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Abstract7

To guarantee all agents are matched in general, the classic Deferred Acceptance algorithm needs8

complete preference lists. In practice, preference lists are short, yet stable matching still works well.9

This raises two questions:10

Why does it work well?11

Which proposals should agents include in their preference lists?12

We study these questions in a model, introduced by Lee [17], with preferences based on correlated13

cardinal utilities: these utilities are based on common public ratings of each agent together with14

individual private adjustments. Lee showed that for suitable utility functions, in large markets, with15

high probability, for most agents, all stable matchings yield similar valued utilities. By means of a16

new analysis, we strengthen Lee’s result, showing that in large markets, with high probability, for17

all but the agents with the lowest public ratings, all stable matchings yield similar valued utilities.18

We can then deduce that for all but the agents with the lowest public ratings, each agent has an19

easily identified length O(log n) preference list that includes all of its stable matches, addressing the20

second question above. We note that this identification uses an initial communication phase.21

We extend these results to settings where the two sides have unequal numbers of agents, to22

many-to-one settings, e.g. employers and workers, and we also show the existence of an ϵ-Bayes-Nash23

equilibrium in which every agent makes relatively few proposals. These results all rely on a new24

technique for sidestepping the conditioning between the tentative matching events that occur over25

the course of a run of the Deferred Acceptance algorithm. We complement these theoretical results26

with an experimental study.27
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1 Introduction36

Consider a doctor applying for residency positions. Where should she apply? To the very37

top programs for her specialty? Or to those where she believes she has a reasonable chance38

of success (if these differ)? And if the latter, how does she identify them? We study these39

questions in the context of Gale and Shapley’s deferred acceptance (DA) algorithm [5]. It is40

well-known that in DA the optimal strategy for the proposing side is to list their choices in41

order of preference. However, this does not address which choices to list.42
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37:2 Stable Matching: Choosing the Proposals

The DA algorithm is widely used to compute matchings in real-world applications: the43

National Residency Matching Program (NRMP), which matches future residents to hospital44

programs [25]; university admissions programs which match students to programs, e.g. in45

Chile [24], school choice programs, e.g. for placement in New York City’s high schools [1],46

the Israeli psychology Masters match [9], and no doubt many others (e.g. [7]).47

Recall that each agent provides the mechanism a list of its possible matches in preference48

order, including the possibility of “no match” as one of its preferences. These mechanisms49

promise that the output will be a stable matching with respect to the submitted preference50

lists. In practice, preference lists are relatively short. This may be directly imposed by51

the mechanism or could be a reflection of the costs—for example, in time or money—of52

determining these preferences. Note that a short preference list is implicitly stating that the53

next preference after the listed ones is “no match”.54

Thus it is important to understand the impact of short preference lists. Roth and55

Peranson observed that the NRMP data showed that preference lists were short compared to56

the number of programs and that these preferences yielded a single stable partner for most57

participants; we note that this single stable partner could be the “no match” choice, and in58

fact this is the outcome for a constant fraction of the participants. They also confirmed this59

theoretically for the simplest model of uncorrelated random preferences; namely that with the60

preference lists truncated to the top O(1) preferences, almost all agents have a unique stable61

partner. Subsequently, in [10] the same result was obtained in the more general popularity62

model which allows for correlations among different agents’ preferences; in their model, the63

first side—men—can have arbitrary preferences; on the second side—women—preferences64

are selected by weighted random choices, the weights representing the “popularity” of the65

different choices. These results were further extended by Kojima and Parthak in [15].66

The popularity model does not capture behavior in settings where bounds on the number67

of proposals lead to proposals being made to plausible partners, i.e. partners with whom one68

has a realistic chance of matching. One way to capture such settings is by way of tiers [2],69

also known as block correlation [4]. Here agents on each side are partitioned into tiers, with70

all agents in a higher tier preferred to agents in a lower tier, and with uniformly random71

preferences within a tier. Tiers on the two sides may have different sizes. If we assign72

tiers successive intervals of ranks equal to their size, then, in any stable matching, the only73

matches will be between agents in tiers whose rank intervals overlap.74

A more nuanced way of achieving these types of preferences bases agent preferences75

on cardinal utilities; for each side, these utilities are functions of an underlying common76

assessment of the other side, together with idiosyncratic individual adjustments for the77

agents on the other side. These include the separable utilities defined by Ashlagi, Braverman,78

Kanoria and Shi in [2], and another class of utilities introduced by Lee in [17]. This last79

model will be the focus of our study.80

To make this more concrete, we review a simple special case of Lee’s model, the linear81

separable model. Suppose that there are n men and n women seeking to match with each82

other. Each man m has a public rating rm, a uniform random draw from [0, 1]. These ratings83

can be viewed as the women’s joint common assessment of the men. In addition, each woman84

w has an individual adjustment, which we call a score, sw(m) for man m, again a uniform85

random draw from [0, 1]. All the draws are independent. Woman w’s utility for man m is86

given by 1
2 [rm + sw(m)]; her full preference list has the men in decreasing utility order. The87

men’s utilities are defined similarly.88

Lee stated that rather than being assumed, short preference lists should arise from the89

model; this appears to have been a motivation for the model he introduced. A natural first90
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step would be to show that for some or all stable matchings, the utility of each agent can91

be well-predicted, for this would then allow the agents to limit themselves to the proposals92

achieving such a utility. Lee proved an approximate version of this statement, namely that93

with high probability (w.h.p., for short) most agents obtain utility within a small ϵ of an94

easily-computed individual benchmark. However, this does not imply that agents can restrict95

their proposals to a reduced utility range. (See the paragraph preceding Definition 4 for the96

specification of the benchmarks.)97

Our work seeks to resolve this issue. We obtain the following results. Note that in these98

results, when we refer to the bottommost agents, we mean when ordered by decreasing public99

rating. Also, we let the term loss mean the difference between an agent’s benchmark utility100

and their achieved utility.101

1. We show that in the linearly separable model, for any constant c > 0, with probability102

1 − 1/nc, in every stable matching, apart from a sub-constant σ fraction of the bottom-103

most agents, all the other agents obtain utility equal to an easily-computed individual104

benchmark ±ϵ, where ϵ is also sub-constant.105

We show that both σ, ϵ = Θ̃(n−1/3).1 As we will see, this implies, w.h.p., that for all106

the agents other than the bottommost σ fraction, each agent has Θ(ln n) possible edges107

(proposals) that could be in any stable matching, namely the proposals that provide both108

agents utility within ϵ of their benchmark. Furthermore, we show our bound is tight:109

with fairly high probability, there is no matching, let alone stable matching, providing110

every agent a partner if the values of ϵ and σ are reduced by a suitable constant factor.111

An interesting consequence of this lower bound on the agents’ utilities is that the agents112

can readily identify a moderate sized subset of the edge set to which they can safely113

restrict their applications. More precisely, any woman w outside the bottommost σ114

fraction, knowing only her own public rating, the public ratings of the men, and her115

own private score for each man, can determine a preference list of length Θ̃(n1/3) which,116

w.h.p, will yield the same result as her true full-length list. Our analysis also shows that117

if w obtained the men’s private scores for these proposals, then w.h.p. she could safely118

limit herself to a length O(ln n) preference list.119

2. The above bounds apply not only to the linearly separable model, but to a significantly120

more general bounded derivative model (in which derivatives of the utility functions are121

bounded).122

3. The result also immediately extends to settings with unequal numbers of men and women.123

Essentially, our analysis shows that the loss for an agent is small if there is a σ fraction124

of agents of lower rank on the opposite side. Thus even on the longer side, w.h.p., the125

topmost n(1 − σ) agents all obtain utility close to their benchmark, where n is the size126

of the shorter side. This limits the “stark effect of competition” [3]—namely that the127

agents on the longer side are significantly worse off—to a lower portion of the agents on128

the longer side.129

4. The result extends to the many-to-one setting, in which agents on one side seek multiple130

matches. Our results are given w.r.t. a parameter d, the number of matches that each131

agent on the “many” side desires. For simplicity, we assume this parameter is the same132

for all these agents. In fact, we analyze a more general many-to-many setting.133

5. A weaker result with arbitrarily small σ, ϵ = Θ(1) holds when there is no restriction on134

the derivatives of the utility functions, which we call the general values model. Again, we135

show this bound cannot be improved in general. This setting is essentially the general136

1 The Θ̃(·) notation means up to a poly-logarithmic term; here σ, ϵ = Θ((n/ ln n)−1/3).

ICALP 2023



37:4 Stable Matching: Choosing the Proposals

setting considered by Lee [17]. He had shown there was a σ fraction of agents who might137

suffer larger losses; our bound identifies this σ fraction of agents as the bottommost138

agents.139

6. In the bounded derivative model, with slightly stronger constraints on the derivatives, we140

also show the existence of an ϵ-Bayes-Nash equilibrium in which no agent proposes more141

than O(ln2 n) times and all but the bottommost O((ln n/n)1/3) fraction of the agents142

make only the O(ln n) proposals identified in (1) above. Here ϵ = Θ(ln n/n1/3).143

These results all follow from a lemma showing that, w.h.p., each non-bottommost agent144

has at most a small loss. In turn, the proof of this lemma relies on a new technique which145

sidesteps the conditioning inherent to runs of DA in these settings.146

Experimental results147

Much prior work has been concerned with preference lists that have a constant bound on148

their length. For moderate values of n, say n ∈ [103, 106], ln n is quite small, so our Θ(ln n)149

bound may or may not be sufficiently small in practice for this range of n. What matters are150

the actual constants hidden by the Θ notation, which our analysis does not fully determine.151

To help resolve this, we conducted a variety of simulation experiments.152

We have also considered how to select the agents to include in the preference lists, when153

seeking to maintain a constant bound on their lengths, namely a bound that, for the values154

of n we considered, was smaller than the Θ(ln n) bound determined by the above simulations;155

again, our investigation was experimental.156

Other Related work157

The random preference model was introduced by Knuth [12] (for a version in English see [13]),158

and subsequently extensively analyzed [20, 14, 21, 18, 23, 22, 16]. In this model, each agent’s159

preferences are an independent uniform random permutation of the agents on the other side.160

An important observation was that when running the DA algorithm, the proposing side161

obtained a match of rank Θ(ln n) on the average, while on the other side the matches had162

rank Θ(n/ ln n).163

A recent and unexpected observation in [3] was the “stark effect of competition”: that164

in the random preferences model the short side, whether it was the proposing side or not,165

was the one to enjoy the Θ(ln n) rank matches. Subsequent work showed that this effect166

disappeared with short preference lists in a natural modification of the random preferences167

model [11]. Our work suggests yet another explanation for why this effect may not be present:168

it does not require that short preference lists be imposed as an external constraint, but rather169

that the preference model generates few edges that might ever be in a stable matching.170

The number of edges present in any stable matching has also been examined for a171

variety of settings. When preference lists are uniform the expected number of stable pairs172

is Θ(n ln n) [21]; when they are arbitrary on one side and uniform on the other side, the173

expected number is O(n ln n) [14]. This result continues to hold when preference lists are174

arbitrary on the men’s side and are generated from general popularities on the women’s175

side [6]. Our analysis shows that in the linear separable model (and more generally in the176

bounded derivative setting) the expected number of stable pairs is also O(n ln n).177

Another important issue is the amount of communication needed to identify who to place178

on one’s preference lists when they have bounded length. In general, the cost is Ω(n) per179

agent (in an n agent market) [8], but in the already-mentioned separable model of Ashlagi et180

al. [2] this improves to Õ(
√

n) given some additional constraints, and further improves to181
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O(ln4 n) in a tiered separable market [2]. We note that for the bounded derivatives setting,182

with high probability, the communication cost will be O(n1/3 ln2/3 n) for all agents except183

the bottommost Θ(n2/3 ln1/3 n), for whom the cost can reach O(n2/3 ln1/3 n).184

Another approach to selecting which universities to apply to was considered by Shorrer185

who devised a dynamic program to compute the optimal choices for students assuming186

universities had a common ranking of students [26].187

Roadmap188

In Section 2 we review some standard material. In Section 3 we state our main result in two189

parts: Theorem 1, which bounds the losses in the setting of the linear model, and Theorem 2,190

which shows it suffices to limit preference lists to a small set of edges. We prove these191

theorems in Sections 4 and 5, respectively. We also present some numerical simulations for192

the linear separable model in Section 6 We conclude with a brief discussion of open problems193

in Section 7.194

In the appendices of the full version of the paper, we formally state and prove all the195

other results alluded to in the introduction and we also present further numerical simulations196

for the linear separable model. For the reader’s convenience, in the text that follows, we197

provide pointers to these appendices, as appropriate. We note that Appendix A provides a198

complete summary of the content in these appendices.199

2 Preliminaries200

2.1 Stable Matching and the Deferred Acceptance (DA) Algorithm201

Let M be a set of n men and W a set of n women. Each man m has an ordered list of202

women that represents his preferences, i.e. if a woman w comes before a woman w′ in m’s203

list, then m would prefer matching with w rather than w′. The position of a woman w in204

this list is called m’s ranking of w. Similarly each woman w has a ranking of her preferred205

men2. The stable matching task is to pair (match) the men and women in such a way that206

no two people prefer each other to their assigned partners. More formally:207

▶ Definition 1 (Matching). A matching is a pairing of the agents in M with the agents in208

W . It comprises a bijective function µ from M to W , and its inverse ν = µ−1, which is a209

bijective function from W to M .210

▶ Definition 2 (Blocking pair). A matching µ has a blocking pair (m, w) if and only if:211

1. m and w are not matched: µ(m) ̸= w.212

2. m prefers w to his current match µ(m).213

3. w prefers m to her current match ν(w).214

▶ Definition 3 (Stable matching). A matching µ is stable if it has no blocking pair.215

Gale and Shapley [5] proposed the seminal deferred acceptance (DA) algorithm for the216

stable matching problem. We present the woman-proposing DA algorithm (Algorithm 1);217

the man-proposing DA is symmetric. The following facts about the DA algorithm are well218

known. We state them here without proof and we shall use them freely in our analysis.219

2 Throughout this paper, we assume that each man m (woman w) ranks all the possible women (men),
i.e. m’s (w’s) preference list is complete.
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37:6 Stable Matching: Choosing the Proposals

Algorithm 1 Woman Proposing Deferred Acceptance (DA) Algorithm.

Initially, all the men and women are unmatched.
while some woman w with a non-empty preference list is unmatched do

let m be the first man on her preference list;
if m is currently unmatched then

tentatively match w to m.
end
if m is currently matched to w′, and m prefers w to w′ then

make w′ unmatched and tentatively match w to m.
else

remove m from w’s preference list.
end

end

▶ Observation 1.220

1. DA terminates and outputs a stable matching.221

2. The stable matching generated by DA is independent of the order in which the unmatched222

agents on the proposing side are processed.223

3. Woman-proposing DA is woman-optimal, i.e. each woman is matched with the best partner224

she could be matched with in any stable matching.225

4. Woman-proposing DA is man-pessimal, i.e. each man is matched with the worst partner226

he could be matched with in any stable matching.227

2.2 Useful notation and definitions228

There are n men and n women. In all of our models, each man m has a utility Um,w for the229

woman w, and each woman w has a utility Vm,w for the man m. These utilities are defined230

as231

Um,w = U(rw, sm(w)), and232

Vm,w = V (rm, sw(m)),233
234

where rm and rw are common public ratings, sm(w) and sw(m) are private scores specific to235

the pair (m, w), and U(·, ·) and V (·, ·) are continuous and strictly increasing functions from236

R2
+ to R+. The ratings are independent uniform draws from [0, 1] as are the scores.237

In the Linear Separable Model, each man m assigns each woman w a utility of Um,w =238

λ · rw + (1 − λ) · sm(w), where 0 < λ < 1 is a constant. The women’s utilities for the men239

are defined analogously as Vm,w = λ · rm + (1 − λ) · sw(m). All our experiments are for this240

model.241

We let {m1, m2, . . . , mn} be the men in descending order of their public ratings and242

{w1, w2, . . . , wn} be a similar ordering of the women. We say that mi has public rank i, or243

rank i for short, and similarly for wi. We also say that mi and wi are aligned. In addition,244

we often want to identify the men or women in an interval of public ratings. Accordingly,245

we define M(r, r′) to be the set of men with public ratings in the range (r, r′), and M [r, r′]246

to be the set with public ratings in the range [r, r′]; we also use the notation M(r, r′] and247

M [r, r′) to identify the men with ratings in the corresponding semi-open intervals. We use248

an analogous notation, with W replacing M , to refer to the corresponding sets of women.249

We will be comparing the achieved utilities in stable matchings to the following bench-250

marks: the rank i man has as benchmark U(rwi
, 1), the utility he would obtain from the251
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combination of the rank i woman’s public rating and the highest possible private score; and252

similarly for the women. Based on this we define the loss an agent faces as follows.253

▶ Definition 4 (Loss). Suppose man m and woman w both have rank i. The loss m sustains254

from a match of utility u is defined to be U(rw, 1) − u. The loss for women is defined255

analogously.256

In our analysis we will consider a complete bipartite graph whose two sets of vertices257

correspond to the men and women, respectively. For each man m and woman w, we view258

the possible matched pair (m, w) as an edge in this graph. Thus, throughout this work, we259

will often refer to edges being proposed, as well as edges satisfying various conditions.260

3 Upper Bound in The Linear Separable Model261

To illustrate our proof technique for deriving upper bounds, we begin by stating and proving262

our upper bound result for the special case of the linear separable model with λ = 1
2 .263

▶ Theorem 1. In the linear separable model with λ = 1/2, when there are n men and n264

women, for any given constant c > 0, for large enough n, with probability at least 1 − n−c, in265

every stable matching, for every i, with rwi ≥ σ ≜ 3L/2, agent mi suffers a loss of at most266

L, where L = (16(c + 2) ln n/n)1/3, and similarly for the agents wi.267

In words, w.h.p., all but the bottommost agents (those whose aligned agents have public268

rating less than σ) suffer a loss of no more than L. This is a special case of our basic upper269

bound for the bounded utilities model (Theorem 12).270

One of our goals is to be able to limit the number of proposals the proposing side needs to271

make. We identify the edges that could be in some stable matching, calling them acceptable272

edges. Our definition is stated generally so that it covers all our results; accordingly we273

replace the terms L and σ in Theorem 1 with parameters L and σ.274

▶ Definition 5 (Acceptable edges). Let 0 < σ < 1 and 0 < L < 1 be two parameters. An edge275

(mi, wj) is (L, σ)-man-acceptable either if it provides mi utility at least U(rwi
, 1) − L, or if276

mi ∈ M [0, σ). The definition of (L, σ)-woman-acceptable is symmetric. Finally, (mi, wj) is277

(L, σ)-acceptable if it is both (L, σ)-man and (L, σ)-woman-acceptable.278

To prove our various results, we choose L and σ so that w.h.p. the edges in every stable279

matching are (L, σ)-acceptable. We call this high probability event E . We will show that if E280

occurs, then running DA on the set of acceptable edges, or any superset of the acceptable281

edges obtained via loss thresholds, produces the same stable matching as running DA on the282

full set of edges.283

▶ Theorem 2. If E occurs, then running woman-proposing DA with the edge set restricted284

to the acceptable edges or to any superset of the acceptable edges obtained via loss thresholds285

(including the full edge set) result in the same stable matching.286

The implication is that w.h.p. a woman can safely restrict her proposals to her acceptable287

edges, or to any overestimate of this set of edges obtained by her setting an upper bound288

on the loss she is willing to accept. There is a small probability— at most n−c—that this289

may result in a less good outcome, which can happen only if E does not occur. Note that290

Theorem 2 applies to every utility model we consider. Then, w.h.p., every stable matching291

gives each woman w, whose aligned agent m has public rating rm ≥ σ = Ω((ln n/n)1/3), a292

partner with public rating in the range [rm −2L, rm + 5
2 L] (see Theorem 25 in Appendix F.1).293
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37:8 Stable Matching: Choosing the Proposals

The bound rm − 2L is a consequence of the bound on the woman’s loss; the bound rm + 5
2 L294

is a consequence of the bound on the men’s losses. An analogous statement applies to the295

men.296

This means that if we are running woman-proposing DA, each of these women might297

as well limit her proposals to her woman-acceptable edges, which is at most the men with298

public ratings in the range rm ± Θ(L) for whom she has private scores of at least 1 − Θ(L).299

In expectation, this yields Θ(n1/3(ln n)2/3) men to whom it might be worth proposing. It300

also implies that a woman can have a gain of at most Θ(L) compared to her target utility.301

If, in addition, each man can inexpensively signal the women who are man-acceptable302

to him, then the women can further limit their proposals to just those men providing them303

with a signal; this reduces the expected number of proposals these women can usefully make304

to just Θ(ln n).305

4 Sketch of the Proof of Theorem 1306

◦rating rmi , man mi ◦ woman wi

Mi = [rmi
− α, 1]

hi men, rating range α

ℓi women

men women

cutoff rmi
− α

W̃i = W [rwi
, 1]

◦
woman wi = wi+ℓi

Figure 1

We begin by outlining the main ideas used in our analysis. Our goal is to show that when307

we run woman proposing DA, w.h.p. each man receives a proposal that gives him a loss of308

at most L (except possibly for men among the bottommost Θ(nL)). As the outcome is the309

man-pessimal stable matching, this means that w.h.p., in all stable matchings, these men310

have a loss of at most L. By symmetry, the same bound holds for the women.311

Next, we provide some intuition for the proof of this result. See Fig. 1. Our analysis uses312

3 parameters α, β, γ = Θ(L). Let mi be a non-bottommost man. We consider the set of313

men with public rank at least rmi
− α: Mi = M [rmi

− α, 1]. We consider a similar, slightly314

larger set of women: W̃i = W [rwi
− 3α, 1]. Now we look at the best proposals by the women315

in W̃i, i.e. the ones they make first. Specifically, we consider the proposals that give these316

women utility at least V (rmi
− α, 1), proposals that are therefore guaranteed to be to the317

men in Mi. Let
∣∣Mi

∣∣ = i + hi and
∣∣Wi

∣∣ = i + ℓi. In expectation, ℓi − hi = 2αn. Necessarily,318

at least ℓi − hi + 1 women in Mi cannot match with men in Mi \ {mi}. But, as we will see,319

these women all have probability at least β of having a proposal to mi which gives them320

utility at least V (rmi
− α, 1). These are proposals these women must make before they make321

any proposals to men with public rating less than rmi
− α. Furthermore, for each of these322

proposals, mi has probability at least γ of having a loss of L or less. Thus, in expectation,323

mi receives at least 2αβγn proposals which give him a loss of L or less.324
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We actually want a high-probability bound. So we choose α, β, γ so that αβγn ≥ c log n for325

a suitable constant c > 0, and then apply a series of Chernoff bounds. There is one difficulty.326

The Chernoff bounds requires the various proposals to be independent. Unfortunately, in327

general, this does not appear to be the case. However, we are able to show that the failure328

probability for our setting is at most the failure probability in an artificial setting in which329

the events are independent, which yields the desired bound.330

We now embark on the actual proof.331

We formalize the men’s rating cutoff with the notion of DA stopping at public rating r.332

▶ Definition 6 (DA stops). The women stop at public rating r if, in each woman’s preference333

list, all the edges with utility less than V (r, 1) are removed. The women stop at man m if, in334

each woman’s preference list, all the edges following her edge to m are removed. The women335

double cut at man m and public rating r, if they each stop at m or r, whichever comes first.336

Men stopping and double cutting are defined similarly. Finally, an edge is said to survive the337

cutoff if it is not removed by the stopping.338

To obtain our bounds for man mi, we will have the women double cut at rating rmi
− α339

and at man mi, where α > 0 is a parameter we will specify later.340

Our upper bounds in all of the utility models depend on a parameterized key lemma341

(Lemma 3) stated shortly. This lemma concerns the losses the men face in the woman-342

proposing DA; a symmetric result applies to the women. The individual theorems follow by343

setting the parameters appropriately. Our key lemma uses three parameters: α, β, γ > 0. To344

avoid rounding issues, we will choose α so that αn is an integer. The other parameters need345

to satisfy the following constraints.346

for r ≥ α: V (r − α, 1) ≤ V (r, 1 − β) (1)347

for r ≥ 3α: U(r, 1) − U(r − 3α, 1 − γ) ≤ L (2)348
349

Equation (1) relates the range of private values that will yield a woman an edge to mi350

that survives the cut at rmi
− α, or equivalently the probability of having such an edge.351

Observation 2 below, shows that Equation (2) identifies the range of mi’s private values for352

proposals from W̃i that yield him a loss of at most L (for we will ensure the women in W̃i353

have public rating at least rwi
− 3α).354

▶ Observation 2. Consider the proposal from woman w to the rank i man mi. Suppose the355

rank i woman wi has rating rwi
≥ 3α. If w has public rating r ≥ rwi

− 3α and mi’s private356

score for w is at least 1−γ, then mi’s utility for w is at least U(rwi
−3α, 1−γ) ≥ U(rwi

, 1)−L.357

In the linear separable model with λ = 1
2 , we set α = β = γ and L = 2α.358

The next lemma determines the probability that man mi receives a proposal causing him359

a loss of at most L. The lemma calculates this probability in terms of the parameters we360

just defined. Note that the result does not depend on the utility functions U(·, ·) and V (·, ·)361

being linear. In fact, the same lemma applies to much more general utility models which we362

also study (see Appendix C) and it is the crucial tool we use in all our upper bound proofs.363

In what follows, to avoid heavy-handed notation, by rmi
−α we will mean max{0, rmi

−α}.364

In order to state our next result crisply, we define the following Event Ei. It concerns365

a run of woman-proposing DA with double cut at the rank i man mi and at public rating366

rmi
− α. Let hi =

∣∣M [rmi
− α, rmi

)
∣∣, ℓi =

∣∣W [rwi
− 3α, rwi

)
∣∣, and wi be the woman with367

rank i + ℓi. See Figure 1 for an illustration of these definitions. Event Ei occurs if rwi
≥ 3α368

and between them the i + ℓi women in W [rwi
− 3α, 1] make at least one proposal to mi that369

causes him a loss of at most L.370

Finally we define Event E : it happens if Ei occurs for all i such that rwi
≥ 3α.371
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▶ Lemma 3. Let α > 0 and L > 0 be given, and suppose that β and γ satisfy (1) and (2),
respectively. Then, Event E occurs with probability at least 1−pf , where the failure probability

pf = n · exp(−α(n − 1)/12) + n · exp(−α(n − 1)/24) + n exp(−αβn/8) + n · exp(−αβγn/2).

The following simple claim notes that the men’s loss when running the full DA is no larger372

than when running double-cut DA.373

▷ Claim 4. Suppose a woman-proposing double-cut DA at man mi and rating rmi
− α is374

run, and suppose mi incurs a loss of L. Then in the full run of woman-proposing DA, mi375

will incur a loss of at most L.376

Proof. Recall that when running the women-proposing DA the order in which unmatched377

women are processed does not affect the outcome. Also note that as the run proceeds,378

whenever a man’s match is updated, the man obtains an improved utility. Thus, in the run379

with the full edge set we can first use the edges used in the double-cut DA and then proceed380

with the remaining edges. Therefore if in the double-cut DA mi has a loss of L, in the full381

run mi will also have a loss of at most L. ◀382

To illustrate how this lemma is applied, we now prove Theorem 1. Note that L is the383

value of L used in this theorem. Our other results use other values of L.384

Proof. (Of Theorem 1) By Lemma 3, in the double-cut DA, for all i with rwi
≥ 3α, mi385

obtains a match giving him loss at most L, with probability at least 1−n·exp(−α(n − 1)/12)−386

n · exp(−αn/24) − n exp
(
−α2n/8

)
− n · exp

(
−α3n/2

)
.387

By Claim 4, mi will incur a loss of at most L in the full run of woman-proposing DA388

with at least as large a probability. But this is the man-pessimal match. Consequently, in389

every stable match, mi has a loss of at most L. By symmetry, the same bound applies to390

each woman wi such that rmi ≥ 3α.391

We choose L = [16(c + 2) ln n/n]1/3. Recalling that α = L/2, we see that for large enough392

n the probability bound, over all the men and women, is at most 1 − n−c. The bounds393

rwi
≥ 3α and rmi

≥ 3α imply we can set σ = 3α = 3
2 L. ◀394

Proof. (Of Lemma 3.) We run the double-cut DA in two phases, defined as follows. Recall395

that hi =
∣∣M [rmi − α, rmi)

∣∣ and ℓi =
∣∣W [rwi − 3α, rwi)

∣∣. Note that women with rank at396

most i + ℓi have public rating at least rwi
− 3α.397

Phase 1. Every unmatched woman with rank at most i + ℓi keeps proposing until her next398

proposal is to mi, or she runs out of proposals.399

Phase 2. Each unmatched women makes her next proposal, if any, which will be a proposal400

to mi.401

Our analysis is based on the following four claims. The first two are simply observations402

that w.h.p. the number of agents with public ratings in a given interval is close to the403

expected number. We defer the proofs to the appendix.404

A critical issue in this analysis is to make sure the conditioning induced by the successive405

steps of the analysis does not affect the independence needed for subsequent steps. To achieve406

this, we use the Principle of Deferred Decisions, only instantiating random values as they are407

used. Since each successive bound uses a different collection of random variables this does408

not present a problem.409

▷ Claim 5. Let B1 be the event that for some i, hi ≥ 3
2 α(n − 1). B1 occurs with probability410

at most n · exp(−α(n − 1)/12). The only randomness used in the proof are the choices of411

the men’s public ratings. The same bound applies to the women.412
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Proof. (Sketch.) As E[hi] = α(n − 1), w.h.p., hi < 3
2 α(n − 1). This claim uses a Chernoff413

bound with the randomness coming from the public ratings of the men. ◀414

▷ Claim 6. Let B2 be the event that for some i, ℓi ≤ 5
2 α(n − 1). B2 occurs with probability415

at most n · exp(−α(n − 1)/24). The only randomness used in the proof are the choices of416

the women’s public ratings. The same bound applies to the men.417

Proof. This is very similar to the proof of Claim 5. ◀418

▷ Claim 7. Let B3 be the event that between them, the women with rank at most i + ℓi419

make fewer than 1
2 αβn Step 2 proposals to mi. If events B1 and B2 do not occur, then B3420

occurs with probability at most exp(−αβn/8). The only randomness used in the proof are421

the choices of the women’s private scores.422

This bound uses the private scores of the women and employs a novel argument given below423

to sidestep the conditioning among these proposals.424

▷ Claim 8. If none of the events B1, B2, or B3 occur, then at least one of the Step 2425

proposals to mi will cause him a loss of at most L with probability at least 1− (1−γ)αβn/2 ≥426

1 − exp(−αβγn/2). The only randomness used in the proof are the choices of the men’s427

private scores.428

Proof. Note that each Phase 2 proposal is from a woman w with rank at most i + ℓi. As429

already observed, her public rating is at least rwi
− 3α. Recall that man mi’s utility for430

w equals U(rw, smi
(w)) ≥ U(rwi

− 3α, smi
(w)). To achieve utility at least U(rwi

, 1) − L ≤431

U(rwi
− 3α, 1 − γ) (using (2)) it suffices to have smi

(w) ≥ 1 − γ, which happens with432

probability γ. Consequently, utility at least U(rwi , 1) − L is achieved with probability at433

least γ.434

For each Phase 2 proposal these probabilities are independent as they reflect mi’s private435

scores for each of these proposals. Therefore the probability that there is no proposal436

providing mi a loss of at most L is at most437 (
1 − γ

)αβn/2 ≤ exp(αβγn/2).438
439

◀440

Concluding the proof of Lemma 3: The overall failure probability summed over all n choices441

of i is442

n · exp(−α(n − 1)/12) + n · exp(−α(n − 1)/24) + n exp(−αβn/8) + n · exp(−αβγn/2).443
444

◀445

Proof. (Of Claim 7.) First, we simplify the action space by viewing the decisions as being446

made on a discrete utility space, as specified in the next claim, proved in the appendix.447

▷ Claim 9. For any δ > 0, there is a discrete utility space in which for each woman the448

probability of selecting mi is only increased, and the probability of having any differences in449

the sequence of actions in the original continuous setting and the discrete setting is at most450

δ.451
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We represent the possible computations of the double-cut DA in this discrete setting452

using a tree T . Each woman will be going through her possible utility values in decreasing453

order, with the possible actions of the various women being interleaved in the order given454

by the DA processing. Each node u corresponds to a woman w processing her next utility455

value. The possible choices at this utility are each represented by an edge descending from u.456

These choices are:457

i. Proposing to some man (among those men w has not yet proposed to); or458

ii. “no action”. This corresponds to w making no proposal achieving the current utility.459

We observe the following important structural feature of tree T . Let S be the subtree460

descending from the edge corresponding to woman w proposing to mi; in S there are no461

further actions of w, i.e. no nodes at which w makes a choice, because the double cut DA462

cuts at the proposal to mi.463

The assumption that B1 and B2 do not occur means that for all i, hi < 3
2 α(n − 1) and464

ℓi > 5
2 α(n − 1), and therefore ℓi − hi > α(n − 1).465

At each leaf of T , up to i + hi − 1 women will have been matched with someone other466

than mi. The other women either finished with a proposal to mi or both failed to match467

and did not propose to mi. Let w be a woman in the latter category. Then, on the path to468

this leaf, w will have traversed edges corresponding to a choice at each discrete utility in the469

range [V (rmi − α, 1), V (1, 1)].470

We now create an extended tree, Tx, by adding a subtree at each leaf; this subtree will471

correspond to pretending there were no matches; the effect is that each women will take an472

action at all their remaining utility values in the range [V (rmi
− α, 1), V (1, 1)], except that473

in the sub-subtrees descending from edges that correspond to some woman w selecting mi,474

w has no further actions. For each leaf in the unextended tree, the probability of the path475

to that leaf is left unchanged. The probabilities of the paths in the extended tree are then476

calculated by multiplying the path probability in the unextended tree with the probabilities477

of each woman’s choices in the extended portion of the tree.478

Next, we create an artificial mechanism M that acts on tree Tx. The mechanism M is479

allowed to put i + hi − 1 “blocks” on each path; blocks can be placed at internal nodes. A480

block names a woman w and corresponds to her matching (but we no longer think of the481

matches as corresponding to the outcome of the edge selection; they have no meaning beyond482

making all subsequent choices by this woman be the “no action” choice).483

DA can be seen as choosing to place up to i + hi − 1 blocks at each of the nodes484

corresponding to a leaf of T . M will place its blocks so as to minimize the probability p of485

paths with at least 1
2 αβn women choosing edges to mi. Clearly p is a lower bound on the486

probability that the double-cut DA makes at least 1
2 αβn proposals in Step 2. Given a choice487

of blocks we call the resulting probability of having fewer than 1
2 αβn women choosing edges488

to mi the blocking probability.489

▷ Claim 10. The probability that M makes at least 1
2 αβn proposals to mi is at least490

1 − exp(−αβn/8).491

▶ Corollary 1. The probability that the double-cut DA makes at least 1
2 αβn proposals to mi492

is at least 1 − exp(−αβn/8).493

Proof. For any fixed δ, by Claim 10, the probability that M makes at least 1
2 αβn proposals494

to mi is at least 1 − exp(−αβn/8). By construction, the probability is only larger for the495

double-cut DA in the discrete space.496
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Therefore, by Claim 4, the probability that the double-cut DA makes at least 1
2 αβn497

proposals to mi in the actual continuous space is at least 1−exp(−αβn/8)−δ, and this holds498

for any δ > 0, however small. Consequently, this probability is at least 1 − exp(−αβn/8). ◀499

Proof. (Of Claim 10.) We will show that the most effective blocking strategy is to block as500

many women as possible before they have made any choices. This leaves at least (i + ℓi) −501

(i − 1 + hi) ≥ 1 + α(n − 1) ≥ αn women unmatched. Then, as we argue next, each of these502

remaining at least αn women w has independent probability at least β that their proposal to503

mi is cutoff-surviving. To be cutoff-surviving, it suffices that V (rmi
, sw(mi)) ≥ V (rmi

−α, 1).504

But we know by (1) that V (rmi
− α, 1) ≤ V (rmi

, 1 − β), and therefore it suffices that505

sw(mi) ≥ 1 − β, which occurs with probability β.506

Consequently, in expectation, there are at least αβn proposals to mi, and therefore, by a507

Chernoff bound, at least 1
2 αβn proposals with probability at least exp(−αβn/8).508

We consider the actual blocking choices made by M and modify them bottom-up in a509

way that only reduces the probability of there being 1
2 αβn or more proposals to mi.510

Clearly, M can choose to block the same maximum number of women on every path511

as it never hurts to block more women (we allow the blocking of women who have already512

proposed to mi even though it does not affect the number of proposals to mi).513

Consider a deepest block at some node u in the tree, and suppose b women are blocked514

at u. Let v be a sibling of u. As this is a deepest block, there will be no blocks at proper515

descendants of u, and furthermore as there are the same number of blocks on every path, v516

will also have b blocked women.517

Observe that if there is no blocking in a subtree, then the probability that a woman518

makes a proposal to mi is independent of the outcomes for the other women. Therefore the519

correct blocking decision at node u is to block the b women with the highest probabilities of520

otherwise making a proposal to mi, which we call their proposing probabilities; the same is521

true at each of its siblings v.522

Let x be u’s parent. Suppose the action at node x concerns woman w̃x. Note that the523

proposing probability for any woman w ̸= w̃x is the same at u and v because the remaining524

sequence of actions for woman w is the same at nodes u and v, and as they are independent525

of the actions of the other women, they yield the same probability of selecting mi at some526

point.527

We need to consider a number of cases.528

Case 1. w is blocked at every child of x.529

Then we could equally well block w at node x.530

Case 2. At least one woman other than w̃x is blocked at some child of x.531

Each such blocked woman w has the same proposing probability at each child of x. Therefore532

by choosing to block the women with the highest proposing probabilities, we can ensure that533

at each node either w̃x plus the same b − 1 other women are blocked, or these b − 1 woman534

plus the same additional woman w′ ̸= w̃x are blocked. In any event, the blocking of the first535

b − 1 women can be moved to x.536

Case 2.1. w̃x is not blocked at any child of x.537

Then the remaining identical blocked woman at each child of x can be moved to x.538

Case 2.2. w̃x is blocked at some child of x but not at all the children of x.539

Notice that we can avoid blocking w̃x at the child u of x corresponding to selecting mi, as540

the proposing probability for w̃x after it has selected mi is 0, so blocking any other women541

would be at least as good. Suppose that w ̸= w̃x is blocked at node u.542

Let v be another child of x at which w̃x is blocked. Necessarily, p
v,w̃x

, the proposing543

probability for w̃x at node v, is at least the proposing probability pv,w for w at node v (for544
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otherwise w would be blocked at node v); also, pv,w equals the proposing probability for w545

at every child of x including u; in addition, p
v,w̃x

equals the proposing probability for w̃x at546

every child of x other than u. It follows that w is blocked at u and w̃x can be blocked at547

every other child of x. But then blocking w̃x at x only reduces the proposing probability.548

Thus in every case one should move the bottommost blocking decisions at a collection of549

sibling nodes to a single blocking decision at their parent. ◀550

◀551

5 Making Fewer Proposals552

We identify a sufficient set of edges that contains all stable matchings, and on which the DA553

algorithm produces the same outcome as when it runs on the full edge set.554

▶ Definition 7 (Viable edges). An edge (m, w) is man-viable if, according to m’s preferences,555

w is at least as good as the woman he is matched to in the man-pessimal stable match.556

Woman-viable is defined symmetrically. An edge is viable if it is both man and woman-viable.557

Ev is the set of all viable edges.558

▶ Lemma 11. Running woman-proposing DA with the edge set restricted to Ev and with any559

superset obtained via loss thresholds, including the full edge set, results in the same stable560

matching.561

Proof. Suppose a new stable matching, S, now exists in the restricted edge set: it could not562

be present when using the full edge set, therefore there must be a blocking edge (m, w) in563

the full edge set. But neither m nor w would have removed this edge when forming their564

restricted edge set since for both of them it is better than an edge they did not remove (the565

edge they are matched with in S).566

It follows that w.h.p. the set of stable matchings is the same when using Ev (or any567

super set of it generated by truncation with larger loss thresholds) and the whole set. Thus568

woman-proposing DA run on the restricted edge set will yield the same stable matching as569

on the full edge set.570

◀571

Proof. (Of Theorem 2.) If E occurs, the set of acceptable edges contains all the viable edges.572

Furthermore, the acceptable edges are defined by means of loss thresholds. The result now573

follows from Lemma 11. ◀574

For some of the very bottommost agents, almost all edges may be acceptable. However,575

in the bounded derivatives model, with slightly stronger constraints on the derivatives, we576

also show (see Appendix H) the existence of an ϵ-Bayes-Nash equilibrium in which all but577

a bottom Θ((ln n/n)1/3) fraction of agents use only Θ(ln n) edges, and all agents propose578

using at most Θ(ln2 n) edges, with ϵ = O(ln n/n1/3).579

6 Numerical Simulations580

We present several simulation results which are complementary to our theoretical results.581

Throughout this section, we focus on the linear separable model.582
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6.1 NRMP Data583

We used NRMP data to motivate some of our choices of parameters for our simulations. The584

NRMP provides extensive summary data [19]. We begin by discussing this data.585

Over time, the number of positions and applicants has been growing. We mention586

some numbers for 2021. There were over 38,000 positions available and a little over 42,000587

applicants. The main match using the DA algorithm (modified to allow for couples, who588

comprise a little over 5% of the applicants) filled about 95% of the available positions.589

The NRMP also ran an aftermarket, called SOAP, after which about 0.5% of the positions590

remained unfilled.591

The positions cover many different specialities. These specialities vary hugely in the592

number of positions available, with the top 11, all of size at least 1,000, accounting for 75% of593

the positions. In addition, about 75% of the doctors apply to only one speciality. We think594

that as a first approximation, w.r.t. the model we are using, it is reasonable to view each595

speciality as a separate market. Accordingly, we have focused our simulations on markets596

with 1,000–2,000 positions (though the largest speciality in the NRMP data had over 9,000597

positions).598

On average, doctors listed 12.5 programs in their preference lists, hospital programs listed599

88 doctors, and the average program size was 6.5 (all numbers are approximate). While600

there is no detailed breakdown of the first two numbers, it is clear they vary considerably601

over the individual doctors and hospitals. For our many-to-one simulations we chose to use a602

fixed size for the hospital programs. Our simulations cause the other two numbers to vary603

over the individual doctors and programs because the public ratings and private scores are604

chosen by a random process.605

6.2 Numbers of Available Edges606

The first question we want to answer is how long do the preference lists need to be in order to607

have a high probability of including all acceptable edges, for all but the bottommost agents?608

We chose bottommost to mean the bottom 20% of the agents, based on where the needed609

length of the preference lists started to increase in our experiments for n = 1,000–2,000.610

We ran experiments with λ = 0.5, 0.67, 0.8, corresponding to the public rating having611

respectively equal, twice, and four times the weight of the private scores in their contribution612

to the utility. We report the results for λ = 0.8. The edge sets were larger for smaller values613

of λ, but the results were qualitatively the same. We generated 100 random markets and614

determined the smallest value of L that ensured all agents were matched in all 100 markets.615

L = 0.12 sufficed. In Figure 2, we show results by decile of women’s rank (top 10%, second616

10%, etc.), specifically the average length of the preference list and the average number of617

edges proposed by a woman in woman-proposing DA, over these 100 randomly generated618

markets. We also show the max and min values over the 100 runs; these can be quite far619

from the average value. Note that the min values in Figure 2(a) are close to the max values620

in Figure 2(b), which suggests that being on the proposing side does not significantly reduce621

the value of L that the women could use compared to the value the men use. We also show622

data for a typical single run in Figure 3.623

We repeated the simulation for the many-to-one setting. In Figure 4, we show the results624

for 2000 workers and 250 companies, each with 8 positions. Now, on average, a typical worker625

(i.e. among the top 80%) has an average preference list length of 55 and makes 7 proposals.626

The one-to-one results show that for non-bottommost agents, the preference lists have627

length 150 on the average, while women make 30 proposals on the average (these numbers628
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(a) Number of edges in the acceptable edge set,
per woman, by decile; average in blue with circles,
minimum in red with stars. (n = 2,000, λ = 0.8,
L = 0.12.)

(b) Number of edges in the acceptable edge set
proposed during the run of DA, per women, by
decile; average in blue with circles, maximum in
red with stars.

Figure 2 One-to-one case: summary statistics.

(a) Number of edges in the acceptable edge set for
each woman.

(b) Number of edges in the acceptable edge set
proposed by each woman.

Figure 3 One-to-one case: a typical run.

are slightly approximate). What is going on? We believe that the most common matches629

provide a small loss or gain (Θ(n−1/3) in our theoretical bounds) as opposed to the maximum630

loss possible (Θ(n−1/3 ln1/3 n) in our theoretical bounds), as is indicated by our distribution631

bound on the losses (see item 4 in Appendix E.1). The question then is where do these edges632

occur in the preference list, and the answer is about one fifth of the way through (for one633

first has the edges providing a gain, which only go to higher up agents on the opposite side,634

and then one has the edges providing a loss, and these go both up and down). However, a635

few of the women will need to go through most of their list, as indicated by the fact that the636

max and min lines (for example in Figure 4) roughly coincide.637

This effect can also be seen in the many-to-one experiment but it is even more stark on638

the worker’s side. The reason is that the number of companies with whom a worker w might639

match which are above w, based on their public ratings alone, is Θ(Lcnc), while the number640

below w is Θ(Lwnc), a noticeably larger number. (See Appendix F.1 for a proof of these641

bounds.) The net effect is that there are few edges that provide w a gain, and so the low-loss642

edges, which are the typical matches, are reached even sooner in this setting.643

Now we turn to why the number of edges in the available edge set per woman changes at644

the ends of the range. There are two factors at work. The first factor is due to an increasing645

loss bound as we move toward the bottommost women, which increases the sizes of their646

available edge sets. The second factor is due to public ratings. For a woman w the range of647

men’s public ratings for its acceptable edges is [rm − Θ(L), rm + Θ(L)], where m is aligned648
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(a) Many to One Setting: Number of edges in the
acceptable edge set per worker, by decile; average
in blue with circles, minimum in red with stars.
(nw = 2,000, d = 8, λ = 0.8, Lc = 0.14, Lw =
0.24.)

(b) Number of edges in the acceptable edge set
proposed during the run of DA, per worker, by
decile; average in blue with circles, maximum in
red with stars.

Figure 4 Many to One Setting.

with w. But at the ends a portion of this range will be cut off, reducing the number of649

acceptable edges, with the effect more pronounced for low public ratings. Because λ = 0.8,650

initially, as we move to lower ranked women, the gain due to increasing the loss bound651

dominates the loss due to a reduced public rating range, but eventually this reverses. Both652

effects can be clearly seen in Figure 3(a), for example.653

6.3 Unique Stable Partners654

Another interesting aspect of our simulations is that they showed that most agents have a655

unique stable partner. This is similar to the situation in the popularity model when there656

are short preference lists, but here this result appears to hold with full length preference657

lists. In Figure 5, we show the outcome on a typical run and averaged over 100 runs, for658

n = 2,000 in the one-to-one setting. We report the results for the men, but as the setting is659

symmetric they will be similar for the women. On the average, among the top 90% of agents660

by rank, 0.5% (10 of 1,800) had more than one stable partner, and among the remainder661

another 2% had multiple stable partners (40 of 200).662

Also, as suggested by the single run illustrated in Figure 5(a), the pair around public663

rank 1,600 and the triple between 1,200 and 1,400 have multiple stable partners which664

they can swap (or exchange via a small cycle of swaps) to switch between different stable665

matchings. This pattern is typical for the very few men with multiple stable partners outside666

the bottommost region.667

6.4 Constant Number of Proposals668

Our many-to-one experiments suggest that the length of the preference lists needed by our669

model are larger than those observed in the NRMP data. In addition, even though there is a670

simple rule for identifying these edges, in practice the communication that would be needed671

to identify these edges may well be excessive. In light of this it is interesting to investigate672

what can be done when the agents have shorter preference lists.673

We simulated a strategy where the workers’ preference lists contain only a constant674

number of edges. We construct an Interview Edge Set which contains the edges (w, c)675

satisfying the following conditions:676

1. Let rw and rc be the public ratings of w and c respectively. Then |rw − rc| ≤ p.677
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(a) Public ranks of men with multiple stable part-
ners in a typical run.

(b) Average numbers of men with multiple stable
partners, by decile.

Figure 5 Unique stable partners, one-to-one setting.

2. The private score w has for c as well as the private score of c for w are both greater than678

q.679

We choose the parameters p and q so as to have 15 edges per agent on average. Many680

combinations of p and q would work. We chose a pair that caused relatively few mismatches.681

We then ran worker proposing DA on the Interview Edge Set.682

One way of identifying these edges is with the following communication protocol: the683

workers signal the companies which meet their criteria (the workers’ criteria); the companies684

then reply to those workers who meet their criteria. In practice this would be a lot of com-685

munication on the workers’s side, and therefore it may be that an unbalanced protocol where686

the workers use a larger qw as their private score cutoff and the companies a correspondingly687

smaller qc is more plausible. Clearly this will affect the losses each side incurs when there is a688

match, but we think it will have no effect on the non-match probability, and as non-matches689

are the main source of losses, we believe our simulation is indicative. We ran the above690

experiment with p = 0.19 and q = 0.60, with the company capacity being 8. Figure 6(a)691

shows the locations of unmatched workers in a typical run of this experiment while 6(b)692

shows the average numbers of unmatched workers per quantile (of public ratings) over 100693

runs. We observe that the number of unmatched workers is very low (about 1.5% of the694

workers) and most of these are at the bottom of the public rating range.695

Figure 6(c) compares the utility obtained by the workers in the match obtained by696

running worker-proposing DA on the Interview Edge Set to the utility they obtain in the697

worker-optimal stable match. We observe that only a small number of workers have a698

significantly worse outcome when restricted to the Interview Edge Set.699

(a) Public ranks of unmatched
workers in a typical run.

(b) Average numbers of un-
matched workers by public rat-
ing decile.

(c) Distribution of workers’
utilities with worker-proposing
DA: (full edge set result)
−(Interview edge set result)

Figure 6 Constant number of proposals.
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7 Discussion and Open Problems700

Our work shows that in the bounded derivatives model, apart from a sub-constant fraction701

of the agents, each of the other agents has O(ln n) easily identified edges on their preference702

list which cover all their stable matches w.h.p.703

As described in Section 6, our experiments for the one-to-one setting yield a need for704

what appear to be impractically large preference lists. While the results in the many-to-one705

setting are more promising, even here the preference lists appear to be on the large side.706

Also, while our rule for identifying the edges to include is simple, in practice it may well707

require too much communication to identify these edges. At the same time, our outcome is708

better than what is achieved in practice: we obtain a complete match with high probability,709

whereas in the NRMP setting a small but significant percentage of positions are left unfilled.710

Our conclusion is that it remains important to understand how to effectively select smaller711

sets of edges.712

In the popularity model, it is reasonable for each agent to simply select their favorite713

partners. But in the current setting, which we consider to be more realistic, it would be an714

ineffective strategy, as it would result in most agents remaining unmatched. Consequently,715

we believe the main open issue is to characterize what happens when the number of edges k716

that an agent can list is smaller than the size of the allowable edge set. We conjecture that717

following a simple protocol for selecting edges to list, such as the one we use in our experiments718

(see Section 6.4), will lead to an ϵ-Bayes-Nash equilibrium, where ϵ is a decreasing function719

of k. Strictly speaking, as the identification of allowable edges requires communication, we720

need to consider the possibility of strategic communication, and so one would need to define721

a notion of ϵ-equilibrium akin to a Subgame Perfect equilibrium. We conjecture that even722

with this, it would still be an ϵ-equilibrium.723

Finally, it would be interesting to resolve whether the experimentally observed near724

uniqueness of the stable matching for non-bottom agents is a property of the linear separable725

model. We conjecture that in fact it also holds in the bounded derivatives model.726
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