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ABSTRACT

Robust Principal Component Analysis (PCA) has received massive attention in
recent years. It aims to recover a low-rank matrix and a sparse matrix from their
sum. This paper proposes a novel nonconvex Robust PCA algorithm, coined Rie-
mannian CUR (RieCUR), which utilizes the ideas of Riemannian optimization and
robust CUR decompositions. This algorithm has the same computational com-
plexity as Iterated Robust CUR, which is currently state-of-the-art, but is more
robust to outliers. RieCUR is also able to tolerate a significant amount of outliers,
and is comparable to Accelerated Alternating Projections, which has high outlier
tolerance but worse computational complexity than the proposed method. Thus,
the proposed algorithm achieves state-of-the-art performance on Robust PCA both
in terms of computational complexity and outlier tolerance.

1 INTRODUCTION

Principal Component Analysis (PCA) is one of the most fundamental tools to uncover low-
dimensional structure in high-dimensional data. Robust PCA proposed by (Wright et al., 2009;
Candès et al., 2011) seeks to find an incoherent, low-rank matrix from observations of it corrupted
by sparse outliers (Bouwmans et al., 2018). That is, given observations of the form D = L + S,
where L is the underlying low-rank signal and S is a matrix of sparse, but arbitrary magnitude out-
liers, one seeks to find a good approximation of L. Robust PCA has a wide range of applications, for
instance, video static background subtraction (Jang et al., 2016), singing-voice separation (Huang
et al., 2012), ultrasound imaging (Cai et al., 2021d), face recognition (Wright et al., 2008), image
alignment (Peng et al., 2012), community detection (Chen et al., 2012), and NMR spectrum recovery
(Cai et al., 2021a; 2022a).

To get around the computational cost of the semidefinite program for solving the convex relaxation
to Robust PCA, many recent methods attack the nonconvex optimization problem directly

minimize
L,S

∥D − L− S∥F

subject to rank(L) ≤ r,

∥S∥0 ≤ ∆.

(1)

Several recent algorithms use an iterative procedure in which one forms alternating approximations
of L and S, in which L is updated by projecting D − S onto the Riemannian manifold of rank-
r matrices (Vandereycken, 2013), denoted Mr, and S is updated by projecting D − L onto the
set of sparse matrices that have at most ∆ non-zero entries, denoted S∆. This technique is called
Alternating Projections (AltProj) (Netrapalli et al., 2014). One drawback of this algorithm is that
it requires computation of the SVD of the full n × n matrix D − S, which carries complexity
O(n2r). (Cai et al., 2019) propose Accelerated Alternating Projections (AccAltProj) which instead
projects D − S onto the tangent space of manifold Mr at the current estimation of L, which is
significantly faster, while remaining robust to outliers. The trick of tangent space projection in
AccAltProj coincides with the idea of Riemannian optimization (Wei et al., 2020), thus AccAltProj
can be viewed as a manifold method.
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Subsequently, (Cai et al., 2020) proposed the use of CUR decompositions (Drineas et al., 2006;
Mahoney & Drineas, 2009; Hamm & Huang, 2020) to provide an even faster nonconvex Robust PCA
solver, Iterated Robust CUR (IRCUR). IRCUR reduced the computational complexity of AccAltProj
and previous methods from O(n2r) to O(r2n log2 n). However, one drawback of IRCUR is that it is
not capable of handling as many outliers as the previous methods (i.e., ∆ must be smaller for IRCUR
to be successful compared to AccAltProj). To bridge this gap, this paper proposes Riemannian
CUR (RieCUR), which combines the idea of using CUR decompositions with the tangent space
projections of AccAltProj.

The result is an algorithm that combines the best of both methods in the following way:

• RieCUR has complexity O(r2n log2 n), which is the same as IRCUR (although the con-
stant appears to be larger for RieCUR based on experiments in the sequel).

• RieCUR appears to tolerate outliers as well as AccAltProj in terms of reconstruction vs.
sparsity based on our numerical experiments, whereas IRCUR degrades as the amount of
outliers increases.

Additionally, many of the nonconvex solvers initialize guesses of L and S via a single truncated
SVD of D. We show in our experiments here that one can use fast matrix sketching approaches for
approximating the SVD during initialization while not sacrificing recovery of L and S. This allows
for significant speedups in practical settings.

2 PROPOSED APPROACH

Here we detail our algorithm, coined RieCUR, as well as its implementation details. First, let us
collect some notation and assumptions.

2.1 NOTATION

We focus on square matrices D,L, S ∈ Rn×n, but note the proposed algorithm works for rectan-
gular matrices (see (Cai et al., 2019) for details on converting rectangular Robust PCA problems
to square ones). The SVD of A ∈ Rn×n is WΣV ⊤ (or WAΣAV

⊤
A if it is unclear from con-

text), where W and V are orthogonal (called the left and right singular vectors, respectively) and
Σ = diag(σ1, . . . , σn) with σ1 ≥ · · · ≥ σn ≥ 0 (called the singular values of A. The truncated
SVD of A with rank parameter r is denoted Ar = WrΣrV

⊤
r , where Wr and Vr are the n × r sub-

matrices of W and V , respectively corresponding to choosing the first r columns of each, and Σr is
the r× r leading principal minor of Σ. The Frobenius norm of a matrix is ∥A∥F := (

∑
i,j |Aij |2)

1
2 ,

the ℓ0-“norm” of a matrix is the number of nonzero entries of it, i.e., ∥S∥0 := |{(i, j) : Sij ̸= 0}|
(here | · | denotes set cardinality), and ∥ · ∥2 will here always denote the Euclidean norm of a vector.

Given an index set I ⊂ {1, . . . , n}, AI,: denotes the |I| × n submatrix of A corresponding to
choosing the rows of A indexed by I , and similar meanings are assigned to AI,J and A:,J . Finally,
if A = WΣV ⊤, then its Moore-Penrose pseudoinverse (Penrose, 1956) is A† = V Σ†W⊤, where
Σ† contains diagonal entries 1/σi if σi > 0 or 0 if σi = 0 along its diagonal.

Finally, given ζ > 0, we define the hard thresholding operator by

[TζA]i,j :=
{
Ai,j , |Ai,j | ≥ ζ;

0, otherwise.

2.2 ASSUMPTIONS

We utilize common assumptions for Robust PCA problems to be tractable, namely incoherence and
sparsity. A matrix L ∈ Rn×n with truncated SVD WrΣrV

⊤
r is called µ-incoherent provided

max
i

∥(Wr)i,:∥2 ≤
√

µr

n
, max

j
∥(Vr)j,:∥2 ≤

√
µr

n
.

A matrix S ∈ Rn×n is said to be α-sparse provided
∥Si,:∥0 ≤ αn, ∥S:,j∥0 ≤ αn, for all i, j = 1, . . . , n.
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Note that this notion of sparsity requires that S not have an overly large concentration of outliers on
any given row or column.

2.3 REVIEW OF CUR DECOMPOSITIONS AND TANGENT SPACE PROJECTIONS

Here we recall the background of both CUR decompositions and tangent space projections which
are used in our main algorithm.

The CUR decomposition of a matrix comes from the observation that if one chooses a column
submatrix C = A:,J whose columns span the column space of A and a row matrix R = AI,:

whose rows span the row space of A, and let U = AI,J , then A = CU †R. See (Goreinov et al.,
1997; Hamm & Huang, 2020; Strang & Moler, 2022) for more details. Based on random sampling
methods for CUR decompositions of incoherent low-rank matrices (Chiu & Demanet, 2013), we
sample O(r log n) columns and rows for each CUR decomposition done in this work.

During the iterative procedure of Riemannian CUR, if we have estimate Lk and Sk of L and S at
iteration k, and Lk has truncated SVD of order r given by WkΣkV

⊤
k , then the singular vectors Uk

and Vk form a (2n− r)r-dimensional subspace of Mr, which is the tangent space at Lk, defined by

Tk := {WkA
⊤ +BV ⊤

k : A,B ∈ Rn×r}.

One can verify (Vandereycken, 2013) that the projection onto Tk is given by

PTk
X = WkW

⊤
k X +XVkV

⊤
k −WkW

⊤
k XVkV

⊤
k . (2)

The main idea of AccAltProj (Cai et al., 2019) is that D−Lk is projected onto Tk and then projected
onto Mr to obtain Sk+1; then Lk+1 is obtained by hard thresholding D − Sk+1. The reason this
speeds up the procedure of AltProj is that one can compute the SVD of PTk

(D − Sk) much more
efficiently than the SVD of D − Sk itself.

The main idea of IRCUR (Cai et al., 2020) and its variants (Cai et al., 2021c;b; 2022b) is that one
only every works with column or row submatrices of D, Lk, and Sk in the iterative process. That
is, one is only trying to recover LI,:, L:,J , SI,:, and S:,J for given row and column subsets I and J ,
and at the end, one approximates L by a CUR decomposition of the form L ≈ CU †R. Since only
a few columns and rows of D are utilized and held in memory, this algorithm is significantly faster
than previous ones that required operations on the entire n× n matrices in question.

2.4 RIEMANNIAN CUR ALGORITHM

We are now ready to state our algorithm below. The stopping criterion is in terms of an empirical
relative error defined by

ek =
∥(D − Lk − Sk)I.:∥F + ∥(D − Lk − Sk):,J∥F

∥DI,:∥F + ∥D:,J∥F
,

where I and J are the indices of the submatrices of PTk
(D − Sk) formed at each iteration. This

is the same error term as in IRCUR, and is used because our algorithm does not form all of L or S
during the iterative part, but rather only tracks submatrices of them.

The main difference of Algorithm 1 compared with AccAltProj and IRCUR is that it utilizes sub-
matrices of the tangent space projection PTk

(D − Sk) rather than the entire matrix as AccAltProj
does, and IRCUR does not utilize the tangent space projection at all, but rather works with subma-
trices of D − Sk directly. Use of the tangent space projection in RieCUR adds a small amount of
computation time to IRCUR but with the benefit of making the procedure more robust to outliers, as
CUR decompositions are known to suffer from outliers.

2.5 IMPLEMENTATION DETAILS

There are three primary details to consider in the implementation of Algorithm 1: initialization,
forming the column and row submatrices of PTk

(D − Sk), and how to choose the initial threshold
γ, which here is a hyperparameter of the algorithm, but we note that one can use the choices of (Cai
et al., 2019), and the algorithm regularly converges in thorough experimentation; however, at present
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Algorithm 1 Riemannian CUR (RieCUR) for Robust PCA
1: Input: D: observed corrupted data matrix; r: rank; ε: target precision level; ζ0: initial thresh-

old; γ: threshold decay rate; |I|, |J |: number of rows and columns to sample.
2: Uniformly sample row indices I and column indices J
3: Initialize L0 and S0

4: k = 0
5: while ek > ε do
6: (Optional:) Resample row and column indices
7: Ck+1 = (PTk

(D − Sk)):,J
8: Rk+1 = (PTk

(D − Sk))I,:
9: Uk+1 = (PTk

(D − Sk))I,J
10: Lk+1 = Ck+1U

†
k+1Rk+1

11: ζk+1 = γkζ0
12: (Sk+1):,J = Tζk+1

(D − Lk+1):,J
13: (Sk+1)I,: = Tζk+1

(D − Lk+1)I,:
14: k = k + 1
15: end while
16: Output: Ck, Uk, Rk: CUR decomposition of L

we leave this as a general parameter and leave the analysis of choosing an adaptive threshold value
to future work.

For initialization, we use a modification of Algorithm 3 of (Cai et al., 2019), which uses two steps
of Alternating Projections (Netrapalli et al., 2014) to obtain L0 and S0.

Algorithm 2 Initialization via CUR Decomposition
1: Input: D: observed corrupted data matrix; r: target rank; β1, β2: thresholding parameters;

|I|, |J |: number of rows and columns to sample.
2: Uniformly sample row indices I and column indices J
3: S−1 = Tβ1

(D)
4: C = (D − S−1):,J
5: R = (D − S−1)I,:
6: U = (D − S−1)I,J
7: L0 = CU †

rR
8: S0 = Tβ2

(D − L0)
9: Output: L0, S0

We do allow one significant change in our experimental examination of Algorithm 1: when we ini-
tialize via Algorithm 2, rather than computing a full SVD of D−S−1 in line 4 as in Cai et al. (2019),
we instead compute a CUR decomposition of it (lines 4-6). This change reduces the computational
cost significantly. As noted above, we sample O(r log n) columns and rows of D− S−1 in forming
the CUR decomposition. Thus, computing the pseudoinverse of the intersection matrix requires only
O(r3 log2 n) flops as opposed to O(n2r) to compute the SVD of D − S−1.

Finally, one of the speed advantages of IRCUR is that one need only operate on small submatrices
of D − Sk at a time. This is not quite the case for Riemannian CUR, as one cannot form a column
submatrix of PTk

(D − Sk) by only using the corresponding columns of D − Sk. Nonetheless, we
are not required to form all of PTk

(D − Sk) as is done in AccAltProj here. Indeed, at time instance
k, we have D − Sk = CkU

†
kRk, so

PTk
(D − Sk) = WkW

⊤
k CkU

†
kRk + CkU

†
kRkVkV

⊤
k −WkW

⊤
k CkU

†
kRkVkV

⊤
k .

Now let R̃k := RkVkV
⊤
k and C̃k = WkW

⊤
k Ck, and notice that after some combining of terms, we

have
(PTk

(D − Sk))I,: = (C̃k)I,:U
†
kRk + (Ck − C̃k)I,:U

†
kR̃k,

and
(PTk

(D − Sk)):,J = C̃kU
†
k(Rk − R̃k):,J + CkU

†
k(R̃k):,J .
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Thus, the submatrices of PTk
(D − Sk) may be computed by keeping track of Ck, Uk, and Rk from

the previous iteration, and of computing only submatrices of C̃k and R̃k defined as above. Thus we
never form all of PTk

(D − Sk) at any stage, but only its constituent submatrices according to the
index sets I and J .

3 NUMERICAL EXPERIMENTS

Here we test the validity of the proposed algorithm with respect to other nonconvex Robust PCA
solvers. Note that (Cai et al., 2020) demonstrates that both IRCUR and AccAltProj are significantly
faster and more accurate than AltProj and the gradient descent method of (Yi et al., 2016). Thus, we
only compare our algorithm to IRCUR and AccAltProj.

3.1 SYNTHETIC DATA

First, Figure 1 illustrates that indeed RieCUR is significantly faster than AccAltProj, while being
modestly slower than IRCUR. For each dimension n ∈ {500, 1000, . . . , 10000}, we generate a
random Robust PCA problems by first generating a random low-rank matrix L with rank r = 5 as the
product of two Gaussian random matrices, i.e., L = AB⊤ where A,B ∈ Rn×5 have i.i.d. N (0, 1)
entries. We generate a sparse random matrix S with α = 0.3. We set a convergence threshold of
10−6 for all algorithms, and a maximum number of iterations of 40. Figure 1 corresponds to average
runtime over 5 random trials for each algorithm for each dimension. In all trials below, we sample
3 log n columns and rows when doing a CUR decomposition in RieCUR or IRCUR.

2000 4000 6000 8000 10000
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RieCUR
IRCUR
AccAltProj

Figure 1: Time vs. Problem dimension (n) for the three algorithms considered. In all trials L has
rank 5 and α = 0.3. Each algorithm stops once ek < 10−6 or 40 iterations has been reached.

As a second test, we consider the effect of the sparsity of S on the runtime of the algorithms. To do
so, we again generate random matrices of size 2000× 2000, but allow α to range from 0.5 to 0.95.
Each algorithm is allowed to run until either ek < 10−3 or 100 iterations is reached, whichever
comes first. The results are shown in Figure 2. One can see that RieCUR, while slower than IRCUR
for all sparsity levels, remains significantly faster than AccAltProj.

Next, we consider the effect of the problem dimension n on the final relative error. Figure 3 shows
the results for a similar setup to the above, with L being a rank 5, 2500 × 2500 matrix, and the di-
mension again goes from 500 to 10, 000. Each algorithm is set to a tolerance of 10−6 and maximum
iteration of 40. One can see that IRCUR does not achieve as good error in 40 iterations compared to
RieCUR which also performs slightly worse than AccAltProj.

Finally, we demonstrate that RieCUR is capable of handling more outliers than IRCUR. To do so,
we run all algorithms to 100 iterations and plot the final error versus the sparsity α. We utilize the
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Figure 2: Time vs. Sparsity for the three algorithms considered. In all trials L is 2000× 2000 with
rank 5. Each algorithm stops once ek < 10−3 or 100 iterations.
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Figure 3: log(Final Relative Error) vs. Problem dimension (n) for the three algorithms. In all trials,
L is a 2500× 2500 rank 5 matrix. Each algorithm stops once ek < 10−6 or 40 iterations.

same setup as the previous experiment for runtime versus sparsity. Note from Figure 4 that for each
sparsity level, AccAltProj attains the lowest error, followed by RieCUR, followed by IRCUR.

3.2 REAL DATA

Here we illustrate the performance of RieCUR on the restaurant benchmark dataset. The video
is black and white with 3, 055 frames of size 120 × 160. A single data matrix of the video is
obtained as follows: each frame is vectorized to form a column vector of size 19, 200, and columns
are concatenated into a data matrix of size 19, 200× 3, 055.

In this case, Robust PCA will separate the low-rank part of the collection of video frames, which
corresponds to the static background of the video from the sparse outlier part corresponding to the
foreground of the video (in this case moving people). In Figure 5, we show the effect of RieCUR for
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Figure 4: Error vs. Sparsity for the three algorithms considered. In all trials L is 2000× 2000 with
rank 5. Each algorithm stops after 100 iterations has been reached.

foreground/background separation. One can see that all algorithms tested yield high quality visual
separation of the foreground and background of the videos.

Figure 5: (Top row) Original frame from the restaurant video. (Center row) Background of
the same frame recovered from AccAltProj (left), RieCUR (center), and IRCUR (right). (Bottom
row) Foreground of the same frame recovered from AccAltProj (left), RieCUR (center), and IRCUR
(right).
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4 CONCLUSION

We have proposed Riemannian CUR (RieCUR), a nonconvex, Robust PCA algorithm, which com-
bines ideas from both Accelerated Alternating Projections (AccAltProj) and Iterated Robust CUR
(IRCUR). RieCUR has the best of both features of the other two methods, and is state-of-the art
in terms of computational complexity, thus providing an alternative method to the others in cases
where speed and robustness are both required. The current algorithm carries with it a thresholding
decay parameter, but future work will focus on providing an adaptive threshold which can guarantee
convergence given initialization within a neighborhood of a local solution. Additionally, we use a
fast starting method to initialize the guesses for the low-rank and sparse outlier matrices which uses
a CUR decomposition of the corrupted data matrix D rather than taking an SVD of it. This method
was shown to still yield good convergence in synthetic trials while being significantly faster than
standard SVD initialization.

Future work on RieCUR will consist of proving convergence to a minimizer of the nonconvex Robust
PCA problem given good initialization, proof that Algorithm 2 can achieve good initialization for
Robust PCA, use of a dynamic threshold rather than a static one in lines 11-13 of Algorithm 1, and
more comprehensive experiments on various Robust PCA problems.
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