving the quality of predicted structures,
they are computationally inefficient and do not integrate topo-
logical metrics into the deep learning model. The premise of
this work is that by integrating topological information into the
model, topologically correct structures can be generated without
requiring large amounts of training data or complex networks.

Of course, topological errors are not confined to topology
optimization (TO) predictors. Segmentation algorithms, such
as those used for road and blood vessel segmentation, are also
susceptible to this type of errors. Various methods have been
developed to address this issue in segmentation models, includ-
ing the use of topological loss functions [5–7] and of complex
networks [8, 9]. For further information, please refer to [10]. De-
spite extensive efforts to integrate topological features into deep
learning models in the segmentation literature, this issue has
not received much attention in the TO community. Our recent
work [11] demonstrates that the incorporation of topological loss
terms improves the connectivity of the predicted optimal struc-
tures. Specifically, in [11] we have shown that using persistence
homology-based loss functions can generate structures with twice
better connectivity compared to the baseline predictions.

The existing loss functions are essentially global metrics that
assess the overall fit for a domain, typically represented as a uni-
form grid in 2D or 3D. Despite incorporating topology-aware
terms, these loss functions generally fail to account for localized
geometric changes, rendering them ineffective in penalizing the
unwanted “artifacts” in the predictions produced by the gener-
ative models. Developing metrics that capture local geometric
changes, which in turn induce desired topological properties, re-
mains a challenge.

This paper aims to take a step in addressing this limitation by
investigating the effectiveness of various topological loss func-
tions in enhancing the accuracy of deep learning-based topol-
ogy optimization predictors and by assessing the corresponding
advantages and limitations. Specifically, a convolutional neu-
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ral network similar to the one used in [12] is trained with four
different topological loss functions: clDice [5], the TopoLoss
[6], the Wasserstein loss [13], and the Bottleneck loss function
[11]. Moreover, we also explore the limitations of each loss func-
tion, such as the associated computational complexity, and evalu-
ate their effectiveness in generating accurate and well-connected
structures. Overall, this study contributes to the ongoing efforts
to improve the accuracy and efficiency of deep learning-based
topology optimization predictors, and its findings can be used to
guide future research and development in this area.

2. BACKGROUND
Gradient-based topology optimization algorithms are com-

putationally expensive, which limits their ability to explore the
design space efficiently. In recent years, deep learning-based
topology optimization predictors have emerged as a potential al-
ternative because, once the models are trained, they can efficiently
generate optimal designs [14–17]. However, one major challenge
of all these methods is that the predicted structures often suffer
from topological errors, which in turn leads to weaker struc-
tural performance and decreased manufacturability compared to
the optimal solutions predicted by gradient-based optimization
methods.

Various approaches have been proposed to improve the topo-
logical quality of the structures predicted by deep learning mod-
els. For example, the authors in [2] showed that by using 296,000
training cases for their CNN model, they could obtain the struc-
tures with better pixel-wise accuracy compared to their bench-
mark method [18] where the authors used 80,000 cases for train-
ing. As expected, using a larger training dataset leads to better
accuracy. However, generating this type of data is a very expen-
sive process because every solution requires often hundreds of
Finite Element simulations, and the cost increases exponentially
with the resolution and the dimension of the space. Moreover,
these models are trained to predict material occupancy for each
cell of the grid (pixel in 2D or voxel in 3D), and do not include any
topological information in the development of the model. Some
other studies used more complex models, e.g., Generative Adver-
sarial Networks, to obtain better structures [19, 20]. Although
these models have shown a better performance and generalizabil-
ity compared to CNNs, these models are often difficult to train,
need a large amount of data, and often produce structures with
disconnected members. At the same time, the severity of these er-
rors increases rapidly as the boundary conditions move away from
those included in the training distribution. Physical constraints
have been added to the loss function in [4], and these constraints
are based on a compliance error defined through the pixel-wise
loss function in the training process of the deep learning model.
Despite some improvements in the quality of the predicted struc-
tures, the proposed method estimates the compliance at every step
through a finite element analysis each time the loss function is
calculate, which is time-consuming. Although these approaches
can improve the quality of the predicted structures, they do not
incorporate topological information into the training process.

The inclusion of topological information into the training
process did not receive significant attention in the TO community.
Nevertheless, numerous studies have focused on the topological

connectedness of segmentation algorithms, which encounter sim-
ilar challenges. Topological errors in segmentation can lead to
inaccurate identification of regions, thereby affecting the accu-
racy of subsequent analysis. Consequently, several methods have
been developed to address this problem, and the vast majority
of the existing methods included topology-aware terms into their
loss functions. For example, in one of the early attempts to use
topological loss functions, [6] proposed a modified Wasserstein
distance based on persistent homology [21, 22]. This loss func-
tion enforced the segmented image to exhibit the same Betti error
as the ground truth. Results from this study demonstrated that
the loss function effectively reduced Betti errors on various 2D
datasets containing natural and biomedical images. Another work
by [23] introduced a topological loss function that utilizes per-
sistent homology barcodes. They showed that their loss function
improved the Betti error by a factor of 10 in the multi-class seg-
mentation of 2D short axis and 3D whole heart cardiac magnetic
resonance (CMR) images compared to a baseline U-Net model.
In a different approach, [5] proposed a novel connectivity-aware
similarity measure called center-lineDice (clDice) for image seg-
mentation problems. Their loss function involved intersecting
the segmentation masks with morphological skeletons. Results
presented in their study, encompassing five public 2D and 3D
datasets, demonstrated that clDice effectively improved topologi-
cal errors in the segmented images. Moreover, [13] employed the
Wasserstein distance in the loss function to minimize topological
discrepancies in 3D reconstruction. They revealed that incor-
porating the topological loss function alongside the pixel-wise
loss function improved the quality of the reconstructed images.
Numerous other studies have also integrated topological infor-
mation into segmentation problems, such as those conducted in
[24–30]. Interested readers can explore these studies for more
detailed information.

It’s important to consider that while many of the existing
topological loss functions have proven to be versatile in their abil-
ity to handle both 2D and 3D images, they often come with a sig-
nificant computational burden, especially when dealing with 3D
images. Specifically, approaches based on persistence homology
may be too computationally expensive for high-resolution images,
which can limit their usefulness in certain scenarios. Therefore, it
is crucial to continue exploring alternative approaches or imple-
mentations for integrating topological features into deep learning
methods’ training process. This includes investigating topology
optimization predictors, with a specific emphasis on enhancing
their scalability and computational efficiency when working with
3D image datasets.

3. CONTRIBUTIONS AND OUTLINE
While the importance of topological connectedness in topol-

ogy optimization problems cannot be overstated, only one study
[11] has examined the utilization of topological loss functions
during the training phase. However, this previous work did not
comprehensively evaluate the significance and limitations of dif-
ferent topological loss functions. To address this gap, the present
paper investigates the impact of various existing topological loss
functions, including those proposed by [5, 6, 11, 13], on the
performance of deep learning-based topology optimization pre-
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dictors. Our investigation includes a detailed analysis of the
advantages and limitations of each loss function, taking into ac-
count factors such as computational complexity. Additionally, we
assess the effectiveness of each loss function in generating accu-
rate and connected structures. This research study contributes to
ongoing efforts aimed at enhancing the accuracy and efficiency
of deep learning-based topology optimization predictors by ex-
ploring the application of diverse topological loss functions. The
findings of this study can provide valuable guidance for future
research and development endeavors in this field.

4. METHOD
4.1 Topological loss functions

A CNN model similar to the one employed in [12] has been
trained using 2, 250 structures at a resolution of 120 × 240, as
described in [11], and all model hyperparameters are similar to
those used in [12]. The model underwent an initial training
of 100 epochs, followed by fine-tuning for another 150 epochs
using four different topological loss functions: TopoLoss, clDice,
Wasserstein distance, and Bottleneck distance. During the fine-
tuning process of all but the clDice loss function, the topological
losses were incorporated as an additional term with an appropriate
coefficient into the binary cross-entropy loss. The clDice loss
function uses the Dice score instead of binary cross-entropy as
its primary loss function. In the following section, we provide a
detailed explanation of each topological loss function.

4.1.1 TopoLoss [6]. Persistent homology is a fundamen-
tal concept in the field of topological data analysis, which aims
to capture the essential topological properties of an object. It
achieves this by examining how the homology groups of a space
change as a parameter, such as scale or distance, varies. Let’s con-
sider a continuous image domain denoted as Ω ⊂ 𝑅2, along with
a predicted image function 𝑓 : Ω → 𝑅 and a segmentation image
𝑋 ⊂ 𝑅 obtained by applying a threshold to the predicted image.
The d-dimensional topological structure of 𝑋 represents a class
of d-manifolds that can be transformed into each other within 𝑋 .
Simply put, 0-dimensional structures correspond to connected
components, while 1-dimensional structures correspond to han-
dles. To capture the complete range of topological information
within 𝑓 , persistent homology involves applying different thresh-
olds to the predicted image 𝑓 . As the threshold decreases, the
topology of 𝑓 undergoes changes, leading to the “birth” of new
topological structures and the elimination of existing ones. This
information is often visualized using a persistence diagram, de-
noted as 𝐷𝑔𝑚( 𝑓 ), which provides a graphical representation of
the birth and death of topological features across different param-
eter values [21, 22].

TopoLoss [6] describes a modified version of the Wasserstein
distance that is specifically designed for comparing persistence
diagrams. Given the persistence diagrams of an image prediction
(𝐷𝑔𝑚( 𝑓 )) and the ground truth (𝐷𝑔𝑚(𝑔)), TopoLoss aims to find
the optimal one-to-one mapping between the points in 𝐷𝑔𝑚( 𝑓 )
and 𝐷𝑔𝑚(𝑔), and then calculate the total squared distance be-
tween the corresponding point sets. The matching algorithm
proceeds as follows. The points from 𝐷𝑔𝑚(𝑔) are placed at the
upper-left corner 𝑝𝑢𝑙 = (0, 1), with birth(𝑝𝑢𝑙) = 1 and death(𝑝𝑢𝑙) =

0. Then, TopoLoss identifies the points in 𝐷𝑔𝑚( 𝑓 ) that are clos-
est to 𝑝𝑢𝑙 and maps them to the corresponding points in 𝐷𝑔𝑚(𝑔).
The algorithm computes the squared distances from all points
in 𝐷𝑔𝑚( 𝑓 ) to 𝑝𝑢𝑙 , and then sorts these distances. In summary,
TopoLoss can be formulated as:

𝐿𝑡𝑜𝑝𝑜 ( 𝑓 , 𝑔) =
∑︂

𝑝∈𝑑𝑔𝑚( 𝑓 )
[𝑏𝑖𝑟𝑡ℎ(𝑝) − 𝑏𝑖𝑟𝑡ℎ(𝛾∗ (𝑝)]2

+ [𝑑𝑒𝑎𝑡ℎ(𝑝) − 𝑑𝑒𝑎𝑡ℎ(𝛾∗ (𝑝)]2 (1)

Where 𝛾∗ is the optimal matching between two different point
sets. For further information about TopoLoss, we direct the
reader to the original paper [6].

4.1.2 Center-LineDice (clDice) [5]. The clDice loss func-
tion utilizes morphological thinning, achieved through min- and
max-pooling as a substitute for morphological erosion and dila-
tion, on both the predicted and ground truth images. Given the
ground truth (𝐺) and the predicted image (𝑃) as a binary image
and their corresponding skeletons 𝑆𝐺 and 𝑆𝑃 , the clDice loss
function can be obtained from the following formula:

𝑐𝑙𝐷𝑖𝑐𝑒(𝐺, 𝑃) = 2 ×
𝑇𝑝𝑟𝑒𝑐 (𝑆𝑃 , 𝐺) × 𝑇𝑠𝑒𝑛𝑠 (𝑆𝐺 , 𝑃)
𝑇𝑝𝑟𝑒𝑐 (𝑆𝑃 , 𝐺) + 𝑇𝑠𝑒𝑛𝑠 (𝑆𝐺 , 𝑃)

(2)

Where 𝑇𝑝𝑟𝑒𝑐 and 𝑇𝑠𝑒𝑛𝑠 are the Topology Precision and Topology
Sensitivity, respectively, that can be obtained from:

𝑇𝑝𝑟𝑒𝑐 (𝑆𝑃 , 𝐺) = |𝑆𝑃 ∩ 𝐺 |
|𝑆𝑃 |

(3)

𝑇𝑠𝑒𝑛𝑠 (𝑆𝐺 , 𝑃) =
|𝑆𝐺 ∩ 𝑃 |
|𝑆𝐺 | (4)

The crucial step to calculate the clDice loss is to find the skeleton
of the image. Importantly, the process of obtaining the skeleton
should be differentiable in order to be used in the loss function.
The authors in [5] proposed an iterative process based on min-
and max-pooling that are used as a proxy for morphological ero-
sion and dilation to calculate the skeleton of the image. The
proposed skeletonization algorithms allow the use of clDice as
a fully differentiable, real-valued, optimizable measure. Finally,
the loss function used in the training process is described by:

𝐿𝑐𝑙𝐷𝑖𝑐𝑒 = (1 − 𝛼) (1 − 𝐷𝑖𝑐𝑒) + 𝛼(1 − 𝑐𝑙𝐷𝑖𝑐𝑒) (5)

Where 𝛼 ∈ [0, 0.5].
4.1.3 Wasserstein distance [13]. The q-Wasserstein dis-

tance measures the similarity between two persistence diagrams,
which is defined as the minimum value achieved by a perfect
matching between the points of the two diagrams. If 𝐷𝑔𝑚( 𝑓 )
and 𝐷𝑔𝑚(𝑔) are the persistence diagrams of the predicted and
the ground truth images, respectively, the q-Wasserstein distance
can be obtained from:

𝑊𝑞 (𝐷𝑔𝑚( 𝑓 ), 𝐷𝑔𝑚(𝑔)) =
[︁
inf
𝜂

∑︂
𝑝∈𝐷𝑔𝑚( 𝑓 )

| |𝑝 − 𝜂(𝑝) | |𝑞∞
]︁ 1
𝑞 (6)

Where 𝜂 is a perfect matching between the diagrams. The Wasser-
stein distance can be obtained by solving the optimal transport
algorithms [31]. For the purpose of this study, the value of 𝑞 is
assumed to be 1.
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4.1.4 Bottleneck distance [11]. The Bottleneck distance is
the fourth metric that can be employed to assess the similarity
between two persistence diagrams. More precisely, it determines
the minimum distance required to achieve a perfect matching
between the points in the two diagrams. Alternatively, the Bot-
tleneck distance can be computed as the maximum weight in the
solution to the minimum weight perfect matching problem. Sim-
ilar to the Wasserstein distance, the Bottleneck distance can be
defined as:

𝑊∞ (𝐷𝑔𝑚( 𝑓 ), 𝐷𝑔𝑚(𝑔)) = inf
𝜂

sup
𝑝∈𝐷𝑔𝑚( 𝑓 )

| |𝑝 − 𝜂(𝑝) | |∞ (7)

4.2 Evaluation Metrics
We utilize multiple evaluation metrics to assess the perfor-

mance of each loss function. These metrics include the pixel-wise
accuracy, which is defined as the proportion of correctly classified
pixels, as well as the Betti number errors, which directly measure
the topological difference (e.g., the number of handles) between
the predicted and ground truth images. The 0𝑡ℎ Betti number is
calculated by counting the number of connected components in
the image, while the 1𝑠𝑡 Betti number is obtained by counting
the number of holes in the structure. The Betti number error is
calculated as follows:

𝑖𝑡ℎ𝐵𝑒𝑡𝑡𝑖 𝑒𝑟𝑟𝑜𝑟 =
𝐵𝑖 (𝑝) − 𝐵𝑖 (𝑔)

𝐵𝑖 (𝑔) (8)

where 𝐵𝑖 is the 𝑖𝑡ℎ Betti number, 𝑝 is short for predicted structure
and 𝑔 stands for ground truth.

Two other metrics that we used to measure the performance
of the loss functions are the Compliance Error (CE), which com-
pares the performance of the structures in terms of structural
compliance, and the Volume Fraction Error (VFE), which com-
pares the amount of material used in the prediction an the ground
truth. The compliance error can be calculated from the following:

𝐶𝐸 =
|𝐶 (𝑝) − 𝐶 (𝑔) |

𝐶 (𝑔) (9)

where𝐶 (𝑝) and𝐶 (𝑔) are the compliance of the predicted and the
ground truth structure, respectively. Similarly, VFE is obtained
from:

𝑉𝐹 𝑒𝑟𝑟𝑜𝑟 =
|𝑉𝐹 (𝑝) −𝑉𝐹 (𝑔) |

𝑉𝐹 (𝑔) (10)

where𝑉𝐹 (𝑝) and𝑉𝐹 (𝑔) are the volume fraction of the prediction
and the ground truth, respectively.

5. RESULTS AND DISCUSSION
5.1 Overall Results

We started by conducting an initial training session for our
convolutional neural network (CNN). This session involved a
maximum of 100 epochs, utilizing the binary cross-entropy loss
function and early stopping to identify the best-performing net-
work. Afterward, we proceeded to fine-tune the network by
incorporating various topological loss functions. During the fine-
tuning process, the model underwent training for a maximum of
150 epochs, with early stopping used to select the model that

achieved the lowest topological loss value. All model parameters
were considered trainable throughout the fine-tuning stage. The
topological loss function was integrated into the binary cross-
entropy loss, except for clDice, as described above. Each term in
the loss function was assigned an appropriate weight, determined
through grid search to optimize performance. To assess the effec-
tiveness of these different approaches, we present a comparison of
the original CNN prediction with structures generated using the
fine-tuned network employing various topological loss functions
(refer to Figure 1). Additionally, we collected evaluation data us-
ing performance metrics outlined in Section 4.2 and summarized
our findings in Table 1. It’s worth noting that both the models
trained with and without topological loss terms were capable of
making predictions in real-time, with minimal disparity in the
prediction time.

The performance analysis indicates that the utilization of
different topological loss functions has the potential to improve
the connectivity of predicted structures. Specifically, when em-
ploying the TopoLoss function, both the 0𝑡ℎ and 1𝑠𝑡 Betti errors
showed notable enhancements, decreasing from 95.78% to 77.1%
and from 50.1% to 27.2%, respectively. This improvement in
Betti errors also resulted in lower compliance errors, indicating
better structural performance, along with slightly better accuracy.
Comparing the predicted structures using TopoLoss (shown in
Figure 1) with the original predictions clearly demonstrates the
significant improvement achieved through the use of TopoLoss.
Similarly, the clDice function also improved the 0𝑡ℎ and 1𝑠𝑡 Betti
errors, reducing them from 95.78% to 46.82% and from 50.1% to
41.25%, respectively. From figure 1, it can be seen that in some
cases clDice filled the holes in the structure, which contributed
to higher 1𝑠𝑡 Betti error, compliance error, volume fraction error,
and lower accuracy compared to other topological loss functions.

Both the Wasserstein and Bottleneck distances demonstrated
significant improvements in Betti errors, structural performance,
and accuracy. Although the Wasserstein distance did not sub-
stantially improve the 0𝑡ℎ Betti error, it outperformed other loss
functions in terms of 1𝑠𝑡 Betti error, compliance error, and volume
fraction error. The better compliance error and volume fraction
error, despite having nearly the highest 0𝑡ℎ Betti error, can be
attributed to the Wasserstein distance’s ability to connect floating
material in the original prediction to the main body through the
correct path, albeit at the cost of introducing additional floating
members in the structure. A comparison of the results shown
in the last row of Figure 1 for the Wasserstein distance with
the original prediction and ground truth highlights this trade-off.
The Bottleneck distance outperformed the Wasserstein distance
in terms of 0𝑡ℎ Betti error, but it exhibited higher 1𝑠𝑡 Betti error,
compliance error, and volume fraction error. The high volume
fraction error in the Bottleneck distance could be attributed to
the addition of extra material that connect the unwanted part to
the main body, as well as the failure to remove unwanted ma-
terial from the original prediction. For instance, comparing the
structures shown in the fourth row of Figure 1 for the Bottleneck
distance with those for the Wasserstein distance and TopoLoss
reveals that the latter two losses attempted to remove the extra
material from the original prediction, while the Bottleneck loss
connected that part to the main body. This difference explains the
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TABLE 1: THE QUALITATIVE COMPARISON BETWEEN THE PREDICTED STRUCTURES WITH DIFFERENT TOPOLOGICAL LOSS FUNCTIONS
AND THE ORIGINAL MODEL WITHOUT ANY TOPOLOGICAL LOSS FUNCTION. THE DOMAINS HAVE A RESOLUTION OF 120 × 240 AND THE
SEEN BOUNDARY CONDITIONS REPORTED IN [11].

Metrics Baseline TopoLoss clDice Wasserstein distance Bottleneck distance
0𝑡ℎ Betti error 95.78 % 77.1 % 46.82 % 94.2 % 86.5 %
1𝑠𝑡 Betti error 50.1 % 27.2 % 41.25 % 25.5 % 26.9 %
Compliance Error 13.96 % 11.30 % 14.50 % 10.5 % 11.2 %
Volume Fraction Error 0.41 % 0.45 % 1.67 % 0.28 % 1.01 %
Accuracy 94.34 & 94.74 % 94.25 % 94.65 % 94.36 %

TABLE 2: THE COMPARISON BETWEEN THE TRAINING TIME RE-
QUIRED BY EACH LOSS FUNCTION. (EPOCH/HOUR)

Time BCE TopoLoss clDice Wasserstein distance Bottleneck distance
Training time 40 1.8 30 0.41 0.41

higher volume fraction error observed in the Bottleneck distance.
Upon examining the data presented in table 1, it is evident

that achieving a superior 0𝑡ℎ Betti error does not necessarily lead
to improved structural performance. Nevertheless, the findings
strongly indicate a significant correlation between the 1𝑡ℎ Betti
error and compliance error since structures with lower 1𝑡ℎ Betti
error exhibit correspondingly lower compliance errors. The 1𝑡ℎ
Betti error compares the main body of the predicted structure
(which contributes to compliance error) with the ground truth,
disregarding completely disconnected members. Consequently,
a lower 1𝑡ℎ Betti error suggests that the predicted structure’s
main body aligns more closely with the ground truth, resulting
in decreased compliance error. Hence, the 1𝑡ℎ Betti error is a
more critical factor in determining the best loss function. In this
regard, the Wasserstein distance outperforms other loss functions,
although all loss functions can improve the quality of predicted
structures by TO predictors.

5.2 Computational Cost
Table 2 provides a breakdown of the training time for each

loss function utilizing an NVIDIA GeForce RTX 2080Ti GPU
on the UConn HPC. The results reveal that the topological losses
employing persistence homology are computationally expensive.
Specifically, the training for TopoLoss is almost 20 times slower
than binary cross-entropy and 15 times slower than clDice. How-
ever, TopoLoss is more than 4 times faster than the Wasserstein
and Bottleneck distance, as the latter requires solving the op-
timal matching problem to find the optimal matching between
the points in the diagrams of the ground truth and the predicted
structures in addition to obtaining the persistence diagram, which
is a time-consuming process. The computational cost of clDice
comes from the iterative skeletonization process, which uses min-
max pooling operations that can be applied to higher-resolution
images. However, the process may require more iterations for
higher-resolution domains, slightly increasing its training time.
On the other hand, the persistence-based loss functions face chal-
lenges when working with high-resolution domains, as the cost
of calculating the persistence diagram increases significantly as
the image size grows.

5.3 Limitations
The application of persistence homology-based loss func-

tions to enhance the accuracy of deep learning models is con-
strained by various factors. One significant limitation is their
high computational cost, rendering them impractical for handling
high-resolution images. As image size grows, the computation
cost associated with calculating the persistence diagram also es-
calates considerably, thereby restricting the use of these loss func-
tions in numerous real-world scenarios. Additionally, fine-tuning
their contribution in the training process is necessary for differ-
ent networks and datasets, leading to time-consuming procedures
demanding substantial time and computational resources.

One limitation of all topological loss functions is their lack of
generalizability, which means they cannot be directly employed
with diverse networks and tasks without undergoing training.
Thus, given their computational demands, their application may
be unfeasible in many contexts. In addition, this study has also
revealed that the utilization of topological loss functions may
introduce noise into predicted structures, requiring subsequent
post-processing. Figure 2 provides an illustration of the noise
generated by TopoLoss and the Bottleneck loss function inte-
grated with the relatively simple CNN model described above.
We note here that the results presented in section 5.1 have un-
dergone noise removal procedures, and that the extent of noise
created by the loss functions varies depending on their weight
during the training process. At the same time, the network’s ar-
chitecture itself may impact the presence of noise, as evidenced
by the fact that the GAN used in [11] did not exhibit noise in the
generated structures. Nevertheless, additional work is required
to better understand the source of noise, although this work is
outside the scope of this paper.

6. CONCLUSION
This study investigates the effectiveness of various topologi-

cal loss functions in improving the quality of predicted structures
generated by topology optimization (TO) predictors. The perfor-
mance of the Wasserstein distance, Bottleneck distance, clDice,
and TopoLoss was evaluated based on their impact on the 0𝑡ℎ
and 1𝑠𝑡 Betti errors, compliance error, volume fraction error, and
accuracy. It should be noted that the CNN model used in this re-
search was deliberately selected to be simple, and that the training
was conducted with a relatively small dataset in order to man-
age the computational costs. Nonetheless, these loss functions
can be applied effectively to more complex models like GANs,
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FIGURE 1: COMPARISON BETWEEN THE GROUND TRUTH (SIMP OPTIMIZED) 2D STRUCTURES, THE PREDICTED STRUCTURES BY CNN
WITHOUT TOPOLOGICAL LOSS, AND THE CNN PREDICTIONS WITH DIFFERENT TOPOLOGICAL LOSSES.

FIGURE 2: EXAMPLE OF NOISE GENERATED BY TOPOLOSS
AND BOTTLENECK LOSS FUNCTIONS USING THE CNN. OBSERVE
THAT THIS TYPE OF NOISE FOR THE BOTTLENECK DISTANCE
WAS NOT SEEN PREVIOUSLY IN [11].

as demonstrated in [11], with larger training datasets to achieve
improved prediction accuracy.

The results indicate that employing topological loss functions
can significantly enhance the connectivity of predicted structures,
resulting in better Betti errors, compliance errors, volume frac-
tion errors, and accuracy. TopoLoss and the Wasserstein distance
were identified as the most effective, with the latter being partic-
ularly effective in improving the 1𝑠𝑡 Betti error, compliance error,

and volume fraction error. However, the Bottleneck distance out-
performed the Wasserstein distance in terms of the 0𝑡ℎ Betti error,
albeit with higher values for the 1𝑠𝑡 Betti error, compliance error,
and volume fraction error.

A key advantage of topological loss functions is their ability
to be integrated into the training process of any deep learning
model, such as CNNs and GANs, as demonstrated in [11], en-
abling improvements in the topological connectivity of images
across various applications. However, it should be noted that
these loss functions do not guarantee the connectivity of the
resulting predictions. One significant drawback of persistence
homology-based loss functions is the computational cost associ-
ated with persistent homology, which increases significantly with
larger image sizes. Consequently, such loss functions are cur-
rently impractical for many real-world applications that require
high-resolution 2D or 3D images. Considering that topological
loss functions represent global measures of connectivity, an al-
ternative approach for future research could involve leveraging
more local constructs like connectivity graphs.
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