
Towards Constituting Mathematical Structures for Learning to Optimize

Jialin Liu * 1 Xiaohan Chen * 1 Zhangyang Wang 2 Wotao Yin 1 HanQin Cai 3

Abstract

Learning to Optimize (L2O), a technique that uti-
lizes machine learning to learn an optimization
algorithm automatically from data, has gained
arising attention in recent years. A generic L2O
approach parameterizes the iterative update rule
and learns the update direction as a black-box
network. While the generic approach is widely
applicable, the learned model can overfit and may
not generalize well to out-of-distribution test sets.
In this paper, we derive the basic mathematical
conditions that successful update rules commonly
satisfy. Consequently, we propose a novel L2O
model with a mathematics-inspired structure that
is broadly applicable and generalized well to out-
of-distribution problems. Numerical simulations
validate our theoretical findings and demonstrate
the superior empirical performance of the pro-
posed L2O model.

1. Introduction
Solving mathematical problems with the help of artificial
intelligence, particularly machine learning techniques, has
gained increasing interest recently (Davies et al., 2021; Char-
ton, 2021; Polu et al., 2022; Drori et al., 2021). Optimization
problems, a type of math problem that finds a point with
minimal objective function value in a given space, can also
be solved with machine learning models (Gregor & LeCun,
2010; Andrychowicz et al., 2016; Chen et al., 2021a; Ben-
gio et al., 2021). Such technique is coined as Learning to
Optimize (L2O).

As an example, we consider an unconstrained optimization
problem minx∈Rn F (x)where F is differentiable. A classic

*Equal contribution 1Alibaba Group (U.S.) Inc, Bellevue, WA,
USA 2Department of Electrical and Computer Engineering, Univer-
sity of Texas at Austin, Austin, TX, USA 3Department of Statistics
and Data Science and Department of Computer Science, Univer-
sity of Central Florida, Orlando, FL, USA. Correspondence to:
HanQin Cai <hqcai@ucf.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

algorithm to solve this problem is gradient descent:

xk+1 = xk − αk∇F (xk), k = 0,1,2,⋯,

where the estimate of x is updated in an iterative manner,
αk > 0 is a positive scalar named as step size, and the update
direction αk∇F (xk) is aligned with the gradient of F at
xk. Instead of the vanilla gradient descent, (Andrychowicz
et al., 2016) proposes to parameterize the update rule into
a learnable model that suggests the update directions by
taking the current estimate and the gradient of F as inputs

xk+1 = xk − dk(xk,∇F (xk);ϕ), k = 0,1,⋯,K − 1, (1)

where ϕ is the learnable parameter that can be trained by
minimizing a loss function:

min
ϕ
L(ϕ) ∶= EF ∈F[

K

∑
k=1

wkF (xk)], (2)

where F is the problem set we concern and {wk}
K
k=1 is a

set of hand-tuned weighting coefficients. Such loss function
aims at finding an update rule of xk such that the objective
values {F (xk)} are as small as possible for all F ∈ F . This
work and its following works (Lv et al., 2017; Wichrowska
et al., 2017; Wu et al., 2018; Metz et al., 2019; Chen et al.,
2020; Shen et al., 2021; Harrison et al., 2022) show that
modeling dk with a deep neural network and learning a
good update rule from data is doable. To train such models,
they randomly pick some training samples from F and build
estimates of the loss function defined in (2). Such learned
rules are able to generalize to unseen instances from F , i.e.,
the problems similar to the training samples. This method
is quite generic and we can use it as long as we can access
the gradient or subgradient of F . For simplicity, we name
the method in (1) as generic L2O.

Generic L2O is flexible and applicable to a broad class of
problems. However, generalizing the learned update rules
to out-of-distribution testing problems is quite challenging
and a totally free dk usually leads to overfitting (Metz et al.,
2020; 2022). In this paper, we propose an approach to ex-
plicitly regularize the update rule dk. Our motivation comes
from some common properties that basic optimization algo-
rithms should satisfy. For example, if an iterate xk reaches
one of the minimizers of the objective F (x), the next iterate
xk+1 should be fixed. Such condition is satisfied by many

1

Towards Constituting Mathematical Structures for Learning to Optimize

basic algorithms like gradient descent, but not necessarily
satisfied if dk is free to choose. In this paper, we refer to an
update rule as a good rule if it fulfills these conditions. Our
main contributions are three-fold:

1. We strictly describe some basic mathematical condi-
tions that a good update rule should satisfy on convex
optimization problems.

2. Based on these conditions, we derive a math-inspired
structure of the explicit update rule on xk.

3. We numerically validate that our proposed scheme has
superior generalization performance. An update rule
trained with randomly generated data can even perform
surprisingly well on real datasets.

Organization. The rest of this paper is organized as fol-
lows. In Section 2, we derive mathematical structures for
L2O models. In Section 3, we propose a novel L2O model
and discuss its relationship with other L2O models. In Sec-
tion 4, we verify the empirical performance of the proposed
model via numerical experiments. In Section 5, we conclude
the paper with some discussions on the future directions.

2. Deriving Mathematical Structures for L2O
Update Rule

In this study, we consider optimization problems in the form
of minx∈Rn F (x) = f(x) + r(x), where f(x) is a smooth
convex function with Lipschitz continuous gradient, and
r(x) is a convex function that may be non-smooth. More
rigorously, we write that f ∈ FL(Rn) and r ∈ F(Rn)where
the function spaces F(Rn) and FL(Rn) are defined below.

Definition 1 (Spaces of Objective Functions). We define
function spaces F(Rn) and FL(Rn) as

F(Rn
) = {r ∶ Rn

→ R ∣ r is proper, closed and convex},

FL(Rn
) = {f ∶ Rn

→ R ∣ f is convex, differentiable, and

∥∇f(x) −∇f(y)∥ ≤ L∥x − y∥,∀x,y ∈ Rn
}.

The first derivative of F plays an important role in the update
rule (1). For differentiable function f ∈ FL(Rn), we can
access to its gradient ∇f(x). For non-differentiable func-
tion r ∈ F(Rn), we have to use the concepts of subgradient
and subdifferential that are described below.

Definition 2 (Subdifferential and Subgradient). For r ∈
F(Rn), its subdifferential at x is defined as

∂r(x) = {g ∈ Rn ∣ r(y) − r(x) ≥ g⊺(y − x), ∀y ∈ Rn}.

Each element in the subdifferential, i.e., each g ∈ ∂r(x), is
a subgradient of function r at point x.

Settings of dk. We clarify some definitions about the up-
date direction dk. A general parameterized update rule can
be written as

xk+1 = xk − dk(zk;ϕ), (3)

where zk ∈ Z is the input vector and Z is the input space.
The input vector may involve dynamic information such as
{xk, F (xk),∇F (xk)}. Take (Andrychowicz et al., 2016)
as an example, as described in (1), the input vector is
zk = [x

⊺
k,∇F (xk)

⊺]⊺ and the input space is Z = R2n.
In our theoretical analysis, we relax the structure of (3)
and use a general update rule dk ∶ Z → Rn instead of the
parameterized rule dk(zk;ϕ) and write (3) as:

xk+1 = xk − dk(zk). (4)

To facilitate the theoretical analysis, we assume the update
direction dk is differentiable with respect to the input vector,
and its derivatives are bounded. Specifically, dk is taken
from the space DC(Z) which is defined below.

Definition 3 (Space of Update Rules). Let Jd(z) denote
the Jacobian matrix of operator d ∶ Z → Rn and ∥ ⋅ ∥F
denote the Frobenius norm, we define the space:

DC(Z) = {d ∶ Z → Rn ∣ d is differentiable,

∥Jd(z)∥F ≤ C, ∀z ∈ Z}.

In practice, training the deep network that is parameter-
ized from dk will usually need the derivatives of dk. Thus,
the differentiability and bounded Jacobian of dk are im-
portant for this study. Note that dk ∈ DC(Z) has been
commonly used and satisfied in many existing parameteri-
zation approaches, e.g., Long Short-Term Memory (LSTM),
which is one of the most popular models adopted in L2O
(Andrychowicz et al., 2016; Lv et al., 2017).

2.1. Smooth Case

In the smooth case, ∇F (x) equals to ∇f(x) as the non-
smooth part r(x) = 0. Thus, (4) can be written as:

xk+1 = xk − dk(xk,∇f(xk)). (5)

We refer (5) to be a good update rule if it satisfies the fol-
lowing two assumptions:

Asymptotic Fixed Point Condition. We assume that
xk+1 = x∗ as long as xk = x∗, where x∗ ∈ argminx f(x).
In other words, if xk is exactly a solution, the next iterate
should be fixed. Substituting both xk and xk+1 with x∗, we
obtain:

x∗ = x∗ − dk(x∗,∇f(x∗)), for all k = 0,1,2,⋯.

2

Towards Constituting Mathematical Structures for Learning to Optimize

Convex analysis theory tells us ∇f(x∗) = 0, and we obtain
dk(x∗,0) = 0. Instead of using this strong assumption, we
relax it and assume dk(x∗,0)→ 0 as k →∞. Formally, it
is written as below and coined as (FP1):

For any x∗ ∈ argmin
x∈Rn

f(x), lim
k→∞

dk(x∗,0) = 0. (FP1)

Such a condition can be viewed as an extension to the Fixed
Point Encoding (Ryu & Yin, 2022) in optimization, which is
useful guidance for designing efficient convex optimization
algorithms.

Global Convergence. We assume that, the sequence
{xk}

∞
k=0 converges to one of the minimizers of the objec-

tive function f(x), as long as it yields the update rule (5).
Formally, it is written as (GC1):

For any sequences {xk}
∞
k=0 generated by (5), there exists

x∗ ∈ argmin
x∈Rn

f(x) such that lim
k→∞

xk = x∗. (GC1)

Actually, assumptions (FP1) and (GC1) are fundamental
in the field of optimization and can be satisfied by many
basic update schemes. For example, as long as f ∈ FL(Rn),
gradient descent satisfies (FP1) unconditionally and satisfies
(GC1) with a properly chosen step size. To outperform the
vanilla update rules like gradient descent, a learned update
rule dk should also satisfy (FP1) and (GC1).

The following theorem provides an analysis on dk under
(FP1) and (GC1). Note that proofs of all theorems in this
section are deferred to the Appendix.

Theorem 1. Given f ∈ FL(Rn), we pick a sequence
of operators {dk}

∞
k=0 with dk ∈ DC(R2n) and generate

{xk}
∞
k=0 by (5). If both (FP1) and (GC1) hold, then for all

k = 0,1,2,⋯, there exist Pk ∈ Rn×n and bk ∈ Rn satisfying

dk(xk,∇f(xk)) = Pk∇f(xk) + bk,

with Pk is bounded and bk → 0 as k →∞.

Theorem 1 illustrates that an update rule dk is not com-
pletely free under assumptions (FP1) and (GC1). It sug-
gests the following structured update rule instead of the free
update rule (5):

xk+1 = xk −Pk∇f(xk) − bk, (6)

where Pk is named as a preconditioner and bk is named as
a bias. The scheme (6) covers several classical algorithms.
For example, with Pk = αI and bk = β(xk − α∇f(xk) −

xk−1 − α∇f(xk−1)), it reduces to Nesterov accelerated
gradient descent (Nesterov, 1983); with bk = 0 and properly
chosen Pk, it covers Newton’s method and quasi-Newton
method like L-BFGS (Liu & Nocedal, 1989).

Furthermore, Theorem 1 implies that, as long as (FP1) and
(GC1) are both satisfied, finding the optimal update direc-
tion dk equals to finding the optimal preconditioner and
bias. To train an update rule for smooth convex objective
functions f ∈ FL, one may parameterize Pk and bk instead
of parameterizing the entire dk, that is,

xk+1 = xk −Pk(zk;ϕ)∇f(xk) − bk(zk;ψ),

where the input vector zk = [x
⊺
k,∇f(xk)

⊺]⊺. Detailed
parameterization and training methods are later described
in Section 3.

Note that even if the update rule satisfies (6) instead of (5),
one cannot guarantee (FP1) and (GC1) hold. Under our
assumptions, if one further makes assumptions on the tra-
jectory of {xk}Kk=0, then they would obtain a convergence
guarantee. This idea falls into a subfield of optimization
called Performance Estimation Problem (PEP) (Taylor et al.,
2017; Ryu et al., 2020). However, algorithms obtained by
PEP are much slower than L2O on specific types of prob-
lems that a single user is concerned with. This is because
PEP imposes many restrictions on the iteration path, while
L2O can find shortcuts for particular problem types.

Although we also impose restrictions (Asymptotic Fixed
Point Condition and Global Convergence) on L2O, these
restrictions target the asymptotic performance and the final
fixed point, rather than the path. As a result, the math-
structured L2O proposed in this paper avoids the limitations
of convergence guarantees while allowing shortcuts. By
analyzing the fixed point, we discover a more effective
learnable optimizer structure.

2.2. Non-Smooth Case

In the non-smooth case (i.e., f(x) = 0), we use subgradient
instead of gradient. A simple extension to (5) is to pick a
subgradient gk from subdifferential ∂r(xk) in each iteration
and use it in the update rule:

xk+1 = xk − dk(xk,gk), gk ∈ ∂r(xk). (7)

Such an update rule is an extension to subgradient descent
method: xk+1 = xk − αkgk. Compared with gradient de-
scent in the smooth case, the convergence of subgradient
descent method is usually unstable, and it may not converge
to the solution if a constant step size is used. To guaran-
tee convergence, one has to use certain diminishing step
sizes, which may lead to slow convergence. (Bertsekas,
2015). For non-smooth problems, Proximal Point Algo-
rithm (PPA) (Rockafellar, 1976) usually converges faster
and more stably than the subgradient descent method. While
subgradient descent method uses the explicit update, PPA
takes implicit update rule: xk+1 = xk − αkgk+1, where
gk+1 ∈ ∂r(xk+1). Inspired by PPA, we propose to use the

3

Towards Constituting Mathematical Structures for Learning to Optimize

following implicit rule instead:

xk+1 = xk − dk(xk+1,gk+1), gk+1 ∈ ∂r(xk+1). (8)

Generally speaking, it is hard to calculate xk+1 from the
implicit formula (8) given xk. However, the following dis-
cussion provides a mathematical structure of dk in (8), and,
under some mild assumptions, (8) can be written in a much
more practical way.

With the same argument in the smooth case, we obtain the
math description of the asymptotic fixed point condition:
For any x∗ ∈ argminx r(x), there exists a g∗ ∈ ∂r(x∗)
such that dk(x∗,g∗) → 0 as k → ∞. With convex
analysis theory, it holds that 0 ∈ ∂r(x∗) if and only if
x∗ ∈ argminx r(x). Thus, it is natural to take g∗ = 0.
Formally, it is written as

For any x∗ ∈ argmin
x∈Rn

r(x), lim
k→∞

dk(x∗,0) = 0. (FP2)

Similar to (GC1), in the non-smooth case, we require the
sequence {xk} converges to one of the minimizers of the
function r(x). Formally, it is written as

For any sequences {xk}
∞
k=0 generated by (8), there exists

x∗ ∈ argmin
x∈Rn

r(x) such that lim
k→∞

xk = x∗. (GC2)

Theorem 2. Given r ∈ F(Rn), we pick a sequence of opera-
tors {dk}

∞
k=0 with dk ∈ DC(R2n) and generate {xk}

∞
k=0 by

(8). If both (FP2) and (GC2) hold, then for all k = 0,1,2,⋯,
there exist Pk ∈ Rn×n and bk ∈ Rn satisfying

xk+1 = xk −Pkgk+1 − bk, gk+1 ∈ ∂r(xk+1),

with Pk is bounded and bk → 0 as k → ∞. If we further
assume Pk is symmetric positive definite, then xk+1 can be
uniquely determined through

xk+1 = argmin
x∈Rn

r(x) +
1

2
∥x − xk + bk∥

2
P−1

k
, (9)

where the norm ∥ ⋅ ∥P−1
k

is defined as ∥x∥P−1
k
∶=
√
x⊺P−1k x.

Define the preconditioned proximal operator of r(x) as

proxr,P(x̄) ∶= argmin
x

r(x) +
1

2
∥x − x̄∥2P−1 , (10)

where P is a symmetric positive definite preconditioner.
Then (9) can be written as xk+1 = proxr,Pk

(xk − bk). If
we set Pk = I and bk = 0, (9) reduces to the standard
PPA. Instead of learning a free update rule as shown in (8),
Theorem 2 suggests learning the preconditioner Pk and the
bias bk in a structured rule, as illustrated in equation (9).

2.3. Composite Case

As special cases, the smooth case and non-smooth case
provide important preliminaries to the composite case:
F (x) = f(x) + r(x). Inspired by Theorems 1 and 2, we
use explicit formula for f and implicit formula for r in the
composite case:

xk+1 = xk − dk(xk,∇f(xk),xk+1,gk+1), (11)

where gk+1 ∈ ∂r(xk+1) and the input vector zk =
[x⊺k,∇f(xk)

⊺,x⊺k+1,g
⊺
k+1]

⊺ and input space is Z = R4n.

To derive the asymptotic fixed point condition in this case,
we use the same arguments in Sections 2.1 and 2.2, and we
obtain the following statement for all x∗ ∈ argminx F (x):

lim
k→∞

dk(x∗,∇f(x∗),x∗,g∗) = 0, for some g∗ ∈ ∂r(x∗).

The convexity of f and r implies that 0 ∈ ∇f(x∗)+∂r(x∗)
if and only if x∗ ∈ argminx F (x). Thus, it holds that
−∇f(x∗) ∈ ∂r(x∗). With g∗ = −∇f(x∗), one could ob-
tain the formal statement of the fixed point condition. For
any x∗ ∈ argminx∈Rn F (x), it holds that

lim
k→∞

dk(x∗,∇f(x∗),x∗,−∇f(x∗)) = 0. (FP3)

The global convergence is stated as:

For any sequences {xk}
∞
k=0 generated by (11), there exists

x∗ ∈ argmin
x∈Rn

F (x) such that lim
k→∞

xk = x∗. (GC3)

Theorem 3. Given f ∈ FL(Rn) and r ∈ F(Rn), we pick
a sequence of operators {dk}

∞
k=0 with dk ∈ DC(R4n) and

generate {xk}
∞
k=0 by (11). If both (FP3) and (GC3) hold,

then for all k = 0,1,2,⋯, there exist Pk ∈ Rn×n and bk ∈
Rn satisfying

xk+1 = xk −Pk(∇f(xk) − gk+1) − bk, gk+1 ∈ ∂r(xk+1),

with Pk is bounded and bk → 0 as k → ∞. If we further
assume Pk is symmetric positive definite, then xk+1 can be
uniquely determined given xk through

xk+1 = proxr,Pk
(xk −Pk∇f(xk) − bk). (12)

With bk = 0 and Pk = αI, (12) reduces to a standard Prox-
imal Gradient Descent (PGD). Therefore, scheme (12) is
actually an extension of PGD with a preconditioner Pk and
a bias bk. Theorem 3 implies that it’s enough to learn an
extended PGD instead of a free scheme (11).

2.4. Longer Horizon

Those update schemes (5), (8) and (11) introduced in pre-
vious sections explicitly depend on only the current status

4

Towards Constituting Mathematical Structures for Learning to Optimize

xk. Now we introduce an auxiliary variable yk that encodes
historical information through operator m:

yk =m(xk,xk−1,⋯,xk−T). (13)

To facilitate parameterization and training, we assume m is
differentiable: m ∈ DC(R(T+1)×n) (see Definition 3). With
yk, we could encode more information into the update rule
and extend (11) to the following:

xk+1 = xk − dk(xk,∇f(xk),xk+1,gk+1,yk,∇f(yk)),

where gk+1 ∈ ∂r(xk+1). (14)

Now let’s derive the asymptotic fixed point condition and the
global convergence that (13) and (14) should follow. Since
the global convergence requires xk → x∗, the continuity of
operator m implies the convergence of sequence {yk}. If
the limit point of {yk} is denoted by y∗, we can assume
y∗ = x∗ without loss of generality because, for any operator
m, we can always construct another operator by shifting the
output: m̂ =m − y∗ +x∗ such that the sequence generated
by m̂ converges to x∗. Roughly speaking, we assume that
the sequence {xk,yk} generated by (13) and (14) satisfies
xk → x∗ and yk → x∗. By extending (FP3) and (GC3),
we obtain the formal statement of our assumptions that (13)
and (14) should follow.

For any x∗ ∈ argminx∈Rn F (x), it holds that

lim
k→∞

dk(x∗,∇f(x∗),x∗,−∇f(x∗),x∗,∇f(x∗)) = 0,

m(x∗,x∗,⋯,x∗) = x∗. (FP4)

For any sequences {xk,yk}
∞
k=0 generated by (13) and (14),

there exists one x∗ ∈ argminx∈Rn F (x) such that

lim
k→∞

xk = lim
k→∞

yk = x∗. (GC4)

Theorem 4. Suppose T = 1. Given f ∈ FL(Rn) and
r ∈ F(Rn), we pick an operator m ∈ DC(R2n) and a
sequence of operators {dk}

∞
k=0 with dk ∈ DC(R6n). If

both (FP4) and (GC4) hold, for any bounded matrix se-
quence {Bk}

∞
k=0, there exist P1,k,P2,k,Ak ∈ Rn×n and

b1,k,b2,k ∈ Rn satisfying

xk+1 = xk − (P1,k −P2,k)∇f(xk) −P2,k∇f(yk) − b1,k

−P1,kgk+1 −Bk(yk − xk), gk+1 ∈ ∂r(xk+1), (15)
yk+1 = (I −Ak)xk+1 +Akxk + b2,k (16)

for all k = 0,1,2,⋯, with {P1,k,P2,k,Ak} are bounded
and b1,k → 0,b2,k → 0 as k → ∞. If we further assume
P1,k is uniformly symmetric positive definite1, then we can

1A sequence of uniformly symmetric positive definite matri-
ces means that the smallest eigenvalues of all symmetric positive
definite matrices are uniformly bounded away from zero.

substitute P2,kP
−1
1,k with Bk and obtain

x̂k = xk −P1,k∇f(xk),

ŷk = yk −P1,k∇f(yk),

xk+1 = proxr,P1,k
((I −Bk)x̂k +Bkŷk − b1,k),

yk+1 = xk+1 +Ak(xk+1 − xk) + b2,k.

(17)

In the update scheme (17), b1,k and b2,k are biases that
play the same role with bk in (12); Ak can be viewed as
an extension of Nesterov momentum and we name it as an
accelerator; P1,k is the preconditioner that plays a similar
role as Pk in (12); Bk is a balancing term between x̂k and
ŷk. If Bk = 0, then xk+1 merely depends on xk and (17)
reduces to (12); and if Bk = I, then xk+1 merely depends
on yk explicitly.

3. An Efficient Math-Inspired L2O Model
As long as the basic assumptions (FP4) and (GC4) hold,
one could derive a math-structured update rule (17) from
generic update rule (13) and (14). Moreover, we suggest
using diagonal matrices for P1,k,Bk,Ak in practice:

P1,k = diag(pk), Bk = diag(bk), Ak = diag(ak),

where pk,bk,ak ∈ Rn are vectors. Let 1 be the vector
whose all elements are ones and ⊙ be the element-wise
multiplication. The suggested update rule then becomes:

x̂k = xk − pk ⊙∇f(xk),

ŷk = yk − pk ⊙∇f(yk),

xk+1 = proxr,pk
((1 − bk)⊙ x̂k + bk ⊙ ŷk − b1,k),

yk+1 = xk+1 + ak ⊙ (xk+1 − xk) + b2,k.

(18)

We choose diagonal P1,k,Bk,Ak over full matrices for
efficiency. On one hand, the diagonal formulation reduces
the degree of freedom of the update rule. Therefore, when
P1,k,Bk,Ak are parameterized as the output of, or a part
of, a learnable model and trained with data, the difficulty
of training is decreased and thus the efficiency improved.
On the other hand, for a broad class of r(x), the proximal
operator proxr,pk

has efficient explicit formula with the
diagonal preconditioner2 pk. Although the non-diagonal
formulation may lead to a (theoretically) better convergence
rate, it could increase the computational difficulty of the
proximal operator proxr,Pk

. An interesting future topic is
how to calculate (18) with non-diagonal Pk and how to train
deep models to generate such Pk.

LSTM Parameterization. Similar to (Andrychowicz
et al., 2016; Lv et al., 2017), we model pk, ak, bk, b1,k,

2Examples can be found in Appendix D.

5

Towards Constituting Mathematical Structures for Learning to Optimize

b2,k as the output of a coordinate-wise LSTM, which is
parameterized by learnable parameters ϕLSTM and takes the
current estimate xk and the gradient ∇f(xk) as the input:

ok,hk = LSTM(xk,∇f(xk),hk−1;ϕLSTM),

pk,ak,bk,b1,k,b2,k =MLP(ok;ϕMLP).
(19)

Here, hk is the internal state maintained by the LSTM with
h0 randomly sampled from Gaussian distribution. It is
common in classic optimization algorithms to take positive
pk and ak. Hence we post-process pk and ak with an
additional activation function such as sigmoid and softplus.
A “coordinate-wise” LSTM means that the same network is
shared across all coordinates of xk, so that this single model
can be applied to optimization problems of any scale. (18)
and (19) together define an optimization scheme. We call it
an L2O optimizer.

Training. We train the proposed L2O optimizer, that is to
find the optimal ϕLSTM and ϕMLP in (19), on a dataset F of
optimization problems. Each sample in F is an instance of
the optimization problem, which we call an optimizee, and
is characterized by its objective function F . During training,
we apply optimizer to each optimizee F for K iterations to
generate a sequence of iterates (y1, . . . ,yK), and optimize
ϕLSTM and ϕMLP by minimizing the following loss function:

min
ϕLSTM,ϕMLP

L(ϕLSTM, ϕMLP) ∶=
1

∣F ∣
∑
F ∈F
[
1

K

K

∑
k=1

F (yk)].

Compared with Algorithm Unrolling. Algorithm Un-
rolling (Monga et al., 2019) is another line of works parallel
to generic L2O. It was first proposed to fast approximate the
solution of sparse coding (Gregor & LeCun, 2010) which
is named Learned ISTA (LISTA). Since then, many efforts
have been made to further improve or better understand
LISTA (Xin et al., 2016; Metzler et al., 2017; Moreau &
Bruna, 2017; Chen et al., 2018; Liu et al., 2019; Ito et al.,
2019; Chen et al., 2021b), as well as applying this idea to
different optimization problems (Yang et al., 2016; Zhang &
Ghanem, 2018; Adler & Öktem, 2018; Mardani et al., 2018;
Gupta et al., 2018; Solomon et al., 2019; Xie et al., 2019;
Cai et al., 2021).

The main difference between our method and algorithm-
unrolling methods lies at how parameterization is done.
Different from the LSTM parameterization (19), algorithm-
unrolling methods turn pk, ak, bk, b1,k, b2,k themselves as
learnable parameters and directly optimize them from data.

However, such direct parameterization causes limitations
on the flexibility of the model in many ways. It loses the
ability to capture dynamics between iterations and tends
to memorize more about the datasets. Moreover, direct
parameterization means that we need to match the dimen-
sions of the learnable parameters with the problem scale,

Table 1. Comparison between different types of methods of their
theoretical convergence analysis (Theory), convergence speed
(Fast), and Flexibility.

Methods Theory Fast Flexibility

Classic Algorithms ✓ – ✓

Algorithm Unrolling ✓ ✓ –
Generic L2O – ✓ ✓

Math-Inspired (Ours) ✓ ✓ ✓

which implies that the trained model can not be applied to
optimization problems of a different scale at all during infer-
ence time. Although this can be worked around by reducing
the parameters to scalars, it will significantly decrease the
capacity of the model.

In fact, despite the difference in parameterization, our
proposed scheme (18) covers many existing algorithm-
unrolling methods in the literature. For example, if we
use the standard LASSO objective as the objective function
F (x) and set ak = bk = b2,k = 0, we will recover Step-
LISTA (Ablin et al., 2019) with properly chosen pk,b1,k.
More details and proofs are provided in the Appendix.

Compared with Generic L2O. Our proposed method
uses a similar coordinate-wise LSTM parameterization as
generic L2O methods. Therefore, both of these two share
the flexibility of being applied to optimization problems
of any scale. However, we constrain the update rule to
have a specific form, i.e., the formulation in (18). The
reduced degree of freedom enables the convergence analysis
in Section 2 from the theoretical perspective and empirically
works as a regularization so that the trained L2O optimizer
is more stable and can generalize better, which is validated
by our numerical observations in the next section.

We summarize in Table 1 the comparison between classic al-
gorithms, algorithm-unrolling methods, generic L2O meth-
ods, and our math-inspired method in terms of theoretical
convergence analysis, convergence speed, and flexibility.

Relationship with Operator Learning. In this paper, we
consider the proximal operator as an accessible basic routine
and focus on learning the overall update rule that results
in fast convergence. However, if the proximal operator is
difficult to compute, one might explore another aspect of
L2O: learning fast approximations of proximal operators
(Zhang et al., 2017; Meinhardt et al., 2017; Li et al., 2022).
For instance, if the matrix P1,k in (17) is not diagonal,
calculating the proximal operator would be challenging.
Additionally, our assumptions (FP4) and (GC4) allow the
optimization problem F (x) to have multiple optima. As
a result, investigating diverse optima following the idea of
(Li et al., 2022) using our proposed scheme could be an

6

Towards Constituting Mathematical Structures for Learning to Optimize

intriguing topic for future research.

Relationship with Meta-Learning. L2O and Meta-
Learning are closely related topics as they both deal with
learning from experience in previous tasks to improve per-
formance on new tasks. L2O treats tasks as optimization
problems and aims to discover superior optimization al-
gorithms, while Meta-Learning is a more comprehensive
concept that focuses on training a model on a set of related
tasks or problems to swiftly adapt to new, unseen tasks
using knowledge acquired from prior tasks. For example,
in our paper’s equation (1), L2O seeks to learn dk while
keeping the initialization x0 fixed or randomized. Mean-
while, a typical Meta-Learning method like (Khodak et al.,
2019a) learns a suitable initialization from a series of ob-
served tasks, enabling quick adaptation to unseen tasks. In
addition to the initialization, (Khodak et al., 2019b) also
learns a meta-learning rate shared among different tasks.
Furthermore, one can learn a regularization term based on
the distance to a bias vector (Denevi et al., 2019) or even a
conditional regularization term (Denevi et al., 2020) from a
set of tasks.

4. Experimental Results
We strictly follow the setting in (Lv et al., 2017) for ex-
periment setup. More specifically, in all our experiments
on the LSTM-based L2O models (including our method
and other baseline competitors), we use two-layer LSTM
cells with 20 hidden units with sigmoid activation functions.
During training, each minibatch contains 64 instances of
optimization problems, to which the L2O optimizers will
be applied for 100 iterations. The 100 iterations are evenly
segmented into 5 periods of 20 iterations. Within each
of these, the L2O optimizers are trained with truncated
Backpropagation Through Time (BPTT) with an Adam
optimizer. All models are trained with 500 minibatches
(32,000 optimization problems in total) generated synthet-
ically, but are evaluated on both synthesized testing sets
and real-world testing sets. We elaborate more on the data
generation in the Appendix. The code is available online at
https://github.com/xhchrn/MS4L2O.

4.1. Ablation Study

We conduct an ablation study on LASSO to figure out the
roles of pk,ak,bk,b1,k,b2,k in our proposed scheme (18).
Both the training and testing samples are independently
sampled from the same random distribution. The form of
LASSO is given below

min
x∈Rn

F (x) =
1

2
∥Ax − b∥2 + λ∥x∥1, (20)

where each tuple of (A,b, λ) determines an objective func-
tion and thus a LASSO problem instance. The size of each

0 25 50 75 100 125 150 175 200
Iteration k

10 6

10 4

10 2

100

(F
(x

k)
F *

)/F
*

P
A
PA
PBA
PBA1
PBA2
PBA12

Figure 1. Ablation study on LASSO.

0 25 50 75 100 125 150 175 200
Iteration k

10 5

10 3

10 1 ||b1, k||
||b2, k||

Figure 2. Visualization of the learned b1,k,b2,k.

instance is A ∈ R250×500 and b ∈ R500 and other details are
provided in the Appendix. We do not fix A and, instead, let
each LASSO instance take an independently generated A.
This setting is fundamentally more challenging than those in
most of algorithm-unrolling works (Gregor & LeCun, 2010;
Liu et al., 2019; Ablin et al., 2019; Behrens et al., 2021).

On the benchmark, we compare the following settings:
PBA12: pk,ak,bk,b1,k,b2,k are all learnable. PBA1:
pk,ak,bk,b1,k are learnable; b2,k is fixed as 0. PBA2:
pk,ak,bk,b2,k are learnable; b1,k is fixed as 0. PBA:
pk,ak,bk are learnable; b2,k and b1,k are both fixed as 0.
PA: pk,ak are learnable; b2,k and b1,k are both fixed as 0;
bk is fixed as 1. P: only pk is learnable; ak, b2,k, b1,k are
fixed as 0; bk is fixed as 1. A: only ak is learnable; b2,k
and b1,k are both fixed as 0; bk is fixed as 1; pk is fixed as
(1/L)1. The results are reported in Figure 1.

In Figure 1, F∗ denotes the best objective value of each
instance and (F (xk) − F∗)/F∗ measures the average opti-
mality gap on the test set. Each curve describes the conver-
gence performance of a learned optimizer. From Figure 1,
one can conclude that, with all of the learned optimizers,
convergence can be reached within the machine precision.

An interesting observation is that the proposed scheme (18)
may not benefit from parameterizing and learning more
components. Comparing PBA, PBA1, PBA2 and PBA12,
we find that fixing b1,k = b2,k = 0 is a better choice than

7

https://github.com/xhchrn/MS4L2O

Towards Constituting Mathematical Structures for Learning to Optimize

learning them. This phenomenon can be explained by our
theory. In Theorem 4, both b2,k and b1,k are expected to con-
verge to zero, otherwise, the convergence would be violated.
However, in Figure 2 where we report the average values
of ∥b1,k∥ and ∥b2,k∥ in PBA12, both ∥b1,k∥ and ∥b2,k∥ con-
verge to a relatively small value after a few (≤ 10) iterations,
but there is no guarantee that they converge exactly to zero
given parameterization (19). Such observation actually val-
idates our theories and suggests to fix b2,k and b1,k as 0
instead of learning them.

A Simplified Scheme. Furthermore, comparing PA and
PBA in Figure 1, we find that parameterizing bk does not
show significant benefits. To reduce computational over-
head, we adopt PA and fix b1,k = b2,k = 0 and bk = 1, which
reduces (18) and (19) to the following simplified scheme:

ok,hk = LSTM(xk,∇f(xk),hk−1;ϕLSTM),

pk,ak =MLP(ok;ϕMLP),

xk+1 = proxr,pk
(yk − pk∇f(yk)),

yk+1 = xk+1 + ak ⊙ (xk+1 − xk).

(L2O-PA)

4.2. Comparison with Competitors

We compare (L2O-PA) with some competitors in two set-
tings. In the first setting (also coined as In-Distribution), the
training and testing samples are generated independently
with the same distribution. The second setting is much more
challenging, where the models are trained on randomly
synthetic data but tested on real data, which is coined as
Out-of-Distribution or OOD.

Solving LASSO Regression. In-Distribution experiments
follow the settings in Section 4.1, where the training and
testing sets are generated randomly and independently, but
share the same distribution. In contrast, Out-of-Distribution
(OOD) experiments also generate training samples similarly
to In-Distribution experiments, but the test samples are gen-
erated based on a natural image benchmark BSDS500 (Mar-
tin et al., 2001). Detailed information about the synthetic
and real data used can be found in the Appendix.

We first choose ISTA, FISTA (Beck & Teboulle, 2009), and
Adam (Kingma & Ba, 2014) as baselines since they are clas-
sical manually-designed update rules. We choose a state-of-
the-art Algorithm-Unrolling method Ada-LISTA (Aberdam
et al., 2021) as another baseline since it is applicable in the
settings of various A. Additionally, we choose two generic
L2O methods that following (3) as baselines: L2O-DM
(Andrychowicz et al., 2016) and L2O-RNNprop (Lv et al.,
2017). Finally, we choose AdamHD (Baydin et al., 2017), a
hyperparameter optimization (HPO) method that adaptively
tunes the learning rate in Adam with online learning, as a
baseline. Since Ada-LISTA is not applicable to problems

100 101 102 103

Iteration k
10 8

10 6

10 4

10 2

100

102

(F
(x

k)
F *

)/F
*

ISTA
FISTA
Ada-LISTA
L2O-DM
L2O-RNNprop
L2O-PA
Adam
AdamHD

Figure 3. LASSO: Train and test on synthetic data.

100 101 102 103

Iteration k
10 8

10 6

10 4

10 2

100

(F
(x

k)
F *

)/F
* ISTA

FISTA
L2O-DM
L2O-RNNprop
L2O-PA
Adam
AdamHD

Figure 4. LASSO: Train on synthetic data and test on real data.

that have different sizes with training samples, we only
compare our method with Ada-LISTA in In-Distribution
experiments.

In-Distribution results are reported in Figure 3 and Out-of-
Distribution results are reported in Figure 4. In both of the
settings, the proposed (L2O-PA) performs competitively.
In the OOD setting, the other two learning-based methods,
L2O-DM and L2O-RNNprop, both struggle to converge
with optimality tolerance 10−2, but (L2O-PA) is still able to
converge until touching the machine precision.

Solving ℓ1-regularized Logistic Regression. An ℓ1-
regularized logistic regression for binary classification is
characterized by set of training examples {(ai, bi) ∈ Rn ×

{0,1}}mi=1 where ai is an n-dimensional feature vector and
bi is a binary label. To solve the ℓ1-regularized logistic re-
gression problem is to find an optimal x∗ so that h(a⊺ix∗)
predicts p(bi∣ai) well, where h(c) = 1/(1 + e−c) is the lo-
gistic function. The exact formula of the objective function
can be found in the Appendix.

We train L2O models on randomly generated logistic regres-
sion datasets for binary classification. Each dataset contains
1,000 samples that have 50 features. We evaluate the trained
models in both the In-Distribution and OOD settings. Re-
sults are shown in Figures 5 and 6 respectively. Details
about synthetic data generation and real-world datasets are
provided in the Appendix.

8

Towards Constituting Mathematical Structures for Learning to Optimize

100 101 102 103

Iteration k

10 6

10 4

10 2

(F
(x

k)
F *

)/F
* ISTA

FISTA
L2O-DM
L2O-RNNprop
L2O-PA
Adam
AdamHD

Figure 5. Logistic: Train and test on synthetic data.

100 101 102 103

Iteration k

10 6

10 4

10 2

(F
(x

k)
F *

)/F
* ISTA

FISTA
L2O-DM
L2O-RNNprop
L2O-PA
Adam
AdamHD

Figure 6. Logistic: Train on synthetic data and test on real data.

Under the In-Distribution setting (Figure 5), our method,
i.e., L2O-PA, can converge to optimal solutions within 10
iterations, almost 100× faster than FISTA, while the other
two generic L2O baselines fail to converge. When tested on
OOD optimization problems (Figure 6), L2O-PA can still
converge within 100 iterations, faster than FISTA by more
than 10 times.

5. Conclusions and Future Work
By establishing the basic conditions of the update rule, we
incorporate mathematical structures into machine-learning-
based optimization algorithms (learned optimizers). In our
settings, we do not learn the entire update rule as a black
box. Instead, we propose to learn a preconditioner and an
accelerator, and then construct the update rule in the style
of proximal gradient descent. Our approach is applicable to
a broad class of optimization problems while providing su-
perior empirical performance. This study actually provides
some insights toward answering an important question in
L2O: Which part of the model should be mathematically
grounded and which part could be learned?

There are several lines of future work. Firstly, relaxing
the assumption of convexity and studying the nonconvex
settings will be a significant future direction. Another inter-
esting topic is to extend (13) and consider update rules that
adopt more input information and longer horizons.

Acknowledgements
The work of HanQin Cai was partially supported by NSF
DMS 2304489.

References
Aberdam, A., Golts, A., and Elad, M. Ada-lista: Learned

solvers adaptive to varying models. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2021.

Ablin, P., Moreau, T., Massias, M., and Gramfort, A. Learn-
ing step sizes for unfolded sparse coding. Advances in
Neural Information Processing Systems, 32, 2019.

Adler, J. and Öktem, O. Learned primal-dual reconstruc-
tion. IEEE Transactions on Medical Imaging, 37(6):
1322–1332, 2018.

Aharon, M., Elad, M., and Bruckstein, A. K-SVD: An algo-
rithm for designing overcomplete dictionaries for sparse
representation. IEEE Transactions on signal processing,
54(11):4311–4322, 2006.

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W.,
Pfau, D., Schaul, T., Shillingford, B., and De Freitas, N.
Learning to learn by gradient descent by gradient descent.
Advances in neural information processing systems, 29,
2016.

Baydin, A. G., Cornish, R., Rubio, D. M., Schmidt, M.,
and Wood, F. Online learning rate adaptation with hy-
pergradient descent. arXiv preprint arXiv:1703.04782,
2017.

Beck, A. and Teboulle, M. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM
journal on imaging sciences, 2(1):183–202, 2009.

Behrens, F., Sauder, J., and Jung, P. Neurally augmented
ALISTA. In International Conference on Learning Rep-
resentations, 2021.

Bengio, Y., Lodi, A., and Prouvost, A. Machine learning
for combinatorial optimization: a methodological tour
d’horizon. European Journal of Operational Research,
290(2):405–421, 2021.

Bertsekas, D. Convex optimization algorithms. Athena
Scientific, 2015.

Cai, H., Liu, J., and Yin, W. Learned robust PCA: A scalable
deep unfolding approach for high-dimensional outlier
detection. Advances in Neural Information Processing
Systems, 34:16977–16989, 2021.

Charton, F. Linear algebra with transformers. arXiv preprint
arXiv:2112.01898, 2021.

9

Towards Constituting Mathematical Structures for Learning to Optimize

Chen, T., Zhang, W., Jingyang, Z., Chang, S., Liu, S., Amini,
L., and Wang, Z. Training stronger baselines for learning
to optimize. Advances in Neural Information Processing
Systems, 33:7332–7343, 2020.

Chen, T., Chen, X., Chen, W., Heaton, H., Liu, J., Wang,
Z., and Yin, W. Learning to optimize: A primer and a
benchmark. arXiv preprint arXiv:2103.12828, 2021a.

Chen, X., Liu, J., Wang, Z., and Yin, W. Theoretical linear
convergence of unfolded ista and its practical weights and
thresholds. Advances in Neural Information Processing
Systems, 31, 2018.

Chen, X., Liu, J., Wang, Z., and Yin, W. Hyperparameter
tuning is all you need for lista. Advances in Neural Infor-
mation Processing Systems, 34:11678–11689, 2021b.

Cowen, B., Saridena, A. N., and Choromanska, A. Lsalsa:
accelerated source separation via learned sparse coding.
Machine Learning, 108:1307–1327, 2019.

Davies, A., Veličković, P., Buesing, L., Blackwell, S.,
Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blun-
dell, C., Juhász, A., et al. Advancing mathematics by
guiding human intuition with ai. Nature, 600(7887):70–
74, 2021.

Denevi, G., Ciliberto, C., Grazzi, R., and Pontil, M.
Learning-to-learn stochastic gradient descent with biased
regularization. In International Conference on Machine
Learning, pp. 1566–1575. PMLR, 2019.

Denevi, G., Pontil, M., and Ciliberto, C. The advantage of
conditional meta-learning for biased regularization and
fine tuning. Advances in Neural Information Processing
Systems, 33:964–974, 2020.

Drori, I., Tran, S., Wang, R., Cheng, N., Liu, K., Tang, L.,
Ke, E., Singh, N., Patti, T. L., Lynch, J., et al. A neural
network solves and generates mathematics problems by
program synthesis: Calculus, differential equations, linear
algebra, and more. arXiv preprint arXiv:2112.15594,
2021.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Gregor, K. and LeCun, Y. Learning fast approximations of
sparse coding. In Proceedings of the 27th international
conference on international conference on machine learn-
ing, pp. 399–406, 2010.

Gupta, H., Jin, K. H., Nguyen, H. Q., McCann, M. T.,
and Unser, M. Cnn-based projected gradient descent for
consistent ct image reconstruction. IEEE transactions on
medical imaging, 37(6):1440–1453, 2018.

Harrison, J., Metz, L., and Sohl-Dickstein, J. A closer
look at learned optimization: Stability, robustness, and
inductive biases. arXiv preprint arXiv:2209.11208, 2022.

Ito, D., Takabe, S., and Wadayama, T. Trainable ISTA
for sparse signal recovery. IEEE Transactions on Signal
Processing, 67(12):3113–3125, 2019.

Khodak, M., Balcan, M., and Talwalkar, A. Provable guar-
antees for gradient-based meta-learning. In International
Conference on Machine Learning, 2019a.

Khodak, M., Balcan, M.-F. F., and Talwalkar, A. S. Adap-
tive gradient-based meta-learning methods. Advances in
Neural Information Processing Systems, 32, 2019b.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Li, L., Aigerman, N., Kim, V. G., Li, J., Greenewald, K.,
Yurochkin, M., and Solomon, J. Learning proximal
operators to discover multiple optima. arXiv preprint
arXiv:2201.11945, 2022.

Liu, D. C. and Nocedal, J. On the limited memory bfgs
method for large scale optimization. Mathematical pro-
gramming, 45(1):503–528, 1989.

Liu, J., Chen, X., Wang, Z., and Yin, W. ALISTA: Analytic
weights are as good as learned weights in LISTA. In
International Conference on Learning Representations
(ICLR), 2019.

Lv, K., Jiang, S., and Li, J. Learning gradient descent: Better
generalization and longer horizons. In International Con-
ference on Machine Learning, pp. 2247–2255. PMLR,
2017.

Mardani, M., Sun, Q., Donoho, D., Papyan, V., Monajemi,
H., Vasanawala, S., and Pauly, J. Neural proximal gradi-
ent descent for compressive imaging. Advances in Neural
Information Processing Systems, 31, 2018.

Martin, D., Fowlkes, C., Tal, D., and Malik, J. A database
of human segmented natural images and its application
to evaluating segmentation algorithms and measuring
ecological statistics. In Proc. 8th Int’l Conf. Computer
Vision, volume 2, pp. 416–423, July 2001.

Meinhardt, T., Moller, M., Hazirbas, C., and Cremers, D.
Learning proximal operators: Using denoising networks
for regularizing inverse imaging problems. In Proceed-
ings of the IEEE International Conference on Computer
Vision, pp. 1781–1790, 2017.

Metz, L., Maheswaranathan, N., Nixon, J., Freeman, D., and
Sohl-Dickstein, J. Understanding and correcting patholo-
gies in the training of learned optimizers. In Interna-
tional Conference on Machine Learning, pp. 4556–4565.
PMLR, 2019.

10

http://archive.ics.uci.edu/ml

Towards Constituting Mathematical Structures for Learning to Optimize

Metz, L., Maheswaranathan, N., Freeman, C. D., Poole,
B., and Sohl-Dickstein, J. Tasks, stability, architecture,
and compute: Training more effective learned optimiz-
ers, and using them to train themselves. arXiv preprint
arXiv:2009.11243, 2020.

Metz, L., Freeman, C. D., Harrison, J., Maheswaranathan,
N., and Sohl-Dickstein, J. Practical tradeoffs between
memory, compute, and performance in learned optimizers.
In Conference on Lifelong Learning Agents, pp. 142–164.
PMLR, 2022.

Metzler, C. A., Mousavi, A., and Baraniuk, R. G. Learned
D-AMP: Principled neural network based compressive
image recovery. Advances in Neural Information Pro-
cessing Systems, pp. 1773–1784, 2017.

Monga, V., Li, Y., and Eldar, Y. C. Algorithm unrolling:
Interpretable, efficient deep learning for signal and image
processing. arXiv preprint arXiv:1912.10557, 2019.

Moreau, T. and Bruna, J. Understanding neural sparse cod-
ing with matrix factorization. In International Conference
on Learning Representation (ICLR), 2017.

Nesterov, Y. E. A method for solving the convex program-
ming problem with convergence rate o (1/kˆ 2). In Dokl.
akad. nauk Sssr, volume 269, pp. 543–547, 1983.

Parikh, N. and Boyd, S. Proximal algorithms. Foundations
and Trends in optimization, 1(3):127–239, 2014.

Park, Y., Dhar, S., Boyd, S., and Shah, M. Variable metric
proximal gradient method with diagonal barzilai-borwein
stepsize. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 3597–3601. IEEE, 2020.

Polu, S., Han, J. M., Zheng, K., Baksys, M., Babuschkin, I.,
and Sutskever, I. Formal mathematics statement curricu-
lum learning. arXiv preprint arXiv:2202.01344, 2022.

Rockafellar, R. T. Monotone operators and the proximal
point algorithm. SIAM journal on control and optimiza-
tion, 14(5):877–898, 1976.

Ryu, E. K. and Yin, W. Large-Scale Convex Optimization:
Algorithms & Analyses via Monotone Operators. Cam-
bridge University Press, 2022.

Ryu, E. K., Taylor, A. B., Bergeling, C., and Giselsson,
P. Operator splitting performance estimation: Tight con-
traction factors and optimal parameter selection. SIAM
Journal on Optimization, 30(3):2251–2271, 2020.

Shen, J., Chen, X., Heaton, H., Chen, T., Liu, J., Yin, W.,
and Wang, Z. Learning a minimax optimizer: A pilot
study. In International Conference on Learning Repre-
sentations, 2021.

Solomon, O., Cohen, R., Zhang, Y., Yang, Y., He, Q., Luo,
J., van Sloun, R. J., and Eldar, Y. C. Deep unfolded robust
PCA with application to clutter suppression in ultrasound.
IEEE transactions on medical imaging, 39(4):1051–1063,
2019.

Taylor, A. B., Hendrickx, J. M., and Glineur, F. Exact worst-
case performance of first-order methods for composite
convex optimization. SIAM Journal on Optimization, 27
(3):1283–1313, 2017.

Wichrowska, O., Maheswaranathan, N., Hoffman, M. W.,
Colmenarejo, S. G., Denil, M., Freitas, N., and Sohl-
Dickstein, J. Learned optimizers that scale and generalize.
In International Conference on Machine Learning, pp.
3751–3760. PMLR, 2017.

Wu, Y., Ren, M., Liao, R., and Grosse, R. Understanding
short-horizon bias in stochastic meta-optimization. arXiv
preprint arXiv:1803.02021, 2018.

Xie, X., Wu, J., Liu, G., Zhong, Z., and Lin, Z. Differen-
tiable linearized admm. In International Conference on
Machine Learning, pp. 6902–6911. PMLR, 2019.

Xin, B., Wang, Y., Gao, W., Wipf, D., and Wang, B. Max-
imal sparsity with deep networks? Advances in Neural
Information Processing Systems, 29:4340–4348, 2016.

Yang, Y., Sun, J., Li, H., and Xu, Z. Deep ADMM-Net
for compressive sensing MRI. In Proceedings of the
30th International Conference on Neural Information
Processing Systems, pp. 10–18, 2016.

Zhang, J. and Ghanem, B. ISTA-Net: Interpretable
optimization-inspired deep network for image compres-
sive sensing. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1828–
1837, 2018.

Zhang, K., Zuo, W., Gu, S., and Zhang, L. Learning deep
cnn denoiser prior for image restoration. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 3929–3938, 2017.

11

Towards Constituting Mathematical Structures for Learning to Optimize

A. Proof of Theorems
A.1. Preliminaries

In our proofs, ∥A∥ denotes the spectral norm of matrix A, ∥A∥F denotes the Frobenius norm of matrix A, ∥x∥ denotes the
ℓ2-norm of vector x, and ∥x∥1 denotes the ℓ1-norm of vector x.

Before the proofs of those theorems in the main text, we describe a lemma here to facilitate our proofs.

Lemma 1. For any operator o ∈ DC(Rm×n) and any x1,y1,x2,y2,⋯,xm,ym ∈ Rn, there exist matrices J1,J2,⋯,Jm ∈

Rn×n such that

o(x1,x2,⋯,xm) − o(y1,y2,⋯,ym) =
m

∑
j=1

Jj(xj − yj), (21)

and
∥J1∥ ≤

√
nC, ∥J2∥ ≤

√
nC, ⋯, ∥Jm∥ ≤

√
nC. (22)

Proof. Since o ∈ DC(Rm×n), the outcome of operator o is an n-dimensional vector. Now we denote the i-th element as
oi(1 ≤ i ≤ n) and write operator o in a matrix form:

o(x1,x2,⋯,xm) = [o1(x1,x2,⋯,xm), ⋯, on(x1,x2,⋯,xm)]
⊺
,

o(y1,y2,⋯,ym) = [o1(y1,y2,⋯,ym), ⋯, on(y1,y2,⋯,ym)]
⊺
.

Applying the Mean Value Theorem on oi(1 ≤ i ≤ n), one could obtain

oi(x1,x2,⋯,xm) − oi(y1,y2,⋯,ym)

=
m

∑
j=1
⟨
∂oi
∂xj
(ξix1 + (1 − ξi)y1,⋯, ξixm + (1 − ξi)ym),xj − yj⟩ ,

(23)

for some ξi ∈ (0,1). For simplicity, we denote

zi ∶= [ξix1 + (1 − ξi)y1, ξix2 + (1 − ξi)y2,⋯, ξixm + (1 − ξi)ym]
⊺
, ∀1 ≤ i ≤ n,

and stack all partial derivatives into one matrix as

Jj = [
∂o1
∂xj

(z1),
∂o2
∂xj

(z2), ⋯,
∂on
∂xj

(zn)]

⊺
∈ Rn×n.

Then one can immediately get (21) from (23). The upper bound of ∥Jj∥(1 ≤ j ≤m) can be estimated by

∥Jj∥
2
≤ ∥Jj∥

2
F =

n

∑
i=1
∥
∂oi
∂xj

(zi)∥

2

≤ nC2.

Therefore, it concludes that ∥Jj∥ ≤
√
nC for all 1 ≤ j ≤m, which finishes the proof.

Note that such upper bound of ∥Jj∥ is tight. We could NOT directly conclude ∥Jj∥ ≤ C because ∂o1/∂xj ,⋯, ∂on/∂xj

are evaluated respectively at points z1,⋯,zn, and, consequently, the whole matrix Jj is not a Jacobian matrix of operator
o.

A.2. Proof of Theorem 1

Proof. Denote
d̂k ∶= dk(x∗,0).

Plugging the above equation into (5), we obtain

xk+1 = xk − dk(xk,∇f(xk)) + dk(x∗,0) − d̂k.

12

Towards Constituting Mathematical Structures for Learning to Optimize

Applying Lemma 1, we have
xk+1 = xk − J1,k(xk − x∗) − J2,k∇f(xk) − d̂k,

for some J1,k,J2,k ∈ Rn×n that satisfy
∥J1,k∥ ≤

√
nC, ∥J2,k∥ ≤

√
nC.

Define
Pk ∶= J2,k, bk ∶= J1,k(xk − x∗) + d̂k.

Then we obtain dk(xk,∇f(xk)) = Pk∇f(xk) + bk and it holds that

∥Pk∥ ≤
√
nC,

∥bk∥ ≤
√
nC∥xk − x∗∥ + ∥d̂k∥.

Assumption (FP1) leads to ∥d̂k∥ → 0 and Assumption (GC1) leads to ∥xk − x∗∥ → 0. Consequently, ∥bk∥ → 0, which
finishes the proof.

A.3. Proof of Theorem 2

Proof. Following the same proof line with that of Theorem 1, we first denote d̂k ∶= dk(x∗,0) and then obtain

xk+1 = xk − dk(xk+1,gk+1) + dk(x∗,0) − d̂k

= xk − J1,k(xk+1 − x∗) − J2,kgk+1 − d̂k,

= xk − (J2,k
±
Pk

gk+1 + J1,k(xk+1 − x∗) + d̂k

´¹¹¹¸¹¹¹¶
bk

),

where gk+1 ∈ ∂r(xk+1), Pk is bounded, and bk → 0 as k →∞. In another word, xk+1 satisfies

xk − bk ∈ xk+1 +Pk∂r(xk+1). (24)

Note that Pk and bk may depend on xk+1, but it does not hurt our conclusion: For any operator sequence {dk} that satisfies
(FP2) and any sequence {xk} that is generated by (8) and satisfies the Global Convergence, there must exist {Pk,bk} such
that (24) holds for all k.

Meanwhile, since Pk is assumed to be symmetric positive definite, function F̂k(x) = f(x) + (1/2)∥x − xk + bk∥
2
P−1

k

is

strongly convex. Therefore, x is the unique minimizer of F̂k if and only if:

0 ∈ ∂r(x) +P−1k (x − xk + bk).

With reorganization, the above condition is equivalent with

xk − bk ∈ x +Pk∂r(x),

which is exactly the condition (24) that xk+1 satisfies. Thus, xk+1 is the unique minimizer of F̂k(x) and is the unique point
satisfying (24), which finishes the proof.

A.4. Proof of Theorem 3

Proof. Denote
d̂k ∶= dk(x∗,∇f(x∗),x∗,−∇f(x∗)).

Plugging the above equation into (11), we obtain

xk+1 = xk − dk(xk,∇f(xk),xk+1,gk+1) + dk(x∗,∇f(x∗),x∗,−∇f(x∗)) − d̂k.

Applying Lemma 1, we obtain

xk+1 = xk − J1,k(xk − x∗) − J2,k(xk+1 − x∗)

− J3,k(∇f(xk) −∇f(x∗)) − J4,k(gk+1 +∇f(x∗)) − d̂k

13

Towards Constituting Mathematical Structures for Learning to Optimize

for some J1,k,J2,k,J3,k,J4,k ∈ Rn×n that satisfy

∥Jj,k∥ ≤
√
nC, ∀j = 1,2,3,4.

Reorganizing the above equation, we have

xk+1 = xk − J1,k(xk − x∗) − J2,k(xk+1 − x∗)

− (J3,k − J4,k)(∇f(xk) −∇f(x∗)) − J4,k(gk+1 +∇f(xk)) − d̂k.

With
Pk ∶= J4,k,

bk ∶= J1,k(xk − x∗) + J2,k(xk+1 − x∗) + (J3,k − J4,k)(∇f(xk) −∇f(x∗)) + d̂k,

we have
xk+1 = xk −Pk(∇f(xk) + gk+1) − bk, gk+1 ∈ ∂r(xk+1),

and
∥Pk∥ ≤

√
nC,

∥bk∥ ≤
√
nC∥xk − x∗∥ +

√
nC∥xk+1 − x∗∥ + 2

√
nC∥∇f(xk) −∇f(x∗)∥ + ∥d̂k∥.

The smoothness of f implies ∇f(xk) −∇f(x∗)→ 0. Consequently, we conclude with bk → 0 and this finishes the proof
of the first part in Theorem 3.

Now it is enough to prove that the following inclusion equation of x has a unique solution and is equivalent with (12).

x = xk −Pk(∇f(xk) + g) − bk, g ∈ ∂r(x). (25)

The above equation is equivalent with

x ∈ xk −Pk(∇f(xk) + ∂r(x)) − bk.

Since Pk is assumed to be symmetric positive definite, one could obtain another equivalent form with reorganization:

0 ∈ ∂r(x) +P−1k (x − xk +Pk∇f(xk) + bk).

Thanks to f ∈ FL(Rn) and r ∈ F(Rn), the above equation has an unique solution x+ that yields

x+ = argmin
x

r(x) +
1

2
∥x − xk +Pk∇f(xk) + bk∥

2
P−1

k
= proxr,Pk

(xk −Pk∇f(xk) − bk) .

Since xk+1 satisfies (25), we conclude that xk+1 = x+ and finish the whole proof.

A.5. Proof of Theorem 4

Step 1: Analyzing (14). Denote

d̂k ∶= dk(x∗,∇f(x∗),x∗,−∇f(x∗),x∗,∇f(x∗)).

Then (14) can be written as

xk+1 = xk − dk(xk,∇f(xk),xk+1,gk+1,yk,∇f(yk))

+ dk(x∗,∇f(x∗),x∗,−∇f(x∗),x∗,∇f(x∗)) − d̂k,

where gk+1 ∈ ∂r(xk+1). Applying Lemma 1, we have

xk+1 = xk − J1,k(xk − x∗) − J2,k(xk+1 − x∗) − J3,k(yk − x∗) − d̂k

− J4,k(∇f(xk) −∇f(x∗)) − J5,k(gk+1 +∇f(x∗)) − J6,k(∇f(yk) −∇f(x∗)),

where matrices Jj,k(1 ≤ j ≤ 6) satisfy

∥Jj,k∥ ≤
√
nC, ∀j = 1,2,3,4,5,6.

14

Towards Constituting Mathematical Structures for Learning to Optimize

Then we do some calculations and get

xk+1 = xk − J1,k(xk − x∗) − J2,k(xk+1 − x∗) − J3,k(yk − x∗) − d̂k

− (J4,k − J5,k + J6,k)(∇f(xk) −∇f(x∗)) − (J5,k − J6,k)(∇f(xk) −∇f(x∗))
− J5,k(gk+1 +∇f(x∗)) − J6,k(∇f(yk) −∇f(x∗))

= xk − J1,k(xk − x∗) − J2,k(xk+1 − x∗) − J3,k(yk − x∗) − d̂k

− (J4,k − J5,k + J6,k)(∇f(xk) −∇f(x∗))
− (J5,k − J6,k)∇f(xk) − J5,k gk+1 − J6,k∇f(yk).

Given any Bk ∈ Rn×n, we define:

P1,k ∶= J5,k,

P2,k ∶= J6,k,

b1,k ∶= J1,k(xk − x∗) + J2,k(xk+1 − x∗) + J3,k(yk − x∗) + d̂k

+ (J4,k − J5,k + J6,k)(∇f(xk) −∇f(x∗)) +Bk(yk − xk).

Then we have

xk+1 = xk − (P1,k −P2,k)∇f(xk) −P2,k∇f(yk) −P1,k gk+1 +Bk(yk − xk) − b1,k,

which immediately leads to (15). The upper bounds of Jj,k(1 ≤ j ≤ 6) imply that P1,k,P2,k are bounded:

∥P1,k∥ ≤
√
nC, ∥P2,k∥ ≤

√
nC,

and b1,k is controlled by

∥b1,k∥ ≤
√
nC(∥xk − x∗∥ + ∥xk+1 − x∗∥ + ∥yk − x∗∥) + ∥d̂k∥

+ 3
√
nC∥∇f(xk) −∇f(x∗)∥ + ∥Bk∥∥yk − xk∥.

Assumption (GC4) implies that

∥xk − x∗∥→ 0, ∥xk+1 − x∗∥→ 0, ∥yk − x∗∥→ 0, ∥yk − xk∥→ 0,

and Assumption (FP4) implies that ∥d̂k∥ → 0. The smoothness of f implies ∥∇f(xk) − ∇f(x∗)∥ → 0. In the theorem
statement, we assume that {Bk} could be any bounded matrix sequence. Therefore, it concludes that ∥b1,k∥→ 0 as k →∞.

Step 2: Analyzing (13). Since T = 1, equation (13) reduces to

yk+1 =m(xk+1,xk).

Due to Assumption (FP4), x∗ =m(x∗,x∗), equation (13) is equivalent to

yk+1 =m(xk+1,xk) −m(x∗,x∗) + x∗.

Then one could apply Lemma 1 and obtain

yk+1 = J7,k(xk+1 − x∗) + J8,k(xk − x∗) + x∗,

where matrices J7,k and J8,k satisfy
∥J7,k∥ ≤

√
nC, ∥J8,k∥ ≤

√
nC.

With calculation, we get

yk+1 = J7,kxk+1 + J8,kxk + (I − J7,k − J8,k)x∗
= (I − J8,k)xk+1 + J8,kxk + (I − J7,k − J8,k)(xk+1 − x∗)

With
Ak ∶= J8,k, b2,k ∶= (I − J7,k − J8,k)(xk+1 − x∗),

one can immediately obtain (16) the following bounds

∥Ak∥ ≤
√
nC

∥b2,k∥ ≤ ∥I − J7,k − J8,k∥∥xk+1 − x∗∥ ≤ (1 + 2
√
nC)∥xk+1 − x∗∥→ 0.

15

Towards Constituting Mathematical Structures for Learning to Optimize

Step 3: Proof of (17). To prove (17), we assume sequence {P1,k} is uniformly symmetric positive definite, i.e., the
smallest eigenvalues of symmetric positive definite {P1,k} are uniformly bounded away from zero. Thus, the matrix
sequence P−11,kP2,k is bounded. Since equation (15) holds for all bounded matrix sequence Bk, we let

Bk ∶= P2,kP
−1
1,k,

and obtain

xk+1 = xk − (P1,k −P2,k)∇f(xk) −P2,k∇f(yk) −P1,kgk+1 +P2,kP
−1
1,k(yk − xk) − b1,k.

Therefore, it holds that

xk+1 +P1,kgk+1 = xk − (P1,k −P2,k)∇f(xk) −P2,k∇f(yk) +P
−1
1,kP2,k(yk − xk) − b1,k (26)

= (I −P2,kP
−1
1,k)(xk −P1,k∇f(xk)) +P2,kP

−1
1,k(yk −P1,k∇f(yk)) − b1,k (27)

= (I −P2,kP
−1
1,k)x̂k +P2,kP

−1
1,kŷk − b1,k (28)

= (I −Bk)x̂k +Bkŷk − b1,k. (29)

Since gk+1 ∈ ∂r(xk+1), we have xk+1 yields the following inclusion equation

0 ∈ ∂r(x) +P−11,k (x − (I −Bk)x̂k −Bkŷk + b1,k) .

Consequently, xk+1 is the unique minimizer of the following convex optimization problem

min
x
r(x) +

1

2
∥x − (I −Bk)x̂k −Bkŷk + b1,k∥

2

P−1
1,k

. (30)

Applying the definition of preconditioned proximal operator (10), one could immediately get (17). The strong convexity of
(30) implies that (30) admits a unique minimizer, which concludes the uniqueness of xk+1 and finishes the whole proof.

B. Other Theoretical Results
In this section, we study the explicit update rule (7) in the non-smooth case. To facilitate reading, we rewrite (7) here:

xk+1 = xk − dk(xk,gk), gk ∈ ∂r(xk). (31)

We show that, even for some simple functions, one may not expect to obtain an efficient update rule if dk ∈ DC(Rn ×Rn).
The one-dimensional case is presented in Proposition 1 and the n-dimensional case is presented in Proposition 2.

In the one-dimensional case, we consider function r(x) = ∣x∣. It has unique minimizer x∗ = 0. Its subdifferential is:

∂r(x) =

⎧⎪⎪
⎨
⎪⎪⎩

sign(x), x ≠ 0;

[−1,1], x = 0.
(32)

Since x∗ = 0, the asymptotic fixed point condition is dk(0,0)→ 0. Furthermore, we assume all sequences generated by (31)
with initial points x0 ∈ [−1,1] converges to 0 uniformly. In another word, there is a uniform convergence rate for all possible
sequences. Due to the uniqueness of minimizer, one may expect a good update rule satisfy such uniform convergence.
Proposition 1. Consider 1-D function r(x) = ∣x∣. Suppose we pick dk from DC(R) and form a operator sequence {dk}∞k=0.
If we assume:

• It holds that dk(0,0)→ 0 as k →∞.

• Any sequences {xk} generated by (31) converges to 0 uniformly for all initial points x0 ∈ [−1,1].

then there exist {pk, bk}∞k=0 satisfying

dk(xk, gk) = pkgk + bk, gk ∈ ∂r(xk), for all k = 0,1,2,⋯,

pk → 0, and bk → 0 as k →∞.

16

Towards Constituting Mathematical Structures for Learning to Optimize

This proposition demonstrates that if r(x) = ∣x∣, any update rule in the form of (31) actually equals to subgradient descent
method with adaptive step size pk and bias bk. The step size pk must be diminishing, otherwise, the uniform convergence
would be broken. Diminishing step size usually leads to a slower convergence rate than constant step size. Thus, one may
not expect to obtain an efficient update rule in this case.

In the n-dimensional case, we consider a family of n-dim function

Fℓ1(R
n
) = {∥Ax∥1 ∶A ∈ Rn×n, ∥A∥ ≤ 1, and A is non-singular} .

All functions in Fℓ1(Rn) have a unique minimizer x∗ = 0. Its subdifferential is defined as

∂r(x) =A⊺∂∥Ax∥1.

If every element of Ax is non-zero, it holds that

∂r(x) =A⊺sign(Ax). (33)

As an extension to Proposition 1, the asymptotic fixed point condition becomes dk(0,0) → 0. We also assume that all
sequences generated by (31) converge to 0 uniformly for all possible functions r(x) ∈ Fℓ1(Rn) due to these function share
the same minimizer.

Proposition 2. Suppose we pick dk from DC(Rn ×Rn) and form an operator sequence {dk}
∞
k=0. If we assume:

• It holds that dk(0,0)→ 0.

• Any sequences {xk} generated by (31) converges to 0 uniformly for all r(x) ∈ Fℓ1(Rn) and all initial points x0 ∈

[−1,1]n.

then there exist {Pk,bk}
∞
k=0 satisfying

dk(xk,gk) = Pkgk + bk, gk ∈ ∂r(xk), for all k = 0,1,2,⋯,

where Pk → 0 and bk → 0 as k →∞.

The conclusion is similar to Proposition 1. The preconditioner Pk goes smaller and smaller as k →∞, which means the
update step size should be diminishing. The convergence rate gets slower and slower as k increases. Thus, the explicit
update rule (31) is not efficient.

B.1. Proof of Proposition 1

Proof. Following the same proof line with that of Theorem 1, we can get the conclusion: for any sequence {dk}∞k=0
satisfying the conditions described in Proposition 1, there exists a sequence {pk, bk}∞k=0 such that

xk+1 = xk − pkgk − bk,

where gk ∈ ∂r(xk) and ∣pk ∣ ≤ C and bk → 0.

Then we want to show that, as long as all sequences {xk} generated by (7) uniformly converges to x∗, it must hold that
pk → 0. We show this by contradiction and assume pk does not converge to zero. In another word, there exist a fixed real
number ε > 0 and a sub-sequence of {pk} such that

∣pkl
∣ > ε, l = 1,2,⋯.

Now we claim that: given {pk, bk}∞k=0, for any k̂ > 0, there exits an initial point x0 such that xk ≠ 0 for all k ≤ k̂. The proof
is as follows:

• Given x0 ≠ 0, we have g0 = 1 or g0 = −1 due to (32).

• To guarantee x1 ≠ 0, it’s enough that x0 + p0 − b0 ≠ 0, x0 + p0 − b0 ≠ 0.

17

Towards Constituting Mathematical Structures for Learning to Optimize

• Define
X1 ∶= {b0 + p0, b0 − p0}.

As long as x0 /∈ X0⋃X1, we can guarantee x0 ≠ 0 and x1 ≠ 0.

• Define
X2 ∶= {b0 + p0 + b1 + p1, b0 + p0 + b1 − p1, b0 − p0 + b1 + p1, b0 − p0 + b1 − p1}.

As long as x0 /∈ X0⋃X1⋃X2, we can guarantee x0 ≠ 0 and x1 ≠ 0 and x2 ≠ 0.

• ⋯

Repeat the above statement for k̂ times, we obtain: x0 /∈ ⋃
k≤k̂
Xk implies xk ≠ 0 for all k ≤ k̂, where the set Xk contains 2k

elements. Thus, x0 can be chosen almost freely within [−1,1] excluding a set with a finite number of elements. The claim
is proven.

With k̂ = kl, we conclude that, for all l = 1,2,⋯, there exists an initial point x0 such that xk ≠ 0 for all k ≤ kl. Consequently,
it holds that gkl

= 1 or gkl
= −1. Then,

∣xkl+1 − xkl
∣ ≥ ∣pkl

gkl
∣ − ∣bkl

∣ = ε − ∣bkl
∣,

which contradicts with the fact that bk → 0 and xk → 0 uniformly for all initial points. This completes the proof for
pk → 0.

B.2. Proof of Proposition 2

Proof. The proof of Proposition 2 extends the proof of Proposition 1 and follows a similar proof sketch. But the n-dim case
is much more complicated than the 1-dim case. Consequently, we need stronger assumptions: xk converges uniformly not
only for all initial points, but also for a family of objective function f ∈ Fℓ1(Rn).

In our proof, we denote (Ax)i as the i-th element of vector Ax and the index of a matrix is denoted by (∶, ∶). For example,
A(i, ∶) means the i-th row of A; A(∶, i) means the i-th column of A.

Following the same proof line with that of Theorem 1, we can get the conclusion (similar with Proposition 1): for any
sequence {dk}

∞
k=0 satisfying the conditions described in Proposition 2, there exists a sequence {Pk,bk}

∞
k=0 such that

xk+1 = xk −Pkgk − bk,

where gk ∈ ∂r(xk) and ∥Pk∥ ≤
√
nC and bk → 0. It’s enough to show that Pk → 0.

Before proving Pk → 0, we first claim and prove an statement: given {Pk,bk}
∞
k=0 and any r(x) = ∥Ax∥1 ∈ Fℓ1(Rn) and

any k̂ > 0, there exits an initial point x0 such that (Axk)
i ≠ 0 for all k ≤ k̂ and i = 1,2,⋯, n. The proof is as follows:

• To guarantee (Ax0)
i ≠ 0, x0 must satisfy:

x0 /∈ X
i
0 = {x ∶A(i, ∶)x = 0}.

• Given (Ax0)
i ≠ 0,1 ≤ i ≤ n, we have g0 =A

⊺sign(Ax0), where sign(Ax0) ∈ {1,−1}
n, due to (33).

• To guarantee (Ax1)
i ≠ 0, it’s enough that A(i, ∶)(x0 −P0A

⊺s − b0) ≠ 0 for all s ∈ {1,−1}n.

• Define
X

i
1 = {x ∶A(i, ∶)(x −P0A

⊺s0 − b0) = 0 for some s0 ∈ {1,−1}
n
}.

As long as x0 /∈ ⋃
1≤i≤n,0≤k≤1

X i
k, we guarantee that (Axk)

i ≠ 0 for all k ≤ 1 and i = 1,2,⋯, n.

• Define
X

i
2 = {x ∶A(i, ∶)(x −P0A

⊺s0 − b0 −P1A
⊺s1 − b1) = 0 for some s0,s1 ∈ {1,−1}

n
}.

As long as x0 /∈ ⋃
1≤i≤n,0≤k≤2

X i
k, we guarantee that (Axk)

i ≠ 0 for all k ≤ 2 and i = 1,2,⋯, n.

18

Towards Constituting Mathematical Structures for Learning to Optimize

• ⋯

Repeat the above statement for k̂ times, we obtain: x0 /∈ ⋃
1≤i≤n,0≤k≤k̂

X i
k implies the conclusion we want. Moreover, the set

X i
k has measurement zero in the space Rn due to the fact that each row of matrix A: A(i, ∶) is not zero (A is non-singular).

Finite union of X i
k also has measurement zero. Thus, x0 can be chosen almost freely in [−1,1]n excluding a set with zero

measurements. The claim is proven.

Now we show Pk → 0 by contradiction. Assume there exist a fixed real number ε > 0 and a sub-sequence of {Pk} such that

∥Pkl
∥ > ε, l = 1,2,⋯. (34)

Conduct SVD on Pkl
:

Pkl
=Ukl

Σkl
V⊺kl
=Ukl

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ1
kl

σ2
kl

⋱

σn
kl

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

V⊺kl
.

Inequality (34) implies the largest singular value of Pkl
should be greater than ε. WLOG, we assume σ1

kl
is the largest one

and, consequently, σ1
kl
> ε. Given such Vkl

, we define

fkl
(x) = ∥Akl

x∥1, Akl
=V⊺kl

.

It’s easy to check that fkl
∈ Fℓ1(Rn).

Given {Pkl
,bkl
}∞l=0 and function fkl

(x), we take an initial point x0 /∈ ⋃
1≤i≤n,0≤k≤kl

X i
k, then we have (Akl

xkl
)i ≠ 0. Thus,

it holds that
xkl+1 = xkl

−Pkl
A⊺kl

sign(Akl
xkl
) − bkl

= xkl
−Pkl

A⊺kl
skl
− bkl

for some skl
∈ {1,−1}n. Rewrite the second term on the right-hand side

Pkl
A⊺kl

skl
=Ukl

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ1
kl

σ2
kl

⋱

σn
kl

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

skl
=Ukl

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ1
kl
s1kl

σ2
kl
s2kl

⋮

σn
kl
snkl

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Its norm is lower bounded by
∥Pkl

A⊺kl
skl
∥ ≥ ∣σ1

kl
s1kl
∣ > ε.

Then we get
∥xkl+1 − xkl

∥ ≥ ∥Pkl
A⊺kl

skl
∥ − ∥bkl

∥,

which contradicts with the fact that bk → 0 and xk → 0 uniformly. Pk → 0 is proved and this finishes the proof.

C. Scheme (18) Covers Many Schemes in the Literature
In this section, we show that our proposed scheme (18) covers FISTA (Beck & Teboulle, 2009), PGD with variable
metric (Park et al., 2020), Step-LISTA (Ablin et al., 2019), and Ada-LISTA (Aberdam et al., 2021). We will show them one
by one. To facilitate reading, we rewrite (18) here:

x̂k = xk − pk ⊙∇f(xk),

ŷk = yk − pk ⊙∇f(yk),

xk+1 = proxr,pk
((1 − bk)⊙ x̂k + bk ⊙ ŷk − b1,k),

yk+1 = xk+1 + ak ⊙ (xk+1 − xk) + b2,k.

19

Towards Constituting Mathematical Structures for Learning to Optimize

FISTA. The update rule of FISTA (with constant step size) writes

yk+1 = proxr,(1/L)1(xk −
1

L
∇f(xk)),

tk+1 =
1 +
√
1 + 4t2k
2

,

xk+1 = yk+1 +
tk − 1

tk+1
(yk+1 − yk),

(35)

where L is the Lypuschitz constant of ∇f . Thus, as long as bk = 1, b1,k = b2,k = 0, pk = (1/L)1, and ak =
tk−1
tk+1

1, (18) is
equal to (35).

PGD. PGD with variable metric writes

xk+1 = proxr,pk
(xk − pk ⊙∇f(xk)). (36)

If bk = ak = b1,k = b2,k = 0, (18) reduces to (36).

Step-LISTA. The update rule of Step-LISTA writes

xk+1 = σ(xk − pkA
⊺(Ax − b), θk). (37)

If the objective function is taken as standard LASSO and we take pk = pk1

F (x) =
1

2
∥Ax − b∥2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
f(x)

+λ∥x∥1
´¹¹¹¹¹¸¹¹¹¹¶
r(x)

,

then we have
∇f(x) =A⊺(Ax − b), proxr,pk

(x) = σ(x, λpk).

We want to show that, for any sequence {θk}∞k=0, there exists a sequence {ak,bk,b1,k,b2,k}
∞
k=0 such that (18) equals to

(37).

Proof. Take pk = pk1 and ak = bk = b2,k = 0, (18) reduces to

xk+1 = σ(xk − pkA
⊺
(Axk − b) − b1,k, λpk).

Define
x̂k = xk − pkA

⊺
(Axk − b).

If θk > λpk, define b1,k component-wisely as (Here (b1,k)i means the i-th component of vector b1,k):

(b1,k)i = sign ((x̂k)i)min(θk − λpk, ∣(x̂k)i∣).

Then one can check that
σ(x̂ − b1,k, λpk) = σ(x̂, θk), (38)

where the role of b1,k is enhancing the soft thereshold from λpk to θk.

If θk < λpk, define b1,k with:

(b1,k)i =

⎧⎪⎪
⎨
⎪⎪⎩

sign((x̂k)i)(θk − λpk), (x̂k)i > θk

0, (x̂k)i ≤ θk
,

then (38) also holds in this case.

With the {pk,ak,bk,b1,k,b2,k} defined above, it holds that (18) equals to (37), which finishes the proof.

20

Towards Constituting Mathematical Structures for Learning to Optimize

Ada-LISTA. The update rule of Ada-LISTA with single weight matrix writes

xk+1 = σ(xk − pkA
⊺M⊺M(Ax − b), θk). (39)

If the objective function is taken as LASSO with a learned dictionary M:

F (x) =
1

2
∥M(Ax − b)∥

2

´¹¹¸¹¹¶
f(x)

+λ∥x∥1
´¹¹¹¹¹¸¹¹¹¹¶
r(x)

,

and we follow the same proof line as that of Step-LISTA, then we obtain that (18) covers (39).

D. Examples of Explicit Proximal Operator
As long as one can evaluate ∇f and the proximal operator proxr,pk

, the update rule (18) is applicable. The gradient ∇f is
accessible since f ∈ FL(Rn). For a broad class of r(x), the operator proxr,pk

has efficient explicit formula. We list some
examples here and more examples can be found in (Parikh & Boyd, 2014; Park et al., 2020).

• (ℓ1-norm) Suppose r(x) = λ∥x∥1, then the proximal operator is a scaled soft-thresholding operator that is component-
wisely defined as (proxr,pk

(x))
i
∶= sign(xi)max(0, ∣xi∣ − λ(pk)i), for 1 ≤ i ≤ n.

• (Non-negative constraint) Suppose r(x) = ιX (x) where X = {x ∈ Rn ∶ xi ≥ 0,1 ≤ i ≤ n} and ιX is the indicator function
(i.e., ιX (x) = 0 if x ∈ X ; ιX (x) = +∞ otherwise), then proxr,pk

is component-wisely defined as (proxr,pk
(x))

i
∶=

max(0, xi), 1 ≤ i ≤ n.

• (Simplex constraint) Suppose r(x) = ιX (x) where X = {x ∈ Rn ∶ xi ≥ 0,1 ≤ i ≤ n;1⊺x = 1.}, then proxr,Pk
is

component-wisely defined as (proxr,pk
(x))

i
∶= max(0, xi − ξ(pk)i), 1 ≤ i ≤ n, where ξ ∈ R+ can be determined

efficiently via bisection.

E. Details in Our Experiments
LASSO Regression. In this paragraph, we provide the details of the LASSO benchmarks used in this paper.

• (Synthetic data). Each element in A ∈ R250×500 is sampled i.i.d. from the normal distribution, and each column of A is
normalized to have a unit ℓ2-norm. Then we randomly generate sparse vector x∗ ∈ R500. In each sparse vector, we
first uniformly sample 50 out of 500 entries to be nonzero, and the value of each nonzero is sampled independently
from the normal distribution. With A and x∗, we generate b with b =Ax∗. Such tuple (A,b, λ) forms an instance of
LASSO, and we repeatedly generate (A,b, λ) in the above approach. The training set includes 32,000 independent
optimization problems and the testing set includes 1,024 independent optimization problems. We take λ = 0.1 for all
synthetic LASSO instances.

• (Real data). We extract 1000 patches with size 8 × 8 at random positions from testing images that are randomly
chosen from BSDS500 (Martin et al., 2001). Each patch is flattened to a vector in space R64 and normalized and
mean-removed. Then we conduct K-SVD (Aharon et al., 2006) to obtain a dictionary A ∈ R64×128. Each vector in R64

can be viewed as an instance of b in LASSO (20). With a shared matrix A, we construct 1000 instances of LASSO and
test our methods on them. We take λ = 0.5 for all real-data LASSO instances.

Logistic Regression. Given a set of training examples {(ai, bi) ∈ Rn × {0,1}}mi=1, the objective function of the ℓ1-
regularized logistic regression problem is defined as

min
x∈Rn

F (x) = −
1

m

m

∑
i=1
[bi log(h(a

⊺
ix)) + (1 − bi) log(1 − h(a

⊺
ix))] + λ∥x∥1, (40)

where h(c) = 1/(1 + e−c) is the logistic function. For each logistic regression problem, we generate 1,000 feature vectors,
each of which a ∈ R50 is sampled i.i.d. from the normal distribution. Then we randomly generate a sparse vector x∗ ∈ R50

21

Towards Constituting Mathematical Structures for Learning to Optimize

and uniformly sample 20 out of its 50 entries to be nonzero, and the value of each nonzero is sampled independently from
the normal distribution. With ai and x∗, we generate the binary classification label bi with bi = 1(a⊺ix∗ >= 0), where 1(⋅)
is the indicator function. Finally, we fix λ = 0.1. Such a pair ({(ai, bi)}

m
i=1, λ) forms an instance of logistic regression

with ℓ1 regularization, and we repeatedly generate such pairs in the above approach. The training set includes 32,000
independent optimization problems and the testing set includes 1,024 independent optimization problems.

We evaluate L2O optimizers (trained on synthesized datasets) on two real-world datasets from the UCI Machine Learning
Repository (Dua & Graff, 2017): (i) Ionosphere containing 351 samples of 34 features, and (ii) Spambase containing 4,061
samples of 57 features. The results on the Ionosphere dataset is shown in the main text Figure 6. And here we present
the results on the Spambase dataset in Figure 7. Our observation is consistent: L2O-PA is superior in stability and fast
convergence compared to all other baselines and is almost 20× faster than FISTA.

100 101 102 103

Iteration k

10 6

10 4

10 2

(F
(x

k)
F *

)/F
* ISTA

FISTA
L2O-DM
L2O-RNNprop
L2O-PA
Adam
AdamHD

Figure 7. Logistic: Train on synthetic data and test on real data (Spambase).

F. Extra Experiments
Running Time Comparison. Considering that HPO methods such as AdamHD do not require LSTM and consume less
time per iteration compared to L2O-PA, we compared the running time of our proposed method L2O-PA and AdamHD
in Table 2. The experiment settings follow those in Section 4.2. In these tables, ”Time/Iters” represents the average time
consumed for each iteration across the 1024 testing examples. The ”Iters” column indicates the number of iterations needed
to achieve the specified precision, while the ”Time” column denotes the time required to reach that precision. “N/A” is used
when AdamHD cannot attain a precision of 10−6 and “Gap” means the optimality gap (F (xk) − F∗)/F∗. Table 2 clearly
shows that L2O-PA requires much less time than AdamHD, even though its per-iteration complexity is higher than that of
AdamHD.

Table 2. Runtime Comparison between L2O-PA and AdamHD.

Stopping condition: Gap <10−3 Stopping condition: Gap <10−6

Time/Iters Iters Total Time Iters Total Time
LASSO (Synthetic)

L2O-PA 2.31 × 10−2 ms 21 0.485 ms 42 0.971 ms

AdamHD 8.09 × 10−3 ms 477 3.858 ms N/A N/A
Logistic (Spambase)

L2O-PA 7.845 × 10−1 ms 10 7.845 ms 33 25.89 ms

AdamHD 2.605 × 10−1 ms 390 101.6 ms N/A N/A

Large-Scale LASSO. To evaluate our model’s performance on large problems, we generate 256 independent LASSO
instances of size 2500 × 5000, following the same distribution described in Section E. All the learning models are trained
with instances of size 250 × 500 and tested on these 256 large testing problems. The results, reported in Figure 8, clearly
demonstrate that our proposed (L2O-PA) exhibits a superior ability to generalize to large problems.

22

Towards Constituting Mathematical Structures for Learning to Optimize

100 101 102 103

Iteration k
10 8

10 6

10 4

10 2

100

(F
(x

k)
F *

)/F
*

ISTA
FISTA
L2O-DM
L2O-RNNprop
L2O-PA

Figure 8. LASSO: Train with small instances and test on large instances.

Longer-Horizen Experiments. To test the performance of our method with longer horizons, say 104 iterations, we applied
our proposed approach (L2O-PA) to a logistic regression problem with ℓ1 regularization on CIFAR-10 for classification, and
compared with other baselines. We randomly sampled 5000 images in the training set of CIFAR-10 (500 images from each
class out of 10) for the logistic regression, which followed a similar manner as in (Cowen et al., 2019). Each image was
normalized and flattened into a 3072-dim vector (i.e., 3 × 32 × 32). Since the feature dimension is significantly higher than
what we considered in Section 4.2, we used a much smaller regularization coefficient λ = 10−4 to avoid all zero solutions.

We trained learning-based models (L2O-PA, L2O-DM and L2O-RNNprop) on a set of synthesized ℓ1-regularized logistic
regression tasks for binary classification with λ = 10−4 in the same way as we did in the second part of Section 4.2 and
described in Section E. Each logistic regression task contains a dataset of 1000 samples with 50 features. After training,
all models are directly applied to optimizing the 10-class logistic regression on CIFAR-10 for 104 steps. The results, with
comparisons to ISTA and FISTA, are shown in Figure 9. From the results we can see that:

• Our method, L2O-PA, converged quite stably in both near and further horizons compared to L2O-DM and L2O-
RNNprop, which fluctuated wildly in later iterations. This shows the impressive generalization ability of L2O-PA
considering the fact that it was trained in short-horizon settings (100 optimization steps).

• Compared to FISTA, L2O-PA can still achieve impressive acceleration in earlier iterations (25 iterations of L2O-PA
comparable to FISTA at 1000+ iterations, and 300 steps vs 2500+ steps for FISTA to reach 10−2 relative error).

Therefore, the conclusion is that L2O-PA can still generalize well, to some extent, to longer-horizon tasks even if it is trained
in short-horizon settings but it does struggle to converge fast in later iterations. We are happy to include this discussion in
the main text as limitations and improve in this direction in the future.

100 101 102 103 104

Iteration k

10 3

10 2

10 1

(F
(x

k)
F *

)/F
*

ISTA
FISTA
L2O-DM
L2O-RNNprop
L2O-PA

Figure 9. Logistic: Train on synthetic data and test on real data (CIFAR-10).

More-Challenging OOD Experiment. To further test the generalization performance of our method, we conduct an
even more challenging OOD experiment. We directly tested learned optimizers, which were trained on synthetic LASSO
problems, on synthetic ℓ1-regularized Logistic Regression. This setting renders changes in the objective function and thus
the structure of the loss function. The results are shown in Figure 10. We can see that L2O-PA-LASSO, the model that was
trained with LASSO problems, is able to converge stably at a faster speed than that of FISTA and other L2O competitors

23

Towards Constituting Mathematical Structures for Learning to Optimize

(except for L2O-PA) on Logistic Regression. It is worth noting that all other L2O competitors are trained directly on Logistic
Regression.

100 101 102 103

Iteration k

10 6

10 4

10 2

(F
(x

k)
F *

)/F
*

ISTA
FISTA
L2O-DM
L2O-RNNprop
L2O-PA
L2O-PA-LASSO
Adam
AdamHD

Figure 10. Logistic: Test on synthetic data.

Platform. All the experiments are conducted on a workstation equipped with four NVIDIA RTX A6000 GPUs. We used
PyTorch 1.12 and CUDA 11.3.

24

