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ABSTRACT. Comparing and recognizing metrics can be extraordinarily difficult because
of the group of diffeomorphisms. Two metrics, that could even be the same, could look
completely different in different coordinates. This is the gauge problem. The general gauge
problem is extremely subtle for non-compact spaces. Often it can be avoided if one uses
some additional structure of the particular situation. However, in many problems there is
no additional structure. Instead we solve the gauge problem directly in great generality.

The techniques and ideas apply to many problems. We use them to solve a well-known
open problem in Ricei flow.

We solve the gauge problem by solving a nonlinear system of PDEs. The PDE produces
a diffeomorphism that fixes an appropriate gauge in the spirit of the slice theorem for group
actions. We then show optimal bounds for the displacement function of the diffeomorphism.

0. INTRODUCTION

Suppose we have two weighted manifolds (M;, g;, fi) for i = 1, 2 satisfying some PDE.
Assume that on a large, but compact set, the manifolds M;, metrics g; and weights e~ /i
almost agree after identification by a diffeomorphism.

e Are the manifolds, metrics and weights the same everywhere after some identification?

This is a common problem in many questions. The major obstacle for understanding this in
general is the infinite dimensional gauge group of diffeomorphisms:
® Two metrics, that could even be the same, could look very different in different
coordinates.

In some situations the gauge problem can be avoided if there is some additional structure.
A classical example is the Killing-Hopf theorem that classifies constant curvature metrics.
This classification uses that the curvature tensor is constant to construct a “canonical”
isometry between the two spaces. In general, the gauge problem can be solved when there is
strong asymptotic decay and circumvented when the space is characterized in a coordinate-
free way, such as a large symmetry group, the vanishing of a special tensor, or a strong
curvature condition.

In the problems we will be interested in, the manifold will be non-compact and we will
not have any special structure. Thus, we will be forced to deal with the gauge problem head
on. The flip side of this is that once we do that it gives new tools with broad applications.

0.1. Where do questions like these arise? Problems about identifying spaces occur in
many different situations. The one we are interested in here comes from Ricci flow. A one
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parameter family (M, g(t)) of manifolds flows by the Ricci flow, [H], if
9. = —2Ricy(y) ,

where Ric,(,) is the Ricci curvature of the evolving metric g(t) and g, is the time derivative
of the metric.

The key to understand Ricci flow is the singularities that form. The simplest singularity is
a homothetically shrinking sphere that disappears (beomes extinct) at a point. The product
of a sphere with R gives a shrinking cylinder; this singularity, called a neck pinch, is much
more complicated than the spherical extinction. In dimension three, spherical extinctions
and neck pinches are essentially the only singularities. Adding another R factor, gives the
so-called bubble sheet singularity that is only recently partially understood. With each
additional R factor, the singularities become more complicated and the sets where they
occur are larger.

A triple (M, g, f) of a manifold M, metric g and function f on M is a gradient shrinking

Ricci soliton (or shrinker) if it satisfies
1
39"
Shrinkers give special solutions of the Ricci flow that evolve by rescaling up to diffeomorphism
and are singularity models. They arise as time-slices of limits of rescalings (magnifications)
of the flow around a fixed future singular point in space-time. Such limits are said to be
tangent flows at the singularity. Even when M is compact, the shrinker is typically non-
compact and the convergence is on compact subsets. Shrinkers also arise in other important
ways, such as blowdowns from —oo for ancient flows with bounded entropy. Ancient flows
are flows that have existed for all prior times; every tangent flow is ancient. Shrinkers are
the key singularities in Ricei flow and will be our focus here.

Among shrinkers, cylinders are particularly important; they are the most prevalent. This is
because the Almgren-Federer-White dimension reduction divides the singular set into strata
whose dimension is the dimension of translation-invariance of the blowup. For Ricci flow,
this suggests:

* Top strata of the singular set corresponds to points where the blowup is R"2 x NZ2.
® The next strata consists of points where the blowup is R x N3,

The N’s are themselves shrinkers and have been classified in low dimensions by Cao-Chen-
Zhu, Hamilton, Ivey, Naber, Ni-Wallach, Perelman. In dimensions two and three, they are
N? = 8% or RP? and N® = §° or §2? x R. (plus quotients). The classification in dimension
three relies on an equation for the 2-tensor % that fails in higher dimensions where there
is no similar classification. In fact, there are huge families of shrinkers in higher dimensions.
Combining dimension reduction with the classification in low dimensions, we see that the
most prevalent singularities are:
S? x R™2 followed by S® x R"* (and quotients).

As one approaches a singularity in the flow and magnifies, one would like to know which
singularity it is. Since most singularities are non-compact yet the evolving manifolds are
closed, one only sees a compact piece of the singularity at each time as one approaches it.
The next theorem recognizes the most prevalent singularities from just a compact piece.

Ric + Hess; =

Theorem 0.1. [CM1] Cylindrical shrinkers §¢ x R"~¢ are strongly rigid for any ¢.
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The theorem holds for products of R"~¢ with quotients of S¢ and a large class of other
positive Einstein manifolds; see [CM1] for details. Strong rigidity means that if another
shrinker is close enough on a large compact set, then it must agree.

In most problems in geometric PDESs, it would be unthinkable to control an entire solution
from just knowing roughly how it looks on a compact set. This is exactly what we do here.
If one knew exactly how it looked like on a compact set, it would be much less surprising and
essentially follow from unique continuation. The surprising thing here is that we only assume
closeness and only on a compact set and this enough to characterize the shrinker. This is an
illustration of a shrinker principle which roughly says that “uniqueness radiates outwards”.
Nothing like this is true for Einstein manifolds (or steady solitons), where gravitational
instantons contain arbitrarily large arbitrarily Euclidean regions. The shrinker principle was
originally discovered in mean curvature flow [CIM], [CM2]. It has been conjectured since
that something similar holds for Ricci flow, but the gauge group has been one of the major
obstacles. Using extrinsic coordinates, the gauge is circumvented in mean curvature flow.

Tangent flows are limits of a subsequence of rescalings at the singularity. A priori different
subsequences might give different limits. Using Theorem 0.1, we get the following uniqueness:

Theorem 0.2. [CM1] For a Ricci flow, if one tangent flow at a point in space-time is a
cylinder, then all other tangent flows at that point are also cylinders.

Unlike most results in Ricci flow, these results hold for every n and £. Increasing the
dimension of the Euclidean factor is a subtle problem (e.g. surgery, cylindrical estimates, and
k-convexity estimates only allow small Euclidean factors). For general n and ¢, cylinders do
not have a coordinate-free characterization. This is a major part of the difficulty, forcing us
to address the gauge problem head on.

At singularities where the tangent flows are compact shrinkers the singularities are isolated
in space-time. For compact shrinkers, rigidity was proven in dimension three by Hamilton
in 1982 and by Huisken in 1985 for higher dimensional spheres.

Rigidity for necks §"~! x R was proven independently by Li-Wang [LW]. They are able to
circumvent the gauge problem by using that their Euclidean factor is a line. They do that, in
part, by using tensors with special properties on the product of a sphere with a line to prove
asymptotic structure and approximate symmetry. Once they have this, they are able to use
again that their Euclidean factor is a line to apply Brendle’s symmetry improvement to get
O(n) symmetry and, finally, Kotschwar’s classification of rotationally symmetric shrinkers.

0.2. Further applications. Rigidity and uniqueness of blowups are fundamental questions
in regularity theory that have many applications. For instance in mean curvature flow, they
play a major role in understanding the singular set, proving optimal regularity, understanding
solitons, classifying ancient solutions, and understanding low entropy flows.

1. WHAT IS NEEDED FOR RIGIDITY?

We need to show that if two shrinkers are close on a large but compact set, then they
agree identically everywhere. This will be done by iterating two estimates: extension and
improvement. Extension shows that the shrinkers remain close even on a fixed larger scale,
but with a loss in the estimates. Improvement recovers this loss and shows that they are even
closer on the larger scale. Once we have this, we can iterate the argument to get estimates on
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larger and larger scales, eventually giving the strong rigidity. Estimates proving polynomial
losses will be played off against estimates with exponential gains.
Four key ingredients in the proof of strong rigidity are:

(1) Gauge fixing.

(2) New polynomial growth estimates for PDEs.

(3) Propagation of almost splitting.

(4) Quadratic rigidity in the right gauge.
We will use new polynomial growth estimates as ingredients in both (1) and (3).

1.1. Gauge fixing. Fix (M, g, f). We are given a diffeomorphism from a large compact set
in M to a second weighted space.

e The pull-back metric and weight are g + h and e~/—%,
e h and k are small on the compact set.

Composing with a diffeomorphism on M gives a different h and k. We want to mod out by
this group action. This is gauge fixing.

One of the most interesting results of transformation groups is the existence of slices. A
slice for the action of a group on a manifold is a submanifold which is transverse to the orbits
near a given point. Ebin and Palais proved the existence of a slice for the diffeomorphism
group of a compact manifold acting on the space of all Riemannian metrics. The slice can
be thought of as the gauge fixing on the compact manifold. However, manifolds are not
compact here.

In our setting, gauge fixing is choosing a diffeomorphism ® on M so the new h is orthogonal
to the group action. This is a nonlinear PDE for ®. Orthogonality corresponds to making
divy h = 0, where div, (h) = e/ div (e™/ h) = div (h) —h(Vf, ). The solution to the nonlinear
PDE asks to find a diffeomorphism ® so that h = ®* (g + k) — g satisfies
(1.1) divyh=0.

Terms involving div; come up again and again, so many quantities simplify in this gauge
and having them drop out as they do when div; & = 0 makes things possible to analyze.

We construct the diffeomorphism @ that solves this nonlinear PDE using an iteration

scheme for the linearized operator P on vector fields Y. Using optimal polynomial bounds
on P, we show sharp polynomial bounds for the displacement function of @

z — disty(z, (z)) .

For applications, it is crucial that we only assume closeness on a compact set and, in partic-
ular, a priori the two shrinkers do not need to be diffeomorphic. This means that we cannot
fix the gauge at the outset. Instead we need to apply our gauge fixing procedure iteratively
to fix the gauge on larger and larger scales as we move outward and show closeness on larger
and larger scales. To pull this off requires very strong estimates for the displacement which
is what we show. Our optimal estimates show that the displacement of the gauge fixing
diffeomorphism grows at a sharp polynomial rate. The bound is relative so closeness on the
initial scale implies closeness at a larger scale.

On a shrinker (M, g, f) there is a natural gaussian L? norm given by [ul|}. = [}, u?e™/.
Diffeomorphisms near the identity are infinitesimally generated by integrating a vector field
X. The infinitesimal change of the metric is given by the Lie derivative of the metric with
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respect to X. This is equal to —% div;X, where div} is the operator adjoint of div, with
respect the to gaussian inner product. Thus, if we define the operator P by

P X =divy odiv} X,
then the linearization of (1.1) is to find a vector field X with

PX = % divsh.
A detailed analysis of P and its properties play an important role in the gauge fixing.

The canonical second order elliptic “drift Laplacian” that is self-adjoint and positive defi-
nite with respect to the gaussian inner product is a generalized Ornstein-Uhlenbeck operator.
On tensors u this operator is given by £Lu = A u—Vyu. Given a vector field X on a shrinker,
the two operators £ and P are related by the identity

2P X =Vdiv; X + LX + %x.

The unweighted version of P was used implicitly by Bochner to show that closed manifolds
with negative Ricci curvature have no Killing fields. The unweighted operator was later used
by Bochner and Yano, to show that the isometry group of such manifolds is finite. The un-
weighted operator also arises in general relativity and fluid dynamics. The weighted operator
P appears to have been largely overlooked. The relationship between P and the unweighted
version, used by Bochner, mirrors the relationship between the Ornstein-Uhlenbeck operator
and the Laplacian.

1.2. New polynomial growth estimates for PDEs. Surprisingly, in very general set-
tings, we show the same polynomial growth bounds for £ that Laplace and Hermite observed
on R" for the standard gaussian. We use the relationship between £ and P to translate
these optimal bounds for £ into optimal bounds for P. These optimal bounds hold for all
shrinkers for both Ricci and mean curvature flows, giving a powerful new tool for a wide
array of problems. These estimates are used in both the gauge fixing and the propagation
of almost splitting.

1.3. Propagation of almost splitting. One of the important new ingredients is that a
Ricci shrinker close to a product N xR"™ ¢ on a large scale remains close on a fixed larger scale.
The 1dea is that the initial closeness will imply that £ has eigenvalues that are exponentially
cIose to 5. The drift Bochner formula on a shrinker implies that every eigenvalue is at least
i 5 with equahty only when it splits. We show that being close to ; gives that the hessian is
a.lmost zero in L?, which is very strong on the region where the welght f is small but says
almost nothing further out. The crucial point is that the hessian can grow only polynomially,
so the very small initial bound gives bounds much further out. Thus, the gradients of these
eigenfunctions give the desired almost parallel vector fields and almost splitting.

If a shrinker is exponentially close to a cylinder on scale R, then almost splitting gives on
scale (1+¢) R

(
(A)n—¢€ a.lmost translations and a metric almost splitting.
(B) The slices {f = ¢} are almost spherical.

)

(C) f also almost splits f = f; + L.L
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Combining (A) and (B) gives a diffeomorphism on scale (1 + €) R from the cylinder to the
second shrinker and this diffeomorphism is close to an isometry. The condition (C) guarantees
that the diffeomorphism also almost preserves f. As a result, we see that the shrinker looks
cylindrical even on the larger scale. However, there is a loss in the estimates - it may look
less cylindrical on the larger scale - that makes this impossible to iterate on its own.

1.4. Quadratic rigidity. The propagation of almost splitting and gauge fixing give that
the shrinker is close to a cylinder on a large set via a diffeomorphism that fixes the gauge.
The last of the four key ingredients is an estimate for the difference in metrics that is small
enough to be iterated. For this, it is essential that the gauge be right, or else it just isn’t
true. The closeness cannot be seen via linear analysis. However, we show that there is a
second order rigidity that gives the estimate; we call this quadratic rigidity.

To explain the estimate, let (M, g, f) be the cylinder and (M, g + h, f + k) the shrinker
that is close on a large compact set. We need bounds on h and k that can be iterated. The
linearization of the shrinker equation is
This linearization was derived by Cao-Hamilton-Ilmanen in their calculation of the second
variation operator for Perelman’s entropy. The operator L acts on 2-tensors by

Lh=Lh+2R(h),

and R(h) is the natural action of the Riemann tensor.

Since (M, g+ h, f + k) is also a shrinker, (1.2) must be at least quadratic in (h, k). The
last two terms in (1.2) are gauge terms - i.e., in the image of div} and there is no reason for
these - or h - to be small if not in right gauge. In the right gauge, the difference h in the
metrics satisfies the Jacobi equation L h = 0 up to higher order terms. This does not force
h to be small since cylinders have non-trivial Jacobi fields that could potentially integrate
to give nearby shrinkers. The second variation of the shrinker equation in the direction
of a Jacobi field is given by the tensor

(1.3) —2|Vu|?Ric — 2 SuHess, — S Vu ® Vu.

Here S is scalar curvature and u is a quadratic Hermite polynomial that measures the
projection of h onto Jacobi fields. The first order Taylor expansion will give that A is a
Jacobi field to first order and, thus, |h| is |u| up to higher order. On the other hand, the
second order Taylor expansion will imply that (1.3) vanishes to at least third order in h.
Combining these, we see that the quadratic expression (1.3) is in fact at least cubic in wu.
When u is small, this implies that « and h vanish; we will have extra error terms so will get
that h is exponentially small, giving the improvement that we needed to iterate.
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