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ABSTRACT

Human activity recognition (HAR) using machine learning has shown tremendous promise in
detecting construction workers’ activities. HAR has many applications in human-robot interaction
research to enable robots’ understanding of human counterparts’ activities. However, many
existing HAR approaches lack robustness, generalizability, and adaptability. This paper proposes
a transfer learning methodology for activity recognition of construction workers that requires
orders of magnitude less data and compute time for comparable or better classification accuracy.
The developed algorithm transfers features from a model pre-trained by the original authors and
fine-tunes them for the downstream task of activity recognition in construction. The model was
pre-trained on Kinetics-400, a large-scale video-based human activity recognition dataset with 400
distinct classes. The model was fine-tuned and tested using videos captured from manual material
handling (MMH) activities found on YouTube. Results indicate that the fine-tuned model can
recognize distinct MMH tasks in a robust and adaptive manner which is crucial for the widespread
deployment of collaborative robots in construction.

INTRODUCTION

Human activity recognition (HAR) has gained significant traction in recent years due to its
potential applications in various fields, including healthcare, sports, security, and construction. In
the construction industry, the accurate and real-time recognition of workers’ activities is
imperative for ensuring safety, improving productivity, and optimizing resource allocation. HAR
can be achieved using wearable sensors or vision-based methods, with both approaches showing
promising results in human-robot interaction (HRI) research (Liu et al., 2022; Zhang et al., 2017).

Researchers have employed multiple tools, including wearable sensors, cameras, and other
types of sensing devices, to detect human activities for HAR in various domains such as healthcare,
sports, and construction. Vision-based methods, which involve analyzing visual data from cameras
to detect and identify human activities, are one of the most popular approaches for HAR. In the
construction domain, Luo et al. developed a vision-based system that uses a single camera to
monitor workers’ activities and detect unsafe behavior (Luo et al., 2018). Similarly, Escorcia et al.
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proposed a system that uses a combination of RGB and depth sensors to recognize construction
workers’ activities. Another common approach for HAR is using wearable sensors, such as
accelerometers and gyroscopes, to capture human movements (Escorcia et al., 2012). Such sensors
have been used extensively in construction to monitor workers’ activities and detect unsafe
behavior. For instance, Kim and Cho. developed a wearable sensor-based system that uses machine
learning to recognize construction workers’ activities and detect unsafe behavior (K. Kim & Cho,
2020).

However, existing approaches to HAR often fail to capture the heterogeneity of activity
types, environments, and subjects. This is because the models are often trained on limited datasets
and may not be able to perform well in different environments or with different subjects. This has
resulted in machine learning models that lack robustness, adaptability, generalizability, and
reconfigurability when applied in conditions different from those in which they were trained
(Zhang et al., 2022). This limitation poses a significant challenge for the deployment of
collaborative robots in construction, as they require robust and adaptive HAR models.

Transfer learning (TL) is a promising approach that can address this challenge, where
knowledge gained from a source domain can be transferred to a target domain to improve
performance. Within the construction research domain, precious studies have successfully used
TL to detect objects such as guardrails, hard hats, and equipment (H. Kim et al., 2018; Kolar et
al., 2018; Shen et al., 2021). Nevertheless, the use of TL for HAR and specifically toward
deploying it in worker-robot interaction applications has never been investigated before. This
paper presents a TL methodology for activity recognition of construction workers interacting with
collaborative robots. To achieve TL in video-based activity recognition, we used X-CLIP
(Expanding Contrastive Language-Image Pre-training) (Ni et al., 2022), a model developed by
Microsoft that extends the functionality of the original CLIP model by OpenAl (Radford et al.,
2021). X-CLIP was specifically designed for video recognition tasks and has demonstrated
excellent performance in various video and text-based tasks. By leveraging its powerful
multimodal learning capabilities, X-CLIP is expected to provide superior performance in the
activity recognition task for construction workers interacting with collaborative robots. In this
paper, first, we utilize a pre-trained model from a large-scale video-based HAR dataset, Kinetics-
400, which has not been used before in the context of construction activity recognition. Second,
we fine-tune the pre-trained model on a small number of construction-specific activities, which
require minimal annotation efforts and computational resources, making it more feasible for real-
world deployment. Third, we demonstrate the effectiveness of our approach in recognizing manual
material handling activities in construction, which is crucial for enabling the deployment of
collaborative robots in this domain.

METHODOLOGY

The proposed methodology for fine-tuning a general activity recognition model for MMH
activities using X-CLIP is shown in Figure 1 and described below.

Data Collection. The first step in developing the model is to collect video data of construction
MMH activities involving workers. These videos will be used for training and testing the model.
The videos should cover a wide range of scenarios, such as different workers, different types of
material, and different environments. This resulted in having a diverse dataset of video data
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Figure 1. An overview of the developed methodology (Image courtesy of Construction
Robotics (Construction Robotics 2022) and used with permission).

covering various scenarios, which is crucial for training and testing the model to develop a
construction MMH activity recognition system.

We sourced the videos from YouTube, selecting 65 videos covering four distinct MMH
tasks. The videos include scenarios with and without collaborative robots. Our preliminary
analysis indicated that videos with and without robot collaboration do not have a significant impact
on the classification accuracy.

To label the videos, we manually annotated each video with the corresponding activity. We
defined a set of four MMH activities that are common in construction sites: carrying a load, loading
a load, pushing a load, and pulling a load. The X-CLIP model we adopted and advanced further
requires 32 frames from the video as input, so we randomly sampled 32 frames from a defined
start and end point of the activity in the video. The inclusion of start and end points of activities in
videos also allowed us to use the same video for multiple examples for our model, increasing the
size of the dataset.

The videos had various resolutions and aspect ratios, but on average were 480x360 pixels
and had a frame rate of 30 frames per second. We selected the specific portion of the videos where
the activity was happening and processed the video into an array of video frames, sampling 32
frames from each video. Because of this sampling technique, we ensure the portion of video
selected is no more than 16 seconds long so that the resulting selected frames are no more than
half a second apart in real-time. This ensures that the activity is accurately portrayed and that the
frames can be interpreted by the model as sequential.

Preprocessing. The model processes images only of size 224x224, so before being fed into the
model, the images are cropped to appropriate sizes. During training, the model also augments each
frame, resizing images, flipping them, and jittering the color values. This is done to help the model
generalize better during training. During validation or inference, the model only crops the video
to 224x224 and normalizes color values.

Training the X-CLIP model. X-CLIP is a state-of-the-art multimodal model that was developed
by Microsoft and is trained on a large corpus of text and video pairs from the internet (Ni et al.,
2022). It combines the power of natural language processing (NLP) and computer vision to learn
joint representations of text and videos. During training, X-CLIP learns to associate a text
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description with a video, and vice versa, by optimizing a contrastive loss function that maximizes
the similarity between positive pairs of text and videos and minimizes the similarity between
negative pairs. Figure 2 shows a schematic overview of the model architecture.

. . . . ~ Multi-frame Integration Transformer }

V‘ideo-Speclﬁc Prompting [ Cross-Frame Communication Transformer J

Text Encoder [ Patch Encoder

Carry Push Pull ! E

| [ Pre-trainess intiaization [ Partially pre-teained intialization [[] Randem initialization |
Figure 2. X-CLIP architecture (Ni et al., 2022).

The X-CLIP model operates on the principle of contrasting label embeddings and video
embeddings using a similarity score. Embeddings are an n-dimensional vector that contains the
semantic information necessary to sufficiently capture an input. To attain these embeddings,
images and text are passed through their respective encoders and the output is the associated
embedding vector. A similarity score indicates the likelihood of a label corresponding to a
particular video, with higher similarity scores indicating a higher probability of correspondence.
The model employs a combination of encoders and transformers to embed both video and text
inputs (Ni et al., 2022). In essence, the model compares video frame embeddings to a set of label
embeddings, and uses a transformer to aggregate predictions for each video frame, ultimately
outputting the label that most likely corresponds to the video. After collecting and preprocessing
the data, we used the X-CLIP model for fine-tuning the activity recognition model on videos of
MMH tasks.

Fine-tuning the X-CLIP model. Fine-tuning helps the model learn the specific features of the
construction activities and improve its accuracy in recognizing these activities. To adapt X-CLIP
for MMH as opposed to generic activity recognition, we fine-tuned the model on our dataset of
construction MMH videos. Fine-tuning involves updating the weights of the pre-trained model
marginally, using our MMH training data to learn better representations that are specific to our
task. The innovation of this methodology lies in the fact that for any downstream HAR task, a
small team can leverage the power of the pretrained model for any specific set of activities.

We utilized the pre-trained model to reduce training time and computational costs as well
as to leverage the generic activity recognition knowledge the model learns in pre-training. The pre-
trained model generalizes to classes it did not see during training due to the model learning a label-
agnostic embedding space. This allows us to create our own dataset of videos with labels specific
to our use case. For this paper, we analyze common MMH tasks. The model is fine-tuned by using
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a very low learning rate of @ = /0~ ° and training the model on very few examples (~8 videos per
class) for 5 epochs with a batch size of 8. Because the model is pre-trained, it extracts relevant
visual and semantic information from the beginning of the fine-tuning process and only requires
small updates to the weights to learn a better representation of both the label and accompanying
videos without the need for many examples of new activities.

Evaluation. The model's performance was evaluated using a held-out split of our dataset of
construction MMH activities, consisting of 60% of the total data. We report accuracy, precision,
and recall metrics for each experiment, and train using cross-entropy loss (Haurilet et al., 2019).
The dataset includes activities that the model was not pre-trained on to assess the model's ability
to recognize new activities after fine-tuning. The pre-trained model was trained on Kinetics-400,
a popular human activity recognition benchmark dataset with 400 distinct activities. Because of
the model’s use of label embeddings rather than strict activity labels, the MMH activities we
selected are not exactly present in the Kinetics-400 dataset, but more general labels are present in
the dataset that capture the general idea of the activities we tasked the model to classify. An
example of this is that in Kinetics-400, there are labels such as deadlifting or lifting a hat, while
we used the general label of lifting materials.

RESULTS AND DISCUSSION

The model was fine-tuned to recognize four distinct MMH tasks: carrying a load, loading a load,
pushing a load, and pulling a load. We labeled each video with the activity that was being
performed and compared the predicted activity to the ground truth.

The overall accuracy of the model, (i.e., the number of correct predictions divided by total
predictions on the test set) in recognizing the four activities improved from 46% to 69% (Table 1)
after fine-tuning the model for 5 epochs with a learning rate of « = / 0°°.

Table 1. Model metrics before and after fine-tuning.

Precision Recall F1 Score Accuracy
Pre-trained 0.37 0.46 0.41 46%
Fine-tuned 0.74 0.69 0.72 69%
Fine-tuned (pushing 0.91 0.90 0.90 90%
and pulling combined)

In Table 1, we show key model metrics to evaluate the performance of the model before and after
fine-tuning. Since the activities of pushing and pulling are mistaken for one another, we also tested
the model when combining the activities under one label, “pushing or pulling,” and observed an
increase in accuracy from 69% to 90%. These results show three things: first that X-CLIP has a
robust understanding of human activities and can achieve 46% accuracy on MMH activities it was
not pre-trained on, second that fine-tuning the model for a desired activity increases classification
accuracy with very few training examples, and third that though it was pre-trained on 400
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activities, there are blind spots and activities the model will perform poorly on after fine-tuning
(e.g. pulling).

These results demonstrate the effectiveness of our TL methodology using X-CLIP fine-
tuning for activity recognition in the construction industry. The ability to recognize MMH
activities in real-time can enable the deployment of collaborative robots to assist workers in such
activities, leading to increased efficiency and safety in construction sites.

X-CLIP was pretrained on Kinetics-400, and of the 400 activities, there are a few labels
similar to our own. Namely, deadlifting, lifting a hat, carrying weight, pushing a cart, and pushing
a wheelbarrow. While these labels are not directly related to the MMH activities we analyze in this
paper, it can be seen why the model performs better at classifying activities similar to these, since
that is what the original model was trained to do on a very large dataset. The only labels related to
pulling in Kinetics-400 are “pull ups” and “pulling espresso shot,” both of which use the word pull
in a different context than we use it in for MMH tasks. Because it was not trained to understand
this activity, fine-tuning is not enough to increase the accuracy of pulling classification.

An important point to make here is that the textual content of the label is significant in the
video labels and can affect model accuracy by up to 21% (Table 2). X-CLIP works by learning an
embedding vector that contains the meaning of the label and learning a different embedding vector
for the video content. These vectors are compared by means of a cosine similarity score, being
trained to maximize the similarity between the label embedding corresponding to the activity in
the video. This means that different labels give different accuracies. In Table 2, we show a few
different combinations of labels and the resulting accuracies obtained after fine-tuning the model
on the given labels and corresponding videos.

Table 2. Model accuracy as a function of labels.

Label 1 Label 2 Label 3 Accuracy
Baseline Lifting a load Carrying a load Pushing or pulling a 72%
load

Variation Lifting a box Carrying a box Pushing or pulling a box 82%

1
Variation Lifting Carrying Pushing or pulling 69%

2
Variation | A photo of someone | A photo of someone A photo of someone 90%

3 lifting a box up carrying materials | pushing or pulling a box

For the baseline, we see much lower accuracy which is related to the model not being familiar with
the meaning of the word “load” as it is paired with the accompanying videos. X-CLIP utilizes
CLIP’s original text encoder which was trained on a vast corpus of image-text pairs of which we
do not have access to, but we can assume from the millions of pairs, the text encoder built up a
sufficient representation of the English language, but there may be gaps such as using “load” as a
noun, a more niche meaning of the word. Because of this, it is a poor choice of words for our
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model’s labels. Using the word “box” in place of load is a more likely combination of words to be
found in the original CLIP dataset, and the model performs better, despite the word “box” not
appearing in the Kinetics-400 dataset. The model extracts roughly the same visual features
independently of the labels provided, it is only that the label embeddings are contingent upon the
quality of data in CLIP’s original image-text pair dataset.

The accuracy of 90% achieved in our study for activity recognition of construction workers
interacting with collaborative robots is comparable to some previous studies in the field of
construction activity recognition using video data. For instance, a review paper by Sherafat et al.
reported accuracies ranging from 54% to 96% for different construction activities using video-
based methods (Sherafat et al., 2020). Nevertheless, previous studies did not employ TL and as
such, required significantly more data and computational resources for training and used less
generalizable model architectures. Fine-tuning large, generalizable models enables teams with
small budgets to leverage previous investments in large models on a bespoke downstream task. It
is also important to note that previous studies primarily focused on recognizing routine daily
human activities, which are often more distinguishable from each other than MMH tasks in
construction. In contrast, our study targets the recognition of MMH tasks, which are highly similar
and require a more nuanced approach to achieve accurate recognition. Despite this added
complexity, our TL methodology achieved a promising result of 90%, highlighting its potential
for real-world applications in the construction industry.

CONCLUSION

In this study, we presented a TL methodology for activity recognition of construction workers
interacting with collaborative robots using the X-CLIP model. The proposed methodology fine-
tunes a pre-trained model to accurately classify activities in a new environment and was tested
using videos captured from construction MMH activities involving workers and robots. The results
showed that the system could successfully recognize distinct MMH tasks, even though such
activities were absent in the dataset the model was pre-trained on. This indicates the potential of
the proposed methodology in recognizing a wide range of construction activities with high
accuracy, which is imperative for the widespread deployment of collaborative robots in
construction. The proposed TL methodology utilizing the X-CLIP model provides a promising
approach for activity recognition in the construction industry. However, there are limitations that
our team is working to address in future work. Further research is needed to evaluate the
effectiveness of the proposed methodology in different construction environments and to assess
its ability to adapt to new activity types and subjects. Future research can also explore ways of
improving the accuracy and robustness of activity recognition models in construction, including
using more diverse and larger datasets, more sophisticated feature extraction techniques, and more
advanced machine learning algorithms. Finally, different data modalities can help in distinguishing
between activities that share similarities in terms of worker body movement.

ACKNOWLEDGMENT

The presented work has been supported by the U.S. National Science Foundation (NSF) CAREER
Award through the grant # CMMI 2047138. The authors gratefully acknowledge the support from
the NSF. Any opinions, findings, conclusions, and recommendations expressed in this paper are
those of the authors and do not necessarily represent those of the NSF.

Proceedings Paper Formatting Instructions -7- Rev. 12/2022


https://www.sciencedirect.com/science/article/pii/S0926580522001716#gts0005

REFERENCES

Construction Robotics. 2022. “Smart Lifting for Construction and Masonry.” Accessed May 12,
2023. https://www.construction-robotics.com/

Escorcia, V., Davila, M. A., Golparvar-Fard, M., & Niebles, J. C. (2012). Automated vision-based
recognition of construction worker actions for building interior construction operations using
RGBD cameras. Construction Research Congress 2012: Construction Challenges in a Flat
World, 879-888.

Haurilet, M., Roitberg, A., Martinez, M., & Stiefelhagen, R. (2019). Wise—slide segmentation in
the wild. 2019 International Conference on Document Analysis and Recognition (ICDAR),
343-348.

Kim, H., Kim, H., Hong, Y. W., & Byun, H. (2018). Detecting construction equipment using a
region-based fully convolutional network and transfer learning. Journal of Computing in Civil
Engineering, 32(2), 4017082.

Kim, K., & Cho, Y. K. (2020). Effective inertial sensor quantity and locations on a body for deep
learning-based worker’s motion recognition. Automation in Construction, 113, 103126.
Kolar, Z., Chen, H., & Luo, X. (2018). Transfer learning and deep convolutional neural networks

for safety guardrail detection in 2D images. Automation in Construction, 89, 58-70.

Liu, R., Ramli, A. A., Zhang, H., Henricson, E., & Liu, X. (2022). An overview of human activity
recognition using wearable sensors: Healthcare and artificial intelligence. Internet of Things—
ICIOT 2021: 6th International Conference, Held as Part of the Services Conference
Federation, SCF 2021, Virtual Event, December 10-14, 2021, Proceedings, 1-14.

Luo, H., Xiong, C., Fang, W., Love, P. E. D., Zhang, B., & Ouyang, X. (2018). Convolutional
neural networks: Computer vision-based workforce activity assessment in construction.
Automation in Construction, 94, 282—-289.

Ni, B., Peng, H., Chen, M., Zhang, S., Meng, G., Fu, J., Xiang, S., & Ling, H. (2022). Expanding
language-image pretrained models for general video recognition. Computer Vision—-ECCV
2022: 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part
v, 1-18.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A.,
Mishkin, P., & Clark, J. (2021). Learning transferable visual models from natural language
supervision. International Conference on Machine Learning, 8748—8763.

Shen, J., Xiong, X., Li, Y., He, W., Li, P., & Zheng, X. (2021). Detecting safety helmet wearing
on construction sites with bounding-box regression and deep transfer learning. Computer-
Aided Civil and Infrastructure Engineering, 36(2), 180-196.

Sherafat, B., Ahn, C. R., Akhavian, R., Behzadan, A. H., Golparvar-Fard, M., Kim, H., Lee, Y .-
C., Rashidi, A., & Azar, E. R. (2020). Automated methods for activity recognition of
construction workers and equipment: State-of-the-art review. Journal of Construction
Engineering and Management, 146(6), 3120002.

Zhang, S., L1, Y., Zhang, S., Shahabi, F., Xia, S., Deng, Y., & Alshurafa, N. (2022). Deep learning
in human activity recognition with wearable sensors: A review on advances. Sensors, 22(4),
1476.

Zhang, S., Wei, Z., Nie, J., Huang, L., Wang, S., & Li, Z. (2017). A review on human activity
recognition using vision-based method. Journal of Healthcare Engineering, 2017.

Proceedings Paper Formatting Instructions -8- Rev. 12/2022


https://www.construction-robotics.com/

