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Comprehensive Framework for Controlling
Nonlinear Multi-species Water Quality Dynamics

Salma M. Elsherif†,¶, Ahmad F. Taha†,∗∗ , Ahmed A. Abokifa⋄, and Lina Sela♠

Abstract

Tracing disinfectant (e.g., chlorine) and contaminants evolution in water networks requires the solution of 1-D advection-
reaction (AR) partial differential equations (PDEs). With the absence of analytical solutions in many scenarios, numerical solutions
require high-resolution time- and space-discretizations resulting in large model dimensions. This adds complexity to the water
quality control problem. In addition, considering multi-species water quality dynamics rather than the single-species dynamics
produces a more accurate description of the reaction dynamics under abnormal hazardous conditions (e.g., contamination events).
Yet, these dynamics introduce nonlinear reaction formulation to the model. To that end, solving nonlinear 1-D AR PDEs in
real time is critical in achieving monitoring and control goals for various scaled networks with a high computational burden.
In this work, we propose a novel comprehensive framework to overcome the large-dimensionality issue by introducing different
approaches for applying model order reduction (MOR) algorithms to the nonlinear system followed by applying a real-time water
quality regulation algorithm that is based on an advanced model to maintain desirable disinfectant levels in water networks under
multi-species dynamics. The performance of this framework is validated using rigorous numerical case studies under a wide range
of scenarios demonstrating the challenges associated with regulating water quality under such conditions.

Index Terms

Multi-species water quality dynamics, water quality regulation and control, model predictive control, McCormick relaxation,
linear/nonlinear model order reduction.

I. INTRODUCTION AND LITERATURE REVIEW

Water quality dynamics are widely modeled by the one-dimension advection-reaction (1-D AR) partial differential equations

(PDEs). These AR PDEs allow the tracing of the disinfectant and other chemical substances’ evolution throughout the

components of water distribution networks (WDNs). In most cases, analytical solutions are non-existent to solve these PDEs

network-wide. Nonetheless, PDEs can be solved using numerical techniques, yet, they require high-resolution time- and space-

discretization. This results in high-dimension models that add computational burden to the problem of regulating water quality

in drinking networks. That leads to physical-driven models that are intractable when considering constrained control and water

quality (WQ) regulation algorithms.

Moreover, in water quality simulations the most widely used decay and reaction model is the single-species model. In this

model, disinfectant (i.e., chlorine) is assumed to decay at a constant rate that only accounts for purified water contamination

levels. Yet, contamination sources vary from microbial, non-microbial components in the bulk flow, attached to the pipe walls,

or contamination events that get intruded into the system [1]. This drives the need for a more accurate representation of these

scenarios which can be achieved by the multi-species reaction dynamics. The multi-species dynamics enable the model to

simulate chlorine evolution with the existence of another reactive component in the system. This representation duplicates the

number of variables to be traced network-component-wide while unfortunately adding complexity to the model by introducing

nonlinear reaction dynamics.

To this end, model order reduction (MOR) is an essential step to move forward in achieving a compact formulation of the

multi-species water quality dynamics to be integrated into a model-based control framework. MOR techniques transform the

full-order model (FOM) to a reduced-order model (ROM) in a way that preserves the structure, properties, and the closed-form

representation of the FOM while achieving the pre-specified level of accuracy and reducing computational time. Eventually,

the goal is to control chlorine injections dosed by rechlorination stations to maintain residual levels that meet water quality

standards. That can be achieved by applying an effective control algorithm on the derived ROM.

Our group has been interested in various dimensions of this research area. A summary of our work and the prior literature

is given next.
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However, their model only includes single-species linear reaction dynamics where chlorine is assumed to be decaying at a

constant rate resulting in a linear state-space formulation. Therefore, our work allows filling the gap in applying MOR for

multi-species nonlinear dynamics. Moreover, in their model the explicit central Lax-Wendroff discretization scheme is used.

However, the Upwind schemes give a more accurate physical description of the advection-reaction problem. In our study, we

apply the explicit and implicit Upwind discretization schemes while highlighting the differences and the level of difficulty.

Notice that, on the contrary to studies [32]±[34] where MOR is performed for compositional simulation, the authors in [31]

state that it is considered as a pre-step to apply an efficient control algorithm which also applies to our work in this paper.

Water Quality Control: The topic of controlling chlorine has been covered in several studies with various algorithms,

objectives, and constraints [35]±[37]. Objectives vary between minimizing the cost of injecting chlorine into the system,

maintaining minimal deviations from chlorine setpoint concentrations, minimizing the formation of the excess DBPs, and

minimizing computational time [38]. The problem formulation is either a single-objective optimization problem or a multi-

objective one with more of the aforementioned objectives. However, such studies do not build a closed-form representation

of all inputs, states, and outputs that updates every specified time-step over the simulation period and allows network-wide

control. Whereas, studies [31], [39] apply Model Predictive Control (MPC) on the full-order and reduced-order single-species

models in both studies with no clear explanation/extension for scenarios where multi-species dynamics take place.

Our prior Work: We have been focusing on tackling and covering the water quality modeling and control in WDNs. First,

the problem of modeling and controlling single-species water quality dynamics is thoroughly investigated in [39], followed

by reducing this model’s order and verifying the validity of controlling the reduced order model in [31]. Moreover, as a first

state-of-the-art attempt, study [40] has identified single-species water quality models using only input-output experimental data

and, accordingly, data-driven system identification algorithms. Lastly, a survey study on how to accurately simulate multi-

species water quality dynamics has been conducted in [41]. This study has built a closed-form, network- and control-theoretic

representation of all system inputs, variables, and output measurements under such dynamics that give a more realistic WQ

formulation. The performance of this formulation has been validated using the widely-used simulation tool, EPANET and its

multi-species water quality simulation extension, EPANET-MSX [42], [43]. However, controlling chlorine under multi-species

dynamics, based on a control-theoretic explicit model, is to the authors’ knowledge has not been investigatedÐa gap that is

filled in this paper.

B. Paper Contributions

This paper’s major objective is to investigate the implementation and complexity of regulating and controlling chlorine

levels under multi-species water quality. The detailed paper contributions are:

• Construct and propose a comprehensive framework to overcome the large-dimensionality issue associated with discretizing

the 1-D AR PDEs and the complexity associated with the nonlinearity of the multi-species water quality dynamics. Different

paths can be taken, starting by linearizing the system and applying MOR for linear systems (MOR-LS). Another path is to

consider the nonlinear MOR (MOR-NLS) algorithm on the original FOM.

• Utilizing the reduced-order models in an MPC algorithm. We apply it to the formulated ROMs and compare them to each

other and to the original FOMs. Also, we compare it with basic scenarios with single-species dynamics demonstrating the

challenges associated with controlling chlorine levels under multi-species water quality dynamics.

• Position the framework in a generalized scalable form in the sense that simplifications are included to consider single-species

water dynamics and differentiations are suggested to consider chlorine linear/nonlinear decay and reaction models that have

been developed in the literature to simulate various events/scenarios.

• Validate the performance of the framework using thorough numerical case studies to test accuracy, computational burden,

and robustness to the system hydraulics changes.

Our proposed framework is illustrated in Fig. 1. As shown, different approaches can be followed to formulate a reduced-

order model to be controlled for the multi-species water quality model. Each step to be taken and each path to be chosen are

explained in the following sections of the paper. The paper’s sections are organized as follows, Section ºState-space Multi-

species Water Quality Modelº provides the formulation of the state-space representation of the multi-species water quality

model (MS-WQM). This formulation is based on the transport and reaction model in pipes, mass balance for the other network

components, and the multi-species dynamics expression. Section ºModel Order Reduction and Transformation of MS-WQMº

provides full descriptions of the methods used in our framework to reach a compact reduced-order model. Section ºReal-Time

Regulation of MS-WQM via Model Predictive Control and McCormick Relaxationsº introduces the control problem and its

implementation on the linear and nonlinear ROM. Section ºCase Studiesº showcases the framework performance on different

networks under a wide range of scenarios. Section ºConclusion, Paper’s Limitations, and Recommendations for Future Workº

comes last.

II. STATE-SPACE MULTI-SPECIES WATER QUALITY MODEL

We model WDN by a directed graph G = (N ,L). The set N defines the nodes and is partitioned as N = J ∪ T ∪ R
where sets J , T , and R are collections of junctions, tanks, and reservoirs. Let L ⊆ N × N be the set of links, and define
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the partition L = P ∪M ∪ V , where sets P , M, and V represent the collection of pipes, pumps, and valves. Total number

of states is nx = nL + nN , where nL and nN are numbers of links and nodes. The number of reservoirs, junctions, tanks,

pumps, valves, and pipes are nR, nJ, nTK, nM, nV, and nP. Each pipe i with length Li is spatially discretized and split into

sLi
segments. Hence, number of links is expressed as nL = nM + nV +

∑nP

i=1 sLi
while nN = nR + nJ + nTK is the number

of nodes.

In this paper, the state-space representation is formulated for multi-species dynamics with two chemicals: chlorine and a

fictitious reactant. The system representation of the two-species which is able to capture chemicals evolution, booster stations

injections, and sensors measurements, is expressed by an NDE as follows


E11(t) 0

0 E22(t)




︸ ︷︷ ︸
E(t)


x1(t+∆t)

x2(t+∆t)




︸ ︷︷ ︸
x(t+∆t)

=


A11(t) 0

0 A22(t)




︸ ︷︷ ︸
A(t)


x1(t)

x2(t)




︸ ︷︷ ︸
x(t)

+


B11(t) 0

0 B22(t)




︸ ︷︷ ︸
B(t)


u1(t)

u2(t)




︸ ︷︷ ︸
u(t)

+f(x1,x2, t),
(1a)


y1(t)

y2(t)




︸ ︷︷ ︸
y(t)

=


C11(t) 0

0 C22(t)




︸ ︷︷ ︸
C(t)


x1(t)

x2(t)




︸ ︷︷ ︸
x(t)

+


D11(t) 0

0 D22(t)




︸ ︷︷ ︸
D(t)


u1(t)

u2(t)




︸ ︷︷ ︸
u(t)

(1b)

where variable t represents specific time in a simulation period [0, Ts]; ∆t is the time-step or sampling time; vectors x1(t) and

x2(t) ∈ R
nx depict the concentrations of chlorine and the other fictitious reactant (two species model) in the entire network;

vector u1(t) ∈ R
nu1 represents the dosages of injected chlorine; vector u2(t) ∈ R

nu2 accounts for planned or unplanned

injection of the fictitious component; vector f(x1,x2, t) encapsulates the nonlinear part of the equations representing the

mutual nonlinear reaction between the two chemicals; vector y1(t) ∈ R
ny1 denotes the sensor measurements of chlorine

concentrations at specific locations in the network while y2(t) ∈ R
ny2 captures the fictitious reactant measurements by sensors

in the network if they exist. The state-space matrices {E,A,B,C,D}• are all time-varying matrices that depend on the

network topology and parameters, hydraulic parameters, decay rate coefficients for the disinfectant, and booster stations and

sensors locations. It is customary to assume that these matrices evolve at a slower pace than the states x(t) and control inputs

u(t). On another note, matrices E11,E22 are changing every hydraulic time-step allowing them to be represented at time t

not t+∆t of the water quality simulation horizon.

The concentration evolution throughout network components is covered by the conservation of mass law, transport, decay,

and reaction models of the substances. A full description of how the models are derived for each type of the components is

provided in [41]. However, for the reader to be able to follow up with the developments of this paper, some material from

[41] need to be reproduced and altered. We list a brief overview of the governing equations formulating our model and its

state-space representation in the following sections.

A. Transport and Reaction in Pipes

Conservation of mass during transport and reaction in pipes is simulated by the one-dimension advection-reaction (1-D

AR) partial differential equation, which for Pipe i is expressed as

∂tc
P
i = −vi(t)∂tc

P
i +RP

MS(c
P
i (x, t)), (2)

where cPi (x, t) is concentration in pipe at location x and time t; vi(t) is the mean flow velocity; and RP
MS(c

P
i (x, t)) is

the multi-species reaction rate in pipes expression (more explanation is given in Section ºMulti-species Reaction and Decay

Modelº).

Eq. (2) is discretized over a fixed spatio-temporal grid, that for a Pipe i with length Li is split into a number of segments

si =
⌊

Li

vi(t)∆t

⌋
of length ∆xi = Li

si
. In the considered 1-D AR model, the main two processes are the advection where

the concentration at a certain location and time is affected by upstream concentrations, and reaction where chemicals decay

and/or mutually react. That being said, Upwind discretization schemes are more descriptive to the actual physical process

considered among other schemes [44]. Applying the Eulerian Finite-Difference based Implicit Upwind scheme on the multi-

species water quality dynamics representation adapted in this paper has shown reliable results that trace chemicals contractions

within different networks with various scales, according to [41]. In this paper we consider both Explicit and Implicit Upwind

schemes to investigate their performance from a control-theoretic perspective (See Fig. 2).

1) Explicit Upwind Scheme: For segment s of Pipe i except for the first segment, the concentration is calculated as

cPi (s, t+∆t) = (1− λi(t))c
P
i (s, t) + λi(t)c

P
i (s− 1, t) +RP

MS(c
P
i (s, t))∆t, (3)
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where V BTK

i (t + ∆t) is the volume injected to the tank with concentration cBTK

i (t + ∆t) by booster station if located.

RTK
MS(c

P
i (x, t)) is the multi-species reaction rate in tanks expression (refer to Section ºMulti-species Reaction and Decay

Modelº).

C. Multi-species Reaction and Decay Model

Dividing the model into decay and mutual reaction dynamics allows it to consider a substance with relatively different

reaction rates than the decay rate and for the model to be less sensitive to the other reactants’ concentrations. Decay model

is a first-order model that depends on only chlorine concentration and constant decay rate. Hence, the chlorine decay reaction

rates for Pipe i and Tank j are kPi = kb +
2kwkf

rPi
(kw+kf )

, kTK
j = kb, where kb is the bulk reaction rate constant; kw is the wall

reaction rate constant; kf is the mass transfer coefficient between the bulk flow and the pipe wall; rPi
is the pipe radius.

The mutual reaction model is expressed by a second-order nonlinear ODEs which are discretized using Forward Euler method

c(t+∆t)− c(t) = −kr∆t(c(t)c̃(t)), c̃(t+∆t)− c̃(t) = −kr∆t(c(t)c̃(t)), where c(t), c̃(t) are the concentrations for chlorine

and fictitious reactant; and kr is the mutual reaction rate between them. Eventually, reaction expressions for pipes and tanks

are

RP
M(cPi (s, t)) = −krc

P
i (s, t)c̃

P
i (s, t), RTK

M (cTK
j (t)) = −kr c̃

TK
j (t)cTK

j (t), (8a)

RP
M(c̃Pi (s, t)) = −krc

P
i (s, t)c̃

P
i (s, t), RTK

M (c̃TK
j (t)) = −kr c̃

TK
j (t)cTK

j (t). (8b)

A full description of the state-space matrices construction for the Upwind discretization schemes and an example on a simple

three-node network (consists of reservoir, a pump, a junction, a pipe, and a tankÐFig. 6) is included in [41] for reader’s reference

on how to formulate the representation for different network component. It is worth mentioning that this study validates the

utilization of these EFD discretization schemes and the model performance as mentioned in comparison to EPANET and its

extension, EPANET-MSX (WQ multi-species simulation tool). The comparison is considered reliable as the governing laws and

equations are the same for all network components in both models. It should be noted that EPANET+EPANET-MSX employs

the Lagrangian time-driven method, dividing each pipe into changing-sized segments. Whilst, the adopted EFD schemes in

our study work within a fixed grid, facilitating the construction of a state-space representation with finite dimensions. The

drawback associated with these discretization schemes is the large dimensionality of the model. However, main objectives of

this study are to address this challenge by employing model order reduction techniques and to integrate the reduced-order

multi-species model effectively into time-efficient real-time feedback control algorithm, which are outlined and presented in

detail in the next sections. On the other hand, coupling the EPANET+EPANET-MSX model with a real-time control algorithm

is complex and presents challenges due to the need to handle changes in segment count and size per pipe at each simulation

time-step, as well as being familiar with and able to leverage and use their toolkits in the coding language used (i.e., MATLAB

and Python).

In the next section, we investigate different MOR algorithms for (1).

III. MODEL ORDER REDUCTION AND TRANSFORMATION OF MS-WQM

The state-space representations formulated in the previous section are in forms of nonlinear difference equations (NDEs)

(1) with large numbers of variables resulted from high resolution spatio- temporal-discretization. To reach the end-goal of this

paper, which is controlling chlorine levels for (1), we propose different methodologies to reduce the model order and showcase

their limitations, accuracy, computational time, and robustness/sensitivity to initial conditions and fictitious reactant type. That

being said, we list full descriptions of the methods covered in our framework. We start with linearizing (1), then explain model

order reduction and transformation for linearized and original nonlinear systems.

A. Model Linearization

The mutual reaction is expressed as a nonlinear term that can be linearized using Taylor series approximations [45]. By

linearizing around operating points co, c̃o, the nonlinear term RM(c(t), c̃(t)) for both chemicals is expressed as:

RM(c(t), c̃(t)) = −kr(coc̃o + co(c̃(t)− c̃o) + c̃o(c(t)− co)),

= −kr(coc̃o + coc̃(t)− coc̃o + c̃oc(t)− c̃oco),

= −kr(coc̃(t) + c̃oc(t)− c̃oco).

(9)

For each of the chemicals, the mutual reaction after linearization is broken down to a term that depends on its concentration,

a term that depends on the other chemical’s concentration, and a constant. The general state-space representation (1) has a
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The choice of nr can be done arbitrarily as a fixed number or to conserve a specified level of energy between ROM and

FOM. The energy of a system is determined by the summation of its eignvalues, hence nr can be chosen to keep a certain

energy percentage of FOM in ROM [46]. However, we investigate choosing different numbers of nr for each case study where

the energy persevered is increased with larger nr.

Additionally, majority of MOR methods deal with original systems with zero initial conditions which does not align with

the nature of water quality dynamics. Previously, the authors in [31] have dealt with that by recognizing the non-zero initials

network-wide as inputs for the system and setting x̂(t) = x(t) − x(0) in the original model. We follow same approach with

further analysis for the nonlinear term of the mutual dynamics. The mutual reaction dynamics as stated in Section ºMulti-

species Reaction and Decay Modelº take place in pipes and tanks. That is, vector f contains zeros except for states of pipes’

segments and tanks. We define xMS1
(t) := {cTK(t), cP(t)} and xMS2

(t) := {c̃TK(t), c̃P(t)}. Accordingly,

f(xMS1
(t),xMS2

(t)) = α · xMS1
(t) · xMS2

(t), (14)

where α := {αTK, αP}; αTK
j = −kr∆t

V TK

j (t)

V TK

j
(t+∆t)

∀ j = 1, . . . , nTK; and αP
l = −kr∆t ∀ l = 1, . . . ,

∑nP

i=1 sLi
.

Henceforward, by setting x̂MS1
(t) = xMS1

(t)−xMS1
(0) and x̂MS2

(t) = xMS2
(t)−xMS2

(0) and substituting in (14) we get

f(x̂MS1
(t), x̂MS2

(t)) = α · x̂MS1
(t) · x̂MS2

(t) = α · (xMS1
(t)− xMS1

(0)) · (xMS2
(t)− xMS2

(0))

= α · (xMS1
(t) · xMS2

(t)− xMS2
(0) · xMS1

(t)− xMS1
(0) · xMS2

(t) + xMS1
(0) · xMS2

(0)), (15)

which proves that considering f(x̂MS1
(t), x̂MS2

(t)) can be utilized by updating A(t) in the original model to eliminate the

negative terms (in blue) for pipes and tanks, while the positive constant term (in green) encapsulates the nonlinear term at the

initial concentrations which is already considered (refer to the online version of the paper for the actual colors). Subsequently,

the full-order model is formulated as

E(t)x̂(t+∆t) = Â(t)x̂(t) + B̂(t)û(t) + f(x̂(t)),

y(t) = C(t)x̂(t) + D̂(t)û(t),
(16)

where Â(t) =


A11(t) Â12(t)

Â21(t) A22(t)


 ,, B̂(t) = [B(t) A(t)x(0)], D̂(t) = [D(t) C(t)x(0)], and û(t) = [u⊤(t) 1⊤]⊤.

On the other hand, for the linearized full-order model in (10) same approach as in [31] is followed and the final model

formulated as

E(t)x̂(t+∆t) = Â(t)x̂(t) + B̂(t)û(t) +Φ,

y(t) = C(t)x̂(t) + D̂(t)û(t).
(17)

where Â(t) = Ă(t), B̂(t) = [B(t) Ă(t)x(0)], D̂(t) = [D(t) C(t)x(0)] and û(t) = [u⊤(t) 1⊤]⊤.

Lastly, we judge the performance of the MOR methods by calculate the root-mean-square error (RMSE) metric,

RMSE =

√√√√ 1

Np

Np∑

j=1

||y(j)− y(j)||22. (18)

The error is calculated for a specific simulation period of Np time-steps through which we apply same system inputs u(j) to

the two models.

In the following sections, we give full description of the utilized methods. We start with applying POD and BPOD for the

linearized formulation of the system, followed by integrating and handling the nonlinearity in the original representation of

the system (Eq. (1) for case of zero initial conditions and Eq. (16) for case of non-zero initial conditions).

The basic and the balanced POD methods are considered data-driven SVD methods. The main idea is to build empirical

Gramians based on snapshots of the original system. These empirical Gramians avoid solving complicated, intractable in many

case, Lyapunov equations. POD method relies on constructing controllability Gramian while BPOD constructs finite horizon

controllability and observability Gramians. Notably, POD method favors highly controllable states over highly observable but

less controllable ones which BPOD averts by reflecting observability in the captured snapshot.

It is important to highlight that in our system the concepts of controllability and observability for the two chemicals

are different in what they do reflect. While the input vector u1(t) depicts chlorine injections into the system by source or

rechlorination stations, vector u2(t) enables simulating the intrusion of the contaminant to the system [47]. Henceforward,

controllability for the second chemical is indicating which network components get exposed/affected by the contamination

event. On the other hand, typically water quality sensors are located to measure chlorine levels and from here comes the

abstract concept of the system being observable for water quality measurements. This is a main reason for chlorine monitoring

to be a solid proxy of the water quality state in a specific network. However, no sensors are placed for contaminants detection

specifically with their wide range. That is, their observability is reflected in chlorine levels and not quantifiable in the matrix



9

Procedure 1: POD for general MS-WQM

1 Construct snapshot Xm as in (19)
2 if nx ≪ m then

3 Calculate WCm = XmX⊤
m

4 Obtain transformation matrix V by applying eigenvalue decomposition WCmV = V Λ
5 else

6 Calculate W̃Cm = X⊤
mXm

7 Obtain matrices forms of eigenvector and eigenvalue of W̃Cm ; Q and Λ

8 Calculate transformation matrix as V = XmQΛ− 1

2

9 end if
10 Specify nr

11 Define Vr as the first nr columns of V

12 Define Lr as the first nr rows of V −1

13 Calculate Er,Ar,Br, and Cr

14 if FOM is nonlinear then
15 Follow Procedure 2
16 end if

C22 of (1b) (i.e., a zero matrix). That puts a limitation on applying BPOD method as it will overlooks this contaminant because

it is not observable. In Section ºBalanced Proper Orthogonal Decomposition (BPOD)º, we propose a special approach to solve

this issue. In addition, with no output measurement for that chemical, the RMSE metric in Eq. 18 only measures the error for

chlorine. In fact, the main purpose of this work is to control and monitor chlorine under contamination events which makes it

valid to focus on the output of measuring its concentrations that are accurately representing the real-time state. Nevertheless,

to evaluate the performance of the applied MOR methods we assume the existence of ºimaginaryº sensors on some specific

nodes to measure the fictitious reactant concentrations to calculate the corresponding error.

In the following subsections, we explain what snapshots each method captures and how to construct these Gramians

correspondingly.

1) Proper Orthogonal Decomposition (POD): This method captures snapshot matrix Xm that is built for specific number

of steps m by concatenating the states vector into

Xm = [x(0) x(1) . . . x(m− 1)], (19)

where X ∈ R
nx×m.

The approximate m-step controllability Gramian WCm
is defined as XmX⊤

m ∈ R
nx×nx . Next, we apply eigenvalue

decomposition (ED) WCm
V = V Λ and obtain V whose columns are the corresponding eigenvectors. However, in many

cases applying ED for an nx × nx matrix with large nx is taxing. This can be avoided in cases of m ≪ nx by constructing

W̃Cm
= X⊤

mXm ∈ R
m×m. Accordingly, the eigenvalue decomposition procedure performing is easier and requires less

computational time [48]. In this case, ED is formulated as W̃Cm
Q = QΛ where Λ is the diagonal matrix of eigenvalues and

matrix Q is assembled with eigenvectors as columns. The transformation matrix is then calculated as V = XmQΛ−
1

2 . For

detailed step-by-step depiction of the POD method, follow Procedure 1. This procedure is followed for both chemicals.

a) Mapping and Integrating the Nonlinearity: While applying MOR, the reason behind separating the linear term(s) and

the nonlinear term(s) is to be able to capture the behavior of the latter while working in a subspace of the original system

(i.e., Rnr instead of Rnx ). In Eq. (13), following the projection of the whole system the nonlinear term is expressed as

fr = Lrf(Vrxr(t)). Yet, the computational complexity of the nonlinear term still depends on nx;

fr = Lr︸︷︷︸
nr×nx

f(Vrxr(t))︸ ︷︷ ︸
nx×1

.

Henceforward, it is proposed to reduce the nonlinear term based on an approximate hyperreduction approach. The approach

is to measure not the full state-space variables, but particular points and from those points we construct the nonlinear term by

interpolation around these points. In our study we specify the number of these points to equal nr;

fr = LrUfr︸ ︷︷ ︸
nr×nr

f̂(t)︸︷︷︸
nr×1

.

The goal is to project f(Vrxr(t)) onto Ufr so that f(Vrxr(t)) ≈ Ufr f̂(t) and LrUfr can be pre-computed offline. This

approach is called the ºGappy methodº of Galerkin projection and the Discrete Empirical Interpolation Method (DEIM) is

used to reconstruct the nonlinear vector by interpolation. We adopt a Greedy sampling algorithm to construct the measurement

matrix to select the entries used.

We start by stacking numerical snapshot Fm only for the nonlinear term,



10

Fig. 4: An illustrative example of applying the Greedy sampling algorithm to construct the measurement matrix K for the case of nr = 5.

Fm = [f(x(0)) f(x(1)) . . . f(x(m− 1))], (20)

followed by performing a separate SVD for that snapshot, Fm = UfΣFQ
⊤

f . The next step is to define a rank-nr approximating

basis Ufr as the first nr columns of Uf . Next, we construct the measurement matrix K by applying the Greedy sampling

algorithm as summarized in Procedure 2. As shown in Fig. 4, the Greedy sampling algorithm starts by choosing the index

with the maximum value in the first mode u1 and making it the first measurement location. In the second iteration and the

subsequent ones, we compute the residual to evaluate how the current measurement subspace projects onto the next one and

decide on the next measurement point. The reason behind choosing the measurement with the maximum residual is that the

modes are no longer orthogonal in the support space, hence, we calculate the residuals and locate the index with the maximum

residual.

Procedure 2: Nonlinearity handling in MOR

1 Capture Fm as in (20)

2 Perform SVD of Fm = UfΣFQ
⊤
f

3 Construct Ufr as the first nr columns of Uf

4 Start Greedy sampling algorithm for selecting the indices (entries of f )
Input: Ufr = [u1 . . . unr ]
Output: I := {i1 . . . inr} and K = [ei1 . . . eir ]

5 [s, i1] = max{|u1|}
6 Ufr = [u1], K = [ei1 ]
7 for I = 2 : nr do

8 solve K⊤Ufrb = K⊤uI for b
9 q = uI −Ufrb

10 [s, iI ] = max{|q|}
11 Ufr = [Ufr , uI ], K = [K, eiI ]
12 end for
13 Proceed

14 Calculate f̂(t) = (K⊤Ufr )
−1f(K⊤Vrxr(t))

2) Balanced Proper Orthogonal Decomposition (BPOD): The advance in the BPOD method is the reflection of both

controllability and observability in ranking the states, unlike POD. This is attained by constructing two snapshots of the
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system, X̃m which captures the impulse responses when applying impulse signal as system input (i.e., ui(m) = γ(m)) and

Pm is assembled from states p(t) obtained from the adjoint system with impulse response in the measurements as the system’s

output. For the linearized model in (17), the adjoint system can be expressed as follows,

p(t+∆t) = Ă⊤(t)(E−1(t))⊤p(t) +C⊤(t)y(t) +E−1(t)Φ. (21)

Next step is performing SVD to the block Hankel matrix Hm = P⊤
mX̃m = UΣQ⊤ then specifying nr to collect the largest

nr singular values in Σ and obtain the corresponding left and right singular vectors (i.e., Ur and Qr). Accordingly, Vr and

Sr are calculated as

Vr = X̃mQrΣ
1

2

r , Lr = Σ
1

2

r U
⊤

r P⊤

m (22)

This approach is applicable for chlorine with sensors placed to measure its levels. For the fictitious reactant representing

the contaminant, matrix C22 in (1b) is a zero matrix representing a non-sensed variables in our system. To solve this issue we

assume that the contamination event is detected and the source location is determined. This is considered a valid assumption

in water quality monitoring to work backward detecting, classifying, and quantify using conventional WQ sensors [49]. This

is different than the ºimaginaryº sensors that are aforementioned while calculating the error to evaluate the performance of

the applied methods.

Another advance of the BPOD is the ability of stabilizing it by choosing the length of the snapshots to be large enough

to represent the actual Graminas shooting for infinity. We adopt an a priori stabilization method to ensure that the snapshot

captures the chemicals’ evolution from the time it is injected in the system till it is observed by the furthest sensor. This is

fulfilled by assembling the snapshots over a period exceeding m = max
(⌈

TBS

∆t

⌉)
= max

(⌈∑ LBS
i

vBS
i

∆t

⌉)
where LBS

i and

vBS
i are the length and velocity of the pipes the chemical travels through from a booster station to the furthest sensor. With the

existence of multiple booster stations and sensors and within the simulation period, m is taken as the length corresponding to

the maximum travel time TBS . Accordingly, this method is affected by the actuators’ and sensors’ locations along the network.

Lastly, Procedure 3 summarizes all the steps needed for a linear(ized) WQ model.

Procedure 3: BPOD for linear(ized) WQM

1 Obtain snapshots length m = m

2 Construct snapshot X̃m and Pm

3 Construct the block Hankel matrix Hm = P⊤
mX̃m

4 Perform SVD of Hm = UΣQ⊤

5 Specify nr

6 Obtain Ur,Σr, and Qr

7 Calculate Vr and Lr via (22)
8 Calculate Er,Ar,Br, and Cr

IV. REAL-TIME REGULATION OF MS-WQM VIA MODEL PREDICTIVE CONTROL AND MCCORMICK RELAXATIONS

The water quality control problem is formulated over simulation period [0, Ts] and constrained by putting standard upper

and lower bounds on chlorine concentrations stated by EPA regulations [50], which are xmin
1 = 0.2 mg/L and xmax

1 = 4 mg/L.

We note that the contaminant in the system is assumed to be detected and classified. Accordingly, for some toxic or health

threatening substances a constraint can be introduced to be kept lower than the allowed concentration defined by EPA. These

bound for both chemicals formulates the constraint xmin ≤ x(t) ≤ xmax. Additionally, the control inputs for chlorine are

constrained to be non-negative and limited by the chlorine availability and capacity of each booster station. The objective of

this control problem is to keep chemicals concentrations in all network’s components within the aforementioned bounds while

minimizing the cost of chlorine injections. That being said, the problem formulation is as follows,

minimize
x(t),u1(t)

J (u1(t)) = µ

Np∑

t=1

qB(t)⊤u1(t) (23a)

subject to WQM (1),

xmin ≤ x(t) ≤ xmax,

umin
1 ≤ u1(t) ≤ umax

1 ,

(23b)

where problem variables x(t) and u1(t) are chemicals concentrations network-wide and chlorine injections through booster

stations, qB(t) is the flow rates at the nodes corresponding to the locations of the booster stations, µ is the unit cost of chlorine

in $/mg, and WQM is the water quality model we are simulating and controlling following the representation in (1). Finally,

Np is the number of time-step in the simulation period, Np =
Tp

∆t
.
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(a) (b)

Fig. 5: (a) Discrete MPC prediction horizon scheme, and (b) graphical representation of McCormick envelope relaxation.

Nonetheless, this problem has large number of variables x(t) and u1(t). This issue can be solved by transforming a

constrained LP (23) to a quadratic program (QP) with fewer variables by applying real-time constrained model predictive

control (WQ-MPC). The water quality control formulated in [39] is based on the linear state-space representation of the single-

species WQ dynamics. In addition, same control algorithm is applied in [31] for the reduced order model of the single-species

representation and it proved its validity and effectiveness. For brevity, we do not include the details and the derivation in

this paper for the case of linearized MS-WQM. Eventually, the WQC problem is formulated as quadratic program. For the

nonlinear MS-WQM, the nonlinearity in the constraint can be relaxed using McCormick envelopes and integrated back to the

original constrained control problem as explained in the following section.

A. McCormick Relaxation

The nonlinear term in the constraint is formulated as a bi-linear expression depending on the concentration of two chemicals

at a specific network component. This constraint can be relaxed using McCormick Relaxation for bilinear nonlinear problems

[51]. This method turns the bilinear term into two envelopes surrounded by overestimators and underestimators to work within,

Fig. 5b. For a bilinear expression z = x1x2 where x1 and x2 are the two chemicals concentrations under xmin
1 ≤ x1 ≤ xmax

1

and xmin
2 ≤ x2 ≤ xmax

2 , z is introduced as a new decision variable with the following constraints,

z ≥ xmin
1 x2 + x1x

min
2 − xmin

1 xmin
2 ,

z ≥ xmax
1 x2 + x1x

max
2 − xmax

1 xmax
2 ,

z ≤ xmax
1 x2 + x1x

min
2 − xmax

1 xmin
2 ,

z ≤ xmin
1 x2 + x1x

max
2 − xmin

1 xmax
2 .

(24)

We note that, in some cases the upper bound on x2 is not specified or its concentration initially is lower than the maximum

allowed one stated by EPA. In such cases, we specify xmax
2 to be equal to this initial concentration detected to be able to

tighten the overestimators envelope while having the minimum equal to zero.

Eventually, the problem formulation explained for the linearized model can be adopted with these modifications. First, a new

variable vector z(t) is introduced and it replaces f(x1,x2, t) in (1a). Additionally, the total number of the constraints added

to the optimization problem via (24) is equal to 4(nTK +
∑nP

i=1 sLi
) as the nonlinear term is defined for pipes’ segments and

tanks and is the same for both chemicals at same element of the aforementioned (refer to Eq. (8)). To that end, the WQC

problem described in (23) is modified as follows,

minimize
x(t),u1(t),z(t)

J (u1(t)) = µ

Np∑

t=1

qB(t)⊤u1(t) (25a)

subject to WQM (1),

xmin ≤ x(t) ≤ xmax,

umin
1 ≤ u1(t) ≤ umax

1 ,

McCormick (24)

(25b)
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Next step is transforming (25) into a linear augmented formulation based on which the final WQC-QP is built. First, by

introducing z(t) into (1a), the state-space representation is updates as

x(t+ 1) = A(t)x(t) +B(t)u(t) + βz(t). (26)

where β = −kr. Then, we define the change in the states and inputs as follows

∆x(t+ 1) = x(t+ 1)− x(t), ∆u(t+ 1) = u(t+ 1)− u(t), ∆z(t+ 1) = z(t+ 1)− z(t). (27)

To concatenate these rates of change in (26), ∆z is assembled to the vector of systems decision inputs to be optimally

chosen within the envelopes defined by (24). Eventually, we reach an the augmented state-space representation in (28).

∆x(t+ 1)

y(t+ 1)




︸ ︷︷ ︸
xa(t+1)

=


 A(t) 0

C(t)A(t) I




︸ ︷︷ ︸
Φa


∆x(t)

y(t)




︸ ︷︷ ︸
xa(t)

+


 B(t) β

C(t)B(t) βC(t)




︸ ︷︷ ︸
Γa


∆u(t)

∆z(t)




︸ ︷︷ ︸
∆ua(t)

(28)

This augmented representation can be abstractly rewritten as, xa(t + 1) = Φaxa(t + 1) + Γa∆ua(t). To avoid redundancy,

integrating this equality into WQC-MPC formation follows the same approach of [31] reaching the final QP [31, Eq. (38)].

On another note, the added constraints expressed in (24) are incorporated in the constraints on the optimization variables.

B. Generalized Comprehensive Water Quality Modeling and Control Framework

In our study, we have covered model order reduction and control for multi-species water quality dynamics where chlorine is

reacting with another source of contamination in form of a bi-linear expressionÐrefer to Section ºMulti-species Reaction and

Decay Modelº. However, there are other formulations for single-species and multi-species chlorine bulk decay and reaction

dynamics as listed in [41]. We include a short list of these formulations in Tab. I, nevertheless for more details and descriptions

refer to the aforementioned study. The following generalized framework described in Algorithm 1 maps out the methods

adopted in this study to be applied on the different decay and reaction models.

Tab. I: Chlorine bulk decay and reaction models expressions

M# Model Model formulation #States L/NLa

M-1 First-order dc
dt

= −kc(t) nx L

M-2 First-order with stable component dc
dt

= −k(c(t)− cL) nx L

M-3 Parallel first-order

dc1

dt

∣

∣

∣

fast
= −kfastc1(t)

dc2

dt

∣

∣

∣

slow
= −kslowc2(t)

ct(t) = c1(t) + c2(t)

2nx L

M-4 Parallel second-order

dcF

dt

∣

∣

∣

fast
= −kfastc(t)cF(t)

dcS

dt

∣

∣

∣

slow
= −kslowc(t)cS(t)

dc

dt
=

dcF

dt
+

dcS

dt

2nx NL

M-5 nth-order dc
dt

= −kcn(t) nx NL

M-6 nth-order with stable component dc
dt

= −k(c(t)− cL)c
(n−1) nx NL

M-7 Second-order with fictitious component

dc

dt
= −kc(t)c̃(t)

dc̃

dt
= −kc(t)c̃(t)

2nx NL

M-8 Second-order with multiple components

dci

dt
= −kic(t)c̃i(t)

dc̃i

dt
= −kic(t)c̃i(t)

dc

dt
=

I
∑

i

dci

dt

Inx NL

a L: Linear or NL: Nonlinear model expression.

For the first-order, first-order with stable component, and parallel first-order (M-1&M-2&M-3) models, the dynamics are

linear and accordingly follow the procedure of the linearized model represented in our study. Whilst, the second-order with
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multiple components (M-8) is considered to be the same formula as the second-order with fictitious component (M-7) we

cover in this paper except for the number of states which gets multiplied by the number of reactants in the system. That is,

model order reduction for M-8 model becomes more demanded. On the other hand, the parallel second-order model (M-4) is

a special form of the second-order with fictitious component. Lastly, the nth-order without and with stable component models

are higher order models which can be reduced as a nonlinear models or be transferred into quadratic approximation and apply

piecewise linear relaxation.

Algorithm 1: Generalized water quality modeling and control framework

Input: WDN topology, components’ characteristics, and hydraulics parameters
Output: Real-time water quality states x(t) and control inputs u(t) at time t of a simulation period of Ts

1 Initialization
2 Define ∆t, number of segments si for each pipe and accordingly nx

3 Formulate WQ state-space representation (1) as explained in Section ºState-space Multi-species Water Quality Modelº and
according to the reaction dynamics in Tab. I.

4 Proceed
5 if Applying M-1/M-2/M-3 reaction model then
6 Follow Procedure 3 to obtain ROM
7 Apply constrained real-time WQ-MPC on (23)
8 else if Applying M-4/M-7/M-8 reaction model then
9 if Following Procedure 1 then

10 Apply McCormick relaxation via (24)
11 Apply constrained real-time WQ-MPC on (25)
12 else
13 Linearizing and following Procedure 3 then
14 Apply constrained real-time WQ-MPC on (23)
15 end if
16 else
17 Applying M-5/M-6 then
18 Follow Procedure 1 to obtain ROM
19 Transforming into quadratic app./Apply piecewise linear relaxation
20 Apply constrained real-time WQ-MPC on (23)
21 end if

To recapitulate, this paper is an extension of our previous work in [31], [41]. That is, some methods/aspects included in

this section have already been covered in these studies. Yet, we have decided to reintroduce this material into our study in a

more concise way to ensure that the reader can effectively follow and comprehend the new information being presented. In

the following bullet points, we highlight the novelty in our work in comparison to these studies.

• Adopting a nonlinear multi-species water quality dynamics rather than the linear single-species dynamics in a control

framework. These dynamics enable a more heightened level of realism in the system dynamics representation.

• Following two different paths where different MOR methods and control algorithms are applied on the original nonlinear

and a linearized forms of the model. For the linearized model, we implement the same MOR techniques (specifically, POD

and BPOD) described in the paper by [31]. On the other hand, for the nonlinear model, we introduce the Gappy method,

which employs a greedy algorithm to effectively handle the nonlinearity and reduce the model dimension.

• Expanding the implementation of these MOR techniques for the case of non-zero initial conditions by developing a closed

formulation that preserves the original nonlinear formulation of the model.

• Likewise, for the linearized model we implement the MPC algorithm explain in [31] to control and regulate chlorine levels

under the multi-species dynamics. In contrast, we extend the MPC algorithm to incorporate the McCormick Relaxation

technique, which is specifically tailored for the nonlinear model.

• While the same methods and algorithms are employed for the linearized model as in the linear single-species model described

in the paper by [31], special consideration is required when implementing these techniques for the linearized model. This is

primarily due to the duplication of state numbers and the distinct construction of representation matrices for the fictitious

reactant. These factors necessitate a specific approach to ensure accurate and reliable results during the implementation of

these methods in the context of the linearized model.

• Investigating and evaluating using an explicit vs. implicit discretization schemes from a control-theoretic standpoint. Specifi-

cally, we apply Upwind schemes, which offer a more accurate representation of the advection-reaction 1-D partial differential

equations (PDEs) compared to the Lax-Wendroff scheme utilized in the work by [31]. The advance in implementing an

Upwind scheme is proved and demonstrated in [41]. In addition, Lax-Wendroff scheme is an explicit scheme and the prior

study does not extensively investigate the use of an implicit scheme in this context.

• A novel component of our study is investigating the water quality control framework performance under different system

hydraulic settings. These settings directly impact the water quality dynamics and their progression over time within the same
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network. This exploration adds a unique dimension to our study, shedding light on the interplay between system hydraulics

and water quality dynamics for enhanced understanding and improved control strategies.

The validity of these techniques and the performance of the framework are evaluated and substantiated in the subsequent

section through a series of numerical case studies.

Fig. 6: Case studies’ layouts and their components count: (a) Three-node network, (b) Net1, and (c) FFCL-1 with the zone we control
framed.

V. CASE STUDIES

This section demonstrates the proposed framework for model order reduction and control of MS-WQM. Particularly, we

attempt to answer the following questions:

▷ Q1: How does the number of operating points impact agreement between the linearized model and the nonlinear MS-

WQM?

▷ Q2: How effective are the proposed MOR producers in terms of accuracy and computational time when applied on the

MS-WQM?

▷ Q3: How sensitive is the performance of MOR and control algorithm to the discretization methods and system’s hydraulics?

▷ Q4: How reliable and robust is model predictive control when applied to control chlorine levels under multi-species

dynamics?

Numerical studies in this section are performed on three different networks, three-node, Net1, and FFCL-1 networks [42].

As shown in Fig. 6, each of the networks has different topologies and scales. The three-node network is a self-designed

network to help provide simple illustrations for different approaches throughout our framework implementation. Net1 includes

different types of network components and has a looped layout. The FFCL-1 network is based on the Fairfield, CA, USA

water distribution system on which we test the scalability of our framework and its performance with scattered dead-ends.

Also, Fig. 6 illustrates and lists each of the networks’ components.

In addition to the listed components for each of the test networks in Fig 6, each network has a different number of sensors

and booster stations. The three-node network has one booster station at Junction J1 and one sensor at Tank TK1. Net1 has

two stations at Junctions 1 and 6 and sensors at Junctions J4 and J9. Lastly, the controlled region of the FFCL-1 network has

two sensors at Junctions J56 and J67, and one rechlorination station at J89.

It is worth mentioning that for any WDN, the system dimension depends on the hydraulics parameters and water quality

simulation time-step which accordingly define the number of segments for each pipe (i.e., pipes state variables). Further,
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Fig. 7: Nonlinear vs linearized models results for (a) chlorine and (b) fictitious reactant at TK1 of the three-node network.

changing the velocities and flows from one scenario to another results in distinct chemical concentrations across the network

components for each scenario. With that in mind, in some of our case studies, we feature the effect of changing the hydraulics

for the same network. In some other case studies, we fix the hydraulics setting in the system to investigate/test a technique

or an approach under discussion. In addition, for all studies performed in this section we use the Implicit Upwind scheme

except for Section ºImplicit vs. Explicit Discretization Schemes under Control-theoretic Perspectiveº where we compare its

performance with the Explicit Upwind scheme from a control-theoretic perspective.

A. Nonlinear vs. Linearized Models

Studies [52]±[54] state that applying a linear MOR algorithm on a linearized system gives satisfactory performance when the

linearized system is close to the original nonlinear one or operating within/near its linear regime. In these studies, linearization

is performed around one operating point for the whole simulation horizon. We apply the same approach by linearizing around

two operating points, (0,0) and (0.2,0.05) mg/L for chlorine and fictitious reactant respectively at Tank TK1 of the three-node

network. In this scenario, a constant demand is drawn from J1 and sources of 2 mg/L of chlorine and 0.5 mg/L of the fictitious

reactant are provided at R1 and zero initial conditions for other network components. As demonstrated in Fig. 7, linearization

around the operating point of (0,0) results in higher concentrations compared to the nonlinear model (based on the NDE (1)) for

both chemicals due to the fact it drops out the nonlinear term and neglects the mutual reaction. On the other hand, linearizing

the model around one random operating point as (0.2,0.05) mg/L results in relatively closer values for chlorine concentrations

but not as close for the fictitious reactant. Furthermore, unlike this scenario, in real-time water networks hydraulics are not fixed

and demands are time-variant resulting in chemical evolution with different schemes for which fixing the operating point for

all elements is not actively efficient. That is, we investigate next taking different operating points for each network component

along the simulation window every specific number of time-steps.

The choice of the operating points we linearize around is critical. The narrowest the recurrent window of choosing the

operating points, the closest the results to the original model. However, if we choose to update the operating points each

water quality time-step then matrices Ă11(t), Ă12(t), Ă21(t) and Ă22(t) in Eq. (10) should be updated that frequent instead

of being updated each hydraulic time-step. Hydraulic time-step is acceptable to be within an hourly scale to reflect the change

in demand, while the range for water quality is between minutes and seconds to allow a stable numerical simulation [43], [55].

Consequently, updating the aforementioned matrices every WQ time-step adds more computational burden to the simulation

which negates the main reason for implementing linearization and model order reduction. On the contrary, widening the window

to be more than the hydraulic time-step especially in cases with significant demand change gives inaccurate approximation

of the system’s behavior. Over and above that, it is important to consider falling within the control algorithm prediction and

control horizon to be able to adjust accordingly with the controller input.

With the hydraulic setting of a patterned demand at J1 changing every 1 hr (Fig. 8c), the model is linearized around operating

points that are taken every 1 hr for each of the network elements. The same sources of chemicals are provided at R1 with

zero initial conditions for the other components. Results, shown in Fig. 8a and 8b for chlorine concentrations at TK1 and P1,

exhibit that updating operating points every 1 hr results in accurate representation in comparison to the original model, except

for the first hour during which operating points are taken to be the initial concentrations at those elements. To mitigate this

issue, operating points are updated after 1-10 minutes from the simulation start. The same approach is followed in scenarios

where chemical dosages are increasing locally at some node for elements downstream of this node.

B. MS-WQ Model Order Reduction Performance

In this section, we assess and compare the performance of each of the proposed model order reduction procedures for multi-

species water quality dynamics in terms of accuracy compared to the original full-order model, and computational time. For
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Fig. 8: Chlorine concentrations at (a) P1 and (b) TK1 of the three-node network with (c) patterned demand at J1. Results are for the nonlinear
and linearized modelsÐlinearization operating points are updated every 1 hr for all network components.

each network, we apply POD and BPOD on the linearized model and extended POD for the nonlinear model. We refer to these

procedures as LPOD, LBPOD, and NLPOD, respectively. We note that we record the computational time needed for assembling

the snapshots, obtaining the transformation matrices, and calculating the RMSE between the original and reduced-order model

for a specific simulation under the same conditions.
First, we apply the three MOR methods on the three-node and Net1 networks under zero and non-zero initial conditions and

static hydraulic profiles. The results shown in Figures 9 and 10 validate that all methods are able to reduce the model dimensions

with relatively low RMSEs for different nr values. These RMSEs get lower with increasing the nr values and are lower for

the scenario of zero initial conditions compared to the case of non-zero initial conditions. For the scenario with non-zero initial

conditions, initial chlorine concentrations are 0.5 mg/L network-wide; the initial fictitious reactant concentrations at TK1 in

the three-node network and Tank 11 in Net1 are 0.05 mg/L. Fig. 10 shows the chlorine and fictitious reactant concentrations

for both scenarios of initial conditions at TK1 of the three-node network and Tank 11 of Net1 for the full-order model and the

reduced-order models using all three MOR producers. It is observed that the reduced-order models give almost identical results

to the full-order one for the step response at TK1 and for a regular node along the network for Tank 1 for the two scenarios of

zero and non-zero initial conditions. On the contrary, these results differ from [31], where the POD method was found to have

higher errors for the scenario of non-zero initial concentrations under single-species dynamics as the input-output relationship

is not correctly captured when the initial values are treated as inputs into the system. In our study, this effect is mitigated by

building the offline snapshot with a higher impulse signal by the booster stations which results in favoring the actual locations

of booster stations.
Meanwhile, it is worth mentioning that MOR methods’ performance is significantly impacted by the locations of the sensors

and actuators and their reflection on network-wide observability and controllability. This leads to inaccurate or unstable results

in some cases and in some other scenarios. However, the allocation of these sensors and actuators for each network is out of

this paper’s scope and we solve assuming the predetermination of their locations.

C. Model Order Reduction Sensitivity to System Hydraulics

The construction of the transformation matrices Vr and Lr for both methods POD and BPOD is sensitive to the snapshots

(i.e., Xm and Pm) constructed offline. These snapshots need to be long enough and representative of the actual reaction
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Fig. 11: Chlorine and fictitious reactant concentrations evolution at J11, J56, J76, and J107 of FFCL-1 network simulated by full- and
reduced-order models. Full-order model results for at each of the junctions are in solid lines, while the LPOD method results are in dashed
lines. Number of states for the full-order model is nx = 10356 and reduced to nr = 200 states.

case of dynamic hydraulic demands for a bigger network; the FFCL-1 network. In Fig. 11, the evolution of chlorine and the

fictitious reactant at J11, J56, J76, and J107 of the FFCL-1 network simulated by full-order model and LPOD-based reduced-

order model is presented. Note that, only LPOD is shown, which is representative of the behavior of all other approaches.

In this scenario, an input of 0.3 mg/L for the fictitious reactant is inserted at the start of the network (i.e., at the Tank)

depicting an early intrusion event. As demonstrated, the LPOD-based ROM is able to trace the concentrations of the chemicals

at different junctions, including dead-ends and junctions that are connecting looped pipes. Nonetheless, an oscillatory effect

is detected for the fictitious reactant concentrations in the framed zone. This oscillation is formulated as the fictitious reactant

being completely consumed by the chlorine at these junctions or at pipes flowing into them (e.g., J76), however, the operating

points around which the system is linearized force the fictitious reactant to have false concentrations. Therefore, this effect is

illuminated by applying NLPOD and is reduced by updating the operating points more frequently.
Lastly, the computational time recorded for each of the MOR methods implementations on the three tested networks is

illustrated in Fig. 12. For all networks, the NLPOD method requires more computational time as a result of handling the

nonlinearity term separately and performing the greedy sampling algorithm. However, the maximum increase in time is around

95 seconds compared to BPOD for the FFCL-1 network, which is considered an acceptable computational time for a network

of nx = 10356 states.
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Fig. 12: Computational time to implement the three MOR methods for three tested networks. Total number of states nx is 10356 for FFCL-1,
482 for Net1, and 204 for the three-node network.

D. Implicit vs. Explicit Discretization Schemes under Control-theoretic Perspective

As stated in Section ºTransport and Reaction in Pipesº, the 1-D AR equation can be discretized by implementing either

Explicit or Implicit Upwind schemes. The explicit scheme needs to be performed under satisfied CFL condition to ensure
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stability which requires a small time-step in many cases and hence a higher system dimension. While the implicit scheme is

unconditionally stable but requires more complicated mathematical calculations that add to the computational work. Therefore,

it has been a pressing question that needs to be answered, ºWhich is better: Implicit or Explicit discretization schemes?º.

This has been proven to not be an easy question with an easy answer. In our study, we reduce our system’s dimensions while

applying either of these methods. Nonetheless, while transformation matrices are calculated offline, some system matrices

are updated every hydraulic time-step. This adds more computational load with matrices multiplication which is higher with

matrix inverse in the case of the implicit scheme. One more point to highlight, although the implicit scheme allows a bigger

simulation time-step, a smaller one is more efficient to be able to update the control inputs more frequently. So our question can

be formulated as follows, ºFrom a control-theoretic perspective, which is better: Implicit or Explicit discretization schemes?º
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Fig. 13: (a) RMSEs for the reduced-order Explicit and Implicit Upwind schemes-based models while applying LPOD on Net1 with nx = 482
for different nr values, (b) chlorine concentrations at J4 simulated by the full- and reduced-order models (with nr = 100) using both schemes.

As model order reduction is a prior step to applying control to our model, we test both discretization methods’ performance

while applying the LPOD method for Net1. As demonstrated in Fig. 13a, the RMSEs are lower for the implicit than the

explicit scheme. In addition, the change in RMSEs by increasing nr more than 150 is insignificant as the states which get

retained do not hold high energy compared to the previously selected ones. On the other hand, the error values for the explicit

scheme do not go lower than 0.003 with increasing nrÐexplained through the following example. Although the CFL condition

is satisfied for the explicit scheme, it formulates sharp fronts at points with a relatively significant change in the chemical

concentrations as shown in Fig. 13b. Fig. 13b illustrates chlorine concentrations at J4 for both implicit and explicit schemes

and the corresponding reduced models with nr = 120 of a full model with nx = 482. It is noticeable that the reduced model

based on the explicit scheme is consequently affected and shows instability behavior that dampens reaching equilibrium. This

performance is recorded under a low Courant number with the network’s pipes. To mitigate that, the water quality time-step is

required to be reduced to reach higher CNÐnear but less than 1. Such behavior is avoided when applying the unconditionally

stable implicit scheme.

To that end, the Implicit Upwind scheme gives more accurate results that lead to a more robust control algorithm. The

computational burden of this scheme can be lowered using sparse matrix multiplication. The computational time to perform

the simulation on Net1 shown in Fig. 13a is 32.9 and 43.4 seconds for the Explicit and Implicit Upwind schemes, respectively

for the same water quality time-step. However, the implicit scheme retains high accuracy under a higher WQ time-step while

requiring lower computational runtime. Therefore, the Implicit Upwind scheme gives more flexibility in choosing the time-step

needed to retain real-time control windows while maintaining high accuracy.

E. Real-time Control Implementation of MS-WQM MOR-Based MPC

The main objective of this paper and the prior investigation of the MOR methods is to integrate them into and apply a real-

time control algorithm of chlorine concentrations using the booster stations distributed along the WDN under MS-WQM. We

apply the MPC algorithm on the linearized and nonlinearized MS-WQ ROM as explained in Section ºReal-Time Regulation of

MS-WQM via Model Predictive Control and McCormick Relaxationsº. As both LPOD and BPOD can reduce the MS-WQM

effectively, For the linearized model we apply the BPOD method. On the other hand, we apply the NLPOD for the nonlinear

model to obtain the ROM.

For multi-species water quality control and regulation, while applying the McCormick relaxation the envelopes rely on the

limits for both chemicals. For the network’s components near the location of the second chemical intrusion, these envelopes put
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Fig. 14: (a) Control action u1 during 2 hrs of simulation on the three-node network by applying, SS-LMPC: linear single-species-based MPC,
MS-LMPC: linearized multi-species-based MPC, and MS-RMPC: nonlinear multi-species-based relaxed MPC, (b) chlorine concentrations
at J1 and P1 under another chemical intrusion at J1 for the first hour.

tight boundaries on the chosen value for z by the control problem as the x2 is close to xmax
2 . On the other hand, for components

downstream from this location with lower concentrations for both chemicals the relaxation allows higher and lower values for

z which leads to choosing a value of z to be as close to the underestimators so that the control inputs are lower and the cost of

chlorine injections is reduced. Additionally, for higher values of the mutual reaction coefficient kr, the effect of relaxation on

the chosen control input increases. That is, the proposed relaxed MPC may result in overlooking/underestimating the mutual

reaction and, therefore, we lower the upper bound for the fictitious reactant as a procedure integrated into the looped control

algorithm repeated each time-step.

As explained in Section ºNonlinear vs. Linearized Modelsº, it is proposed to update the operating points around which the

system is linearized every significant change window (e.g., hydraulic states change). Updating these operating points adds to

the computational time by recalculating the matrices, yet it yields a more accurate representation. Therefore, we put a threshold

according to which we judge changing these points after applying every control input.

By adopting these approaches, we start with applying the MS-WQC MPC-based method on the three-node network under

a static hydraulic profile and with a reduced number of states of nr = 30 states out of nx = 204. The water quality time-step

is chosen to be 5 seconds and the control horizon is 10 minutes. The fictitious reactant is discharged into the system at J1

(same location of the booster station) at a concentration of 0.1 mg/L for the first 1 hour of the simulation duration. Fig.

14 demonstrates the control actions and the corresponding control response in J1 and P1 under the multi-species linearized

ROM, nonlinear ROM, and the single-species ROM that neglects the existence of the other chemical in the system for the

first consecutive 2 hours of simulation. For all scenarios chlorine concentrations at J1 and P1 are zeros at the start of the

simulation. That is, MPC starts by injecting high chlorine dosage of 21284 mg/min for the case of multi-species dynamics

and 20838 mg/min for the single-species model. The control input needed drops to 19158 mg/min and 17596 mg/min for

multi-species and single-species dynamics, respectively. After the first hour of simulation, MPC results in the same control

actions for both models as the intrusion event is contained. Note that, the second substance’s initial concentration for P1 is

zero, which leads to the peak control action at the start of the simulation being relatively close as the second substance has

not traveled into P1. Comprehensively, this highlights the importance and effectiveness of the adopted MS-WQM and control

framework. Furthermore, this difference between the two models’ results (i.e., chlorine concentration dynamics and optimal

chlorine inputs) increases for more reactive components with chlorine and initial intrusion concentrations which may cause

operational issues with limited chlorine availability and/or budget.

Additionally, the linearized MS-WQC problem and relaxed one produce the same performance as illustrated in Fig. 14a.

We note that for the linearized model, the operating points are updated at the start of the simulation, with applying the peak

control action, and by the end of the contamination event. For the relaxed MS-WQC problem, all elements are directly affected

by the event resulting in tight envelops and approximating the mutual reaction near its actual value. However, the number of

control variables for this procedure is higher for the first hour. To that end, the computational time needed for each of the

two control procedures is case-oriented. For this case study, the linearized-based MPC method has computational time of 78

seconds, while it is 93 seconds for the second method.

Next, we apply the proposed MS-WQC approach on Net1 under a dynamic hydraulic profile defined by the patterned demand

at Junction 1, Fig. 15c. The FOM has 482 states which are reduced to 50 states. As both control procedures have proved their

ability to regulate chlorine concentrations network-wide, we showcase the results from the relaxed MPC procedure only to

point out case studies that can take place. In this case study, the water quality time-step is 5 seconds while the control horizon

is 10 minutes and the simulation period is 24 hours. The initial concentrations of all chemicals are zeros. The fictitious reactant
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Fig. 15: (a) MPC control action at Junctions 1 and 6 of Net1, and the corresponding chlorine concentrations at these junctions and Junctions
5 and 8 under (c) patterned demand at Junction 1.

is set to intrude the system at Junction 6 with a concentration of 0.3 mg/L mid-day. Additionally, chlorine concentrations are

limited to 1.2 mg/L for cost reasons. for this case study, we introduce two types of disturbance to the system: a sudden drop in

chlorine concentration at Junction 6 to 0.15 mg/L at the 12th hour of the day and a sudden increase to 2 mg/L at the 18th hour.

Fig. 15a shows the control action at Junctions 1 and 6, while Fig. 15b demonstrates the corresponding chlorine concentrations

at these Junctions and Junctions 5 and 8. For Junction 1, the control action is higher and almost constant at 1.9× 104 mg/min

as the junction is located at the very start of the network and all the downstream elements are affected by its input. On the other

hand, the booster station at Junction 6 acts on the disturbances and the changes at the downstream nodes effectively. Results

validate the performance of the control algorithm and how adaptive it is under these disturbances. The run-time recorded for

applying the control algorithm for this case study is 278 seconds. Likewise, chlorine concentrations are regulated through the

FFCL-1 network as Fig. 16 exhibits. The total number of states of the original model is 10356, while the reduced model has

200 states. Water quality time-step, control horizon, and simulation period are same as the previous case study. Two different

fictitious reactants are assumed to be detected, the first one at J76 with initial concentration of 0.3 mg/L while the second one

at J89 of 0.2 mg/L. Control actions illustrated in Fig. 16a are under the condition of hydraulic profile that results in changing

flow directions. Yet, the control algorithm recovers effectively and maintain chlorine concentrations within the desired range.

In short, the ROMs-based control algorithms guarantee the bounds defined for the inputs and outputs while being tractable for

larger networks.

VI. CONCLUSION, PAPER’S LIMITATIONS, AND RECOMMENDATIONS FOR FUTURE WORK

Relying on the results from the numerical case studies in Section ºCase Studiesº, we answer the research questions posed:

▷ A1: The multi-species water quality model can be effectively linearized around operating points updated every specific

moving window according to the hydraulic profile, instantaneous changes, initial conditions, and control actions. However,

to achieve the desired accuracy this window is reduced and accordingly, the computational time increases.

▷ A2: The presented MOR methods yield high accuracy in estimating output concentrations for both chlorine and the

fictitious substance in the system. The three MOR procedures: LPOD, BPOD, and NLPOD are able to handle non-
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Fig. 16: (a) Control action at J89 of the FFCL-1 network, (b) the corresponding chlorine concentrations at J56 and J67.

zero initial conditions by favoring the control actuators’ inputs while building the offline snapshots. Additionally, the

NLPOD method requires more computational time to handle and interpolate the nonlinearity in the system, yet, it is still

computationally tractable, same for LPOD and BPOD.

▷ A3: MPC’s behavior depends on the underlying model and its accuracy. Accordingly, the Implicit Upwind scheme is

preferred over the Explicit Upwind scheme because of its ability to provide highly-accurate simulation for the full and

reduced-order MS-WQM. Moreover, numerical case studies show that the three MOR producers are robust to dynamically

changing hydraulic profiles.

▷ A4: MPC shows robustness and high flexibility in regulating chlorine levels in WDNs under different scenarios of

contamination events and hydraulic profiles by applying feedback control on the reduced order model while maintaining

affordable computational requirements. Both proposed control procedures, the linearized model- and the relaxed nonlinear

model-based show reliable performance while applying adaptive approaches according to the case study considered. These

approaches lead to a different level of complexity and computational burden for each of the procedures which results in

favoring one procedure over the other according to the case study.

Our study is not limitations-free. We highlight these limitations next along with the authors’ future work to be investigated.

First, this work used pre-assigned fixed-location booster and sensor locations. Given that these locations impact performance,

future work will include optimizing these locations from a control-theoretic perspective. Second, additional approaches to model

linearization should be explored to potentially exploit offline pre-computed FOM trajectories. Lastly, further work is needed

to improve the relaxation method because we expect opportunities to further improve computational performance compared to

the linearized model. On the other hand, this study is considered a computational study that is based on a model that has been

verified, however, real-time experimental study to verify the considered model and our framework performance under various

scenarios is recommended.
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